EP0282761A1 - Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit - Google Patents

Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit Download PDF

Info

Publication number
EP0282761A1
EP0282761A1 EP88102520A EP88102520A EP0282761A1 EP 0282761 A1 EP0282761 A1 EP 0282761A1 EP 88102520 A EP88102520 A EP 88102520A EP 88102520 A EP88102520 A EP 88102520A EP 0282761 A1 EP0282761 A1 EP 0282761A1
Authority
EP
European Patent Office
Prior art keywords
potato starch
paper
dry strength
native potato
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88102520A
Other languages
English (en)
French (fr)
Other versions
EP0282761B1 (de
Inventor
Hans-Juergen Dr. Degen
Sigberg Dr. Pfohl
Volkmar Dr. Weberndoerfer
Gerd Dr. Rehmer
Michael Dr. Kroener
Andreas Dr. Stange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to AT88102520T priority Critical patent/ATE76135T1/de
Publication of EP0282761A1 publication Critical patent/EP0282761A1/de
Application granted granted Critical
Publication of EP0282761B1 publication Critical patent/EP0282761B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • D21H17/29Starch cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • D21H17/455Nitrogen-containing groups comprising tertiary amine or being at least partially quaternised
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H5/00Special paper or cardboard not otherwise provided for
    • D21H5/26Special paper or cardboard manufactured by dry method; Apparatus or processes for forming webs by dry method from mainly short-fibre or particle material, e.g. paper pulp
    • D21H5/265Treatment of the formed web
    • D21H5/2657Consolidation
    • D21H5/2664Addition of a binder, e.g. synthetic resins or water
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents

Definitions

  • the graft polymerization is preferably carried out in the presence of a redox catalyst.
  • a process for cationizing starch is known from US Pat. No. 4,097,427, in which the starch is boiled in an alkaline medium in the presence of water-soluble quaternary ammonium polymers and an oxidizing agent.
  • Quaternary ammonium polymers include quaternized diallyldialkylamine polymers or quaternized polyethyleneimines are also suitable.
  • the oxidizing agent used is, for example, ammonium persulfate, hydrogen peroxide, sodium hypochlorite, ozone or tert-butyl hydroperoxide.
  • the modified cationic starches which can be prepared in this way are added to the paper stock as dry strength agents in the production of paper. However, the wastewater is polluted by a very high COD value.
  • the invention has for its object to achieve an improvement in the dry strength of paper when using starch compared to the known methods.
  • the substantivity of the starch is increased when it is drawn onto the fibers in the paper stock, thereby reducing the COD load in the wastewater.
  • the mixtures to be used as dry strength agents according to the invention have good retention towards paper fibers in the paper stock.
  • the COD value in the white water is significantly reduced with the mixtures according to the invention compared to the native starch.
  • the interfering substances contained in the water circuits of paper machines affect the effectiveness of the dry strength agents to be used according to the invention only slightly.
  • the pH of the pulp suspension can be in the range from 4 to 9, preferably 6 to 8.5.
  • the modified starch to be used according to the invention is produced in the absence of oxidizing agents, polymerization initiators and also in the absence of alkali.
  • the modification of the native potato starch is preferably achieved by heating it in aqueous slurry with the cationic polymers in question to a temperature above the gelatinization temperature of the native potato starch.
  • the gelatinization temperature of the starch is the temperature at which the birefringence of the starch grains is lost, cf. Ullman's Encyclopedia of Technical Chemistry, Urban and Schwarzenberg, Kunststoff-Berlin, 1965, 16th volume, page 322.
  • the modification of the native potato starch can generally be done in various ways.
  • An already digested native potato starch which is in the form of an aqueous solution, can be reacted with the cationic polymers in question to temperatures in the range from 15 to 70 ° C. Longer contact times are required at even lower temperatures. If the reaction is carried out at even higher temperatures, e.g. up to 110 ° C, shorter contact times are required, e.g. 0.1 to 15 min.
  • the simplest way of modifying the native potato starch is to heat an aqueous slurry of the starch in the presence of the cationic polymers in question to a temperature above the gelatinization temperature of the native potato starch.
  • the starch for modification is heated to temperatures in the range from 70 to 110 ° C., the reaction being carried out in pressure-tight apparatus at temperatures above 110 ° C.
  • the starch is always solubilized in the absence of oxidizing agents, initiators and alkali in about 3 minutes to 5 hours, preferably 5 to 30 minutes. Higher temperatures here require a shorter dwell time.
  • aqueous phase of the reaction mixture increases.
  • a 3.5% by weight aqueous solution of the mixture to be used as dry strength agent has viscosities in the range from 50 to 10,000 mPas (measured according to Brookfield at 20 rpm and 20 ° C.).
  • (A) Polymers of diallyldimethylammonium chloride are suitable for the preparation of the dry strength agents to be used according to the invention. Polymers of this type are known. Under Polymers of diallyldimethylammonium chloride should primarily be understood to mean the homopolymers and the copolymers with acrylamide and / or methacrylamide. The copolymerization can be carried out in any monomer ratio.
  • the K value of the homopolymers and copolymers of diallyldimethylammonium chloride is at least 30, preferably 95 to 180.
  • the substituent X ⁇ in the formulas I and II can in principle be any acid residue of an inorganic and an organic acid.
  • the monomers of formula I are obtained by using the free base, i.e. 1-vinyl-2-imidazoline, neutralized with the equivalent amount of an acid.
  • the vinylimidazolines can also be neutralized, for example, with trichloroacetic acid, benzenesulfonic acid or toluenesulfonic acid.
  • quaternized 1-vinyl-2-imidazolines can also be used.
  • quaternizing agents are, for example, C1 to C18 alkyl chlorides or bromides, benzyl chloride, benzyl bromide, epichlorohydrin, dimethyl sulfate and diethyl sulfate. Epichlorohydrin, benzyl chloride, dimethyl sulfate and methyl chloride are preferably used as quaternizing agents.
  • the compounds of the formula I or II are preferably polymerized in an aqueous medium.
  • the copolymers are obtained by using the monomers of the compound of the formulas I and II with acrylamide and / or methacrylamide polymerized.
  • the monomer mixture used in the polymerization contains at least 1% by weight of a monomer of the formula I or II, preferably 10 to 40% by weight.
  • Copolymers of 60 to 85% by weight of acrylamide and / or methacrylamide and 15 to 50% by weight of N-vinylimidazoline or N-vinyl-2-methylimidazoline are particularly suitable for modifying native potato starch.
  • the copolymers can also by copolymerizing other monomers, such as styrene, vinyl acetate, vinyl propionate, N-vinylformamide, C1- to C4-alkyl vinyl ether, N-vinylpyridine, N-vinylpyrrolidone, N-vinylimidazole, acrylic acid esters, methacrylic acid esters, ethylenically unsaturated C3- to C5 -Carboxylic acids, sodium vinyl sulfonate, acrylonitrile, methacrylonitrile, vinyl chloride and vinylidene chloride can be modified in amounts up to 25% by weight.
  • other monomers such as styrene, vinyl acetate, vinyl propionate, N-vinylformamide, C1- to C4-alkyl vinyl ether, N-vinylpyridine, N-vinylpyrrolidone, N-vinylimidazole, acrylic acid esters, methacrylic acid esters
  • polymerization in aqueous solution it is possible, for example, to prepare the homopolymers and copolymers in a water-in-oil emulsion.
  • the monomers can also be polymerized by the reverse suspension polymerization method, in which bead-like polymers are obtained.
  • the polymerization is initiated with the aid of conventional polymerization initiators or by the action of high-energy radiation.
  • Suitable polymerization initiators are, for example, hydrogen peroxide, inorganic and organic peroxides, and hydroperoxides and azo compounds. Mixtures of polymerization initiators can be used as well as so-called redox polymerization initiators, e.g.
  • the polymerization is carried out at temperatures in the range from 0 to 100 ° C., preferably 15 to 80 ° C. It is of course also possible to polymerize at temperatures above 100 ° C., but it is then necessary to carry out the polymerization under pressure. For example, temperatures up to 150 ° C are possible.
  • the reaction time depends on the temperature. The higher the temperature during the polymerization, the shorter the time required for the polymerization.
  • copolymers of compounds of the formula I with acrylamide or methacrylamide are preferably used as cationic polymers of group (c) for economic reasons. These copolymers then contain the compounds of the formula I only in effective amounts, ie in an amount of 1 to 40% by weight.
  • the dry strength agents to be used according to the invention can be used in the production of all known paper, cardboard and cardboard qualities, for example writing paper, printing paper and packaging paper.
  • the papers can be made from a variety of different types of fiber materials, for example from sulfite or sulfate pulp in the bleached or unbleached state, wood pulp, waste paper, thermomechanical material (TMP) and chemothermomechanical material (CTMP).
  • TMP thermomechanical material
  • CTMP chemothermomechanical material
  • the pH of the stock suspension is between 4.0 and 10, preferably between 6.0 and 8.5.
  • the dry strength agents can be used both in the production of base paper for papers with low basis weight (LWC papers) and for cardboard.
  • the basis weight of the papers is between 30 and 200, preferably 35 and 150 g / m2, while it can be up to 600 g / m2 for cardboard.
  • the paper products produced according to the invention have a noticeably improved strength compared to such papers which were produced in the presence of an equal amount of native potato starch, which strength can be quantified, for example, on the basis of the tear length, the burst pressure, the CMT value and the tear resistance.
  • the parts given in the examples are parts by weight, the percentages relate to the weight.
  • the viscosities of the solidifiers were determined in an aqueous solution at a solids concentration of 3.5% by weight and a temperature of 20 ° C. in a Brookfield viscometer at 20 rpm.
  • the sheets were made in a Rapid-Köthen laboratory sheet former.
  • the dry tear length was determined according to DIN 53 112, sheet 1, the dry burst pressure according to Mullen, DIN 53 141, the CMT value according to DIN 53 143 and the tear propagation resistance according to Brecht-Inset according to DIN 53 115.
  • the leaves were tested after 24-hour air conditioning at a temperature of 23 ° C and a relative humidity of 50%.
  • a 3% slurry of native potato starch (gelatinization temperature 90 ° C.) in water is mixed with such an amount of polymer 1 that the resulting mixture contains 10% polymer 1, based on the native potato starch used.
  • the mixture is then heated with stirring to a temperature in the range from 90 to 95 ° C. for 15 minutes and, after cooling to a temperature in the range from 10 to 40 ° C., is used according to the invention as a dry strength agent for paper by placing it in a stock suspension before Sheet formation admits (viscosity: 656 mPa ⁇ s).
  • a dry strength agent for paper is prepared by reacting a 3% aqueous slurry of native potato starch with polymer 2 instead of polymer 1 used there (viscosity: 870 mPa ⁇ s).
  • a dry strength agent for paper is produced by using polymer 3 instead of polymer 1 described there (viscosity: 950 mPa ⁇ s).
  • a dry hardening agent is prepared by using polymer 4 instead of the polymer used there (viscosity: 398 mPa ⁇ s).
  • a 3% aqueous slurry of native potato starch (gelatinization temperature 90 ° C) is heated with stirring for 15 minutes to a temperature in the range from 90 to 95 ° C, the starch dissolving. After the starch solution has cooled to a temperature of 70 ° C., a 5% aqueous solution of polymer 2 is added, so that the amount of the polymer, based on the native potato starch, is 10%. The mixture is then stirred for a further 10 minutes at a temperature of 70 ° C. and then cooled to room temperature. A dry strength agent for paper is obtained (viscosity: 784 mPa ⁇ s).
  • a dry hardening agent is produced by using polymer 5 instead of the polymer used there (viscosity: 250 mPa ⁇ s).
  • a dry hardening agent is produced by using polymer 6 instead of the polymer used there (viscosity: 150 mPa ⁇ s).
  • a dry hardening agent is produced by using polymer 7 instead of the polymer used there (viscosity: 206 mPa ⁇ s).
  • a dry hardening agent is produced by using polymer 8 instead of the polymer used there (viscosity: 86 mPa ⁇ s).
  • a dry strength agent for paper is produced according to the specification given under hardener 1, but polymer 9 is used instead of the polymer used there (viscosity: 766 mPa ⁇ s).
  • a dry strength agent for paper is made according to the method described in US Pat. No. 4,097,427 in Example 7 using Polymer 3 in an amount of 6.6% based on starch, 5% sodium hydroxide based on starch and ammonium persulfate produced as an oxidizing agent (viscosity: 30 mPa ⁇ s).
  • a dry strength agent for paper is prepared by using polymer 3 instead of polymer 1 described there, in such an amount that the resulting mixture is now only 6.6% polymer instead of 10% 3, based on starch, contains (viscosity: 985 mPa ⁇ s).
  • a dry hardening agent is produced by using native corn starch instead of the native potato starch used there (viscosity: 290 mPa ⁇ s).
  • a dry hardening agent is produced by using native wheat starch instead of the native potato starch used there (viscosity: 220 mPa ⁇ s).
  • Sheets with a weight of 120 g / m2 are produced in a Rapid Köthen sheet former.
  • the paper stock consists of 80% mixed waste paper and 20% bleached beech sulfite pulp, which is ground to 50 ° SR (Schopper-Riegler) and to which the solidifier 1 described above is added in an amount such that the solids content of solidifier 1, based on dry Paper stock, 2.2%.
  • the pH of the stock suspension is adjusted to 7.6.
  • the leaves made from this fabric model are air-conditioned and then the CMT value, the dry burst pressure and the dry tear length are measured using the methods specified above. The results are shown in Table 1.
  • Example 1 is repeated in each case with the exception that the hardeners given in Table 1 are used instead of the hardeners 1 used in Example 1. The results thus obtained are shown in Table 1.
  • Example 1 is repeated without adding a dry strength agent, ie a fabric made from 80% mixed waste paper and 20% bleached beech sulfite pulp, which is ground to 50 ° SR, is dewatered in a Rapid-Köthen sheet former, whereby sheets with a basis weight of 120 g / m 2 are obtained.
  • a dry strength agent ie a fabric made from 80% mixed waste paper and 20% bleached beech sulfite pulp, which is ground to 50 ° SR, is dewatered in a Rapid-Köthen sheet former, whereby sheets with a basis weight of 120 g / m 2 are obtained.
  • a dry strength agent ie a fabric made from 80% mixed waste paper and 20% bleached beech sulfite pulp, which is ground to 50 ° SR
  • Comparative example 1 is repeated with the exception that 2% native potato starch, based on dry fiber material, is added to the paper stock.
  • the strength values of the paper sheets thus obtained are given in Table 1.
  • Example 1 is repeated with the exception that the strengthening agent described therein is replaced by the same amount of strengthening agent 10.
  • the strength values of sheets thus obtained are given in Table 1.
  • Example 1 is repeated with the exception that the dry strength agent indicated therein is replaced by the same amount of the strength agent 11.
  • the strength values of paper sheets produced in this way are given in Table 2.
  • Example 1 is repeated with the exception that the strengthening agent described therein is replaced by the same amount of strengthening agent 12.
  • the strength values of sheets thus obtained are given in Table 2.
  • Example 1 is repeated with the exceptions that the strengthening agent described therein is replaced by the same amount of strengthening agent 12 and that instead of the paper stock consisting of 80% mixed waste paper and 20% bleached beech sulfite pulp, a paper stock made of 100% unbleached coniferous wood sulfate is used , which is ground to 30 ° SR (Schopper-Riegler), and the sheets formed from it have a basis weight of 100 g / m2.
  • the strength values of these sheets are given in Table 3.
  • Example 1 is repeated with the exceptions that the strengthening agent described therein is replaced by the same amount of strengthening agent 11 and that instead of the paper stock consisting of 80% mixed waste paper and 20% bleached beech sulfite pulp, a paper stock made of 100% unbleached coniferous wood sulfate is used , which is ground to 30 ° SR (Schopper-Riegler), and the sheets formed from it have a basis weight of 100 g / m2.
  • the strength values of these sheets are given in Table 3.
  • Comparative Example 1 is repeated with the exception that instead of the paper stock consisting of 80% mixed waste paper and 20% bleached beech sulfite pulp, a paper stock made of 100% unbleached coniferous wood sulfate, which is ground to 30 ° SR (Schopper-Riegler), is used for sheet formation and forms sheets with a basis weight of 100 g / m2.
  • SR Schopper-Riegler
  • Paper with a basis weight of 120 g / m 2 and a width of 68 cm is produced on a test paper machine at a speed of the paper machine of 50 m / min.
  • 80% mixed waste paper and 20% bleached sulfite pulp with a freeness of 50 ° SR are used as paper stock.
  • hardener 1 is added in an amount of 2.2%, based on dry paper stock.
  • the white water has a pH of 7.6.
  • the strength values of the paper thus produced are given in Table 4.
  • Example 12 is repeated with the exception that the same amount of hardener 3 is used.
  • the strength values of the paper so produced are given in Table 4.
  • Example 12 is repeated with the exception that instead of the dry strength agent used there, the hardener 4 is used.
  • the strength values of the paper thus obtained are given in Table 4.
  • Example 12 is repeated with the exception that the solidifying agent 6 is used instead of the dry hardening agent used there.
  • the strength values of the paper thus obtained are given in Table 4.
  • paper with a basis weight of 120 g / m 2 is produced from a paper stock which consists of 80% mixed waste paper and 20% bleached beech sulfite pulp with a freeness of 50 ° SR.
  • the speed of the paper machine is set to 50 m / min, the pH value of the white water is 7.6.
  • the difference to example 12 is that no dry strength agent is used.
  • the strength values of the paper thus obtained are given in Table 4.
  • Comparative Example 7 is repeated with the exception that 2% native potato starch, based on dry fiber, is additionally added to the paper stock described there before dewatering.
  • the strength values of the paper thus obtained are given in Table 4.
  • Comparative example 7 is repeated with the exception that 2% native corn starch, based on dry fiber, is additionally added to the paper stock described there before dewatering.
  • the strength values of the paper thus obtained are given in Table 4.
  • Comparative Example 7 is repeated with the exception that 2% native wheat starch, based on dry fiber, is additionally added to the paper stock described there before dewatering.
  • the strength values of the paper thus obtained are given in Table 4.
  • Example 12 is repeated with the exception that the same amount of hardener 13 is used instead of hardener 1.
  • the strength values of the paper thus obtained are given in Table 4.
  • Example 12 is repeated with the exception that the same amount of hardener 14 is used instead of hardener 1.
  • the strength values of the paper thus obtained are given in Table 4.
  • an LWC paper is produced from the following fabric model: 40% bleached wood pulp, 30% bleached softwood sulfite pulp and 30% bleached birch sulfate pulp with a grinding degree of 35 ° SR. Based on dry fibrous material, 20% china clay and 0.3% of a commercially available cationic polyacrylamide with a K value of 120 are added in the form of a 7% aqueous solution. In addition, 0.5% alum is added so that the water running off the sieve has a pH of 6. Before the dewatering on the paper machine sieve, hardener 1 is added in an amount of 2.2%, based on dry pulp. At a production speed of the paper machine of 60 m / min, paper with a basis weight of 50 g / m 2 is obtained, the strength values of which are given in Table 5.
  • Example 16 is repeated with the exception that the same amount of hardener 2 is used instead of the hardener used there.
  • the dry strength values of the paper thus obtained are given in Table 5.
  • Example 16 is repeated with the exception that instead of the hardener stated there, hardener 4 is now used.
  • An LWC paper is obtained, the dry strength values of which are given in Table 5.
  • Example 16 is repeated, except that LWC paper is made in the absence of a dry strength agent.
  • the strength values of the paper thus obtained are given in Table 5.
  • Example 16 is repeated with the exception that instead of the hardening agent 1 used there, 2% native potato starch, based on dry fiber material, is now used.
  • the strength values of the LWC paper thus obtained are given in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paper (AREA)
  • Making Paper Articles (AREA)
  • Cartons (AREA)
  • Steroid Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe eines Trockenverfestigungsmittels zum Papierstoff und Entwässern des Papierstoffs unter Blattbildung, mit der Maßgabe, daß man als Trockenverfestigungsmittel eine Mischungs aus kationischen Polymerisaten, die als charakteristische Monomere Einheiten von a) Diallyldimethylammoniumchlorid, b) N-Vinylamin oder, c) gegebenenfalls substituierten N-Vinylimidazolinen einpolymerisiert enthalten und wobei der K-Wert der Polymerisate jeweils mindestens 30 beträgt, und nativer Kartoffelstärke einsetzt, die durch Erhitzen in wäßrigem Medium auf Temperaturen oberhalb der Verkleisterungstemperatur der nativen Kartoffelstärke in Abwesenheit von Oxidationsmitteln und von Alkali in eine wasserlösliche Form überführt wird.

Description

  • Um die Trockenfestigkeit von Papier zu erhöhen, ist es bekannt, wäßrige Anschlämmungen von nativen Stärken, die durch Erhitzen in eine wasser­lösliche Form überführt werden, als Massezusatz bei der Herstellung von Papier zu verwenden. Die Retention der in Wasser gelösten Stärken an die Papierfasern im Papierstoff ist jedoch gering. Eine Verbesserung der Retention von Naturprodukten an Cellulosefasern bei der Herstellung von Papier ist beispielsweise aus der US-PS 3 734 820 bekannt. Darin werden Pfropfcopolymerisate beschrieben, die durch Pfropfen von Dextran, einem in der Natur vorkommenden Polymerisat mit einem Molekulargewicht von 20.000 bis 50 Millionen, mit kationischen Monomeren, z.B. Diallyldimethyl­ammoniumchlorid, Mischungen aus Diallyldimethylammoniumchlorid und Acryl­mid oder Mischungen aus Acrylamid und basischen Methacrylaten, wie Di­methylaminoethylmethacrylat, hergestellt werden. Die Pfropfpolymerisation wird vorzugsweise in Gegenwart eines Redox-Katalysators durchgeführt.
  • Aus der US-PS 4 097 427 ist ein Verfahren zur Kationisierung von Stärke bekannt, bei dem man die Stärkekochung in einem alkalischen Medium in Gegenwart von wasserlöslichen quaternären Ammoniumpolymerisaten und eines Oxidationsmittels durchführt. Als quaternäre Ammoniumpolymerisate kommen u.a. auch quaternisierte Diallyldialkylaminpolymerisate oder quaternisierte Polyethylenimine in Betracht. Als Oxidationsmittel verwendet man beispielsweise Ammoniumpersulfat, Wasserstoffperoxid, Natriumhypochlorit, Ozon oder tert.-Butylhydroperoxid. Die auf diese Weise herstellbaren modifizierten kationischen Stärken werden als Trocken­verfestigungsmittel bei der Herstellung von Papier dem Papierstoff zugegeben. Jedoch wird das Abwasser durch einen sehr hohen CSB-Wert belastet.
  • Der Erfindung liegt die Aufgabe zugrunde, gegenüber den bekannten Verfahren eine Verbesserung der Trockenfestigkeit von Papier bei Einsatz von Stärke zu erzielen. Insbesondere soll die Substantivität der Stärke beim Aufziehen auf die Fasern im Papierstoff erhöht und dadurch die CSB-­Belastung im Abwasser gesenkt werden.
  • Die Aufgabe wird erfindungsgemäß gelöst mit einem Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe eines Trockenverfestigungsmittels zum Papierstoff und Entwässern des Papierstoffs unter Blattbildung, wenn man als Trockenverfestigungs­ mittel eine Mischung aus kationischen Polymerisaten, die als charakteristische Monomere Einheiten von
    • a) Diallyldimethylammoniumchlorid,
    • b) N-Vinylamin oder
    • c) N-Vinylimidazolinen der Formel
      Figure imgb0001
      in der
            R¹ = H, C₁- bis C₁₈-Alkyl,
      Figure imgb0002
            R⁵, R⁶ = H, C₁- bis C₄-Alkyl, Cl,
            R² = H, C₁- bis C₁₈-Alkyl,
      Figure imgb0003
            R³, R⁴ = H, C₁- bis C₄-Alkyl, und
            X⁻ ein Säurerest bedeutet,
    einpolymerisiert enthalten und die einen K-Wert von mindestens 30 haben, und nativer Kartoffelstärke einsetzt, die durch Erhitzen in wäßrigem Medium auf Temperaturen oberhalb der Verkleisterungstemperatur der nativen Kartoffelstärke in Abwesenheit von Oxidationsmitteln, Polymerisations­initiatoren und Alkali in eine wasserlösliche Form überführt wird.
  • Die erfindungsgemäß als Trockenverfestigungsmittel zu verwendenden Mischungen weisen eine gute Retention gegenüber Papierfasern im Papier­stoff auf. Der CSB-Wert im Siebwasser wird mit den erfindungsgemäßen Mischungen im Vergleich zur nativen Stärke erheblich reduziert. Die in den Wasserkreisläufen von Papiermaschinen enthaltenen Störsubstanzen beein­trächtigen die Wirksamkeit der erfindungsgemäß zu verwendenden Trocken­verfestigungsmittel nur geringfügig. Der ph-Wert der Papierstoffsuspension kann in dem Bereich von 4 bis 9, vorzugsweise 6 bis 8,5 liegen.
  • Wie mit Hilfe einer Reihe von Versuchen festgestellt wurde, wird die gestellte Aufgabe nur dann gelöst, wenn man als Stärke native Kartoffel­stärke einsetzt. Im Gegensatz zu den oben angegebenen bekannten Verfahren zur Stärkemodifizierung wird bei der Herstellung der erfindungsgemäß zu verwendenden modifizierten Stärke in Abwesenheit von Oxidationsmitteln, Polymerisationsinitiatoren und auch in Abwesenheit von Alkali gearbeitet. Die Modifizierung der nativen Kartoffelstärke wird vorzugsweise erreicht, indem man sie in wäßriger Anschlämmung mit den in Betracht kommenden kationischen Polymerisaten auf eine Temperatur oberhalb der Verkleisterungstemperatur der nativen Kartoffelstärke erhitzt. Die Verkleisterungstemperatur der Stärke ist dabei diejenige Temperatur, bei der die Doppelbrechung der Stärkekörner verlorengeht, vgl. Ullmans Enzyklopädie der technischen Chemie, Urban und Schwarzenberg, München-Berlin, 1965, 16. Band, Seite 322.
  • Die Modifizierung der nativen Kartoffelstärke kann jedoch im allgemeinen in verschiedener Weise vorgenommen werden. Eine bereits aufgeschlossene native Kartoffelstärke, die als wäßrige Lösung vorliegt, kann mit den in Betracht kommenden kationischen Polymerisaten auf Temperaturen in dem Bereich von 15 bis 70°C zur Reaktion gebracht werden. Bei noch tieferen Temperaturen sind längere Kontaktzeiten erforderlich. Wird die Umsetzung bei noch höheren Temperaturen, z.B. bis zu 110°C vorgenommen, so benötigt man kürzere Kontaktzeiten, z.B. 0,1 bis 15 min., Die einfachste Art der Modifizierung der nativen Kartoffelstärke besteht darin, daß man eine wäßrige Aufschlämmung der Stärke in Gegenwart der in Betracht kommenden kationischen Polymerisate auf eine Temperatur oberhalb der Verkleisterungstemperatur der nativen Kartoffelstärke erhitzt. Im allgemeinen wird die Stärke zur Modifizierung auf Temperaturen in dem Bereich von 70 bis 110°C erwärmt, wobei man bei Temperaturen oberhalb von 110°C die Umsetzung in druckdichten Apparaturen ausführt. Man kann jedoch auch so vorgehen, daß man zunächst eine wäßrige Anschlämmung von nativer Kartoffelstärke auf eine Temperatur in dem Bereich von 70 bis 110°C erwärmt und die Stärke in Lösung bringt und danach das zur Modifizierung erforderliche kationische Polymerisat zusetzt. Das Löslichmachen der Stärke geschieht dabei immer in Abwesenheit von Oxidationsmitteln, Initiatoren und Alkali in etwa 3 min bis 5 Std., vorzugsweise 5 bis 30 min. Höhere Temperaturen erfordern hier eine kürzere Verweilzeit. Auf 100 Gew.-Teile nativer Kartoffelstärke verwendet man 1 bis 20, vorzugs­weise 8 bis 12 Gew.-Teile eines einzigen Polymerisates oder einer Mischung der in Betracht kommenden kationischen Polymerisate. Durch das Erhitzen bzw. die Umsetzung mit den kationischen Polymerisaten wird die native Kartoffelstärke in eine in Wasser lösliche Form überführt. Die Viskosität der wäßrigen Phase des Reaktionsgemisches steigt dabei an. Eine 3,5 gew.%ige wäßrige Lösung der als Trockenverfestigungsmittel einzu­setzenden Mischung hat Viskositäten in dem Bereich von 50 bis 10.000 mPas (gemessen nach Brookfield bei 20 Upm und 20°C).
  • Für die Herstellung der erfindungsgemäß zu verwendenden Trocken­verfestigungsmittel kommen (a) Polymerisate von Diallyldimethylammonium­chlorid in Betracht. Polymerisate dieser Art sind bekannt. Unter Polymerisaten des Diallyldimethylammoniumchlorids sollen in erster Linie die Homopolymerisate und die Copolymerisate mit Acrylamid und/oder Methacrylamid verstanden werden. Die Copolymerisation kann dabei in jedem beliebigen Monomerverhältnis vorgenommen werden. Der K-Wert der Homo- und Copolymerisate des Diallyldimethylammoniumchlorids beträgt mindestens 30, vorzugsweise 95 bis 180.
  • Kationische Polymerisate der Gruppe (b), die als charakteristische Monomere Einheiten von N-Vinylamin einpolymerisiert enthalten, sind erhältlich durch Hydrolysieren von Homopolymerisaten des N-Vinylformamids, wobei die Formylgruppen der Homopolymerisate des N-Vinylformamids zu 70 bis 100 mol% abgespalten werden und N-Vinylamin-Einheiten einpolymerisiert enthaltende Polymerisate entstehen. Sofern 100 mol% der Formylgruppen aus den Homopolymerisaten des N-Vinylformamids abgespalten sind, können die dabei entstehenden Polymerisate auch als Poly-N-Vinylamine bezeichnet werden. Zu dieser Gruppe von Polymerisaten gehören auch hydrolysierte Copolymerisate, die
    • a) 95 bis 10 mol% N-Vinylformamid und
    • b) 5 bis 90 mol% Vinylacetat oder Vinylpropionat
    einpolymerisiert enthalten, wobei die Formylgruppen des Copolymerisats zu 70 bis 100 mol% unter Bildung von N-Vinylamin-Einheiten in den Copolymerisaten und die Acetyl- und Propionylgruppen zu 70 bis 100 mol% unter Bildung von Vinylalkohol-Einheiten abgespalten werden. Der K-Wert der hydrolysierten Homo-und Copolymerisate von N-Vinylformamid beträgt vorzugsweise 70 bis 170. Die zu dieser Gruppe gehörenden Polymerisate sind beispielsweise bekannt aus der US-PS 4 421 602, US 4 444 667 und der DE-OS 35 34 273.
  • Als kationische Polymerisate der Gruppe c) kommen Homo- und Copolymerisate von gegebenenfalls substituierten N-Vinylimidazolinen in Betracht. Es handelt sich hierbei ebenfalls um bekannte Stoffe. Sie können beispiels­weise nach dem Verfahren der DE-AS 1 182 826 dadurch hergestellt werden, daß man Verbindungen der Formel
    Figure imgb0004
    in der
    R¹ = H, C₁- bis C₁₈-Alkyl,
    Figure imgb0005
    R⁵, R⁶ = H, C₁- bis C₄-Alkyl, Cl,
    R² = H, C₁- bis C₁₈-Alkyl,
    Figure imgb0006
    R³, R⁴ = H, C₁- bis C₄-Alkyl, und
    X⁻ ein Säurerest bedeutet,
    gegebenenfalls zusammen mit Acrylamid und/oder Methacrylamid, in wäßrigem Medium bei pH-Werten von 0 bis 8, vorzugsweise von 1,0 bis 6,8 in Gegenwart von Polymerisationsinitiatoren, die in Radikale zerfallen, polymerisiert.
  • Vorzugsweise setzt man bei der Polymerisation 1-Vinyl-2-imidazolin-Salze der Formel II ein
    Figure imgb0007
    in der
    R¹ = H, CH₃, C₂H₅, n- und i-C₃H₇, C₆H₅ und
    X⁻ = ein Säurerest ist.
    X⁻ steht vorzugsweise für Cl⁻, Br⁻, So₄²⁻, CH₃O-SO₃H⁻, C₂H₅-O-SO₃H⁻, R-COO⁻ und R² = H, C₁- bis C₄-Alkyl und Aryl.
  • Der Substituent X⁻ in den Formeln I und II kann prinzipiell jeder beliebige Säurerest einer anorganischen sowie einer organischen Säure sein. Die Monomeren der Formel I werden erhalten, indem man die freie Base, d.h. 1-Vinyl-2-imidazoline, mit der äquivalenten Menge einer Säure neutralisiert. Die Vinylimidazoline können auch beispielsweise mit Trichloressigsäure, Benzolsulfonsäure oder Toluolsulfonsäure neutralisiert werden. Außer Salzen von 1-Vinyl-2-imidazolinen kommen auch quaternisierte 1-Vinyl-2-imidazoline in Betracht. Sie werden hergestellt, indem man 1-Vinyl-2-imidazoline, die gegebenenfalls in 2-, 4- und 5-Stellung substituiert sein können, mit bekannten Quaternisierungsmittel umsetzt. Als Quaternisierungsmittel kommen beispielsweise C₁- bis C₁₈-Alkylchloride oder -bromide, Benzylchlorid, Benzylbromid, Epichlorhydrin, Dimethylsulfat und Diethylsulfat in Betracht. Als Quaternisierungsmittel verwendet man vorzugsweise Epichlorhydrin, Benzylchlorid, Dimethylsulfat und Methylchlorid.
  • Zur Herstellung der wasserlöslichen Homopolymerisate werden die Verbindungen der Formel I bzw. II vorzugsweise in wäßrigem Medium polymerisiert. Die Copolymerisate erhält man, indem man die Monomeren der Verbindung der Formeln I und II mit Acrylamid und/oder Methacrylamid polymerisiert. Die bei der Polymerisation eingesetzte Monomermischung enthält im Fall der Herstellung von Copolymerisaten mindestens 1 Gew.% eines Monomeren der Formel I bzw. II, vorzugsweise 10 bis 40 Gew.%. Für die Modifizierung von nativer Kartoffelstärke besonders geeignet sind Copolymerisate aus 60 bis 85 Gew.% Acrylamid und/oder Methacrylamid und 15 bis 50 Gew.% N-Vinylimidazolin oder N-Vinyl-2-methylimidazolin.
  • Die Copolymerisate können noch durch Einpolymerisieren von anderen Mono­meren, wie Styrol, Vinylacetat, Vinylpropionat, N-Vinylformamid, C₁- bis C₄-Alkylvinylether, N-vinylpyridin, N-Vinylpyrrolidon, N-Vinylimidazol, Acrylsäureestern, Methacrylsäureestern, ethylenisch ungesättigten C₃- bis C₅-Carbonsäuren, Natriumvinylsulfonat, Acrylnitril, Methacrylnitril, Vinylchlorid und Vinylidenchlorid in Mengen bis zu 25 Gew.% modifiziert werden. Außer der Polymerisation in wäßriger Lösung ist es beispielsweise möglich, die Homo- und Copolymerisate in einer Wasser-in-Öl-Emulsion herzustellen. Die Monomeren können auch nach dem Verfahren der umgekehrten Suspensionspolymerisation polymerisiert werden, bei dem man perlförmige Polymerisate erhält. Die Initiierung der Polymerisation erfolgt mit Hilfe üblicher Polymerisationsinitiatoren oder durch Einwirkung energiereicher Strahlung. Geeignete Polymerisationsinitatoren sind beispielsweise Wasserstoffperoxid, anorganische und organische Peroxide sowie Hydroper­oxide und Azoverbindungen. Man kann sowohl Mischungen von Polymerisations­initiatoren verwenden als auch sogenannte Redox-Polymerisationsinitatoren einsetzen, z.B. Mischungen aus Natriumsulfid, Ammoniumpersulfat und Natriumbromat oder Mischungen aus Kaliumperoxidisulfat und Eisen-II-­salzen. Die Polymerisation wird bei Temperaturen im Bereich von 0 bis 100°C, vorzugsweise 15 bis 80°C vorgenommen. Es ist selbstverständlich auch möglich, bei Temperaturen oberhalb von 100°C zu polymerisieren, jedoch ist es dann erforderlich, die Polymerisation unter Druck vorzunehmen. Möglich sind beispielsweise Temperaturen bis zu 150°C. Die Reaktionsdauer hängt von der Temperatur ab. Je höher die Temperatur bei der Polymerisation eingestellt wird, desto geringer ist die für die Polymerisation erforderliche Zeit.
  • Da die Verbindungen der Formel I relativ teuer sind, verwendet man aus ökonomischen Gründen vorzugsweise als kationische Polymerisate der Gruppe (c) Copolymerisate von Verbindungen der Formel I mit Acrylamid oder Meth­acrylamid. Diese Copolymerisate enthalten die Verbindungen der Formel I dann lediglich in wirksamen Mengen, d.h. in einer Menge von 1 bis 40 Gew.%. Vorzugsweise setzt man für die Herstellung der erfindungsgemäß zu verwendenden Trockenverfestigungsmittel Copolymerisate der Acrylamids mit Verbindungen der Formel I ein, in der R¹ = Methyl, R², R³, R⁴ = H und X = ein Säurerest, vorzugsweise Chlorid oder Sulfat ist.
  • Für die Modifizierung von nativer Kartoffelstärke ebenfalls geeignet sind Copolymerisate, die
    • a) 70 bis 96,5 Gew.% Acrylamid und/oder Methacrylamid,
    • b) 2 bis 20 Gew.% N-Vinylimidazolin oder N-Vinyl-2-methylimidazolin und
    • c) 1,5 bis 10 Gew.% N-Vinylimidazol
    mit der Maßgabe einpolymerisiert enthalten, daß die Summe der Angaben a) bis c) in Gew.% immer 100 beträgt und die einen K-Wert von 80 bis 150. Diese Copolymerisate werden durch radikalische Copolymerisation der Monomeren a), b) und c) nach dem oben beschriebenen Polymerisations­verfahren hergestellt. Zur Herstellung der erfindungsgemäß als Trocken­verfestigungsmittel zu verwendenden Mischungen geht man wäßrigen Aufschlämmungen nativer Kartoffelstärke aus, die pro 100 Gew.-Teile Wasser 0,1 bis 10 Gew.-Teile nativer Kartoffelstärke enthalten. Wie bereits oben angegeben, werden mit anderen Stärkesorten die Vorteile der Erfindung nicht erreicht. Die erfindungsgemäß zu verwendenden Reaktionsgemische aus den oben beschriebenen Polymerisaten und nativen Kartoffelstärke wird dem Papierstoff in einer Menge von 0,5 bis 3,5, vorzugsweise 1,2 bis 2,5 Gew.%, bezogen auf trockenen Papierstoff, zugesetzt. Der pH-Wert der Mischung beträgt 2,0 bis 9,0, vorzugsweise 2,5 bis 8,0. Die Lösung des Trockenverfestigungsmittels in Wasser hat bei einer Feststoffkonzentration von 3,5 Gew.% eine Viskosität von 50 bis 10.000, vorzugsweise 80 bis 4.000 mPas, gemessen in einem Brookfield-Viskosimeter bei 20 Upm und einer Temperatur von 20°C.
  • Die erfindungsgemäß zu verwendenden Trockenverfestigungsmittel können bei der Herstellung von allen bekannten Papier-, Karton- und Pappenqualitäten verwendet werden, z.B. Schreib-, Druck- und Verpackungspapieren. Die Papiere können aus einer Vielzahl verschiedenartiger Fasermaterialien hergestellt werden, beispielsweise aus Sulfit- oder Sulfat-Zellstoff in gebleichtem oder ungebleichtem Zustand, Holzschliff, Altpapier, thermo­mechanischem Stoff (TMP) und chemothermomechanischem Stoff (CTMP). Der pH-Wert der Stoffsuspension liegt zwischen 4,0 und 10, vorzugsweise zwischen 6,0 und 8,5. Die Trockenverfestigungsmittel können sowohl bei der Herstellung von Rohpapier für Papiere mit geringem Flächengewicht (LWC-­Papieren) sowie für Karton verwendet werden. Das Flächengewicht der Papiere beträgt zwischen 30 und 200, vorzugsweise 35 und 150 g/m², während es bei Karton bis zu 600 g/m² betragen kann. Die erfindungsgemäß hergestellten Papierprodukte haben gegenüber solchen Papieren, die in Gegenwart einer gleichen Menge nativer Kartoffelstärke hergestellt wurden, eine merklich verbesserte Festigkeit, die beispielsweise anhand der Reißlänge, des Berstdrucks, des CMT-Werts und des Weiterreißwiderstands quantitativ erfaßt werden kann.
  • Die in den Beispielen angegebenen Teile sind Gewichtsteile, die Prozentangaben beziehen sich auf das Gewicht. Die Viskositäten der Verfestiger wurden in wäßriger Lösung bei einer Feststoffkonzentration von 3,5 Gew.% und einer Temperatur von 20°C in einem Brookfield-Viskosimeter bei 20 Upm bestimmt.
  • Die Blätter wurden in einem Rapid-Köthen-Laborblattbildner hergestellt. Die Trockenreißlänge wurde gemäß DIN 53 112, Blatt 1, der Trockenberst­druck nach Mullen, DIN 53 141, der CMT-Wert nach DIN 53 143 und der Weiterreißwiderstand nach Brecht-Inset gemäß DIN 53 115 bestimmt.
  • Die Prüfung der Blätter erfolgte jeweils nach einer 24stündigen Klimatisierung bei einer Temperatur von 23°C und einer relativen Luft­feuchtigkeit von 50 %.
  • Der K-Wert der Polymerisate wurde nach H. Fikentscher, Cellulosechemie, 13, 58-64 und 71-74 (1932) bei einer Temperatur von 25°C in 5 %igen wäßrigen Kochsalzlösungen und einer Polymerkonzentration von 0,5 Gew.% bestimmt; dabei bedeutet K = k·10³.
  • Folgende Einsatzstoffe wurden verwendet:
  • Polymer 1
  • Homopolymerisat von Diallyldimethylammoniumchlorid mit einem K-Wert von 95
  • Polymer 2
  • Homopolymerisat von Diallyldimethylammoniumchlorid mit einem K-Wert von 110
  • Polymer 3
  • Homopolymerisat von Diallyldimethylammoniumchlorid mit einem K-Wert von 125
  • Polymer 4
  • Copolymerisat aus 90 Gew.% Acrylamid, 8 Gew.% N-Vinyl-2-methylimidazolin und 2 Gew.% N-Vinylimidazol mit einem K-Wert von 119
  • Polymer 5
  • Copolymerisat aus 25 Mol.% N-Vinyl-2-methylimidazolin und 75 Mol.% Acryl­amid mit einem K-Wert von 117.
  • Polymer 6
  • Homopolymerisat aus N-Vinylformamid, aus dem 99 % der Formylgruppen abgespalten sind, mit einem K-Wert von 83.
  • Polymer 7
  • Homopolymerisat aus N-Vinylformamid, aus dem 83 % der Formylgruppen abgespalten sind, mit einem K-Wert von 168.
  • Polymer 8
  • Copolymerisat aus 40 Gew.% N-Vinylformamid und 60 Gew.% Vinylacetat, aus dem 100 % der Formylgruppen und 98 % der Acetylgruppen abgespalten sind, mit einem K-Wert von 75.
  • Polymer 9 (Vergleich)
  • Copolymerisat aus 30 Gew.% Dimethylaminoethylacrylat-methochlorid und 70 Gew.% Acrylamid eines K-Werts von 205
  • Verfestiger 1
  • Eine 3 %ige Aufschlämmung von nativer Kartoffelstärke (Verkleisterungs­temperatur 90°C) in Wasser wird mit einer solchen Menge an Polymer 1 versetzt, so daß die resultierende Mischung 10 % Polymer 1, bezogen auf eingesetzte native Kartoffelstärke, enthält. Die Mischung wird dann 15 min unter Rühren auf eine Temperatur im Bereich von 90 bis 95°C erwärmt und nach dem Abkühlen auf eine Temperatur im Bereich von 10 bis 40°C gemäß Erfindung als Trockenverfestigungsmittel für Papier verwendet, indem man sie einer Stoffsuspension vor der Blattbildung zugibt (Viskosität: 656 mPa·s).
  • Verfestiger 2
  • Wie oben unter Verfestiger 1 beschrieben, wird ein Trockenverfestigungs­mittel für Papier dadurch hergestellt, daß man eine 3 %ige wäßrige Anschlämmung von nativer Kartoffelstärke anstelle des dort verwendeten Polymer 1 jetzt mit Polymer 2 umsetzt (Viskosität: 870 mPa·s).
  • Verfestiger 3
  • Wie oben unter Verfestiger 1 beschrieben, wird ein Trockenverfestigungs­mittel für Papier dadurch hergestellt, daß man anstelle des dort beschriebenen Polymer 1 jetzt das Polymer 3 einsetzt (Viskosität: 950 mPa·s).
  • Verfestiger 4
  • Wie oben unter Verfestiger 1 beschrieben, wird ein Trockenverfestigungs­mittel dadurch hergestellt, daß man anstelle des dort verwendeten Polymeren das Polymer 4 einsetzt (Viskosität: 398 mPa·s).
  • Verfestiger 5
  • Eine 3 %ige wäßrige Aufschlämmung von nativer Kartoffelstärke (Verkleisterungstemperatur 90°C) wird unter Rühren 15 min auf eine Temperatur im Bereich von 90 bis 95°C erhitzt, wobei die Stärke in Lösung geht. Nach Abkühlen der Stärkelösung auf eine Temperatur von 70°C fügt man eine 5 %ige wäßrige Lösung von Polymer 2 zu, so daß die Menge des Polymerisates, bezogen auf die eingesetzte native Kartoffelstärke, 10 % beträgt. Die Mischung wird dann noch 10 min bei einer Temperatur von 70°C gerührt und dann auf Raumtemperatur abgekühlt. Man erhält ein Trocken­verfestigungsmittel für Papier (Viskosität: 784 mPa·s).
  • Verfestiger 6
  • Wie bei der Herstellung von Verfestiger 1 beschrieben, wird ein Trockenverfestigungsmittel hergestellt, indem man anstelle des dort verwendeten Polymere jetzt das Polymer 5 einsetzt (Viskosität: 250 mPa·s).
  • Verfestiger 7
  • Wie bei der Herstellung von Verfestiger 1 beschrieben, wird ein Trocken­verfestigungsmittel hergestellt, indem man anstelle des dort verwendeten Polymeren jetzt das Polymer 6 einsetzt (Viskosität: 150 mPa·s).
  • Verfestiger 8
  • Wie bei der Herstellung von Verfestiger 1 beschrieben, wird ein Trocken­verfestigungsmittel hergestellt, indem man anstelle des dort verwendeten Polymeren jetzt das Polymer 7 einsetzt (Viskosität: 206 mPa·s).
  • Verfestiger 9
  • Wie bei der Herstellung von Verfestiger 1 beschrieben, wird ein Trocken­verfestigungsmittel hergestellt, indem man anstelle des dort verwendeten Polymeren jetzt das Polymer 8 einsetzt (Viskosität: 86 mPa·s).
  • Verfestiger 10
  • Zum Vergleich wird ein Trockenfestmittel für Papier nach der unter Verfestiger 1 angegebenen Vorschrift hergestellt, jedoch wird anstelle des dort eingesetzten Polymer das Polymer 9 verwendet (Viskosität: 766 mPa·s).
  • Verfestiger 11 (Vergleich)
  • Zum Vergleich wird ein Trockenverfestigungsmittel für Papier nach der in der US-PS 4 097 427 in Beispiel 7 beschriebenen Methode unter Verwendung von Polymer 3 in einer Menge von 6,6 %, bezogen auf Stärke, 5 % Natrium­hydroxid, bezogen auf Stärke, und Ammoniumpersulfat als Oxidationsmittel hergestellt (Viskosität: 30 mPa·s).
  • Verfestiger 12
  • Wie oben unter Verfestiger 1 beschrieben, wird ein Trockenverfestigungs­mittel für Papier dadurch hergestellt, daß man anstelle des dort beschriebenen Polymer 1 jetzt das Polymer 3 einsetzt und zwar in einer solchen Menge, daß die resultierende Mischung anstelle von 10 % jetzt nur 6,6 % Polymer 3, bezogen auf Stärke, enthält (Viskosität: 985 mPa·s).
  • Verfestiger 13 (Vergleich)
  • Wie bei der Herstellung von Verfestiger 6 beschrieben, wird ein Trocken­verfestigungsmittel hergestellt, indem man anstelle der dort verwendeten nativen Kartoffelstärke jetzt native Maisstärke einsetzt (Viskosität: 290 mPa·s).
  • Verfestiger 14 (Vergleich)
  • Wie bei der Herstellung von Verfestiger 6 beschrieben, wird ein Trocken­verfestigungsmittel hergestellt, indem man anstelle der dort verwendeten nativen Kartoffelstärke jetzt native Weizenstärke einsetzt (Viskosität: 220 mPa·s).
  • Beispiel 1
  • In einem Rapid-Köthen-Blattbildner werden Blätter vom Flächengewicht 120 g/m² hergestellt. Der Papierstoff besteht aus 80 % gemischtem Altpapier und 20 % gebleichtem Buchensulfitzellstoff, der auf 50°SR (Schopper-Riegler) gemahlen ist und zu dem der oben beschriebene Verfestiger 1 in einer Menge zugesetzt wird, daß der Feststoffgehalt an Verfestiger 1, bezogen auf trockenen Papierstoff, 2,2 % beträgt. Der pH-Wert der Stoffsuspension wird auf 7,6 eingestellt. Die aus diesem Stoffmodell hergestellten Blätter werden klimatisiert und danach der CMT-Wert, der Trockenberstdruck und die Trockenreißlänge nach den oben angegebenen Methoden gemessen. Die Ergebnisse sind in Tabelle 1 angegeben.
  • Beispiele 2 bis 9
  • Das Beispiel 1 wird jeweils mit der Ausnahme wiederholt, daß man die in Tabelle 1 angegebenen Verfestiger anstelle des in Beispiel 1 verwendeten Verfestigers 1 einsetzt. Die so erhaltenen Ergebnisse sind in Tabelle 1 angegeben.
  • Vergleichsbeispiel 1
  • Das Beispiel 1 wird wiederholt, ohne einen Trockenverfestiger zuzusetzen, d.h. ein Stoff aus 80 % gemischtem Altpapier und 20 % gebleichtem Buchen­ sulfitzellstoff, der auf 50°SR gemahlen ist, wird in einem Rapid-Köthen-­Blattbildner entwässert, wobei Blätter mit einem Flächengewicht von 120 g/m² erhalten werden. Die Ergebnisse der Festigkeitsprüfung an den so erhaltenen Blättern sind in den Tabellen 1 und 2 angegeben.
  • Vergleichsbeispiel 2
  • Das Vergleichsbeispiel 1 wird mit der Ausnahme wiederholt, daß man zum Papierstoff 2 % native Kartoffelstärke, bezogen auf trockenen Faserstoff, zusetzt. Die Festigkeitswerte der so erhaltenen Papierblätter sind in Tabelle 1 angegeben.
  • Vergleichsbeispiel 3
  • Das Beispiel 1 wird mit der Ausnahme wiederholt, daß man das darin beschriebene Verfestigungsmittel durch die gleiche Menge Verfestiger 10 ersetzt. Die Festigkeitswerte von so erhaltenen Blättern sind in Tabelle 1 angegeben.
  • Vergleichsbeispiel 4
  • Das Beispiel 1 wird mit der Ausnahme wiederholt, daß man das darin angegebene Trockenverfestigungsmittel durch die gleiche Menge des Verfestigers 11 ersetzt. Die Festigkeitswerte von so hergestellten Papierblättern sind in Tabelle 2 angegeben.
  • Beispiel 10
  • Das Beispiel 1 wird mit der Ausnahme wiederholt, daß man das darin beschriebene Verfestigungsmittel durch die gleiche Menge an Verfestiger 12 ersetzt. Die Festigkeitswerte von so erhaltenen Blättern sind in Tabelle 2 angegeben.
    Figure imgb0008
  • Beispiel 11
  • Das Beispiel 1 wird mit den Ausnahmen wiederholt, daß man das darin beschriebene Verfestigungsmittel durch die gleiche Menge an Verfestiger 12 ersetzt und daß man zur Blattbildung anstelle des Papierstoffs, bestehend aus 80 % gemischtem Altpapier und 20 % gebleichtem Buchensulfitzellstoff einen Papierstoff aus 100 % ungebleichtem Nadelholzsulfat, der auf 30°SR (Schopper-Riegler) gemahlen ist, verwendet und die daraus gebildeten Blätter ein Flächengewicht von 100 g/m² haben. Die Festigkeitswerte dieser Blätter sind in Tabelle 3 angegeben.
  • Vergleichsbeispiel 5
  • Das Beispiel 1 wird mit den Ausnahmen wiederholt, daß man das darin beschriebene Verfestigungsmittel durch die gleiche Menge an Verfestiger 11 ersetzt und daß man zur Blattbildung anstelle des Papierstoffs, bestehend aus 80 % gemischtem Altpapier und 20 % gebleichtem Buchensulfitzellstoff einen Papierstoff aus 100 % ungebleichtem Nadelholzsulfat, der auf 30°SR (Schopper-Riegler) gemahlen ist, verwendet und die daraus gebildeten Blätter ein Flächengewicht von 100 g/m² haben. Die Festigkeitswerte dieser Blätter sind in Tabelle 3 angegeben.
  • Vergleichsbeispiel 6
  • Das Vergleichsbeispiel 1 wird mit der Ausnahme wiederholt, daß man zur Blattbildung anstelle des Papierstoffs, bestehend aus 80 % gemischtem Altpapier und 20 % gebleichtem Buchensulfitzellstoff einen Papierstoff aus 100 % ungebleichtem Nadelholzsulfat, der auf 30°SR (Schopper-Riegler) gemahlen ist, verwendet und daraus Blätter mit einem Flächengewicht von 100 g/m² bildet. Die Ergebnisse der Festigkeitssteigerung an den so erhaltenen Blättern sind in Tabelle 3 angegeben.
    Figure imgb0009
  • Beispiel 12
  • Auf einer Versuchspapiermaschine wird Papier mit einem Flächengewicht von 120 g/m² in einer Breite von 68 cm bei einer Geschwindigkeit der Papier­maschine von 50 m/min hergestellt. Als Papierstoff verwendet man 80 % gemischtes Altpapier und 20 % gebleichten Sulfitzellstoff vom Mahlgrad 50°SR. Dem Papierstoff wird vor der Blattbildung Verfestiger 1 in einer Menge von 2,2 %, bezogen auf trockenen Papierstoff, zugesetzt. Das Siebwasser hat einen pH-Wert von 7,6. Die Festigkeitswerte des so hergestellten Papiers sind in Tabelle 4 angegeben.
  • Beispiel 13
  • Das Beispiel 12 wird mit der Ausnahme wiederholt, daß die gleiche Menge von Verfestiger 3 eingesetzt wird. Die Festigkeitswerte des so produzierten Papiers sind in Tabelle 4 angegeben.
  • Beispiel 14
  • Das Beispiel 12 wird mit der Ausnahme wiederholt, daß anstelle des dort verwendeten Trockenverfestigungsmittels der Verfestiger 4 eingesetzt wird. Die Festigkeitswerte des so erhaltenen Papiers sind in Tabelle 4 angegeben.
  • Beispiel 15
  • Das Beispiel 12 wird mit der Ausnahme wiederholt, daß anstelle des dort verwendeten Trockenverfestigungsmittels der Verfestiger 6 eingesetzt wird. Die Festigkeitswerte des so erhaltenen Papiers sind in Tabelle 4 angegeben.
  • Vergleichsbeispiel 7
  • Auf der im Beispiel 12 beschriebenen Versuchspapiermaschine wird Papier mit einem Flächengewicht von 120 g/m² aus einem Papierstoff hergestellt, der zu 80 % aus gemischtem Altpapier und 20 % gebleichtem Buchensulfit­zellstoff vom Mahlgrad 50°SR besteht. Die Geschwindigkeit der Papier­maschine wird auf 50 m/min eingestellt, der pH-Wert des Siebwassers beträgt 7,6. Der Unterschied zum Beispiel 12 liegt darin, daß kein Trockenverfestigungsmittel eingesetzt wird. Die Festigkeitswerte des so erhaltenen Papiers sind in Tabelle 4 angegeben.
  • Vergleichsbeispiel 8
  • Das Vergleichsbeispiel 7 wird mit der Ausnahme wiederholt, daß man zu dem dort beschriebenen Papierstoff zusätzlich vor der Entwässerung 2 % native Kartoffelstärke, bezogen auf trockenen Faserstoff, zusetzt. Die Festigkeitswerte des so erhaltenen Papiers sind in Tabelle 4 angegeben.
  • Vergleichsbeispiel 9
  • Das Vergleichsbeispiel 7 wird mit der Ausnahme wiederholt, daß man zu dem dort beschriebenen Papierstoff zusätzlich vor der Entwässerung 2 % native Maisstärke, bezogen auf trockenen Faserstoff, zusetzt. Die Festigkeits­werte des so erhaltenen Papiers sind in Tabelle 4 angegeben.
  • Vergleichsbeispiel 10
  • Das Vergleichsbeispiel 7 wird mit der Ausnahme wiederholt, daß man zu dem dort beschriebenen Papierstoff zusätzlich vor der Entwässerung 2 % native Weizenstärke, bezogen auf trockenen Faserstoff, zusetzt. Die Festigkeits­werte des so erhaltenen Papiers sind in Tabelle 4 angegeben.
  • Vergleichsbeispiel 11
  • Das Beispiel 12 wird mit der Ausnahme wiederholt, daß anstelle von Verfestiger 1 die gleiche Menge an Verfestiger 13 eingesetzt wird. Die Festigkeitswerte des so erhaltenen Papiers sind in Tabelle 4 angegeben.
  • Vergleichsbeispiel 12
  • Das Beispiel 12 wird mit der Ausnahme wiederholt, daß anstelle von Verfestiger 1 die gleiche Menge an Verfestiger 14 eingesetzt wird. Die Festigkeitswerte des so erhaltenen Papiers sind in Tabelle 4 angegeben.
    Figure imgb0010
    Figure imgb0011
  • Beispiel 16
  • Auf der in Beispiel 12 beschriebenen Versuchspapiermaschine wird ein LWC-Papier aus folgendem Stoffmodell hergestellt: 40 % gebleichter Holz­schliff, 30 % gebleichter Nadelholzsulfitzellstoff und 30 % gebleichter Birkensulfatzellstoff vom Mahlgrad 35°SR. Bezogen auf trockenen Faserstoff setzt man noch 20 % China-Clay und 0,3 % eines handelsüblichen kationischen Polyacrylamids mit einem K-Wert von 120 in Form einer 7 %igen wäßrigen Lösung zu. Außerdem fügt man noch 0,5 % Alaun zu, so daß das vom Sieb ablaufende Wasser einen pH-Wert von 6 hat. Dem Papierstoff wird vor der Entwässerung auf dem Papiermaschinensieb Verfestiger 1 in einer Menge von 2,2 %, bezogen auf trockenen Faserstoff, zugesetzt. Bei einer Produktionsgeschwindigkeit der Papiermaschine von 60 m/min erhält man ein Papier mit einem Flächengewicht von 50 g/m², dessen Festigkeitswerte in Tabelle 5 angegeben sind.
  • Beispiel 17
  • Das Beispiel 16 wird mit der Ausnahme wiederholt, daß man anstelle des dort verwendeten Verfestigers dieselbe Menge an Verfestiger 2 einsetzt. Die Trockenfestigkeitswerte des so erhaltenen Papiers sind in Tabelle 5 angegeben.
  • Beispiel 18
  • Das Beispiel 16 wird mit der Ausnahme wiederholt, daß man anstelle des dort angegebenen Verfestigers jetzt den Verfestiger 4 verwendet. Man erhält ein LWC-Papier, dessen Trockenverfestigungswerte in Tabelle 5 angegeben sind.
  • Vergleichsbeispiel 13
  • Das Beispiel 16 wird mit der Ausnahme wiederholt, daß man in Abwesenheit eines Trockenverfestigungsmittels ein LWC-Papier herstellt. Die Festigkeitswerte des so erhaltenen Papiers sind in Tabelle 5 angegeben.
  • Vergleichsbeispiel 14
  • Das Beispiel 16 wird mit der Ausnahme wiederholt, daß man anstelle des dort verwendeten Verfestigers 1 nunmehr 2 % native Kartoffelstärke, bezogen auf trockenen Faserstoff, einsetzt. Die Festigkeitswerte des so erhaltenen LWC-Papiers sind in Tabelle 5 angegeben.
    Figure imgb0012

Claims (7)

1. Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe eines Trockenverfestigungsmittels zum Papierstoff und Entwässern des Papierstoffs unter Blattbildung, dadurch gekennzeichnet, daß man als Trockenverfestigungsmittel eine Mischung aus kationischen Polymerisaten, die als charakteristische Monomere Einheiten von
a) Diallyldimethylammoniumchlorid,
b) N-Vinylamin oder
c) N-Vinylimidazolinen der Formel
Figure imgb0013
in der
      R¹ = H, C₁- bis C₁₈-Alkyl,
Figure imgb0014
      R⁵, R⁶ = H, C₁- bis C₄-Alkyl, Cl,
      R² = H, C₁- bis C₁₈-Alkyl,
Figure imgb0015
      R³, R⁴ = H, C₁- bis C₄-Alkyl, und
      X⁻ ein Säurerest bedeutet,
einpolymerisiert enthalten und die einen K-Wert von mindestens 30 haben, und nativer Kartoffelstärke einsetzt, die durch Erhitzen in wäßrigem Medium auf Temperaturen oberhalb der Verkleisterungs­temperatur der nativen Kartoffelstärke in Abwesenheit von Oxidations­mitteln, Polymerisationsinitiatoren und Alkali in eine wasserlösliche Form überführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man auf 100 Gew.-Teile nativer Kartoffelstärke 1 bis 20 Gew.-Teile eines kationischen Polymerisats oder einer Mischung davon einsetzt.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß man als Trockenverfestigungsmittel eine Mischung einsetzt, die erhältlich ist durch Erhitzen von nativer Kartoffelstärke in Gegenwart vom Homo­polymerisaten von Diallyldimethylammoniumchlorid eines K-Werts von 60 bis 180.
4. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß man als Trockenverfestigungsmittel eine Mischung einsetzt, die erhältlich ist durch Erhitzen von nativer Kartoffelstärke in Gegenwart von hydrolysierten Homopolymerisaten des N-Vinylformamids, wobei die Formylgruppen der Polymerisate zu 70 bis 100 Mol% unter Bildung von N-Vinylamineinheiten abgespalten sind und die hydrolysierten Polymerisate einen K-Wert von 75 bis 170 haben.
5. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß man als Trockenverfestigungsmittel eine Mischung einsetzt, die erhältlich ist durch Erhitzen von nativer Kartoffelstärke in Gegenwart von hydrolysierten Copolymerisaten aus
a) 95 bis 10 Mol% N-vinylformamid und
b) 5 bis 90 Mol% Vinylacetat oder Vinylpropionat,
einpolymerisiert enthalten, wobei die Formylgruppen des Polymerisats zu 70 bis 100 Mol% unter Bildung von N-Vinylamineinheiten und die Acetyl- und Propionylgruppen zu 70 bis 100 Mol% unter Bildung von Vinylalkoholeinheiten abgespalten sind und die hydrolysierten Polymerisate einen K-Wert von 70 bis 170 haben.
6. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß man als Trockenverfestigungsmittel eine Mischung einsetzt, die erhältlich ist durch Erhitzen von nativer Kartoffelstärke in Gegenwart von Homo­polymerisaten eines gegebenenfalls substituierten N-Vinylimidazolins oder eines Copolymerisats davon mit Acrylamid und/oder Methacrylamid mit einem K-Wert von 80 bis 220.
7. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß man als Trockenverfestigungsmittel eine Mischung einsetzt, die erhältlich ist durch Erhitzen von nativer Kartoffelstärke in Gegenwart von Copolymerisaten, die
a) 70 bis 96,5 Gew.% Acrylamid und/oder Methacrylamid,
b) 2 bis 20 Gew.% N-Vinylimidazolin oder N-Vinyl-2-methylimidazolin und
c) 1,5 bis 10 Gew.% N-Vinylimidazol
einpolymerisiert enthalten, und einen K-Wert von 80 bis 220 haben.
EP88102520A 1987-02-28 1988-02-20 Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit Expired - Lifetime EP0282761B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88102520T ATE76135T1 (de) 1987-02-28 1988-02-20 Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3706525 1987-02-28
DE19873706525 DE3706525A1 (de) 1987-02-28 1987-02-28 Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit

Publications (2)

Publication Number Publication Date
EP0282761A1 true EP0282761A1 (de) 1988-09-21
EP0282761B1 EP0282761B1 (de) 1992-05-13

Family

ID=6322010

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88102520A Expired - Lifetime EP0282761B1 (de) 1987-02-28 1988-02-20 Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit

Country Status (13)

Country Link
US (1) US4818341A (de)
EP (1) EP0282761B1 (de)
JP (1) JP2642384B2 (de)
KR (1) KR960003188B1 (de)
AT (1) ATE76135T1 (de)
AU (1) AU591380B2 (de)
CA (1) CA1290508C (de)
DE (2) DE3706525A1 (de)
DK (1) DK168640B1 (de)
ES (1) ES2030776T3 (de)
FI (1) FI89730C (de)
NO (1) NO171173C (de)
NZ (1) NZ223534A (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3909004A1 (de) * 1989-03-18 1990-09-27 Basf Ag Verwendung von nicht hydrolysierten n-vinylformamid-einheiten enthaltenden copolymerisaten bei der papierherstellung
EP1384811A1 (de) * 2002-07-23 2004-01-28 Mühle Rüningen GmbH & Co. KG Mittel zur Erhöhung der Aufnahmefähigkeit von Papiermasse für Stärke

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3724646A1 (de) * 1987-07-25 1989-02-02 Basf Ag Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
US5349089A (en) 1989-07-07 1994-09-20 National Starch And Chemical Investment Holding Corporation Reagent for preparing polycationic polysaccharides
US5227481A (en) * 1989-07-07 1993-07-13 National Starch And Chemical Investment Holding Corporation Cationic polysaccharides and reagents for their preparation
DE4007312C2 (de) * 1990-03-08 2000-04-27 Basf Ag Verfahren zur Herstellung von feinteiligen, wasserlöslichen, Vinylamin-Einheiten enthaltenden Polymerisaten
US5122231A (en) * 1990-06-08 1992-06-16 Cargill, Incorporated Cationic cross-linked starch for wet-end use in papermaking
DE4127733A1 (de) * 1991-08-22 1993-02-25 Basf Ag Pfropfpolymerisate aus saccharidstrukturen enthaltenden naturstoffen oder deren derivaten und ethylenisch ungesaettigten verbindungen und ihre verwendung
DE69316410T2 (de) * 1992-03-09 1998-06-10 Canon Kk Kreislaufpapier für Elektrophotographie, und Bilderzeugungsverfahren unter Verwendung dieses Papiers
JP2697996B2 (ja) * 1992-06-17 1998-01-19 日華化学株式会社 染料固着剤
US5382324A (en) * 1993-05-27 1995-01-17 Henkel Corporation Method for enhancing paper strength
IT1271003B (it) * 1994-09-08 1997-05-26 Ausimont Spa Processo per la produzione di carta e cartone ad elevata resistenza meccanica
DE4438708A1 (de) 1994-10-29 1996-05-02 Basf Ag Verfahren zur kationischen Modifizierung von Stärke und Verwendung der kationisch modifizierten Stärke
US5572825A (en) * 1995-01-24 1996-11-12 Woodstream Corporation Glue trap
US20030192664A1 (en) * 1995-01-30 2003-10-16 Kulick Russell J. Use of vinylamine polymers with ionic, organic, cross-linked polymeric microbeads in paper-making
US5591799A (en) * 1995-03-03 1997-01-07 Air Products And Chemicals, Inc. Aqueous emulsion materials containing copolymerized vinyl amide monomers and hydrolysis products thereof
DE19701524A1 (de) * 1997-01-17 1998-07-23 Basf Ag Polymermodifizierte Stärke, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19701523A1 (de) 1997-01-17 1998-07-23 Basf Ag Polymermodifizierte anionische Stärke, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19713755A1 (de) * 1997-04-04 1998-10-08 Basf Ag Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
US6165322A (en) * 1997-07-29 2000-12-26 Hercules Incorporated Polyamidoamine/epichlorohydrin resins bearing polyol sidechains as dry strength agents
AU769074B2 (en) 1999-04-01 2004-01-15 Basf Aktiengesellschaft Modifying starch with cationic polymers and use of the modified starches as dry-strength agent
US20040226675A1 (en) * 2000-01-11 2004-11-18 Raisio Chemicals Ltd. Method for improving printability and coatability of paper and board
US6485609B1 (en) 2001-03-08 2002-11-26 Celanese International Corporation Ink jet printing paper incorporating amine functional poly(vinyl alcohol)
US7214633B2 (en) * 2001-12-18 2007-05-08 Kimberly-Clark Worldwide, Inc. Polyvinylamine treatments to improve dyeing of cellulosic materials
US6824650B2 (en) * 2001-12-18 2004-11-30 Kimberly-Clark Worldwide, Inc. Fibrous materials treated with a polyvinylamine polymer
US7090745B2 (en) * 2002-09-13 2006-08-15 University Of Pittsburgh Method for increasing the strength of a cellulosic product
US7494566B2 (en) * 2002-09-13 2009-02-24 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Composition for increasing cellulosic product strength and method of increasing cellulosic product strength
US20050109476A1 (en) * 2003-07-21 2005-05-26 Muhle Runingen Gmbh & Co. Kg Medium for increasing the absorption capacity of paper pulp for starch
BRPI0508227A (pt) * 2004-02-27 2007-07-17 Univ Pittsburgh géis poliméricos interligados e uso de tais géis poliméricos na recuperação de hidrocarboneto
US20060016569A1 (en) * 2004-07-20 2006-01-26 Sonoco Development, Inc. High strength paperboard and method of making same
CA2813996C (en) * 2010-11-05 2015-01-27 Hercules Incorporated Surface application of polymers to improve paper strength
KR101676928B1 (ko) 2011-08-25 2016-11-16 솔레니스 테크놀러지스 케이맨, 엘.피. 종이 및 페이퍼보드의 제조에서 강도 보조제의 이점을 증가시키는 방법
US11846074B2 (en) 2019-05-03 2023-12-19 First Quality Tissue, Llc Absorbent structures with high strength and low MD stretch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097427A (en) * 1977-02-14 1978-06-27 Nalco Chemical Company Cationization of starch utilizing alkali metal hydroxide, cationic water-soluble polymer and oxidant for improved wet end strength
US4146515A (en) * 1977-09-12 1979-03-27 Nalco Chemical Company Making a lightly oxidized starch additive by adding a cationic polymer to starch slurry prior to heating the slurry
DE2821830A1 (de) * 1978-05-19 1979-11-22 Basf Ag Verfahren zur oberflaechenleimung von papier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1347071A (en) * 1971-07-01 1974-02-13 Starch Products Ltd Paper fillers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097427A (en) * 1977-02-14 1978-06-27 Nalco Chemical Company Cationization of starch utilizing alkali metal hydroxide, cationic water-soluble polymer and oxidant for improved wet end strength
US4146515A (en) * 1977-09-12 1979-03-27 Nalco Chemical Company Making a lightly oxidized starch additive by adding a cationic polymer to starch slurry prior to heating the slurry
DE2821830A1 (de) * 1978-05-19 1979-11-22 Basf Ag Verfahren zur oberflaechenleimung von papier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3909004A1 (de) * 1989-03-18 1990-09-27 Basf Ag Verwendung von nicht hydrolysierten n-vinylformamid-einheiten enthaltenden copolymerisaten bei der papierherstellung
EP1384811A1 (de) * 2002-07-23 2004-01-28 Mühle Rüningen GmbH & Co. KG Mittel zur Erhöhung der Aufnahmefähigkeit von Papiermasse für Stärke

Also Published As

Publication number Publication date
DE3706525A1 (de) 1988-09-08
NZ223534A (en) 1989-10-27
ATE76135T1 (de) 1992-05-15
DK101788D0 (da) 1988-02-26
FI880836A0 (fi) 1988-02-23
AU591380B2 (en) 1989-11-30
NO171173B (no) 1992-10-26
FI89730B (fi) 1993-07-30
NO880856L (no) 1988-08-29
NO171173C (no) 1993-02-03
AU1234388A (en) 1988-09-01
FI880836A (fi) 1988-08-29
DK168640B1 (da) 1994-05-09
JPS63227895A (ja) 1988-09-22
DK101788A (da) 1988-08-29
KR960003188B1 (ko) 1996-03-06
CA1290508C (en) 1991-10-15
FI89730C (fi) 1993-11-10
KR880010192A (ko) 1988-10-07
US4818341A (en) 1989-04-04
ES2030776T3 (es) 1992-11-16
DE3870941D1 (de) 1992-06-17
JP2642384B2 (ja) 1997-08-20
NO880856D0 (no) 1988-02-26
EP0282761B1 (de) 1992-05-13

Similar Documents

Publication Publication Date Title
EP0282761B1 (de) Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
EP0301372B1 (de) Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
EP0972110B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP2443284B1 (de) Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
EP1819877B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP0418343B1 (de) Verfahren zur herstellung von papier, pappe und karton in gegenwart von n-vinylformamid-einheiten enthaltenden copolymerisaten
EP0952988B1 (de) Polymermodifizierte anionische stärke, verfahren zu ihrer herstellung und ihre verwendung
EP0788516B1 (de) Verfahren zur kationischen modifizierung von stärke und verwendung der kationisch modifizierten stärke
DE69408485T2 (de) Verfahren zur Herstellung von Papier mit erhöhter Festigkeit im nassen und trockenen Zustand
DE3929226A1 (de) Neutralleimungsmittel fuer rohpapiermassen unter verwendung von kationischen kunststoffdispersionen
DE60007898T2 (de) Nassverfestigungsmittel und verfahren zu seiner herstellung
DE2263089C3 (de) Papier mit einem Gehalt an einem Copolymeren mit Acrylamid- und N-(DialkylaminomethyOacrylamideinheiten sowie Verfahren zu seiner Herstellung
WO2010089334A1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
WO2010145990A1 (de) Verfahren zur reduktion von ablagerungen in der trockenpartie bei der herstellung von papier, pappe und karton
EP0146000B1 (de) Verfahren zur Herstellung von Papier, Karton und Pappe mit hoher Trocken-, Nass- und Laugenfestigkeit
DE1264942B (de)
DE2026241A1 (de) Verfahren zur Aufbringung von Polymeren auf faserartigen Substraten
DE3719480A1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
WO2006136556A2 (de) Verfahren zur herstellung von papier, pappe und karton
DE1617204C (de) Harzleimmassen und Verfahren zu deren Herstellung
DE2502084A1 (de) Verfahren und zusammensetzung zum inneren leimen von cellulosematerialien
DE3613651A1 (de) Verfahren zur herstellung von papier mit hoher trockenfestigkeit
CH496079A (de) Harzleimmasse, Verfahren zu deren Herstellung und deren Verwendung
DE1546245A1 (de) Zellulosefaserprodukt und Verfahren zu dessen Herstellung
DE19753212A1 (de) Verfahren zur Masseleimung von Papier, Pappe und Karton

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19880802

17Q First examination report despatched

Effective date: 19910207

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 76135

Country of ref document: AT

Date of ref document: 19920515

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3870941

Country of ref document: DE

Date of ref document: 19920617

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2030776

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88102520.9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060205

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060207

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060213

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060215

Year of fee payment: 19

Ref country code: CH

Payment date: 20060215

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060216

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060220

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060228

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060317

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060410

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070220

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070220

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20071030

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070901

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070220

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070220