EP1805341B1 - Verfahren zur feuerverzinkten beschichtung in einem zinkbad für streifen aus eisen-karbon-mangan-stahl - Google Patents

Verfahren zur feuerverzinkten beschichtung in einem zinkbad für streifen aus eisen-karbon-mangan-stahl Download PDF

Info

Publication number
EP1805341B1
EP1805341B1 EP05809221A EP05809221A EP1805341B1 EP 1805341 B1 EP1805341 B1 EP 1805341B1 EP 05809221 A EP05809221 A EP 05809221A EP 05809221 A EP05809221 A EP 05809221A EP 1805341 B1 EP1805341 B1 EP 1805341B1
Authority
EP
European Patent Office
Prior art keywords
iron
manganese
zinc
strip
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05809221A
Other languages
English (en)
French (fr)
Other versions
EP1805341A1 (de
Inventor
Pascal Drillet
Daniel Bouleau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal France SA
Original Assignee
ArcelorMittal France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal France SA filed Critical ArcelorMittal France SA
Priority to PL05809221T priority Critical patent/PL1805341T3/pl
Publication of EP1805341A1 publication Critical patent/EP1805341A1/de
Application granted granted Critical
Publication of EP1805341B1 publication Critical patent/EP1805341B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/939Molten or fused coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a method of hot dip coating in a zinc-based liquid bath comprising aluminum, a strip of austenitic iron-carbon-manganese steel in scrolling.
  • the steel belts conventionally used in the automotive field such as for example the dual-phase steel belts, are coated with a zinc-based coating to protect them against corrosion before they are shaped or delivered.
  • This zinc layer is generally applied continuously either by electrodeposition in an electrolytic bath containing zinc salts, or by vacuum deposition, or by hot quenching of the high speed band in a bath of molten zinc.
  • the steel strips Before being coated with a zinc layer by hot dipping in a zinc bath, the steel strips undergo a recrystallization annealing in a reducing atmosphere in order to give the steel a homogeneous microstructure and to improve its properties. mechanical characteristics. Under industrial conditions, this recrystallization annealing is carried out in an oven in which there is a reducing atmosphere.
  • the strips run in the oven consisting of an enclosure completely isolated from the outside atmosphere, comprising three zones, a first heating zone, a second temperature holding zone, and a third cooling zone, in which there is an atmosphere composed of a reducing gas with respect to iron.
  • This gas may be chosen for example from hydrogen, and mixtures of nitrogen and hydrogen, and has a dew point between -40 ° C and -15 ° C.
  • JP-A-07278772 discloses the manufacture of a manganese-containing galvanized steel strip of hot dipping the steel strip in a zinc-based liquid bath comprising specific Al and min contents.
  • the present invention therefore aims to provide a method for coating by hot dipping in a zinc-based liquid bath, an iron-carbon-manganese steel strip running through a coating based on zinc.
  • the invention also relates to the austenitic iron-carbon-manganese steel strip coated with a zinc-based coating obtainable by this method.
  • the inventors have thus demonstrated that by creating favorable conditions for the bi-layer of mixed oxide (Fe, Mn) O and of manganese oxide forming on the surface of the iron-carbon steel strip.
  • manganese being reduced by the aluminum contained in the zinc-based liquid bath, the surface of the strip became wetting with respect to the zinc, which allowed to coat it with a coating based on zinc.
  • This steel strip is typically between 0.2 and 6 mm, and may be issued from either the hot band or the cold band train.
  • the austenitic iron-carbon-manganese steel used according to the invention comprises, in% by weight: 0.30% ⁇ C ⁇ 1.05%, 16% ⁇ Mn ⁇ 26%, Si ⁇ 1%, Al ⁇ 0.050%, S ⁇ 0.030%, P ⁇ 0.080%, N ⁇ 0.1%, and optionally, one or more elements such as: Cr ⁇ 1%, Mo ⁇ 0.40%, Ni ⁇ 1%, Cu ⁇ 5%, Ti ⁇ 0.50%, Nb ⁇ 0.50%, V ⁇ 0.50%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the preparation.
  • the carbon content is between 0.40 and 0.70% by weight.
  • the carbon content is between 0.40% and 0.70%, the stability of the austenite is increased and the strength is increased.
  • the manganese content in the steel according to the invention is between 20 and 25% by weight.
  • Silicon is an effective element for deoxidizing steel as well as for hardening in the solid phase. However, beyond a content of 1%, Mn 2 SiO 4 and SiO 2 layers are formed on the surface of the steel, which show a reduction ability of the aluminum contained in the water-based bath. zinc significantly lower than the mixed oxide (Fe, Mn) O and manganese oxide MnO layers.
  • the silicon content in the steel is less than 0.5% by weight.
  • Aluminum is also a particularly effective element for the deoxidation of steel. Like carbon, it increases the stacking fault energy. However, its excessive presence in steels with a high manganese content has a disadvantage: In fact, manganese increases the solubility of nitrogen in the liquid iron, and if too much aluminum is present in the steel, Nitrogen combined with aluminum precipitates in the form of aluminum nitrides hindering the migration of grain boundaries during hot processing and greatly increases the risk of crack appearances. An Al content less than or equal to 0.050% makes it possible to avoid a precipitation of AlN. Correlatively, the nitrogen content must be less than or equal to 0.1% in order to prevent this precipitation and the formation of volume defects (blowholes) during solidification.
  • oxides such as MnAl 2 O 4 , MnO.Al 2 O 3, which are more difficult to reduce, are formed during the recrystallization annealing of the steel.
  • aluminum contained in the zinc-based coating bath as oxides (Fe, Mn) O and MnO.
  • oxides (Fe, Mn) O and MnO are much more stable than oxides (Fe, Mn) O and MnO. Therefore, even if it is possible to form on the surface of the steel a zinc-based coating, it will in any case little adherent because of the presence of alumina.
  • it is essential that the aluminum content in the steel is less than 0.050% by weight.
  • Sulfur and phosphorus are impurities that weaken the grain boundaries. Their respective content must be less than or equal to 0.030 and 0.080% in order to maintain sufficient hot ductility.
  • Chromium and nickel can be used as an option to increase the strength of the steel by hardening in solid solution.
  • chromium decreases the stacking fault energy, its content must be less than or equal to 1%.
  • Nickel contributes to a significant elongation rupture, and in particular increases the toughness.
  • the molybdenum may be added in an amount less than or equal to 0.40%.
  • addition of copper to a content of less than or equal to 5% is a means of hardening the steel by precipitation of metallic copper. However, beyond this content, copper is responsible for the appearance of surface defects hot sheet.
  • Titanium, niobium and vanadium are also elements that can optionally be used to obtain precipitation hardening of carbonitrides.
  • Nb or V, or Ti content is greater than 0.50%, excessive precipitation of carbonitrides can cause a reduction in toughness, which should be avoided.
  • the austenitic iron-carbon-manganese steel strip undergoes heat treatment to recrystallize the steel.
  • the recrystallization annealing makes it possible to give the steel a homogeneous microstructure, to improve its mechanical characteristics, and in particular to give it ductility to allow its use in stamping.
  • This heat treatment is performed in an oven inside which there is an atmosphere composed of a reducing gas vis-à-vis the iron, to avoid excessive oxidation of the surface of the strip, and allow good adhesion of zinc.
  • This gas is selected from hydrogen, and nitrogen-hydrogen mixtures.
  • the gaseous mixtures comprising between 20 and 97% by volume of nitrogen and between 3 and 80% by volume of hydrogen, and more preferably between 85 and 95% by volume of nitrogen and between 5 and 15%, are chosen. in volume of hydrogen.
  • hydrogen is an excellent iron reducing agent, it is preferred to limit its concentration because of its high cost relative to nitrogen.
  • calamine is a layer of iron oxide comprising a small proportion of manganese. Gold not only this calamine layer prevents any adhesion of zinc on steel, but also it is a layer that tends to crack easily which makes it all the more undesirable.
  • the atmosphere prevailing in the furnace is certainly reducing with respect to iron, but not for elements such as manganese.
  • the gas constituting the atmosphere in the furnace comprises traces of moisture and / or oxygen that can not be avoided, but it is possible to control by imposing the dew point of said gas.
  • the inventors have observed that, according to the invention, at the end of the recrystallization annealing, the lower the dew point in the oven, or in other words the lower the oxygen partial pressure, the lower the The manganese oxide formed on the surface of the iron-carbon-manganese steel strip is thin. This observation may seem at odds with Wagner's theory that the lower the dew point, the higher the density of oxides formed on the surface of a carbon steel strip. Indeed, when the amount of oxygen decreases on the surface of the carbon steel, the migration of the oxidizable elements contained in the steel to the surface accelerates, which promotes the oxidation of the surface.
  • the inventors believe that in the case of the invention, the amorphous oxide layer (Fe, Mn) O becomes rapidly continuous. It therefore constitutes a barrier for the oxygen of the atmosphere in the furnace, which is no longer in direct contact with the steel. An increase in the oxygen partial pressure in the furnace therefore leads to an increase in the thickness of the manganese oxide and does not cause internal oxidation, ie no layer is observed. additional oxide between the surface of the austenitic iron-carbon-manganese steel and the amorphous oxide layer (Fe, Mn) O.
  • the recrystallization annealing carried out under the conditions of the invention thus makes it possible to form on both sides of the strip a continuous sub-layer of mixed oxide of iron and manganese (Fe, Mn) O amorphous, the thickness of which is preferably between 5 and 10 nm, and a continuous or discontinuous outer layer of crystalline MnO manganese oxide whose thickness is preferably between 5 and 90 nm, preferably between 5 and 50 nm, and more preferably between 10 and 40 nm.
  • the MnO outer layer has a granular appearance, and the size of the MnO crystals increases sharply as the dew point also increases.
  • the inventors have demonstrated that, when the content by weight of aluminum in the zinc-based liquid bath is less than 0.18% and when the manganese oxide layer MnO is greater than 100 nm, the latter It is not reduced by the aluminum contained in the bath, and the zinc-based coating is not obtained due to the non-wetting effect of MnO with respect to the zinc.
  • the dew point according to the invention at least in the zone for maintaining the temperature of the oven, and preferably in the entire enclosure of the oven, is preferably between -80 and 20 ° C, advantageously between - 80 and -40 ° C and more preferably between -60 and -40 ° C.
  • the thickness of the manganese oxide layer becomes too great to be reduced by the aluminum contained in the zinc-based liquid bath under industrial conditions, that is to say during a period of time. time less than 10 seconds.
  • the range -60 to -40 ° C is advantageous because it allows to form a bi-oxide layer of relatively reduced thickness which will be easily reduced by the aluminum contained in the zinc-based bath.
  • the heat treatment comprises a heating phase at a heating rate V1, a holding phase at a temperature T1 and during a holding time M, followed by a cooling phase at a cooling rate V2.
  • the heat treatment is preferably carried out at a heating rate V1 greater than or equal to 6 ° C / s, because below this value the holding time M of the strip in the oven is too long and does not correspond to the industrial requirements. of productivity.
  • the temperature T1 is preferably between 600 and 900 ° C. Indeed, below 600 ° C, the steel will not be completely recrystallized and its mechanical characteristics will be insufficient. Beyond 900 ° C, not only the grain size of the steel increases which is harmful for obtaining good mechanical characteristics, but also the thickness of the manganese oxide layer MnO strongly increases and makes difficult, if not impossible, the subsequent deposition of a coating based on zinc, because the aluminum contained in the bath will not have completely reduced the MnO.
  • T1 is preferably between 600 and 820 ° C., advantageously less than or equal to 750 ° C, and more preferably between 650 and 750 ° C.
  • the holding time M is preferably between 20 s and 60 s, and advantageously between 20 and 40 s.
  • the recrystallization annealing is generally carried out by a radiant tube heater.
  • the strip is cooled to an immersion temperature of the T3 band between (T2 - 10 ° C) and (T2 + 30 ° C), T2 being defined as the temperature of the liquid bath based on zinc.
  • T3 an immersion temperature of the T3 band between (T2 - 10 ° C) and (T2 + 30 ° C)
  • T2 being defined as the temperature of the liquid bath based on zinc.
  • the strip is preferably cooled at a cooling rate V2 of greater than or equal to 3 ° C./s, advantageously greater than 10 ° C./s, so as to avoid the enlargement of the grains and to obtain a steel strip having good mechanical characteristics.
  • V2 a cooling rate of greater than or equal to 3 ° C./s, advantageously greater than 10 ° C./s, so as to avoid the enlargement of the grains and to obtain a steel strip having good mechanical characteristics.
  • the strip is generally cooled by injection of an air flow on both sides.
  • the austenitic iron-carbon-manganese steel strip When, after undergoing recrystallization annealing, the austenitic iron-carbon-manganese steel strip is covered on both sides by the two-layer oxide, it is passed through the zinc-based liquid bath containing 'aluminum.
  • the aluminum contained in the zinc bath contributes not only to the at least partial reduction of the two-layer oxide, but also to obtaining a coating having a homogeneous surface appearance.
  • a homogeneous surface appearance is characterized by a uniform thickness, whereas a heterogeneous appearance is characterized by strong thickness heterogeneities.
  • Fe 2 Al 5 and / or FeAl 3 inter-facial layer is not formed on the surface of iron-carbon-manganese steel, or if it is formed, it is immediately destroyed by the formation of the phases (Fe, Mn) Zn.
  • matts of Fe 2 Al 5 and / or FeAl 3 type are found in the bath.
  • the aluminum content in the bath is adjusted to a value at least equal to the content necessary for the aluminum to completely reduce the crystalline MnO manganese oxide layer and at least partially the oxide (Fe, Mn) O layer. amorphous.
  • the weight content of aluminum in the bath is between 0.15 and 5%. Below 0.15%, the aluminum content will be insufficient to completely reduce the manganese oxide layer MnO and at least partially the layer of (Fe, Mn) O, and the surface of the steel strip will not present sufficient wettability with respect to zinc. Above 5% of aluminum in the bath, a coating of a type different from that obtained by the invention will form on the surface of the steel strip. This coating will include an increasing proportion of aluminum as the aluminum content in the bath increases.
  • the zinc-based bath may also contain iron, preferably at a content such that it is supersaturation with respect to Fe 2 Al 5 and / or FeAl 3 .
  • T2 a temperature preferably greater than or equal to 430 ° C, but to avoid excessive evaporation of zinc, T2 is less than or equal to 480 ° C.
  • the strip is in contact with the bath for a contact time C preferably between 2 and 10 seconds, and more preferably between 3 and 5 seconds.
  • the aluminum does not have enough time to completely reduce the MnO layer of manganese oxide and at least partially the mixed oxide layer (Fe, Mn) O, and thus to make the surface of wetting steel vis-à-vis zinc. Above 10 seconds, the two-layer oxides will certainly be completely reduced, however the line speed may be industrially too low, and the coating too alloyed and then difficult to adjust in thickness.
  • a zinc-based coating comprising, in order from the steel / coating interface, a layer of iron-manganese-zinc alloy composed of two cube and cubic phases. with centered face ⁇ 1, a layer of iron-manganese-zinc alloy ⁇ 1 of hexagonal structure, a layer of iron-manganese-zinc alloy ⁇ of monoclinic structure, and a surface layer of zinc.
  • the inventors have thus verified that according to the invention, and contrary to what happens in the case of a coating of a carbon steel strip in a zinc bath containing aluminum, it is not formed. no Fe 2 Al 5 layer at the steel / coating interface.
  • the aluminum of the bath reduces the bi-oxide layer.
  • the MnO layer is more easily reducible by the aluminum of the bath than the oxide layers based on silicon. This results in a local depletion of aluminum which leads to the formation of a coating comprising FeZn phases instead of the expected Fe 2 Al 5 (Zn) coating, which is formed in the case of carbon steels.
  • a strip coated on both sides by a zinc-based coating comprising in order from the steel / coating interface a layer of iron-manganese-zinc alloy composed of two cubic phase ⁇ and cubic to centered face ⁇ 1, an iron-manganese-zinc alloy layer ⁇ 1 of hexagonal structure, and possibly a layer of iron-manganese-zinc alloy ⁇ of monoclinic structure.
  • the alloying heat treatment is preferably carried out directly at the outlet of the zinc bath, at a temperature of between 490 and 540 ° C., for a duration of between 2 and 10 seconds.
  • Table 2 shows the characteristics of the oxide bi-layer comprising an amorphous continuous lower layer (Fe, Mn) O, and an upper layer MnO, formed on the samples after annealing according to the dew point.
  • Table 2 RT -80 ° C PR -45 ° C PR + 10 ° C Surface color the band yellow green blue Mean diameter of the crystals MnO (nm) 50 discontinuous layer 100 continuous layer 300 continuous layer Thickness of the bilayer (nm) 10 110 1500
  • the samples After being recrystallized, the samples are cooled to a temperature T3 of 480 ° C. and are immersed in a zinc bath comprising, by weight, 0.18% of aluminum and 0.02% of iron, the temperature of which T2 is 460 ° C. The samples remain in contact with the bath for a period of contact C of 3 seconds. After immersion, the samples are examined to see if a zinc-based coating is present on the surface of the sample. Table 3 shows the result obtained as a function of the dew point. Table 3 PR-80 ° C PR -45 ° C PR + 10 ° C Presence of zinc-based coating Yes no no no
  • the inventors have demonstrated that if the oxide bilayer formed on the iron-carbon-manganese austenitic steel strip after recrystallization annealing was greater than 110 nm, the presence in the bath of 0.18% by weight of Aluminum was insufficient to reduce the bi-oxide layer and give the strip sufficient wettability of the zinc to the steel to form a zinc-based coating.
  • Table 5 shows the structures of the various oxide films that formed on the surface of the steel after annealing in function.
  • Table 5 Oxide films Steel A * Steel B Undercoat MnAl 2 O 4 (Fe, Mn) O Upper layer MnO.Al 2 O 3 MnO * according to the invention
  • the samples After having been recrystallized, the samples are cooled to a temperature T3 of 480 ° C. and are immersed in a zinc bath comprising 0.18% of aluminum and 0.02% of iron, whose T2 temperature is 460 ° C. vs. The samples remain in contact with the bath for a contact time C of 3 seconds. After immersion, the samples are coated with a zinc coating.

Claims (26)

  1. Verfahren zum Schmelztauchbeschichten eines Bandes aus austenitischem Eisen-Kohlenstoff-Mangan-Stahl mit 0,30 % ≤ C ≤ 1,05 %, 16 % ≤ Mn ≤ 26 %, Si ≤ 1 % und Al ≤ 0,050 %, wobei die Gehalte in Gewichtsprozent ausgedrückt sind, in der Warmformgebungshitze in einem schmelzflüssigen Bad auf Zinkbasis, Aluminium enthaltend, wobei das Bad eine Temperatur T2 hat, wobei das Verfahren die Schritte umfasst, die darin bestehen:
    - das Band einer Wärmebehandlung in einem Ofen zu unterwerfen, in dessen Innenraum eine Eisen reduzierende Atmosphäre herrscht, wobei die Wärmebehandlung eine Aufheizphase mit einer Aufheizgeschwindigkeit V1, eine Warmhaltephase bei einer Temperatur T1 und während einer Warmhaltezeit M, gefolgt von einer Abkühlungsphase mit einer Abkühlungsgeschwindigkeit V2 umfasst, um ein Band zu erhalten, das auf beiden Seiten mit einer ununterbrochenen Zwischenschicht aus einem amorphen Mischoxid aus Eisen und Mangan (Fe,Mn)O und einer ununterbrochenen oder unterbrochenen Außenschicht aus kristallinem Manganoxid bedeckt ist,
    - das mit den Oxidschichten bedeckte Band das Bad durchlaufen zu lassen, um das Band mit einer Beschichtung auf Zinkbasis zu beschichten, wobei der Gehalt an Aluminium in dem Bad auf einen Wert eingestellt ist, der mindestens gleich dem Gehalt ist, der erforderlich ist, damit das Aluminium die kristalline Manganoxid-(MnO-) Schicht vollständig und die amorphe Oxid- ((Fe,Mn)O-) Schicht zumindest teilweise reduziert, sodass an der Oberfläche des Bandes die Beschichtung ausgebildet wird, die drei Eisen-Mangan-Zink-Legierungsschichten und eine Zink-Oberflächenschicht umfasst.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Eisen reduzierende Atmosphäre aus einem Gas besteht, das aus Wasserstoff und den Stickstoff-Wasserstoff-Gemischen gewählt ist.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Gas zwischen 20 und 97 Vol.-% Stickstoff und zwischen 3 und 80 Vol.-% Wasserstoff enthält.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Gas zwischen 85 und 95 Vol.-% Stickstoff und zwischen 5 und 15 Vol.-% Wasserstoff enthält.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Gas einen Taupunkt im Bereich zwischen -80 und 20°C aufweist.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Gas einen Taupunkt im Bereich zwischen -80°C und -40°C aufweist.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Gas einen Taupunkt im Bereich zwischen -60°C und -40°C aufweist.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Wärmebehandlung des Bandes mit einer Aufheizgeschwindigkeit V1, die größer oder gleich 6°C/s ist, bei einer Temperatur T1 im Bereich zwischen 600 und 900°C, während einer Warmhaltezeit M im Bereich zwischen 20 s und 60 s und mit einer Abkühlungsgeschwindigkeit V2, die größer oder gleich 3°C/s ist, bis zu einer Tauchtemperatur T3 des Bandes im Bereich zwischen (T2 - 10°C) und (T2 + 30°C) durchgeführt wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Temperatur T1 im Bereich zwischen 650 und 820°C ist.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Temperatur T1 niedriger oder gleich 750°C ist.
  11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Warmhaltezeit M im Bereich zwischen 20 und 40 s ist.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass man die Wärmebehandlung in einer reduzierenden Atmosphäre so anwendet, dass sich eine amorphe Mischoxid-((Fe,Mn)(O)-) Schicht, die eine Dicke im Bereich zwischen 5 und 10 nm aufweist, und eine kristalline Manganoxid- (MnO-) Schicht, die eine Dicke im Bereich zwischen 5 und 90 nm aufweist, ausbildet, bevor die MnO-Schicht durch das Aluminium des Bades vollständig reduziert wird.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die kristalline Manganoxid- (MnO-) Schicht eine Dicke im Bereich zwischen 5 und 50 nm aufweist.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die kristalline Manganoxid- (MnO-) Schicht eine Dicke im Bereich zwischen 10 und 40 nm aufweist.
  15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das schmelzflüssige Bad auf Zinkbasis zwischen 0,15 und 5 Gew.-% Aluminium enthält.
  16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Temperatur T2 des schmelzflüssigen Bades auf Zinkbasis im Bereich zwischen 430 und 480°C ist.
  17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass das Band während einer Kontaktdauer C im Bereich zwischen 2 und 10 s mit dem schmelzflüssigen Bad auf Zinkbasis in Kontakt ist.
  18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die Kontaktdauer C im Bereich zwischen 3 und 5 s ist.
  19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass der Kohlenstoffgehalt in dem Stahl im Bereich zwischen 0,40 und 0,70 Gew.-% ist.
  20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass der Mangangehalt in dem Stahl im Bereich zwischen 20 und 25 Gew.-% ist.
  21. Verfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass man, nachdem das Band aus Austenitstahl mit der Beschichtung, die drei Eisen-Mangan-Zink-Legierungsschichten und eine Zink-Oberflächenschicht umfasst, beschichtet worden ist, das beschichtete Band einer Wärmebehandlung unterwirft, um die Beschichtung vollständig zu legieren.
  22. Band aus austenitischem Eisen-Kohlenstoff-Mangan-Stahl, das nach einem der Ansprüche 1 bis 20 erhalten werden kann, dessen chemische Zusammensetzung
    0, 30 % ≤ C ≤ 1,05 %
    16 % ≤ Mn ≤ 26 %
    Si ≤ 1 %
    Al ≤ 0,050 %
    S ≤ 0,030 %
    P ≤ 0,080 %
    N ≤ 0,1 %
    umfasst, wobei die Gehalte in Gewichtsprozent ausgedrückt sind,
    und wahlweise eines oder mehrere Elemente wie
    Cr ≤ 1 %
    Mo ≤ 0,40 %
    Ni ≤ 1 %
    Cu ≤ 5 %
    Ti ≤ 0,50%
    Nb ≤ 0, 50 %
    V ≤ 0, 50 %
    umfasst, wobei der Rest der Zusammensetzung aus Eisen und unvermeidlichen Verunreinigungen, die aus der Verhüttung resultieren, besteht, wobei das Band, das auf beiden Seiten mit einer Beschichtung auf Zinkbasis beschichtet ist, in der Reihenfolge ab der Grenzfläche zwischen Stahl und Beschichtung eine Eisen-Managan-Zink-Legierungsschicht, bestehend aus zwei Phasen, kubisch Γ und kubisch-flächenzentriert Γ1, eine Eisen-Mangan-Zink-Legierungsschicht δ1 hexagonaler Struktur, eine Eisen-Mangan-Zink-Legierungsschicht ξ monokliner Struktur und eine Zink-Oberflächenschicht umfasst.
  23. Band aus austenitischem Eisen-Kohlenstoff-Mangan-Stahl, das nach Anspruch 21 erhalten werden kann, dessen chemische Zusammensetzung
    0,30 % ≤ C ≤ 1,05 %
    16 % ≤ Mn ≤ 26 %
    Si ≤ 1 %
    Al ≤ 0,050 %
    S ≤ 0,030 %
    P ≤ 0,080 %
    N ≤ 0,1 %
    umfasst, wobei die Gehalte in Gewichtsprozent ausgedrückt sind,
    und wahlweise eines oder mehrere Elemente wie
    Cr ≤ 1 %
    Mo ≤ 0,40 %
    Ni ≤ 1 %
    Cu ≤ 5 %
    Ti ≤ 0,50%
    Nb ≤ 0,50 %
    V ≤ 0,50 %
    umfasst, wobei der Rest der Zusammensetzung aus Eisen und unvermeidlichen Verunreinigungen, die aus der Verhüttung resultieren, besteht, wobei das Band, das auf mindestens einer seiner Seiten mit einer Beschichtung auf Zinkbasis beschichtet ist, in der Reihenfolge ab der Grenzfläche zwischen Stahl und Beschichtung eine Eisen-Managan-Zink-Legierungsschicht, bestehend aus zwei Phasen, kubisch Γ und kubisch-flächenzentriert Γ1, eine Eisen-Mangan-Zink-Legierungsschicht δ1 hexagonaler Struktur und eventuell eine Eisen-Mangan-Zink-Legierungsoberflächenschicht ξ monokliner Struktur umfasst.
  24. Band aus Stahl nach einem der Ansprüche 22 oder 23, dadurch gekennzeichnet, dass der Gehalt an Silicium niedriger als 0,5 Gew.-% ist.
  25. Band aus Stahl nach einem der Ansprüche 22 bis 24,
    dadurch gekennzeichnet, dass der Gehalt an Kohlenstoff im Bereich zwischen 0,40 und 0,70 Gew.-% ist.
  26. Band aus Stahl nach einem der Ansprüche 22 bis 25,
    dadurch gekennzeichnet, dass der Gehalt an Mangan im Bereich zwischen 20 und 25 Gew.-% ist.
EP05809221A 2004-10-20 2005-10-10 Verfahren zur feuerverzinkten beschichtung in einem zinkbad für streifen aus eisen-karbon-mangan-stahl Active EP1805341B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05809221T PL1805341T3 (pl) 2004-10-20 2005-10-10 Sposób pokrywania przez zanurzenie na gorąco w kąpieli na bazie cynku taśm ze stali żelazo-węgiel-mangan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0411190A FR2876711B1 (fr) 2004-10-20 2004-10-20 Procede de revetement au trempe a chaud dans un bain de zinc des bandes en acier fer-carbone-manganese
PCT/FR2005/002491 WO2006042930A1 (fr) 2004-10-20 2005-10-10 Procédé de revêtement au trempé à chaud dans un bain de zinc des bandes en acier fer-carbone-manganèse

Publications (2)

Publication Number Publication Date
EP1805341A1 EP1805341A1 (de) 2007-07-11
EP1805341B1 true EP1805341B1 (de) 2008-05-07

Family

ID=34951699

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05809221A Active EP1805341B1 (de) 2004-10-20 2005-10-10 Verfahren zur feuerverzinkten beschichtung in einem zinkbad für streifen aus eisen-karbon-mangan-stahl

Country Status (16)

Country Link
US (1) US7556865B2 (de)
EP (1) EP1805341B1 (de)
JP (1) JP4828544B2 (de)
KR (1) KR100911639B1 (de)
CN (1) CN100554487C (de)
AT (1) ATE394517T1 (de)
BR (1) BRPI0516997A (de)
CA (1) CA2584449C (de)
DE (1) DE602005006603D1 (de)
ES (1) ES2306247T3 (de)
FR (1) FR2876711B1 (de)
MX (1) MX2007004728A (de)
PL (1) PL1805341T3 (de)
RU (1) RU2363756C2 (de)
WO (1) WO2006042930A1 (de)
ZA (1) ZA200703345B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122097A1 (de) 2009-04-23 2010-10-28 Thyssenkrupp Steel Europe Ag Verfahren zum schmelztauchbeschichten eines 2-35 gew.-% mn enthaltenden stahlflachprodukts und stahlflachprodukt
DE102018128131A1 (de) * 2018-11-09 2020-05-14 Thyssenkrupp Ag Gehärtetes Bauteil umfassend ein Stahlsubstrat und eine Korrosionsschutzbeschichtung, entsprechendes Bauteil zur Herstellung des gehärteten Bauteils sowie Herstellverfahren und Verwendung

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876708B1 (fr) 2004-10-20 2006-12-08 Usinor Sa Procede de fabrication de toles d'acier austenitique fer-carbone-manganese laminees a froid a hautes caracteristiques mecaniques, resistantes a la corrosion et toles ainsi produites
KR100742833B1 (ko) * 2005-12-24 2007-07-25 주식회사 포스코 내식성이 우수한 고 망간 용융도금강판 및 그 제조방법
KR100742823B1 (ko) * 2005-12-26 2007-07-25 주식회사 포스코 표면품질 및 도금성이 우수한 고망간 강판 및 이를 이용한도금강판 및 그 제조방법
EP1878811A1 (de) 2006-07-11 2008-01-16 ARCELOR France Verfahren zur herstellung eines eisen-kohlenstoff-mangan austenitischer stahlblehs mit hervorragender verzögerter bruchfestigkeit und bleh folglich hergestellt
DE102006039307B3 (de) 2006-08-22 2008-02-21 Thyssenkrupp Steel Ag Verfahren zum Beschichten eines 6-30 Gew.% Mn enthaltenden warm- oder kaltgewalzten Stahlbands mit einer metallischen Schutzschicht
CN101730752B (zh) * 2007-05-02 2013-05-01 塔塔钢铁艾默伊登有限责任公司 对ahss或者uhss带材进行热浸镀锌的方法以及所得带材
EP2009127A1 (de) * 2007-06-29 2008-12-31 ArcelorMittal France Verfahren zur Herstellung eines galvanisierten oder Galvanneal-Stahlblechs durch DFF-Regulierung
KR101079472B1 (ko) * 2008-12-23 2011-11-03 주식회사 포스코 도금표면품질이 우수한 고망간강의 용융아연도금강판의 제조방법
DE102009030489A1 (de) 2009-06-24 2010-12-30 Thyssenkrupp Nirosta Gmbh Verfahren zum Herstellen eines warmpressgehärteten Bauteils, Verwendung eines Stahlprodukts für die Herstellung eines warmpressgehärteten Bauteils und warmpressgehärtetes Bauteil
ES2384135T3 (es) * 2009-08-25 2012-06-29 Thyssenkrupp Steel Europe Ag Procedimiento para fabricar un componente de acero provisto de un recubrimiento metálico de protección contra la corrosión y componente de acero
DE102009053260B4 (de) * 2009-11-05 2011-09-01 Salzgitter Flachstahl Gmbh Verfahren zum Beschichten von Stahlbändern und beschichtetes Stahlband
DE102009044861B3 (de) * 2009-12-10 2011-06-22 ThyssenKrupp Steel Europe AG, 47166 Verfahren zum Herstellen eines gut umformbaren Stahlflachprodukts, Stahlflachprodukt und Verfahren zur Herstellung eines Bauteils aus einem solchen Stahlflachprodukt
IT1403129B1 (it) * 2010-12-07 2013-10-04 Ct Sviluppo Materiali Spa Procedimento per la produzione di acciaio ad alto manganese con resistenza meccanica e formabilità elevate, ed acciaio così ottenibile.
US9680080B2 (en) 2011-07-18 2017-06-13 Hamilton Sunstrand Corporation Thermoelectric conversion of waste heat from generator cooling system
KR101510505B1 (ko) * 2012-12-21 2015-04-08 주식회사 포스코 우수한 도금성과 초고강도를 갖는 고망간 용융아연도금강판의 제조방법 및 이에 의해 제조된 고망간 용융아연도금강판
CN109913624B (zh) 2013-02-06 2022-02-01 安赛乐米塔尔公司 钢板的热处理方法及用于实施该方法的设备
CN105209654B (zh) * 2013-02-06 2018-08-31 安赛乐米塔尔公司 行进中的铁合金板的处理方法以及实施该方法的处理线
DE102013005301A1 (de) * 2013-03-21 2014-09-25 Salzgitter Flachstahl Gmbh Verfahren zur Verbesserung der Schweißbarkeit von hochmanganhaltigen Stahlbändern und beschichtetes Stahlband
US10024775B2 (en) 2013-09-18 2018-07-17 Thyssenkrupp Steel Europe Ag Method and device for determining the abrasion properties of a coated flat product
KR102148062B1 (ko) * 2013-09-18 2020-08-25 티센크루프 스틸 유럽 악티엔게젤샤프트 합금화아연도금 평강 제품의 연마 특성을 결정하는 방법 및 장치
JP6164280B2 (ja) * 2015-12-22 2017-07-19 Jfeスチール株式会社 表面外観および曲げ性に優れるMn含有合金化溶融亜鉛めっき鋼板およびその製造方法
WO2017203309A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Twip steel sheet having an austenitic matrix
WO2017203310A1 (en) 2016-05-24 2017-11-30 Arcelormittal Method for producing a twip steel sheet having an austenitic microstructure
WO2017203315A1 (en) 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
EP3327153B1 (de) * 2016-11-23 2020-11-11 Outokumpu Oyj Verfahren zur herstellung einer komplex geformten komponente
WO2019092468A1 (en) 2017-11-08 2019-05-16 Arcelormittal A hot-dip coated steel sheet
WO2021084304A1 (en) * 2019-10-30 2021-05-06 Arcelormittal A press hardening method
WO2021224662A1 (en) * 2020-05-07 2021-11-11 Arcelormittal Annealing method of steel
CN115074616A (zh) * 2021-03-16 2022-09-20 上海梅山钢铁股份有限公司 一种冰箱底板用热镀铝锌钢板及其制造方法
US20220354490A1 (en) 2021-05-10 2022-11-10 Cilag Gmbh International Absorbable surgical staple comprising at least two coatings

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT377287B (de) * 1982-04-13 1985-02-25 Ver Edelstahlwerke Ag Kaltverfestigender austenitischer manganhartstahl und verfahren zur herstellung desselben
JPH04259325A (ja) * 1991-02-13 1992-09-14 Sumitomo Metal Ind Ltd 加工性に優れた高強度熱延鋼板の製造方法
JPH06240431A (ja) * 1993-02-12 1994-08-30 Kawasaki Steel Corp 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び複層めっき鋼板の製造方法
JPH07278772A (ja) * 1994-04-11 1995-10-24 Nippon Steel Corp Mn含有高強度溶融亜鉛めっき鋼板の製造法
US6177140B1 (en) * 1998-01-29 2001-01-23 Ispat Inland, Inc. Method for galvanizing and galvannealing employing a bath of zinc and aluminum
FR2796083B1 (fr) * 1999-07-07 2001-08-31 Usinor Procede de fabrication de bandes en alliage fer-carbone-manganese, et bandes ainsi produites
JP2001140051A (ja) * 1999-11-12 2001-05-22 Kawasaki Steel Corp 溶融めっき鋼帯及び合金化溶融めっき鋼帯の製造方法並びに溶融めっき装置
JP3716718B2 (ja) * 2000-07-31 2005-11-16 住友金属工業株式会社 合金化溶融亜鉛めっき鋼板とその製造方法
US6572713B2 (en) * 2000-10-19 2003-06-03 The Frog Switch And Manufacturing Company Grain-refined austenitic manganese steel casting having microadditions of vanadium and titanium and method of manufacturing
JP3503594B2 (ja) * 2000-12-05 2004-03-08 住友金属工業株式会社 耐黒変性に優れた溶融Zn−Al合金めっき鋼板とその製造方法
JP3636132B2 (ja) * 2001-11-22 2005-04-06 住友金属工業株式会社 溶融亜鉛めっき鋼板の製造方法
JP3882679B2 (ja) * 2002-05-23 2007-02-21 Jfeスチール株式会社 めっき外観の良好な深絞り性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板の製造方法
CN1985016B (zh) * 2003-01-15 2011-09-14 新日本制铁株式会社 高强度热浸镀锌钢板及其制备方法
FR2876708B1 (fr) * 2004-10-20 2006-12-08 Usinor Sa Procede de fabrication de toles d'acier austenitique fer-carbone-manganese laminees a froid a hautes caracteristiques mecaniques, resistantes a la corrosion et toles ainsi produites

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122097A1 (de) 2009-04-23 2010-10-28 Thyssenkrupp Steel Europe Ag Verfahren zum schmelztauchbeschichten eines 2-35 gew.-% mn enthaltenden stahlflachprodukts und stahlflachprodukt
DE102018128131A1 (de) * 2018-11-09 2020-05-14 Thyssenkrupp Ag Gehärtetes Bauteil umfassend ein Stahlsubstrat und eine Korrosionsschutzbeschichtung, entsprechendes Bauteil zur Herstellung des gehärteten Bauteils sowie Herstellverfahren und Verwendung

Also Published As

Publication number Publication date
CA2584449A1 (fr) 2006-04-27
ZA200703345B (en) 2008-04-30
KR100911639B1 (ko) 2009-08-12
US20080083477A1 (en) 2008-04-10
JP2008517157A (ja) 2008-05-22
CN101072892A (zh) 2007-11-14
RU2363756C2 (ru) 2009-08-10
PL1805341T3 (pl) 2008-10-31
JP4828544B2 (ja) 2011-11-30
ATE394517T1 (de) 2008-05-15
KR20070064373A (ko) 2007-06-20
BRPI0516997A (pt) 2008-09-30
RU2007118637A (ru) 2008-11-27
FR2876711B1 (fr) 2006-12-08
CA2584449C (fr) 2010-08-24
CN100554487C (zh) 2009-10-28
WO2006042930A1 (fr) 2006-04-27
EP1805341A1 (de) 2007-07-11
MX2007004728A (es) 2007-06-15
FR2876711A1 (fr) 2006-04-21
DE602005006603D1 (de) 2008-06-19
US7556865B2 (en) 2009-07-07
ES2306247T3 (es) 2008-11-01

Similar Documents

Publication Publication Date Title
EP1805341B1 (de) Verfahren zur feuerverzinkten beschichtung in einem zinkbad für streifen aus eisen-karbon-mangan-stahl
KR101079472B1 (ko) 도금표면품질이 우수한 고망간강의 용융아연도금강판의 제조방법
EP1929053B1 (de) Verfahren zur herstellung eines stahlteils mit mehrphasiger mikrostruktur
JP5390104B2 (ja) 鋼ストリップをコーティングする方法及び前記コーティングを付与された鋼ストリップ
KR101329925B1 (ko) 도금밀착성이 우수한 고망간강 및 이로부터 용융아연도금강판을 제조하는 방법
EP3149217B1 (de) Stahlblech mit einer kathodisch geschützten opferbeschichtung mit lanthan
WO2012070694A1 (ja) 溶融Al-Zn系めっき鋼板およびその製造方法
CA2956537A1 (fr) Procede de fabrication de toles d'acier pour durcissement sous presse, et pieces obtenues par ce procede
EP1805333A1 (de) Verfahren zur herstellung von blechen aus austenitischem eisen-karbon-mangan-stahl und auf diese weise hergestellte bleche
EP3783116A1 (de) Vorbeschichtete blätter, die die herstellung von druckgehärteten und beschichteten stahlteilen erlauben
CN113272466B (zh) 热浸镀锌钢板的制造方法
KR101650665B1 (ko) 화성 처리성과 연성이 우수한 고강도 합금화 용융 아연도금 강판과 그의 제조방법
WO2004104254A1 (fr) Tole laminee a froid et aluminiee en acier dual phase a tres haute resistance pour ceinture anti-implosion de televiseur, et procede de fabrication de cette tole
EP1534869B1 (de) Ultrahochfester stahl und verfahren zur herstellung eines mit zink oder zinklegierung platierten stahlbleches
EP1587963B1 (de) Hochfester warmgewalzter stahl und verfahren zur herstellung von bändern
KR101428151B1 (ko) 고망간 열연 아연도금강판 및 그 제조방법
KR101115741B1 (ko) 도금성이 우수한 고망간강 용융아연도금강판의 제조방법
JP5545077B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
KR20100064503A (ko) 도금성이 우수한 고망간 용융아연도금 강판의 제조방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070521

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARCELORMITTAL FRANCE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005006603

Country of ref document: DE

Date of ref document: 20080619

Kind code of ref document: P

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2306247

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E003683

Country of ref document: HU

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081007

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080808

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130923

Year of fee payment: 9

Ref country code: CZ

Payment date: 20130927

Year of fee payment: 9

Ref country code: SK

Payment date: 20130926

Year of fee payment: 9

Ref country code: SE

Payment date: 20130924

Year of fee payment: 9

Ref country code: FI

Payment date: 20130923

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130923

Year of fee payment: 9

Ref country code: PL

Payment date: 20130923

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130923

Year of fee payment: 9

Ref country code: DE

Payment date: 20130920

Year of fee payment: 9

Ref country code: BE

Payment date: 20130923

Year of fee payment: 9

Ref country code: FR

Payment date: 20131028

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20131008

Year of fee payment: 9

Ref country code: HU

Payment date: 20131001

Year of fee payment: 9

Ref country code: IT

Payment date: 20130927

Year of fee payment: 9

Ref country code: RO

Payment date: 20131002

Year of fee payment: 9

Ref country code: ES

Payment date: 20131003

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005006603

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150501

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 394517

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141010

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 3737

Country of ref document: SK

Effective date: 20141010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141010

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141011

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141010

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141010

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141010

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141010

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141011

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141010

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20151127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141010

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141010