EP1812607B1 - Fill fourré pour le traitement des métaux liquides - Google Patents

Fill fourré pour le traitement des métaux liquides Download PDF

Info

Publication number
EP1812607B1
EP1812607B1 EP05777175.0A EP05777175A EP1812607B1 EP 1812607 B1 EP1812607 B1 EP 1812607B1 EP 05777175 A EP05777175 A EP 05777175A EP 1812607 B1 EP1812607 B1 EP 1812607B1
Authority
EP
European Patent Office
Prior art keywords
cored wire
paper
wire according
pyrolizing
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05777175.0A
Other languages
German (de)
English (en)
Other versions
EP1812607A2 (fr
Inventor
André Poulalion
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Affival SA
Original Assignee
Affival SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Affival SA filed Critical Affival SA
Priority to PL05777175T priority Critical patent/PL1812607T3/pl
Publication of EP1812607A2 publication Critical patent/EP1812607A2/fr
Application granted granted Critical
Publication of EP1812607B1 publication Critical patent/EP1812607B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires

Definitions

  • the invention relates to the technical field of tubular envelopes containing compacted powdered or granular materials, these core envelopes being used for the treatment of liquid metals, especially steels, and being conventionally referred to as "filled cores".
  • cored son containing Mg and Ca C 2 or alternatively Na 2 CO 3, CaCO 3, CaO, MgO.
  • Flux-cored wires are typically used in secondary metallurgy of steels, among other means such as pocket stirring, powder injection, CAS (Composition Adjustment Sealed), arc pocket furnace, RH (Ruhrstahl Heraeus), tank vacuum.
  • the cored wires are used for the desulphurization of cast irons, for the production of GS cast irons, the inoculation of casting cast irons.
  • the inoculation of cast irons consists in introducing into the cast irons elements which favor the germination of graphite to the detriment of cementite, these elements being, for example, alkalis, alkaline earths (Ca) or bismuth, alloyed with silicon. Generally, desulfurization, nodulisation and inoculation are performed in order. Magnesium and silicon carbide are often used and the bath temperatures are of the order of 1300 to 1400 ° C, ie lower than those of the liquid steel bags.
  • flux cored wire The primary functions of flux cored wire are, for steels, deoxidation, desulfurization, inclusion control and shading.
  • the deoxidation operation consists in combining the dissolved oxygen in the liquid steel from the converter or the electric furnace (content of about 500 ppm or more) with a deoxidizing agent, a part of which will remain dissolved in the metal. liquid.
  • a deoxidizing agent a part of which will remain dissolved in the metal. liquid.
  • the electric furnace flows into a pocket more or less decarburized metal, dephosphorized, but effervescent: given its dissolved oxygen content, the product% CO x% O is such that at the temperature considered, the reaction of formation of CO is spontaneous in the bath of liquid steel.
  • Deoxidation is so called calming, by reference to this effervescence of the primary liquid steel bath.
  • the deoxidizing agents contained in the cored wires are ferroalloys, most often (ferrosilicon, ferromanganese, aluminum). They lead to the formation of oxides (silica, manganese oxide, alumina) which, by moderate mixing of the pocket, decant in the slag.
  • the cored wires also conventionally contain calcium for aluminum-killed steels.
  • the addition of calcium alloys to a liquid steel killed with aluminum allows a modification of the inclusions of alumina, by partial reduction by calcium.
  • Calcium aluminates are liquid at the temperature of liquid steels, close to 1600 ° C., and therefore globular on product when their CaO content is between 40% and 60%.
  • the amount of calcium in solution needed to achieve the change in inclusions depends on the aluminum content of the metal bath. Most of the calcium introduced by cored wire is therefore in the liquid metal in the form of liquid inclusions of lime aluminates, and does not exceed a few ppm.
  • Boiling is reduced by introducing the calcium, not unalloyed, but as CaSi, with the major drawback of introducing silicon into the liquid steel, which is unfavorable for some steels such as deep drawing.
  • stirring or bubbling with argon through the porous plug of the pocket causes an intumescence of the slag surface, which further increases the calcium losses by evaporation or oxidation, during the simultaneous introduction of cored wire. intumescence causing direct contact of the liquid metal with the air.
  • exogenous oxide inclusions resulting from the contact of calcium with the refractories or the powders of the distributor are in fact difficult to eliminate before the solidification of the metal.
  • inclusions of alumina are solid and more harmful than the inclusions of calcium aluminate with regard to the capping of continuous casting nozzles, for example.
  • Calcium-cored wire treatment of aluminum-killed liquid steel can also result in the formation of calcium sulphide deposited in continuous casting nozzles for steels with low aluminum content and high sulfur content.
  • control of the inclusional state by the addition of chemical components housed in flux-cored wires mainly concerns oxides and sulphides.
  • control of the inclusion cleanliness is very important for bearing steels, free cutting steels, reinforcing steels or valve spring steels.
  • Irregular compaction of the material contained in the envelope results in an irregularity in the quantities of this material introduced, per unit time, in the bath of steel or liquid metal.
  • Insufficient compaction of the material contained in the flux-cored wire thus reduces the amount, per unit of time, of the material that can be introduced into the liquid metal by dipping the flux-cored wire into the liquid metal bath.
  • drum here is meant well so called dynamic packaging reels that the walls of so-called static packaging cages.
  • Some cored wires especially of flattened section, have insufficient rigidity for their introduction deep into some high density metal baths, especially if these baths are covered by a high viscosity slag.
  • the other techniques for closing the cored wire wrapping strips have other disadvantages: envelope thicknesses reducing the powder / sheath ratio, risk of deterioration of the powder during welding.
  • the cored wire can lose its rigidity and gradually bend in the liquid metal bath so that its end rises to the surface before the wire content is released. This rise being due in particular to the ferrostatic thrust, the apparent density of the wire being generally lower than that of the metal bath.
  • the cored wire contains Ca, Mg, a shallow release of these elements in the bath of liquid metal results in very high yield losses, for example for the desulphurization of cast irons.
  • the depth L is low, for example 30 cm, there is a high risk that the product contained in the cored wire does not come into contact with the supernatant slag, and thus be lost.
  • addition bodies of a treating agent similar to the wires are illustrated in FIG. FR2392126 and JP55-122834 .
  • the document EP-B2-0.236.246 discloses a cored wire comprising a metal envelope stapled by a circumferentially connected fold, closed on itself and whose edge is engaged inside the compacted mass forming the core of the cored wire.
  • the stapling is carried out along a generatrix of the envelope of the cored wire, possibly reinforced by crimping with transverse indentations over the entire width of the staple band.
  • Compaction of the core of the cored wire is obtained by forming an open fold, opposite the staple zone, then closing this fold by radial pressure.
  • the casing of the cored wire is made of steel or aluminum and contains, for example, a powdery CaSi alloy containing 30% Ca by mass.
  • the document US 4163827 discloses a cored wire comprising a ferrosilicon core containing Ca, Al, powdered embedded in a resin or a polymeric binder such as polyurethane, this core being extruded before being wrapped by single or double winding, in a helix, d a thin strip of metal, plastic or paper with a thickness of 0.025 mm to 0.15 mm.
  • a cored wire has many disadvantages. In the first place, the materials forming the resin are an unacceptable source of pollution for the liquid metal bath. Secondly, the mechanical strength and rigidity of the wire are very insufficient.
  • the ferrosilicon powder is practically unprotected with respect to the high temperature of the liquid metal.
  • the document EP-0032874 discloses a flux-cored wire comprising a metal thin-film sheath containing an additive at least partially surrounded by a casing of organic or metallic synthetic material in the form of a strip of thickness less than 100 microns.
  • the wire has a flattened shape.
  • the thin strip is made of polyethylene, polyester or polyvinyl chloride and form of sealing, possibly heat shrinkable. No manufacturing process is described for this flattened cored wire, whose design is more of a chimera than an industrial disclosure.
  • the document FR-2610331 of the applicant describes a cored wire comprising an axial zone containing a first powdery material or granular, surrounded by an intermediate metal tubular wall, and an annular zone, between this intermediate wall and the envelope of the cored wire, this annular zone containing a second powdery or granular material.
  • the axial zone advantageously contains the most reactive materials with respect to the bath to be treated.
  • the document US 3921700 discloses a cored wire to be wrapped in steel, containing a magnesium axial wire and an iron powder, of low thermal conductivity and high heat capacity, thus forming thermal insulation protecting the magnesium from too rapid heating when the cored wire is immersed in liquid steel.
  • graphite or carbon is mixed with the iron powder.
  • a cored wire comprising a mild steel sheath (melting temperature 1538 ° C.) containing a ferrosilicon with 75% silicon (melt temperature 1300 ° C.) will melt around 1200 ° C. when immersed for example in a gray cast iron at 1400 ° C, this fusion from the inner part of the sheath, due to the diffusion of silicon in the sheath which lowers the melting temperature of mild steel.
  • the document US 4297133 describes a paper tube wound in layers, this tube being closed by metal caps.
  • the burning time of the paper is indicated as three seconds when the tube is placed in a bath of liquid steel at 1600-1700 ° C.
  • the slow combustion of the so-called pyrotechnic paper does not cause the appearance of combustion residues affecting the composition of the liquid metal bath and does not produce inclusions modifying the behavior of the bath during casting.
  • a metal protection is placed to prevent the layers of pyrotechnic paper from being damaged during winding on the drum of the cored wire or when the cored wire is unrolled from this drum.
  • the applicant has endeavored to solve this technical problem, by providing, in addition, a cored wire whose life in the liquid metal bath is increased, compared to conventional son, so as to reach a predetermined depth in the bath of liquid metal.
  • the invention therefore relates to a flux-cored wire as specified in claim 1. It comprises powdered or compacted grains or embedded in a resin, at least one material selected from the group consisting of Ca, Bi, Nb, Mg, CaSi , C, Mn, Si, Cr, Ti, B, S, Se, Te, Pb, CaC 2 , Na 2 CO 3 , CaCO 3 , CaO, MgO, land rats, and it comprises an outer thermal barrier layer, enveloping a metal sheath, said outer thermal barrier layer being made of a pyrolyzing material upon contact with a bath of liquid metal.
  • the pyrolyzing material is loaded with water or with a chemical compound with latent heat of high vaporization, especially greater than 2MJ / kg.
  • figure 1 is a representation of the principle of introduction of a cored wire into a ladle of liquid steel.
  • the cored wire 1 is extracted from a cage 2 such as, for example, described in the document FR-2703334 of the applicant, or else extracted from a drum 3, and introduced into an injector 4.
  • This injector 4 drives the wire in a bent guide tube 5, the cored wire coming out of this guide tube 5 at a height of the order of one meter to one meter and a half above the surface of the liquid steel bath 6 contained in a pocket 7.
  • the Applicant wished, at first, to thermally simulate the path of the cored wire in order to limit the number of tests with instrumented cored wire.
  • the form factors were calculated by the plane flow method, the transfer factors being calculated by the coating method taking into account diffuse multi-reflections.
  • the flux received is supposed to radiate from the tube wrapping the cored wire with a form factor equal to 1.
  • the transfer is considered as convective with an exchange coefficient of the order 50,000 W / m 2 K, the surface temperature being imposed.
  • the total emissivity of the outer surface of the cored wire is considered equal to 0.8, that of the guide tube is equal to 1 while that of the bath is considered equal to 0.8.
  • the figure 2 gives the variation of the transfer factor between the flux-cored wire and the bath of liquid metal ( ⁇ x F) as a function of the distance above this bath of liquid metal, the value zero on the x-axis corresponding to the surface of the bath of liquid metal.
  • the cored wire is considered to comprise three concentric cylindrical layers, namely a steel sheathed calcium core, this steel sheath being covered with paper.
  • the diameter of the core of calcium is 7.8 mm
  • the thickness of the steel sheath is 0.6 mm
  • the thickness of the paper can be set at different values, example 0.6 mm for eight layers of paper superimposed.
  • the cored wire is considered to be formed of a solid core made of interlocked calcium and in contact with the steel sheath which is itself nested and in contact with the paper.
  • the bath of liquid metal and the walls of the pocket 7 are represented in the numerical model by a volume of temperature equal to 1600 ° with radiation and convection to the cored wire depending on whether the wire is above the bath 6 or in this bath of liquid metal 6.
  • the heat exchange is convective with a very high exchange coefficient (50,000 W / m 2 K) from the time T2 where the cored wire enters the liquid metal bath 6.
  • T2 The 1 + The 2 / V or :
  • L2 is the distance between the lower end of the guide tube 5 and the surface of the liquid metal bath 6.
  • the speed of travel of the cored wire is equal to 2 m / s, the initial temperature of the cored wire being 50 ° C.
  • the free path of the cored wire beyond the guide tube 5 and before introduction into the bath of liquid metal is considered to be 1.4 m in length.
  • the yarn is considered destroyed when, by calculation, the surface of the calcium core has a temperature above 1400 ° C.
  • the modeling indicates that, for a reference wire devoid of thermal protection, the surface temperature of the calcium core increases by 70 ° C only during the free path and reaches the threshold of 1400 ° C at 0, 15 s after a run inside the liquid metal bath of only 30 cm for a speed of 2m / s.
  • the temperature gradient between the steel sheath and the calcium core does not exceed, by calculation, 65 ° C.
  • an insulation thickness of 0.025 mm would be sufficient to protect the cored wire to the bottom of the bath of liquid metal.
  • figure 5 is shown the evolution of the surface temperatures of the paper as a function of the conductivity of this paper, during the first second of free travel of the cored wire, the thickness of the paper being 0.6 mm, the running speed of the paper. cored wire being 2m / s.
  • Curve 5a corresponds to a conductivity of 0.1 W / K.m
  • curve 5b corresponds to a conductivity of 0.15 W / K.m
  • curve 5c corresponds to a conductivity of 0.2 W / K.m.
  • the figure 5 shows that the burning of paper is probable and the destruction of the paper in the free path of the cored wire is not excluded.
  • the figure 6 represents the evolution of the temperature of the paper surface for a thermal conductivity of this paper of 0.15 W / Km, a injection speed of the cored wire of 2m / s, the paper thickness being in curve 6a of 0.6 mm, in curve 6b of 0.2 mm and in curve 6c of 0.1 mm.
  • the surface of the bath of liquid metal such as steel is covered with a layer of slag which forms a heat shield
  • the figure 7 shows that the temperature of the paper covering the cored wire is largely affected by the variation of the temperature of the radiation source.
  • the curves 7a, 7b, 7c and 7d respectively correspond to emitting surface temperatures of 1500, 1400, 1300 and 1200 ° C.
  • the injection speed of the cored wire was 2m / s and the thermal conductivity of the paper 0.15 W / Km
  • the figure 8 gives the results of the numerical simulation for the surface temperature of the calcium contained in the flux-cored wire, the paper being supposed to be dissolved in the bath of liquid metal, just after its pyrolysis.
  • Curve 8a corresponds to the conventional cored wire, without protective paper.
  • Curve 8b corresponds to a cored wire provided with a protective paper having a thickness of 0.6 mm.
  • Curve 8c corresponds to a cored wire provided with a protective paper to a thickness of 1.2 mm.
  • the figure 8 suggests that if the paper disappears after pyrolysis, it is not possible to protect the cored wire so that it reaches the bottom of the liquid steel bath, even by doubling the thickness of the paper.
  • Pyrolysis of Kraft paper was carried out by raising the temperature of the sheets of paper, protected from oxygen, to a temperature of about 600 ° C. and a measurement of the thermal conductivity of the paper was carried out before and after pyrolysis.
  • the Applicant has conceived of absorbing the radiation or of reflecting it by moistening this paper or covering it with aluminum.
  • the figure 10 shows the results of the numerical simulation for the variations of surface temperature of the paper as a function of time, the curves 10a, 10b, 10c, 10d respectively corresponding to humidity of 0%, 59%, 89% and 118%.
  • the figure 11 gives the result of the radiative calculation carried out by adding a very thin layer of aluminum in coating of the paper enveloping the steel sheath of the cored wire.
  • This figure 11 shows that the radiative transfer factor is reduced by a factor of 8 compared to that of paper whose emissivity is 0.8.
  • the figure 12 allows the comparison of surface temperature changes of the paper as a function of time with and without aluminum coating, the injection speed of the cored wire remaining of 2m / s and the thermal conductivity of the paper being 0.15 W / Km
  • the surface temperature of the paper increases very little, according to this numerical simulation, in the free path of the cored wire, the aluminum providing a very effective thermal protection for the paper of the cored wire.
  • thermocouples The electrical connections and connection wires of the thermocouples are protected by steel tubes.
  • the instrumented wire is introduced into a steel steel ladle and then reassembled after a predetermined downtime.
  • point I corresponds to the entrance of the cored wire into the liquid steel ladle.
  • the temperature drop at point D of the figure 13 is related to the destruction of thermo-couples.
  • the figure 14 compares the results obtained with the reference wire (reference 14a) and a cored wire comprising a layer of Kraft paper placed between the calcium core and the steel sheath (reference 14b).
  • the placement of Kraft paper inside the cored wire can delay the rise in temperature by 0.4 seconds or a total time of 0.7 seconds before destruction.
  • the figure 15 compares the results obtained with the reference wire (curve 15a) and two instrumented son provided with two layers of external Kraft paper (curves 15b, 15c).
  • the temperature rise delay obtained is 0.8 and 1.2 seconds allowing the cored wire to reach the bottom of the pocket.
  • the abrupt rise in temperature of the curves 15b and 15c corresponds to the moment when the Kraft paper is totally degraded, the steel sheath of the cored wire coming into direct contact with the liquid steel bath.
  • the figure 16 compares the results obtained with the reference wire (curve 16a) and a cored wire protected by two layers of Kraft paper and two layers of aluminized paper (two curved tests 16b and 16c).
  • the curves of the figure 16 show that the presence of two layers of kraft paper and two layers of aluminized paper retard the rise in temperature by about 1 second, compared to a conventional reference wire.
  • the figure 18 allows to compare the results obtained with six layers of kraft paper and two layers of aluminized paper (curves 18b and 18c), to be compared with the reference wire (curve 18a).
  • the rise in temperature is here delayed by more than 1.2 seconds.
  • Curve 19b of the figure 19 gives the results obtained for a cored wire protected with four layers of kraft paper and an aluminum layer, the delay of the rise in temperature being 0.6 seconds with respect to the reference wire, curve 19a.
  • Curve 20b of the figure 20 gives the result obtained with a cored wire protected by eight layers of kraft paper and an aluminum layer, the delay of the rise in temperature being 0.8 seconds relative to the reference wire, curve 20a.
  • Curve 20c corresponds to a test in which the cored wire dipped laterally into the slag and did not penetrate the molten steel, this test indirectly giving the temperature of the slag, ie 1200 ° C.
  • Curves 21b and c of the figure 21 give the results obtained for filled son protected by two layers of aluminized paper, the delay of the rise in temperature being about 0.7 seconds with respect to the reference wire, curve 21a, these results are to be compared with those of the figure 18 .
  • the risks of combustion can be limited by injecting argon above the liquid metal bag or by soaking the paper with water or covering the paper with a metal band.
  • the document FR-2810919 of the applicant describes the establishment of thermal insulation paper between a steel outer casing and a steel sheath containing the powdery or granular additive.
  • the outer steel sheath is designed to prevent the paper from being damaged during handling of the cored wire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Insulated Conductors (AREA)
  • Paper (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Ropes Or Cables (AREA)

Description

  • L'invention se rapporte au domaine technique des enveloppes tubulaires contenant des matériaux pulvérulents ou granulaires compactés, ces enveloppes à âme étant utilisées pour le traitement de métaux liquides, notamment aciers, et étant conventionnellement dénommés « fils fourrés ».
  • L'introduction dans les bains de métal liquide de ces fils fourrés permet notamment l'affinage, la désoxydation, le dégazage, le calmage et/ou la modification de la composition de ces bains.
  • Ainsi par exemple, pour la désulfuration des fontes de haut fourreau destinées à la conversion en acier, il est connu d'utiliser des fils fourrés contenant Mg et C2Ca ou bien encore Na2 CO3, CaCO3, CaO, MgO.
  • Les fils fourrés sont typiquement employés en métallurgie secondaire des aciers, parmi d'autres moyens tels que brassage en poche, injection de poudre, CAS (Composition Adjustement Sealed), four poche à arc, RH (Ruhrstahl Heraeus), vide en cuve.
  • Les fils fourrés sont employés pour la désulfuration des fontes, pour l'obtention de fontes GS, l'inoculation des fontes de moulage.
  • L'inoculation des fontes consiste à introduire dans les fontes des éléments qui favorisent la germination du graphite au détriment de la cémentite, ces éléments étant par exemple des alcalins, des alcalinoterreux (Ca) ou du bismuth, alliés au silicium. En règle générale, désulfuration, nodulisation et inoculation sont effectuées dans l'ordre. Le magnésium et le carbure de silicium sont souvent utilisés et les températures de bain sont de l'ordre de 1300 à 1400°C, c'est à dire inférieures à celles des poches d'acier liquide.
  • Les fonctions premières du fil fourré sont, pour les aciers, la désoxydation, la désulfuration, le contrôle inclusionnaire et la mise à nuance.
  • L'opération de désoxydation consiste à combiner l'oxygène dissous dans l'acier liquide issu du convertisseur ou du four électrique (teneur d'environ 500 ppm ou plus) avec un agent désoxydant dont une partie restera à l'état dissous dans le métal liquide. L'examen des courbes d'activité de l'oxygène dissous dans le fer liquide à 1600°C, en équilibre avec divers éléments oxydants suggère que des additions relativement modestes d'aluminium permettent d'abaisser très fortement les teneurs en oxygène dissous résiduel, pour former de l'alumine pure, l'aluminium étant de ce fait très utilisé comme agent désoxydant pour les produits plats.
  • Le four électrique coule en poche un métal plus ou moins décarburé, déphosphoré, mais effervescent : compte tenu de sa teneur en oxygène dissous, le produit % CO x % O est tel qu'à la température considérée, la réaction de formation de CO est spontanée au sein du bain d'acier liquide.
  • La désoxydation est ainsi dénommée calmage, par référence à cette effervescence du bain d'acier primaire liquide.
  • Les agents désoxydants contenus dans les fils fourrés sont des ferroalliages, le plus souvent (ferrosilicium, ferromanganèse, aluminium). Ils entraînent la formation d'oxydes (silice, oxyde de manganèse, alumine) qui, par brassage modéré de la poche, décantent dans le laitier.
  • Malgré toutes les précautions prises, des inclusions résiduelles d'alumine peuvent provoquer le bouchage des busettes de coulée ou l'apparition de défauts sur les produits finaux de faible section tels qu'issus de coulée continue en brames minces.
  • De sorte que les fils fourrés contiennent également conventionnellement du calcium, pour les aciers calmés à l'aluminium. L'addition d'alliages de calcium à un acier liquide calmé à l'aluminium permet une modification des inclusions d'alumine, par réduction partielle par le calcium. Les aluminates de calcium sont liquides à la température des aciers liquides, voisine de 1600°C, donc globulaires sur produit lorsque leur teneur en CaO est comprise entre 40 % et 60 %. La quantité de calcium en solution nécessaire pour obtenir la modification des inclusions dépend de la teneur en aluminium du bain métallique. La majeure partie du calcium introduit par fil fourré se trouve donc, dans le métal liquide, sous forme d'inclusions liquides d'aluminates de chaux, et ne dépasse pas quelques ppm.
  • Il est difficile d'éviter en pratique le violent bouillonnement de l'acier liquide, provoqué par la brusque volatilisation du calcium contenu dans le fil fourré. La tension de vapeur du calcium est en effet d'environ 1,8 atm à 1600°C. Le bouillonnement, s'il est trop intense, peut perturber les conditions de pénétration du fil fourré dans le bain d'acier et s'accompagner d'une pollution du bain, qui s'oxyde ou se renitrure . En même temps, des projections d'acier liquide se produisent, traversant la couche de laitier et s'oxydant au contact de l'air avant de retomber. Par ailleurs, il y a risque de projection d'acier hors de la poche.
  • Il peut en résulter une remontée des teneurs en O2, N2 et même H2 de l'acier obtenu. Le bouillonnement est réduit en introduisant le calcium, non pas non allié, mais sous forme de CaSi, avec l'inconvénient majeur d'introduire du silicium dans l'acier liquide, ce qui est défavorable pour certains aciers tels ceux pour emboutissage profond.
  • Pour pallier cet inconvénient, il a été proposé d'introduire le calcium sous forme d'alliage CaNi, éventuellement mélangé à un peu d'alliage CaSi. D'autres solutions sont présentées dans le document EP-0.190.089 .
  • Pour pallier cet inconvénient, il a pu être envisagé de purger le volume situé entre la surface de métal et le couvercle, en injectant de l'argon dans le cas d'acier à faible concentration en azote. En pratique, les fours n'étant pas étanches, un fort courant d'argon entraîne une aspiration d'air et un faible courant d'argon implique un temps d'inertage prohibitif du volume gazeux au dessus de la poche d'acier liquide.
  • A noter également que le brassage ou bullage à l'argon au travers du bouchon poreux de la poche entraîne une intumescence de la surface du laitier, qui augmente encore les pertes de calcium par évaporation ou oxydation, lors de l'introduction simultanée de fil fourré, l'intumescence provoquant le contact direct du métal liquide avec l'air.
  • Le rendement apparent de l'addition de calcium n'est que le reflet de la propreté inclusionnaire du métal. Ce rendement est faible, la plus grande partie du calcium ajouté par fil fourré se trouvant perdue par évaporation et/ou par oxydation avec l'atmosphère, les laitiers et les réfractaires.
  • Il est donc très important, pour minimiser ces réactions secondaires, d'effectuer l'addition de calcium après une décantation soignée des inclusions de désoxydation et d'adapter l'addition aux taux de transformation souhaité pour ces inclusions.
  • Les inclusions d'oxyde exogènes issues du contact du calcium avec les réfractaires ou les poudres du répartiteur sont en effet difficiles à éliminer avant la solidification du métal. Ces inclusions d'alumine sont solides et plus nocives que les inclusions d'aluminate de calcium pour ce qui est du bouchage des busettes de coulée continue par exemple.
  • Le traitement par fil fourré au calcium d'un acier liquide calmé à l'aluminium peut également entraîner la formation de sulfure de calcium se déposant dans les busettes de coulée continue, pour des aciers à faible teneur en aluminium et teneur en soufre élevée.
  • Le contrôle de l'état inclusionnaire par l'addition de composants chimiques logés dans des fils fourrés concerne essentiellement les oxydes et les sulfures.
  • L'addition de soufre augmente la quantité de sulfures de manganèse et l'usinabilité de l'acier.
  • L'addition de calcium, de sélinium ou de tellure permet de modifier la composition, la morphologie ou le comportement rhéologique des inclusions lors des déformations ultérieures.
  • La maîtrise de la propreté inclusionnaire est notamment très importante pour les aciers pour roulements, les aciers de décolletage, les aciers pour armatures de pneumatique ou les aciers pour ressorts de soupape.
  • La désoxydation et le contrôle de l'état inclusionnaire des aciers, grâce aux additions chimiques par fil fourré, sont donc des opérations complexes relevant du savoir faire de l'aciériste, opérations pour lesquelles les qualités du fil fourré sont très importantes : régularité de composition, régularité de compaction notamment.
  • Or, la fabrication et l'utilisation de ces fils fourrés posent un très grand nombre de problèmes pratiques dont certains vont être évoqués ci-dessous.
  • Compaction insuffisante ou irrégulière
  • Une compaction irrégulière du matériau contenu dans l'enveloppe se traduit par une irrégularité dans les quantités de ce matériau introduites, par unité de temps, dans le bain d'acier ou de métal liquide.
  • Une compaction insuffisante du matériau contenu dans le fil fourré réduit d'autant la quantité, par unité de temps, du matériau que l'on peut introduire dans le métal liquide, en plongeant le fil fourré dans le bain de métal liquide.
  • Si le compactage est insuffisant, la matière pulvérulente peut se déplacer à l'intérieur du fil fourré.
  • Efforts mécaniques excessifs au déroulage
  • Si l'opération de compactage a nécessité une déformation plastique importante de l'enveloppe métallique, la rigidité élevée, par écrouissage, de l'enveloppe du fil fourré entraîne des efforts importants au déroulage, en particulier à partir de tambours de faible diamètre, à petit rayon de courbure.
  • Par tambour, on désigne ici ainsi bien les tourets de conditionnements dits dynamiques que les parois des cages de conditionnements dits statiques.
  • Rigidité insuffisante du fil fourré
  • Certains fils fourrés, notamment de section aplatie, présentent une rigidité insuffisante pour leur introduction en profondeur dans certains bains métalliques de forte densité, surtout si ces bains sont recouverts par un laitier de forte viscosité.
  • Déformation en spirale lors du déroulage
  • On a pu observer, lors du déroulage du fil fourré conditionné en cage statique une déformation en spirale de ce fil, de sorte que ce fil fourré ne pénètre pas dans le bain de métal liquide, mais se recourbe et reste en surface.
  • Désagrafage de l'enveloppe du fil fourré
  • On a pu observer, pour certains produits, au cours du déroulage du fil fourré de son touret de stockage ou de sa cage, ou au cours du dressage du fil précédant son introduction dans le bain liquide, un désagrafage de l'enveloppe du fil fourré.
  • Les autres techniques de fermeture des feuillards d'enveloppe de fil fourré (rapprochement bord à bord, recouvrement, soudage) présentent d'autres inconvénients : surépaisseurs d'enveloppe réduisant le rapport poudre/gaine, risque de détérioration de la poudre lors du soudage.
  • Réduction du temps nécessaire à l'introduction dans le bain d'une quantité donnée d'additifs.
  • L'augmentation de la vitesse d'introduction du fil dans le bain peut entraîner des accidents si le fil bute contre le fond du récipient ou ressort du bain avant d'avoir eu le temps de fondre.
  • L'augmentation du diamètre de fil conduit à une augmentation du rayon d'enroulement, les bobines nécessaires pour enrouler de tels fils devenant alors trop grandes pour être utilisées facilement dans les espaces réduits disponibles en aciérie.
  • A titre indicatif, pour introduire 1 kg de CaSi par tonne d'acier dans une poche de 150 tonnes, soit 150 kg d'une poudre de CaSi placée dans un fil ayant une densité de 240 g/m, une longueur de 625 m de fil fourré est nécessaire, l'introduction de ce kilomètre de fil à 2 m/s représentant un temps de travail de plus de cinq minutes.
  • Destruction prématurée du fil fourré
  • Si l'enveloppe du fil fourré est détruite de manière prématurée, par fusion rapide dès pénétration dans le bain métallique, le contenu du fil est libéré au voisinage de la surface du bain.
  • Déformation du fil, en U, dans le bain de métal liquide
  • Il est par ailleurs prétendu dans un document de l'art antérieur que le fil fourré peut perdre sa rigidité et se courber progressivement en U dans le bain de métal liquide de sorte que son extrémité remonte vers la surface avant que le contenu du fil soit libéré, cette remontée étant due en particulier à la poussée ferrostatique, la densité apparente du fil étant en général inférieure à celle du bain métallique.
  • Si le fil fourré contient Ca, Mg, une libération à faible profondeur de ces éléments, dans le bain de métal liquide entraîne des pertes de rendement très élevées, par exemple pour la désulfuration des fontes.
  • La libération massive de calcium à faible profondeur dans le bain de métal liquide entraîne une réaction violente et des projections de métal liquide.
  • Profondeur de pénétration insuffisante du fil fourré dans le bain de métal liquide
  • A titre d'exemple, le document US 4.085.252 dont la relation suivante entre la profondeur de pénétration L, l'épaisseur e de l'enveloppe métallique du fil et le diamètre d d'une barre de Cerium : L = 1,7 e + 0,35 d v .10 2
    Figure imgb0001
    V étant la vitesse d'introduction du fil, comprise entre 3 et 30 m/mn pour des raisons de sécurité.
  • Si la profondeur L est faible, par exemple 30 cm, il existe un risque élevé que le produit contenu dans le fil fourré n'entre en contact avec le laitier surnageant, et soit ainsi perdu.
  • Si la profondeur L est trop faible, il existe aussi un risque d'hétérogénéité de répartition de l'élément chimique (ou des éléments) contenus dans le fil fourré, dans le bain de métal liquide.
  • Réactivité des poudres contenues dans le fil et colmatage des installations de coulée continue
  • Comme indiqué dans le document US 4.143.211 , l'affinité chimique des éléments tels que terres rares, Al, Ca, Ti, pour l'oxygène conduit à la formation d'oxydes qui peuvent adhérer aux parois internes des busettes de régulation de débit des installations de coulée continue et provoquer un colmatage.
  • Il est donc nécessaire de fournir aux aciéristes des fils fourrés facilitant l'introduction homogène de la quantité juste nécessaire au résultat recherché (désoxydation, contrôle inclusionnaire, résistance mécanique, etc..) pour le produit sidérurgique final.
  • Pour tenter de résoudre au moins un de ces problèmes techniques, un très grand nombre de structures et de procédés de fabrication de fils fourrés ont été proposés dans l'art antérieur, par exemple illustrés dans les documents suivants :
  • Des corps d'addition d'un agent traitant similaires aux fils sont par exemple illustrés dans FR2392126 et JP55-122834 .
  • La présentation succincte de quelques uns de ces documents antérieurs illustre la très grande variété des solutions techniques envisagées pour répondre aux différents problèmes techniques énoncés en introduction.
  • Le document EP-B2-0.236.246 décrit un fil fourré comprenant une enveloppe métallique agrafée par un pli raccordé à la circonférence, fermé sur lui-même et dont l'arête est engagée à l'intérieur de la masse compactée formant l'âme du fil fourré.
  • L'agrafage est réalisé le long d'une génératrice de l'enveloppe du fil fourré, éventuellement renforcé par un sertissage avec indentations transversale sur toute la largeur de la bande d'agrafage. La compaction de l'âme du fil fourré est obtenue par formation d'un pli ouvert, à l'opposé de la zone d'agrafage, puis fermeture de ce pli par pressions radiales.
  • L'enveloppe du fil fourré est en acier ou en aluminium et contient par exemple un alliage pulvérulent de CaSi à 30 % de Ca en masse.
  • Le document US-4.163.827 décrit un fil fourré comprenant une âme à base de ferrosilicium, contenant Ca, Al, en poudre noyée dans une résine ou un liant polymère tel que polyuréthane, cette âme étant extrudée avant d'être enveloppée par enroulement simple ou double, en hélice, d'une mince bande de métal, de plastique ou de papier, d'une épaisseur de 0,025 mm à 0,15 mm. Un tel fil fourré présente de nombreux inconvénients. En premier lieu, les matériaux formant la résine sont source de pollution inacceptable pour le bain de métal liquide. En second lieu, la tenue mécanique et la rigidité du fil sont très insuffisants.
  • En troisième lieu, la poudre de ferrosilicium est pratiquement non protégée vis à vis de la température élevée du métal liquide.
  • Le document EP-0.032.874 décrit un fil fourré comprenant une gaine métallique en feuillard mince contenant un additif entouré au moins partiellement par une enveloppe en matériau synthétique organique ou métallique sous forme d'un feuillard d'épaisseur inférieure à 100 microns. Le fil présente une forme aplatie. Le feuillard fin est en polyéthylène, polyester ou polychlorure de vinyle et forme moyen d'étanchéisation, éventuellement thermorétractable. Aucun procédé de fabrication n'est décrit pour ce fil fourré aplati, dont la conception relève plus d'une chimère que d'une divulgation industrielle.
  • Le document FR-2.610.331 de la demanderesse décrit un fil fourré comprenant une zone axiale contenant une première matière pulvérulente ou granulaire, entourée d'une paroi tubulaire métallique intermédiaire, et une zone annulaire, comprise entre cette paroi intermédiaire et l'enveloppe du fil fourré, cette zone annulaire contenant une deuxième matière pulvérulente ou granulaire. La zone axiale contient avantageusement les matières les plus réactives vis à vis du bain à traiter.
  • Tant que l'enveloppe externe métallique de ce fil fourré n'est pas détruite, la matière qui remplit la zone annulaire joue le rôle de calorifuge qui réduit la montée en température de la paroi intermédiaire, réduisant ainsi les risques de flexion du fil qui l'empêcherait de s'enfoncer dans le bain, la paroi intermédiaire conservant une certaine rigidité.
  • Le document US-3.921.700 décrit un fil fourré à envelopper en acier, contenant un fil axial en magnésium et une poudre de fer, de faible conductivité thermique et de grande capacité calorifique, formant ainsi isolant thermique protégeant le magnésium d'un échauffement trop rapide lorsque le fil fourré est plongé dans l'acier liquide. En variante, du graphite ou du carbone est mélangé à la poudre de fer.
  • Parmi les problèmes techniques posés par l'utilisation des fils fourrés, plusieurs découlent de ce qu'il est pratiquement impossible de déterminer ce qu'il se passe effectivement pour ce fil, lorsqu'il est plongé dans le bain de métal liquide, tel qu'une poche d'acier à 1600°C. En particulier, les questions suivantes sont délicates : quelle est la forme du fil dans le bain (droit, courbé en U), à quelle profondeur est-il détruit par fusion. On ne trouve à ce sujet que des informations parcellaires et parfois contradictoires, dans l'art antérieur.
  • Ainsi, le document FR-2.384.029 décrit un fil d'inoculation comprenant une enveloppe en acier gainant un composé de ferrosilicium en poudre tassée, à plus de 65% en poids de silicium. Selon ce document antérieur, le silicium diffuse vers l'enveloppe en acier du fil, lors de son introduction dans le métal liquide, de sorte que :
    • la température de fusion de l'inoculant contenu dans le fil va baisser ;
    • la température de fusion de l'acier de la gaine de fil va baisser ;
    le carbone diffusant au travers de la surface extérieure de la gaine de fil.
  • Selon ce document antérieur, un fil fourré comprenant une gaine en acier doux (température de fusion 1538°C) contenant un ferrosilicium à 75% de silicium (température de fusion 1300°C) va fondre vers 1200°C lorsque plongé par exemple dans une fonte grise à 1400°C, cette fusion partant de la partie interne de la gaine, du fait de la diffusion du silicium dans la gaine qui abaisse la température de fusion de l'acier doux.
  • Le document US-4.174.962 mentionne, en plus de cette diffusion de silicium, une dissolution de la paroi externe de la gaine de fil fourré, par érosion et diffusion, même si la température de fusion de la gaine est supérieure à la température du bain de métal liquide.
  • Le document US-4.297.133 décrit un tube en papier enroulé en couches, ce tube étant fermé par des opercules métalliques. Le temps de combustion du papier est indiqué comme étant de trois secondes lorsque le tube est placé dans un bain d'acier liquide à 1600-1700°C.
  • La demanderesse a elle-même décrit, dans les publications FR-2.821.626 et FR-2.810.919 des fils fourrés comprenant des enveloppes qui, combustibles sans laisser de résidus gênants, retardent momentanément la propagation de la chaleur vers le coeur du fil, ces enveloppes étant en papier dit pour application pyrotechnique, combustible et isolant thermique.
  • Selon ces deux documents antérieurs de la demanderesse, en augmentant le nombre de couches de papier, on retarde l'explosion du fil fourré contenant du calcium, ou la vaporisation de ce calcium et on parvient à introduire ainsi le fil fourré à profondeur suffisante dans le bain de métal liquide pour éviter une réaction en surface du bain de l'additif contenu dans le fil avec les risques qui en découleraient : oxydation et/ou rénitruration du bain, projection de métal liquide, émanations de fumées, rendement très faible de l'opération d'introduction d'additifs par fil fourré.
  • Selon ces deux documents antérieurs, la combustion lente du papier dit pyrotechnique ne provoque pas l'apparition de résidus de combustion affectant la composition du bain de métal liquide et ne produit pas d'inclusions modifiant le comportement du bain lors de la coulée. Dans la réalisation décrite par le document FR-2.821.626 , au dessus de cette enveloppe en papier pyrotechnique brûlant sans laisser de traces nuisibles dans le bain de métal liquide, une protection métallique est placée afin d'éviter que les couches de papier pyrotechnique ne s'abîment lors de l'enroulement sur le touret du fil fourré ou lorsque le fil fourré est déroulé de ce touret.
  • La demanderesse a été perplexe en constatant que les fils fourrés décrits dans les documents FR-2.821.626 ou FR-2.810.919 ne donnaient pas toujours un rendement très supérieur aux fils fourrés dépourvus de bandes de papier enroulées en hélice.
  • La demanderesse s'est attachée à résoudre ce problème technique, en fournissant, de plus, un fil fourré dont la durée de vie dans le bain de métal liquide, soit augmentée, par rapport aux fils conventionnels, de sorte à atteindre une profondeur prédéterminée dans le bain de métal liquide.
  • La demanderesse, après des essais complexes et longs, a découvert notamment :
    1. 1) qu'il était important d'éviter toute combustion des enroulements de papier décrits dans les documents FR-2.821.626 et FR-2.810.919 , avant entrée du fil fourré dans le bain de métal liquide (zone de libre parcours du fil fourré) ;
    2. 2) des moyens pour éviter cette combustion ;
    3. 3) que le gain en durée de vie du fil fourré, était assuré lorsque la combustion du papier n'intervenait pas avant l'entrée du fil fourré dans le bain de métal liquide, le papier ne devant pas nécessairement être pyrotechnique, ou classé M1, ou à résistance à l'inflammation élevée, contrairement à ce qui est indiqué dans FR-2.821.626 ou FR-2.810.919 , le papier ne brûlant pas dans le bain de métal liquide, mais se pyrolysant pour se transformer en une matière dont les propriétés thermophysiques sont à ce jour inconnues de la demanderesse, cette pyrolyse n'étant obtenue que par le respect de certaines mesures qui seront détaillées dans la suite.
  • La demanderesse a ainsi découvert des moyens peu coûteux et sûrs d'augmenter la durée de vie des fils fourrés dans les bains de métal liquide, ces moyens étant compatibles avec toutes les structures décrites antérieurement pour les fils fourrés, ces moyens apportant ainsi un effet technique avantageux supplémentaire à chacun des avantages individuels des différents types de fils fourrés antérieurs.
  • L'invention se rapporte donc à un fil fourré comme spécifie dans la revendication 1. Il comprend en poudre ou en grains compactés ou noyés dans une résine, au moins un matériau choisi parmi le groupe constitué de Ca, Bi, Nb, Mg, CaSi, C, Mn, Si, Cr, Ti, B, S, Se, Te, Pb, CaC2, Na2CO3, CaCO3, CaO, MgO, terres rates, et il comprend une couche barrière thermique externe, enveloppant une gaine métallique, ladite couche barrière thermique externe étant réalisée en un matériau pyrolysant lors du contact avec un bain de métal liquide. Le matériau pyrolysant est chargé d'eau ou d'un composé chimique à chaleur latente de vaporisation élevée, notamment supérieure à 2MJ/kg.
  • Selon diverses réalisations, le fil fourré comprend les caractères suivantes de plus, le cas échéant combinés:
    • le matériau pyrolysant est un papier kraft, un papier aluminisé ou un multicouches comprenant au moins une bande de papier kraft et au moins une couche de papier aluminisé ;
    • le matériau pyrolysant est recouvert d'une feuille métallique mince ;
    • la feuille métallique mince est en aluminium ou alliage d'aluminium ;
    • le matériau pyrolysant présente une conductivité thermique comprise entre 0,15 et 4 W/m.K, avant pyrolyse ;
    • le matériau pyrolysant présente une épaisseur radiale comprise entre 0,025 mm et 0,8 mm, avant pyrolyse ;
    • le matériau pyrolysant présente une température de début de pyrolyse de l'ordre de 500°C ;
    • le matériau pyrolysant comprend une couche de papier humidifiée ;
    • le matériau pyrolysant est fixé par collage à une gaine métallique interne au fil fourré ;
    • le matériau pyrolysant est placé entre une gaine métallique interne au fil et une enveloppe externe métallique ;
    • l'enveloppe externe métallique est agrafée, le matériau pyrolysant étant placé, dans la bande d'agrafage, en interposition, de sorte à empêcher tout contact direct métal/métal dans la bande d'agrafage ;
    • la gaine métallique interne est d'épaisseur radiale comprise entre 0,2 et 0,6 mm environ, l'enveloppe externe métallique étant d'épaisseur radiale comprise entre 0,2 et 0,6 mm environ ;
    • le matériau pyrolysant est un papier kraft en mono ou multicouches, d'épaisseur comprise entre 0,1 et 0,8 mm.
  • D'autres objets et avantages de l'invention apparaîtront au cours de la description suivante de modes de réalisation, description qui va être effectuée en référence aux dessins annexés dans lesquels :
    • la figure 1 est une représentation du principe d'introduction du fil fourré dans un bain d'acier liquide ;
    • les figures 2 à 12 sont des courbes température fonction du temps, issues de simulation numérique ;
    • les figures 13 à 21 sont des courbes température fonction du temps, issues de campagnes d'essais menées par la demanderesse.
  • On se rapporte tout d'abord à la figure 1, qui est une représentation du principe d'introduction d'un fil fourré dans une poche d'acier liquide.
  • Le fil fourré 1 est extrait d'une cage 2 tel que, par exemple, décrit dans le document FR-2.703.334 de la demanderesse, ou bien encore extrait d'un touret 3, et introduit dans un injecteur 4.
  • Cet injecteur 4 entraîne le fil dans un tube guide coudé 5, le fil fourré sortant de ce tube guide 5 à une hauteur de l'ordre de un mètre à un mètre quarante au dessus de la surface du bain d'acier liquide 6 contenu dans une poche 7.
  • Le fil fourré 1 se trouve donc placé dans trois milieux thermiquement très différents :
    • un premier milieu dans lequel le fil fourré est logé à l'intérieur du tube de guidage ;
    • un deuxième milieu situé au dessus du bain d'acier liquide dans lequel le fil fourré est placé en contact direct avec l'atmosphère environnante ;
    • un troisième milieu qui est le bain d'acier ou de métal liquide lui-même.
  • La demanderesse a souhaité, dans un premier temps, simuler thermiquement le parcours du fil fourré afin de limiter le nombre d'essais avec fil fourré instrumenté.
  • Pour cette modélisation, les échanges radiatifs tridimensionnels entre surface plane, opaque, grise et diffuse ont été simulés par calcul des facteurs de forme et facteurs de transfert.
  • Les facteurs de forme ont été calculés par la méthode des flux plans, les facteurs de transfert étant calculés par la méthode des revêtements prenant en compte les multi-réflections diffuses.
  • A l'intérieur du tuyau de guidage, le flux reçu est supposé radiatif provenant du tube enveloppant le fil fourré avec un facteur de forme égal à 1.
  • Pour le parcours libre du fil fourré après la sortie du tube de guidage 5 et avant l'entrée dans le bain de métal liquide 6, le flux est considéré radiatif mais provenant du bain de métal liquide 6 et des parois de la poche 7.
  • A l'intérieur du bain de métal liquide 6, le transfert est considéré comme convectif avec un coefficient d'échange de l'ordre 50.000 W/m2K, la température de surface étant imposée.
  • L'émissivité totale de la surface extérieure du fil fourré est considérée égale à 0,8, celle du tube de guidage est égale à 1 tandis que celle du bain est considérée égale à 0,8.
  • Le flux thermique radiatif échangé, conformément à la loi de STEFAN-BOLTZMANN est de la forme : φ = ε × F × σ × T 4 1 T 4 2
    Figure imgb0002
    avec :
    • φ flux thermique échangé entre les deux surfaces en W/m2
    • ε coefficient tenant compte des émissivités des deux surfaces,
    • F facteur de forme prenant en compte les surfaces, les formes et l'orientation des deux surfaces l'une par rapport à l'autre,
    • σ constante de STEFAN-BOLTZMANN égale à 5,67 x 10-8 W/m2K
    • T1 et T2 températures absolues en Kelvin des deux surfaces avec T1 supérieur à T2.
  • La figure 2 donne la variation du facteur de transfert entre le fil fourré et le bain de métal liquide (ε x F) en fonction de la distance au dessus de ce bain de métal liquide, la valeur zéro sur l'axe des abscisses correspondant à la surface du bain de métal liquide.
  • Le fil fourré est considéré comme comprenant trois couches cylindriques concentriques, à savoir une âme de calcium gainée d'acier, cette gaine d'acier étant recouverte de papier.
  • Pour la simulation numérique, le diamètre de l'âme en calcium est de 7,8 mm, l'épaisseur de la gaine d'acier est de 0,6 mm tandis que l'épaisseur du papier peut être fixée à différentes valeurs, par exemple 0,6 mm pour huit couches de papier superposées.
  • Pour la simulation, le fil fourré est considéré comme étant formé d'une âme pleine en calcium emboîtée et en contact avec la gaine en acier elle-même emboîtée et en contact avec le papier.
  • Le tube de guidage 5 est représenté par un cylindre creux en acier de température constante, donnant une énergie au fil fourré pendant le temps T1, tel que : T 1 = L 1 / V
    Figure imgb0003
    • L1 est la longueur du tube de guidage 5 et,
    • V est la vitesse de passage du fil fourré dans le tube 5
  • Le bain de métal liquide et les parois de la poche 7 sont représentés dans le modèle numérique par un volume de température égal à 1600° avec rayonnement et convection vers le fil fourré selon que le fil se trouve au dessus du bain 6 ou dans ce bain de métal liquide 6.
  • L'échange de chaleur est convectif avec un coefficient d'échange très élevé (50.000 W/m2K) à partir du temps T2 où le fil fourré entre dans le bain de métal liquide 6.
  • T2 est calculé de la manière suivante : T 2 = L 1 + L 2 / V
    Figure imgb0004
    où :
  • L2 est la distance entre la partie extrême inférieure du tube de guidage 5 et la surface du bain de métal liquide 6.
  • La vitesse de défilement du fil fourré est égale à 2m/s, la température initiale du fil fourré étant de 50°C.
  • Le parcours libre du fil fourré au delà du tube de guidage 5 et avant introduction dans le bain de métal liquide est considéré comme d'une longueur égale à 1,4 m.
  • Le fil est considéré comme détruit lorsque, par calcul, la surface de l'âme en calcium présente une température supérieure à 1400°C.
  • Ainsi qu'il apparaît en figure 3, la modélisation indique que, pour un fil de référence dépourvu de protection thermique, la température de surface de l'âme en calcium augmente de 70°C seulement pendant le parcours libre et qu'elle atteint le seuil de 1400°C en 0,15 s soit après un parcours à l'intérieur du bain de métal liquide de 30 cm seulement pour une vitesse de 2m/s.
  • Le gradient de température entre la gaine en acier et l'âme en calcium ne dépasse pas, par calcul, 65°C.
  • Ainsi, lorsque la température de la surface de l'âme en calcium est de 1400°C, celle de la surface extérieure de la gaine en acier est de 1465°C, de sorte que la gaine en acier ne fond pas avant la destruction du fil fourré, la chaleur latente de fusion de cette gaine en acier n'étant donc pas prise en compte dans la simulation numérique.
  • La figure 4 donne quatre courbes d'évolution de température de la surface de l'âme en calcium d'un fil fourré en fonction du temps, chacune de ces quatre courbes correspondant à une épaisseur de papier de protection différente à savoir :
    • 0,025 mm pour la courbe 4a,
    • 0,05 mm pour la courbe 4b,
    • 0,1 mm pour la courbe 4c,
    • 0,6 mm pour la courbe 4d
  • La comparaison des figures 3 et 4 montre, par simulation numérique, un effet protecteur du papier entourant la gaine d'acier, cet effet étant d'autant plus marqué que l'épaisseur du papier est importante.
  • Les courbes représentées en figure 4 ont été obtenues en considérant que les couches de papier restent intactes, sans combustion.
  • Selon cette hypothèse, une isolation d'épaisseur 0,025 mm suffirait pour protéger le fil fourré jusqu'au fond du bain de métal liquide.
  • Mais la température de combustion du papier se situe aux environs de 550°C.
  • Une étude de la montée en température de la surface du papier dans le parcours libre a été effectuée en négligeant l'effet de la convection par rapport au rayonnement, qui est de fait prépondérant.
  • En figure 5 est représentée l'évolution des températures de surface du papier en fonction de la conductivité de ce papier, au cours de la première seconde de parcours libre du fil fourré, l'épaisseur du papier étant de 0,6 mm, la vitesse de défilement du fil fourré étant de 2m/s.
  • La courbe 5a correspond à une conductivité de 0,1 W/K.m, la courbe 5b correspond à une conductivité de 0,15 W/K.m et la courbe 5c correspond à une conductivité de 0,2 W/K.m.
  • La figure 5 montre que la combustion du papier est probable et la destruction du papier dans le parcours libre du fil fourré n'est pas exclue.
  • La figure 6 représente l'évolution de la température de la surface du papier pour une conductivité thermique de ce papier de 0,15 W/K.m, une vitesse d'injection du fil fourré de 2m/s, l'épaisseur du papier étant en courbe 6a de 0,6 mm, en courbe 6b de 0,2 mm et en courbe 6c de 0,1 mm.
  • Cette figure 6 suggère qu'en diminuant l'épaisseur du papier, la température de surface de ce papier diminue et donc le risque de combustion de ce papier lors du parcours libre du fil fourré au dessus du bain de métal liquide.
  • Ainsi que le sait l'homme du métier, la surface du bain de métal liquide tel que l'acier est recouverte d'une couche de laitier qui forme écran thermique, la figure 7 montre que la température du papier recouvrant le fil fourré est largement affectée par la variation de la température de la source de rayonnement.
  • Les courbes 7a, 7b, 7c et 7d correspondent respectivement à des températures de surface émettrices de 1500, 1400, 1300 et 1200°C.
  • Pour la simulation représentée en figure 7, la vitesse d'injection du fil fourré était de 2m/s et la conductivité thermique du papier de 0,15 W/K.m.
  • Par ces simulations numériques, confirmées lors d'essais expérimentaux, la demanderesse a pu faire l'hypothèse que la variabilité des résultats obtenus lors de la mise en oeuvre d'une structure telle que décrite dans le document FR-2.810.919 résulte d'une combustion du papier lors du parcours libre du fil fourré au dessus du bain de métal liquide, ce papier ne jouant plus, dès lors, son effet de protection thermique du fil fourré, à l'intérieur du bain d'acier liquide.
  • La demanderesse a fait l'hypothèse supplémentaire suivante : le papier ne brûlerait pas à l'intérieur du bain d'acier liquide mais se pyrolyserait.
  • La demanderesse a alors poursuivi des simulations numériques en considérant le papier comme un corps ayant deux conductivités thermiques différentes selon la température :
    • une première conductivité qui est celle du papier d'origine (0,15 W/K.m), cette première conductivité étant maintenue jusqu'à une température de l'ordre de 500°C de début de pyrolyse ;
    • une deuxième conductivité (300W/K.m), supposée atteinte lorsque la température du papier pyrolysé est de 600°C, la pyrolyse étant supposée terminée lorsque cette température de 600°C est atteinte.
  • Entre 500 et 600°C, le passage de la conductivité de 0,15 W/K.m à 300 W/K.m est supposé linéaire, dans la simulation en fonction de la température.
  • La figure 8 donne les résultats de la simulation numérique pour la température de surface du calcium contenu dans le fil fourré, le papier étant supposé dissous dans le bain de métal liquide, juste après sa pyrolyse.
  • La courbe 8a correspond au fil fourré conventionnel, sans papier protecteur.
  • La courbe 8b correspond à un fil fourré pourvu d'un papier protecteur d'une épaisseur de 0,6 mm.
  • La courbe 8c correspond à un fil fourré pourvu d'un papier protecteur sur une épaisseur de 1,2 mm.
  • La figure 8 suggère que, s'il y a disparition du papier après sa pyrolyse, il n'est pas possible de protéger le fil fourré pour qu'il parvienne au fond du bain d'acier liquide, même en doublant l'épaisseur du papier.
  • Or, la demanderesse a constaté, lors d'essais industriels, que le fil fourré revêtu de papier protecteur atteint parfois le fond du bain.
  • Il est donc probable que le papier ne disparaît pas après pyrolyse à l'intérieur du bain d'acier liquide.
  • Une pyrolyse de papier Kraft a été effectuée en élevant la température des feuilles de papier, à l'abri de l'oxygène, jusqu'à une température de 600°C environ et une mesure de la conductivité thermique du papier a été effectuée, avant et après pyrolyse.
  • Il ressort de cette étude que la conductivité thermique du papier varie peu après sa pyrolyse.
  • La demanderesse a donc repris la simulation numérique en considérant cette fois-ci, par contraste avec l'hypothèse correspondant à la figure 8, que le papier ne disparaît pas après pyrolyse, la conductivité du papier après pyrolyse étant considérée comme valant 0,15, 1, 2, 4 W/K.m pour les courbes 9a, 9b, 9c, 9d respectivement. Cette simulation reflète mieux les résultats d'essais ainsi qu'il apparaîtra plus loin.
  • Afin d'éviter toute combustion du papier enveloppant la gaine d'acier du fil fourré, la demanderesse a imaginé d'absorber le rayonnement ou de le réfléchir en humidifiant ce papier ou en le recouvrant d'aluminium.
  • La figure 10 montre les résultats de la simulation numérique pour les variations de température de surface du papier en fonction du temps, les courbes 10a, 10b, 10c, 10d correspondant respectivement à une humidité de 0%, 59%, 89% et 118%.
  • Pour cette simulation représentée en figure 10, la vitesse d'injection du fil fourré était de 2m/s, la conductivité thermique du papier étant de 0,15 W/K.m.
  • La figure 11 donne le résultat du calcul radiatif réalisé en ajoutant une couche très mince d'aluminium en revêtement du papier enveloppant la gaine d'acier du fil fourré.
  • Cette figure 11 montre que le facteur de transfert radiatif est réduit d'un facteur 8 comparé à celui du papier dont l'émissivité est de 0,8.
  • La figure 12 permet de comparer les évolutions de température de surface du papier en fonction du temps avec et sans revêtement d'aluminium, la vitesse d'injection du fil fourré restant de 2m/s et la conductivité thermique du papier étant de 0,15 W/K.m.
  • La température de surface du papier augmente très peu, selon cette simulation numérique, dans le parcours libre du fil fourré, l'aluminium assurant une protection thermique très efficace pour le papier du fil fourré.
  • Pour vérifier les hypothèses formulées par la demanderesse au cours des simulations présentées ci-dessus, des essais ont été réalisés par la demanderesse à l'aide de fil fourré instrumenté.
  • Le fil fourré instrumenté est fabriqué entre trois étapes :
    • vidage du fil fourré ;
    • positionnement de thermo-couples en contact avec la gaine interne en acier du fil fourré, à l'opposé de la zone d'agrafage ;
    • remplissage du fil fourré avec la poudre.
  • Les raccordements électriques et fils de branchement des thermo-couples sont protégés par tube en acier.
  • Le fil instrumenté est introduit dans une poche d'acier liquide d'aciérie puis remonté après un temps d'arrêt prédéterminé.
  • Les bains étant brassés en permanence à l'argon, une ambiance inerte est créée dans le parcours libre au dessus de la surface du bain d'acier liquide, ce qui limite les risques de combustion accidentelle du papier du fil fourré.
  • Sur les figures 13 à 21, le point I correspond à l'entrée du fil fourré dans la poche d'acier liquide.
  • Dans un premier temps, un essai de référence a été réalisé avec un fil fourré non revêtu de papier, la variation de la température à l'intérieur du fil fourré de référence, en fonction du temps, étant donnée en figure 13.
  • La chute de température au point D de la figure 13 est liée à la destruction des thermo-couples.
  • La figure 14 compare les résultats obtenus avec le fil de référence (référence 14a) et un fil fourré comprenant une couche de papier Kraft placée entre l'âme de calcium et la gaine en acier (référence 14b).
  • Au vu de cette figure 14, la mise en place de papier Kraft à l'intérieur du fil fourré permet de retarder la montée de température de 0,4 seconde soit un temps total de 0,7 seconde avant destruction.
  • La figure 15 compare les résultats obtenus avec le fil de référence (courbe 15a) et deux fils instrumentés pourvus de deux couches de papier Kraft externes (courbes 15b, 15c).
  • Le retard de montée en température obtenu est de 0,8 et 1,2 seconde permettant au fil fourré d'atteindre le fond de la poche.
  • La montée brutale en température des courbes 15b et 15c correspond au moment où le papier Kraft est totalement dégradé, la gaine d'acier du fil fourré entrant en contact direct avec le bain d'acier liquide.
  • La figure 16 permet de comparer les résultats obtenus avec le fil de référence (courbe 16a) et un fil fourré protégé par deux couches de papier Kraft et deux couches de papier aluminisé (deux essais courbes 16b et 16c).
  • Les courbes de la figure 16 montrent que la présence de deux couches de papier kraft et deux couches de papier aluminisé retardent la montée en température d'environ 1 seconde, par rapport à un fil de référence conventionnel.
  • En figure 17 sont présentés les résultats obtenus avec deux échantillons protégés par trois couches de papier kraft et deux couches de papier aluminisé (courbe 17b et 17c) à comparer avec les valeurs du fil de référence (courbe 17a).
  • La figure 18 permet de comparer les résultats obtenus avec six couches de papier kraft et deux couches de papier aluminisé (courbes 18b et 18c), à comparer avec le fil de référence (courbe 18a).
  • La montée de température est ici retardée de plus de 1,2 secondes.
  • La courbe 19b de la figure 19 donne les résultats obtenus pour un fil fourré protégé avec quatre couches de papier kraft et une couche d'aluminium, le retard de la montée en température étant de 0,6 secondes par rapport au fil de référence, courbe 19a.
  • La courbe 20b de la figure 20 donne le résultat obtenu avec un fil fourré protégé par huit couches de papier kraft et une couche d'aluminium, le retard de la montée en température étant de 0,8 secondes par rapport au fil de référence, courbe 20a.
  • La courbe 20c correspond à un essai dans lequel le fil fourré a plongé latéralement dans le laitier et n'a pas pénétré dans l'acier fondu, cet essai donnant indirectement la température du laitier, soit 1200°C.
  • Les courbes 21b et c de la figure 21 donnent les résultats obtenus pour des fils fourrés protégés par deux couches de papier aluminisé, le retard de la montée en température étant de 0,7 secondes environ par rapport au fil de référence, courbe 21a, ces résultats sont à comparer avec ceux de la figure 18.
  • Les résultats numériques et expérimentaux qui ont été présentés ci-dessus en référence aux figures 2 à 12 confirment que les couches de papier externes à un fil fourré constituent un isolant thermique permettant de protéger ces fils fourrés pour des durées se situant entre 0,6 et 1,6 secondes, par rapport à un fil fourré conventionnel.
  • La demanderesse a découvert que cet effet de protection est obtenu par la pyrolyse du papier dans le bain de métal liquide, le papier devant être protégé de toute combustion notamment au cours de son parcours libre au dessus du bain de métal liquide, dans la poche.
  • Les risques de combustion peuvent être limités par injection d'argon au dessus de la poche de métal liquide ou en imbibant d'eau le papier ou en recouvrant le papier d'une bande métallique.
  • Le document FR-2.810.919 de la demanderesse décrit la mise en place de papier isolant thermique entre une enveloppe extérieure en acier et une gaine en acier contenant l'additif pulvérulent ou granulaire.
  • La gaine extérieure en acier est destinée à éviter que, lors des manipulations du fil fourré, le papier soit abîmé.
  • La demanderesse a découvert que ces fils dits hybrides tels que décrits dans le document FR-2.810.919 ne permettaient d'obtenir un retard significatif à la montée en température que si le papier est présent dans la zone d'agrafage ou de recouvrement de sorte à éviter tout contact métal/métal dans la zone d'agrafage, le papier étant pyrolysé dans le bain de métal liquide.
  • Les travaux expérimentaux ont été réalisés avec le concours d'Armines, Centre d'Energétique, Ecole des Mines de Paris.

Claims (14)

  1. Fil fourré comprenant :
    - en poudre ou en grains compactés ou noyés dans une résine, au moins un matériau choisi parmi le groupe constitué de Ca, Bi, Nb, Mg, CaSi, C, Mn, Si, Cr, Ti, B, S, Se, Te, Pb, CaC2, Na2C03, CaC03, CaO, MgO, terres rares,
    - une gaine métallique, et
    - au moins une couche barrière thermique externe enveloppant la gaine métallique, ladite couche barrière thermique externe étant réalisée en un matériau pyrolysant lors du contact avec un bain de métal liquide,
    caractérisé en ce que le matériau pyrolysant est chargé d'eau ou d'un composé chimique à chaleur latente de vaporisation élevée, notamment supérieure à 2 MJ/kg.
  2. Fil fourré selon la revendication 1, caractérisé en ce que le matériau pyrolysant est un papier kraft, un papier aluminisé ou un multicouches comprenant au moins une bande de papier kraft et au moins une couche de papier aluminisé.
  3. Fil fourré selon la revendication 2, caractérisé en ce que le matériau pyrolysant est recouvert d'une feuille métallique mince.
  4. Fil fourré selon la revendication 3, caractérisé en ce que la feuille métallique mince est en aluminium ou alliage d'aluminium.
  5. Fil fourré selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le matériau pyrolysant présente une conductivité thermique comprise entre 0,15 et 4 W/m.K, avant pyrolyse.
  6. Fil fourré selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le matériau pyrolysant présente une épaisseur radiale comprise entre 0,025 mm et 0,8 mm, avant pyrolyse.
  7. Fil fourré selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le matériau pyrolysant présente une température de début de pyrolyse de l'ordre de 500 C.
  8. Fil fourré selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le matériau pyrolysant comprend une couche de papier humidifiée.
  9. Fil fourré selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le matériau pyrolysant est fixé par collage à une gaine métallique interne au fil fourré.
  10. Fil fourré selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le matériau pyrolysant est placé entre une gaine métallique interne au fil et une enveloppe externe métallique.
  11. Fil fourré selon la revendication 10, caractérisé en ce que l'enveloppe externe métallique est agrafée, le matériau pyrolysant étant placé, dans la bande d'agrafage, en interposition, de sorte à empêcher tout contact direct métal/métal dans la bande d'agrafage.
  12. Fil fourré selon la revendication 10 ou 11, caractérisé en ce que la gaine métallique interne est d'épaisseur radiale comprise entre 0,2 et 0,6 mm environ, l'enveloppe externe métallique étant d'épaisseur radiale comprise entre 0,2 et 0,6 mm environ.
  13. Fil fourré selon la revendication 12, caractérisé en ce que le matériau pyrolysant est un papier kraft en mono ou multicouches, d'épaisseur comprise entre 0,1 et 0,8 mm.
  14. Fil fourré selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'il comprend, en poudre ou en grains compactés ou noyés dans une résine, au moins un matériau choisi parmi le groupe constitué de Ca, Bi, Nb, Mg, CaSi, C, Mn, Si, Cr, Ti, B, S, Se, Te, Pb, CaC2, Na2C03, CaC03, CaO, MgO, terres rares.
EP05777175.0A 2004-06-10 2005-06-10 Fill fourré pour le traitement des métaux liquides Active EP1812607B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05777175T PL1812607T3 (pl) 2004-06-10 2005-06-10 Drut rdzeniowy do obróbki metali ciekłych

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0406257A FR2871477B1 (fr) 2004-06-10 2004-06-10 Fil fourre
PCT/FR2005/001447 WO2006000714A2 (fr) 2004-06-10 2005-06-10 Fil fourre

Publications (2)

Publication Number Publication Date
EP1812607A2 EP1812607A2 (fr) 2007-08-01
EP1812607B1 true EP1812607B1 (fr) 2018-12-26

Family

ID=34946497

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05777175.0A Active EP1812607B1 (fr) 2004-06-10 2005-06-10 Fill fourré pour le traitement des métaux liquides

Country Status (18)

Country Link
US (1) US7906747B2 (fr)
EP (1) EP1812607B1 (fr)
JP (1) JP5467721B2 (fr)
KR (1) KR101128598B1 (fr)
CN (1) CN1985012B (fr)
AR (1) AR049911A1 (fr)
BR (1) BRPI0511940A (fr)
CA (1) CA2569316C (fr)
EG (1) EG24787A (fr)
FR (1) FR2871477B1 (fr)
MX (1) MXPA06014310A (fr)
MY (1) MY155030A (fr)
PL (1) PL1812607T3 (fr)
RU (1) RU2381280C2 (fr)
TW (1) TWI365224B (fr)
UA (1) UA92322C2 (fr)
WO (1) WO2006000714A2 (fr)
ZA (1) ZA200610276B (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2906538B1 (fr) 2006-10-03 2010-10-29 Affival Procede et installation pour l'introduction d'un fil fourre dans un bain de metal en fusion.
JP4998691B2 (ja) * 2006-10-10 2012-08-15 Jfeスチール株式会社 金属帯被覆脱硫用ワイヤー及び溶鉄の脱硫処理方法
FR2917096B1 (fr) * 2007-06-05 2011-03-11 Affival Nouvel additif comprenant du plomb et/ou un alliage de plomb destine a traiter les bains d'acier liquide.
FR2928153B1 (fr) * 2008-03-03 2011-10-07 Affival Nouvel additif pour le traitement des aciers resulfures
FR2939126B1 (fr) * 2008-12-01 2011-08-19 Saint Gobain Coating Solution Revetement de dispositif de mise en forme de produits en verre
BRPI0922113A2 (pt) * 2008-12-01 2017-05-30 Saint-Gobain Coating Solution revestimento de dispositivo de conformação de produtos de vidro, molde de fabricação de produtos de vidro ocos, ferramental de conformação de vidro em folha ou em placa, material, pó pré- misturado ou pré-ligado, cordão flexível ou fio com núcleo de fluxo e processo de injeção térmica.
FR2944530B1 (fr) * 2009-04-16 2011-06-17 Affival Poudre pour fil fourre au soufre, fil fourre et procede de fabrication d'un fil fourre l'utilisant
US10974349B2 (en) * 2010-12-17 2021-04-13 Magna Powertrain, Inc. Method for gas metal arc welding (GMAW) of nitrided steel components using cored welding wire
FR2970191B1 (fr) * 2011-01-12 2014-01-24 Affival Procede de fabrication d'un fil fourre comportant un garnissage en un materiau destine a etre introduit dans un metal liquide et une enveloppe externe constituee d'un feuillard metallique, et fil ainsi fabrique
TWI450973B (zh) * 2011-05-19 2014-09-01 China Steel Corp 煉鋼製程
GB2543319A (en) 2015-10-14 2017-04-19 Heraeus Electro Nite Int Cored wire, method and device for the production
GB2543318A (en) 2015-10-14 2017-04-19 Heraeus Electro Nite Int Consumable optical fiber for measuring a temperature of a molten steel bath
CN105950827A (zh) * 2016-06-22 2016-09-21 唐山飞迪冶金材料有限公司 一种复合钙铝及其在炼钢生产中的应用
PL3290881T3 (pl) 2016-09-01 2020-01-31 Heraeus Electro-Nite International N.V. Sposób wprowadzania przewodu z rdzeniem światłowodowym i układ zanurzeniowy umożliwiający przeprowadzenie sposobu
CN106521084A (zh) * 2016-11-18 2017-03-22 浙江宝信新型炉料科技发展有限公司 一种含多种元素的稀土镁合金包芯线
CN106702081A (zh) * 2016-11-18 2017-05-24 浙江宝信新型炉料科技发展有限公司 一种含多种元素的高镁稀土镁合金粉末包芯线
GB2558223B (en) 2016-12-22 2021-03-31 Heraeus Electro Nite Int Method for measuring a temperature of a molten metal bath
CN106756635A (zh) * 2016-12-30 2017-05-31 山西太钢不锈钢股份有限公司 一种含碲钢的制备方法及其含碲钢
CN107841595A (zh) * 2017-10-20 2018-03-27 上海大学 含碲的包芯线
KR102336404B1 (ko) * 2017-10-30 2021-12-08 현대자동차주식회사 고강도강용 용접 와이어
US10927425B2 (en) 2017-11-14 2021-02-23 P.C. Campana, Inc. Cored wire with particulate material
CN108384921A (zh) * 2018-01-31 2018-08-10 日照钢铁控股集团有限公司 一种钢包精炼用石灰石包芯线及其使用方法
CN108715915A (zh) * 2018-06-20 2018-10-30 山东汉尚新型材料有限公司 一种提高精炼包芯线芯部材料收得率的热处理工艺
RU2723863C1 (ru) * 2019-08-05 2020-06-17 Общество с ограниченной ответственностью Новые перспективные продукты Технология Проволока с наполнителем для внепечной обработки металлургических расплавов
FR3140095A1 (fr) 2022-09-22 2024-03-29 Affival Fil fourré à base de calcium pour traitement métallurgique d’un bain de métal et procédé correspondant

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2060681A (en) * 1935-03-21 1936-11-10 Gen Electric Welding electrode
US2270020A (en) * 1939-11-27 1942-01-13 Smith Corp A O Covered welding electrode
US2619456A (en) * 1948-04-17 1952-11-25 Sara A Ingram Metal recovery apparatus
US2705196A (en) * 1952-02-20 1955-03-29 Manufacturers Chemical Corp Process for de-oxidizing a molten metal
US3056190A (en) * 1960-04-06 1962-10-02 Dow Chemical Co Composite metal article and method of making same
US3353808A (en) * 1965-02-23 1967-11-21 Louis E Norburn Refractory coated oxygen lance
US3467167A (en) * 1966-09-19 1969-09-16 Kaiser Ind Corp Process for continuously casting oxidizable metals
GB1233278A (fr) * 1968-10-23 1971-05-26
US3752216A (en) * 1969-05-14 1973-08-14 Sandel Ind Inc Apparatus for homogeneous refining and continuously casting metals and alloys
US3632096A (en) * 1969-07-11 1972-01-04 Republic Steel Corp Apparatus and process for deslagging steel
US3915693A (en) * 1972-06-21 1975-10-28 Robert T C Rasmussen Process, structure and composition relating to master alloys in wire or rod form
US4035892A (en) * 1972-06-30 1977-07-19 Tohei Ototani Composite calcium clad material for treating molten metals
US4698095A (en) * 1972-06-30 1987-10-06 Tohei Ototani Composite calcium clads for treating molten iron
US4671820A (en) * 1972-06-30 1987-06-09 Tohei Ototani Composite calcium clads for deoxidation and desulfurization from molten steels
FI208173A (fr) 1973-06-28 1974-12-29 Ovako Oy
US3941588A (en) * 1974-02-11 1976-03-02 Foote Mineral Company Compositions for alloying metal
IT1037740B (it) 1974-05-01 1979-11-20 Nippon Steel Corp Procedimento per la produzione di acciato mediante colata continua
US3921700A (en) * 1974-07-15 1975-11-25 Caterpillar Tractor Co Composite metal article containing additive agents and method of adding same to molten metal
US3922166A (en) * 1974-11-11 1975-11-25 Jones & Laughlin Steel Corp Alloying steel with highly reactive materials
JPS5198780A (en) * 1975-01-31 1976-08-31 Tenkayosenzaino seizoho
FR2307601A1 (fr) * 1975-04-18 1976-11-12 Soudure Autogene Francaise Fil composite a base de cerium et autres terres rares
JPS5214511A (en) * 1975-07-25 1977-02-03 Hitachi Cable Ltd Process for producing a linear additive
US4235007A (en) * 1975-07-25 1980-11-25 Hitachi Cable, Ltd. Method of production of a wire-shaped composite addition material
US4057420A (en) * 1976-02-06 1977-11-08 Airco, Inc. Methods for dissolving volatile addition agents in molten metal
GB1570454A (en) * 1976-07-15 1980-07-02 Yoshida Iron Works Co Ltd Method of and vessel for adding treatment agent to molten metal
US4297133A (en) * 1976-07-15 1981-10-27 Yoshida Iron Works Co., Ltd. Method and means for adding treating agent for molten metal
US4200456A (en) * 1976-07-15 1980-04-29 Yoshida Iron Works Co. Ltd Method of and member for adding treating agent for molten metal
DE2634282C2 (de) 1976-07-28 1978-04-13 Mannesmann Ag, 4000 Duesseldorf Verfahren zum kontinuierlichen Einbringen von Zusatzmitteln in ein mit flüssigem Metall gefülltes Gefäß
US4107393A (en) 1977-03-14 1978-08-15 Caterpillar Tractor Co. Inoculation article
US4094666A (en) 1977-05-24 1978-06-13 Metal Research Corporation Method for refining molten iron and steels
US4097267A (en) * 1977-07-05 1978-06-27 Xerox Corporation Purification and realloying of arsenic/selenium alloys
DE2731857A1 (de) * 1977-07-14 1979-02-01 Gammal Tarek Prof Dr Ing El Poroese, waermeregulierende traegerbzw. impfkoerper zum einbringen von behandlungsmitteln in fluessige metalle
JPS5465103A (en) * 1977-11-02 1979-05-25 Kunio Tamai Insert body for introducing additives substance into molten metal
US4175918A (en) 1977-12-12 1979-11-27 Caterpillar Tractor Co. Elongate consolidated article and method of making
US4147837A (en) 1977-12-12 1979-04-03 Caterpillar Tractor Co. Elongate composite article
US4147962A (en) * 1977-12-19 1979-04-03 Westinghouse Electric Corp. Energy-conserving illumination system
US4163827A (en) * 1978-01-23 1979-08-07 Caterpillar Tractor Co. Method of making a wrapped innoculation rod suitable for modifying the composition of molten metals
LU80118A1 (fr) 1978-08-17 1980-04-21 Arbed Fil fourre metallique
JPS55122834A (en) * 1979-03-13 1980-09-20 Takashi Takeda Insertion body for introducing additive into metal melt
LU81280A1 (fr) 1979-05-17 1980-12-16 Arbed Fil fourre composite
LU82090A1 (fr) 1980-01-16 1981-09-10 Arbed Fil fourre composite pour l'introduction d'additifs dans un bain de metal
FR2476542B1 (fr) 1980-02-26 1983-03-11 Vallourec
US4277282A (en) * 1980-03-24 1981-07-07 Roderick I. L. Guthrie Method of melt dispersing a floatable solid additive in molten metal and a melt dispersible, floatable, solid additive therefor
LU82313A1 (fr) 1980-04-01 1981-12-02 Arbed Procede et installation pour l'introduction de produits solides dans un bain de metal par l'intermediaire de fils fourres resp pleins
DE3169368D1 (en) 1980-07-09 1985-04-25 Foseco Int Metallurgical treatment agents
FR2511039B1 (fr) 1981-08-07 1986-08-01 Vallourec Appareil pour introduire un materiau de traitement en fil plat dans un bain en fusion
FR2535997B1 (fr) 1982-11-15 1986-05-30 Vallourec Raccord d'extremites de fils fourres
FR2541937B1 (fr) * 1983-03-03 1985-09-13 Vallourec Produit composite a enveloppe metallique tubulaire agrafee et ame pulverulente apte a l'enroulage
EP0137618B1 (fr) 1983-08-12 1988-06-22 Pfizer Inc. Procédé et appareil pour introduire du calcium dans un bain de fer fondu
US4481032A (en) * 1983-08-12 1984-11-06 Pfizer Inc. Process for adding calcium to a bath of molten ferrous material
FR2552107B1 (fr) 1983-09-20 1985-12-20 Vallourec Procede de traitement de l'acier par le calcium permettant d'obtenir une grande aptitude a la mise en forme a froid et une basse teneur en silicium
AU5062685A (en) * 1984-11-05 1986-06-03 Extramet Industrie S.A. Procede de traitement des metaux et alliages en vue de leur affinage
US4765599A (en) * 1985-01-17 1988-08-23 Kinglor-Ltd. Apparatus for the automatic forming of continuous metal tube filled with powdered materials, its direct introduction into liquid metal, and related equipment
IT1218464B (it) 1985-01-17 1990-04-19 Kinglor Ltd Procedimento per la formatura automatica di un tubetto metallico continuo riempito con ferroleghe e altri materiali in polvere (filo animato) e sua introduzione diretta nel mtallo liquido di una siviera, e relativa apparecchiatura formatrice
FR2576320B1 (fr) 1985-01-24 1989-05-26 Vallourec Procede de traitement de metaux ferreux liquides par fil fourre contenant du calcium
NL8600314A (nl) * 1986-02-10 1987-09-01 Hoogovens Groep Bv Met poeder gevulde buis alsmede werkwijze voor het continu vervaardigen van een dergelijke buis.
FR2594850A1 (fr) * 1986-02-24 1987-08-28 Vallourec Produit composite a enveloppe tubulaire, contenant une matiere compactee, pour le traitement des metaux liquides, et procede de realisation de ce produit
LU86552A1 (de) * 1986-08-11 1988-03-02 Arbed Verfahren und mittel zum gleichzeitigen aufheizen und reinigen von metallbaedern
JPS6350598A (ja) * 1986-08-13 1988-03-03 河合石灰工業株式会社 防炎紙
NL8603032A (nl) 1986-11-28 1988-06-16 Rijnstaal Bv Met poeder gevulde gelaste stalen buis en werkwijze voor het continu vervaardigen daarvan.
NL8702861A (nl) 1987-01-13 1988-08-01 Rijnstaal Bv Werkwijze en inrichting voor het vervaardigen van met poeder gevulde stalen buis.
FR2610331A1 (fr) * 1987-02-03 1988-08-05 Affival Produit composite a enveloppe tubulaire pour le traitement des bains metalliques fondus
FR2612945B1 (fr) 1987-03-24 1993-08-13 Affival Procede d'elaboration des metaux ferreux contenant du plomb et fil fourre pour mise en oeuvre du procede
FR2630131B1 (fr) * 1988-04-14 1990-08-03 Affival Procede de desulfuration des fontes
US4832742A (en) * 1988-05-12 1989-05-23 Metal Research Corporation Flexible refining-agent clad wire for refining molten iron group metal
JPH0261006A (ja) * 1988-08-25 1990-03-01 Hitachi Cable Ltd 製鋼用添加剤
JPH0330457A (ja) * 1989-06-28 1991-02-08 Hitachi Ltd 半導体装置の冷却方法および半導体装置
FR2688231B1 (fr) 1992-03-05 1994-11-10 Pechiney Electrometallurgie Fil composite a gaine plastique pour additions a des bains metalliques.
DE4236727C2 (de) * 1992-10-30 1997-02-06 Sueddeutsche Kalkstickstoff Mittel zur Behandlung von Metallschmelzen und dessen Verwendung
FR2703334B1 (fr) 1993-03-30 1995-06-02 Affival Sa Conditionnement pour un élément filiforme enroulé sur lui-même pour former une pluralité de spires.
JP2573145B2 (ja) * 1993-06-22 1997-01-22 西村産業有限会社 古紙を使用した不燃材
FR2711376B1 (fr) * 1993-10-19 1995-11-24 Pechiney Electrometallurgie Fil composite pour l'introduction de magnésium dans un métal liquide.
US5723020A (en) * 1995-09-14 1998-03-03 Westvaco Corporation Fire-retardant saturating kraft paper
US6053960A (en) * 1997-12-30 2000-04-25 Minerals Technologies, Inc. Method of manufacture of cored wire for treating molten metal
US6346135B1 (en) * 1998-12-10 2002-02-12 Minerals Technologies Inc. Cored wire for treating molten metal
JP2001192999A (ja) * 2000-01-01 2001-07-17 Satake:Kk 水分担持難燃ボード
US6770366B2 (en) * 2000-06-28 2004-08-03 Affival S.A. Cored wire for introducing additives into a molten metal bath
FR2821626B1 (fr) * 2001-03-05 2004-05-07 Affival Sa Fil fourre pour l'introduction d'additifs dans un bain de metal en fusion
FR2810919B1 (fr) 2000-06-28 2002-09-13 Affival Sa Fil fourre pour l'introduction d'additifs dans un bain de metal en fusion
KR20020051316A (ko) * 2000-12-22 2002-06-29 이구택 아크 용접용 플럭스코드 와이어

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2008501865A (ja) 2008-01-24
WO2006000714A3 (fr) 2006-06-15
CN1985012B (zh) 2013-03-06
TW200611977A (en) 2006-04-16
US7906747B2 (en) 2011-03-15
KR101128598B1 (ko) 2012-06-12
RU2381280C2 (ru) 2010-02-10
RU2007100354A (ru) 2008-07-20
CA2569316A1 (fr) 2006-01-05
UA92322C2 (en) 2010-10-25
MXPA06014310A (es) 2007-05-04
AR049911A1 (es) 2006-09-13
WO2006000714A2 (fr) 2006-01-05
ZA200610276B (en) 2008-06-25
FR2871477B1 (fr) 2006-09-29
JP5467721B2 (ja) 2014-04-09
TWI365224B (en) 2012-06-01
FR2871477A1 (fr) 2005-12-16
PL1812607T3 (pl) 2019-06-28
EP1812607A2 (fr) 2007-08-01
MY155030A (en) 2015-08-28
CN1985012A (zh) 2007-06-20
KR20070033993A (ko) 2007-03-27
BRPI0511940A (pt) 2008-01-22
EG24787A (en) 2010-09-06
US20050274773A1 (en) 2005-12-15
CA2569316C (fr) 2011-04-12

Similar Documents

Publication Publication Date Title
EP1812607B1 (fr) Fill fourré pour le traitement des métaux liquides
EP0034994B1 (fr) Produit composite à enveloppe tubulaire et âme en matière pulvérulente compactée et son procédé de fabrication
CA2595989C (fr) Fil pour l'affinage de metal en fusion et son procede de fabrication
EP2917377B1 (fr) Fil fourré pour traitement métallurgique d'un bain de métal en fusion et procédé correspondant
US11525168B2 (en) Cored wire with particulate material
CA2382168C (fr) Fil fourre pour l'introduction d'additifs dans un bain de metal en fusion
EP0559589A1 (fr) Fil composite à gaine plastique pour additions à des bains métalliques
WO2014187916A1 (fr) Procede de fabrication par metallurgie des poudres d'une piece en acier, et piece en acier ainsi obtenue
EP0446152B1 (fr) Emballage pour l'introduction de métal léger dans un alliage d'aluminium à l'état liquide
US20120312495A1 (en) Technology of production of bimetallic and multilayer casts by gravity or spun casting
FR2630131A1 (fr) Procede de desulfuration des fontes
US4085252A (en) Composite wire with a base of cerium and other rare earths
EP0028569B1 (fr) Procédé de brassage d'un métal en fusion par injection de gaz
CA1092835A (fr) Dispositif servant a ajouter un agent de traitement au metal en fusion, et mode operatoire
EP2666575A1 (fr) Fil fourré pour soudage des aciers à hautes limites élastiques
BRPI0511940B1 (pt) Coated yarn
FR2821626A1 (fr) Fil fourre pour l'introduction d'additifs dans un bain de metal en fusion
FR2638112A1 (fr) Procede de coulee continue de pieces brutes en fonte au magnesium a haute resistance
BE830015A (fr) Procede d'addition de calcium a de l'acier en fusion
KR20140070086A (ko) 용탕 정련용 와이어 및 그 제조방법
LU84741A1 (fr) Procede de traitement pour ameliorer la permeabilite des fonds de recipients metallurgiques pourvus d'elements refractaires permeables,et materiaux pour sa mise en oeuvre
BE858417A (fr) Procede et dispositif d'introduction de matieres en poudre dans l'acier
BE543396A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070511

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120703

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005055197

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1081507

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1081507

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005055197

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190620

Year of fee payment: 15

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190610

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050610

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230525

Year of fee payment: 19

Ref country code: IT

Payment date: 20230608

Year of fee payment: 19

Ref country code: FR

Payment date: 20230509

Year of fee payment: 19

Ref country code: DE

Payment date: 20230613

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230518

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230616

Year of fee payment: 19