EP1929053B1 - Verfahren zur herstellung eines stahlteils mit mehrphasiger mikrostruktur - Google Patents

Verfahren zur herstellung eines stahlteils mit mehrphasiger mikrostruktur Download PDF

Info

Publication number
EP1929053B1
EP1929053B1 EP06808157A EP06808157A EP1929053B1 EP 1929053 B1 EP1929053 B1 EP 1929053B1 EP 06808157 A EP06808157 A EP 06808157A EP 06808157 A EP06808157 A EP 06808157A EP 1929053 B1 EP1929053 B1 EP 1929053B1
Authority
EP
European Patent Office
Prior art keywords
steel
blank
microstructure
ferrite
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06808157A
Other languages
English (en)
French (fr)
Other versions
EP1929053A1 (de
Inventor
Jacques Corquillet
Jacques Devroc
Jean-Louis Hochard
Jean-Pierre Laurent
Antoine Moulin
Nathalie Romanowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal France SA
Original Assignee
ArcelorMittal France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal France SA filed Critical ArcelorMittal France SA
Priority to EP06808157A priority Critical patent/EP1929053B1/de
Priority to PL06808157T priority patent/PL1929053T3/pl
Priority to EP10010435A priority patent/EP2287344A1/de
Publication of EP1929053A1 publication Critical patent/EP1929053A1/de
Application granted granted Critical
Publication of EP1929053B1 publication Critical patent/EP1929053B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Definitions

  • the present invention relates to a method of manufacturing a multi-phased microstructure steel piece homogeneous in each of the zones of said part, and having high mechanical characteristics.
  • TRIP steels the term meaning transformation induced plasticity
  • dual phase steels which combine a very high mechanical strength with very high possibilities of deformation.
  • TRIP steels have a microstructure composed of ferrite, residual austenite, and possibly bainite and martensite, which enables them to reach tensile strengths ranging from 600 to 1000 MPa.
  • the dual-phase steels have a microstructure composed of ferrite and martensite, which enables them to reach tensile strengths ranging from 400 MPa to more than 1200 MPa.
  • this type of parts it is cold forming, for example by stamping between tools, a blank cut in a cold rolled strip of dual phase steel or TRIP steel.
  • the microstructure of the steel is no longer homogeneous in each of the areas of the room, and the behavior of the part in use is difficult to predict.
  • the residual austenite is transformed into martensite under the effect of the deformation.
  • the deformation is not homogeneous throughout the room, some areas of the room will still contain residual austenite not transformed into martensite and therefore having a significant residual ductility, while other areas of the room having undergone significant deformation will present a ferritic-martensitic structure optionally comprising ductile bainite.
  • the object of the present invention is therefore to overcome the aforementioned drawbacks, and to propose a method of manufacturing a steel part comprising ferrite and having a homogeneous multi-phased microstructure in each of the zones of said part, and not exhibiting resilient return after forming a blank from a steel strip whose composition is typical of that of multi-phase microstructure steels.
  • the area of the different phases is measured in a section made along a plane perpendicular to the plane of the strip (this plane may be parallel to to the rolling direction, or parallel to the direction transverse to the rolling).
  • the different phases sought are revealed by a chemical attack adapted according to their nature.
  • forming tool means any tool that makes it possible to obtain a part from a blank, such as for example a stamping tool. This excludes cold or hot rolling tools.
  • the inventors have demonstrated that heating the blank to a holding temperature T1 between Ac1 and Ac3 gives, provided that the cooling rate is sufficient, a multi-phase microstructure comprising ferrite having mechanical properties. homogeneous regardless of the cooling rate of the blank between the tools.
  • the homogeneity of the mechanical properties is defined in the sense of the invention by a dispersion of the tensile strength Rm in a range of cooling rates ranging from 10 to 100 ° C./s less than 25%.
  • the invention has as its second object a steel part comprising ferrite and having a homogeneous multi-phased microstructure in each zone of said part, obtainable by said method.
  • the third object of the invention is a motorized land vehicle comprising said part.
  • the method according to the invention consists in shaping hot, in a certain temperature range, a blank previously cut in a steel strip whose composition is typical of that of multi-phase microstructure steels, but which initially does not does not necessarily have a multi-phased structure, to form a steel part that acquires a multi-phase microstructure during its cooling between the formatting tools.
  • the inventors have furthermore demonstrated that, provided that the cooling rate is sufficient, a homogeneous multi-phased microstructure could be obtained whatever the rate of cooling of the blank between the tools.
  • the advantage of this invention lies in the fact that it is not necessary to form the multi-phased microstructure at the stage of manufacture of the hot sheet, or of its coating, and that forming it at The stage of manufacture of the part, by hot forming, ensures a homogeneous final multi-phased microstructure in each of the zones of the part, which is advantageous in the case of a use for absorption parts. energy, because the microstructure is not altered as is the case when cold forming of dual-phase steel or TRIP steel parts.
  • the inventors have indeed verified that the energy absorption capacity of a part, determined by the tensile strength multiplied by the elongation (Rm ⁇ A), is greater when the part has been obtained. according to the invention than when it was obtained by cold forming of a dual phase steel blank or TRIP steel. Indeed, cold forming consumes some of the energy absorption capacity.
  • Another advantage of the invention lies in the fact that the hot shaping leads to a much higher shaping ability than cold.
  • a variety of wider shapes can be accessed and new designs of parts can be envisaged while retaining steel compositions whose characteristics, such as weldability, are known.
  • the part obtained has a multi-phase microstructure comprising ferrite at a proportion preferably greater than or equal to 25% by surface, and at least one of the following phases: martensite, bainite, residual austenite.
  • a proportion of at least 25% ferrite surface area makes it possible to give the steel ductility sufficient for the formed parts to have a high energy absorption capacity.
  • the remainder of the composition is iron and other elements that are usually expected to be found as impurities resulting from steel making, in proportions that do not affect the properties of the steel. sought.
  • this metal coating is chosen from zinc or zinc alloy coatings (zinc-aluminum for example), and if it is also desired to withstand good heat resistance, the coatings of aluminum or aluminum alloy (aluminum-silicon for example). These coatings are deposited in a conventional manner either by hot dipping in a bath of liquid metal, by electrodeposition, or under vacuum.
  • the steel blank is heated to bring it to a holding temperature T1 greater than Ac1 but lower than Ac3, and is maintained at this temperature T1 for a holding time M that is adjusted so that steel, after heating the blank, comprises a proportion of austenite greater than or equal to 25% by surface.
  • the heated blank is transferred into a forming tool to form a part, and cool it.
  • the cooling of the workpiece within the shaping tool is performed with a cooling rate V sufficient to prevent all of the austenite from becoming ferrite, and so that the microstructure of the steel after cooling the piece is a multi-phase microstructure comprising ferrite, and which is homogeneous in each of the areas of the room.
  • Homogeneous multi-phased microstructure in each of the zones of the part is understood to mean a microstructure having constancy in terms of proportion and morphology in each zone of the part, and in which the different phases are uniformly distributed.
  • the shaping tools can be cooled, for example by fluid circulation.
  • clamping force of the shaping tool must be sufficient to ensure intimate contact between the blank and the tool, and ensure efficient and homogeneous cooling of the room.
  • Cold pre-deformation of the blank for example by profiling or cold stamping of the blank, before hot forming is advantageous insofar as it allows access to parts that may have a more complex geometry .
  • the method according to the invention is used to manufacture a steel part having a multi-phase microstructure comprising either ferrite and martensite, either ferrite and bainite, or ferrite, martensite and bainite.
  • the remainder of the composition is iron and other elements that are usually expected to be found as impurities resulting from steel making, in proportions that do not affect the properties of the steel. sought.
  • the blank is heated to a holding temperature T1 greater than Ac1 but less than Ac3, so as to to control the proportion of austenite formed during the heating of the blank, and not to exceed the preferential upper limit of 75% of austenite surface area.
  • a proportion of austenite in the steel heated to a holding temperature T1 during a holding time M of between 25 and 75% by weight offers a good compromise in terms of the mechanical strength of the steel after shaping and regularity. mechanical characteristics of the steel thanks to the robustness of the process. Indeed, beyond 25% of austenite surface, sufficient hardening phases, such as for example martensite and / or bainite, are formed during the cooling of the steel so that the yield strength Re of the steel after shaping is sufficient.
  • the holding time of the steel blank at the holding temperature T1 depends essentially on the thickness of the strip.
  • the thickness of the strip is typically between 0.3 and 3 mm. Therefore, to form a proportion of austenite between 25 and 75% by surface, the holding time M is preferably between 10 and 1000 s. If the steel blank is maintained at a holding temperature T1 for a holding time M greater than 1000 s, the austenite grains increase and the elastic limit Re of the steel after forming will be limited. In addition, the hardenability of the steel is reduced and the surface of the steel oxidizes.
  • the cooling rate V of the steel part in the forming tool depends on the deformation and the quality of the contact between the tool and the steel blank. However, the cooling rate V must be sufficiently high for the desired multi-phased microstructure to be obtained, and is preferably greater than 10 ° C./s. With a cooling rate V less than or equal to 10 ° C / s, it is likely to form carbides that will contribute to degrade the mechanical characteristics of the part.
  • a multi-phase steel piece comprising more than 25% ferrite surface area is formed, the rest being martensite and / or bainite, the various phases being homogeneously distributed in each of the zones of the In a preferred embodiment of the invention, 25 to 75% ferrite surface area and 25 to 75% surface area of martensite and / or bainite are preferably formed.
  • the method according to the invention is used to manufacture a TRIP steel part.
  • TRIP steel a multiphase microstructure comprising ferrite, residual austenite, and possibly martensite and / or bainite.
  • the remainder of the composition is iron and other elements that are usually expected to be found as impurities resulting from steel making, in proportions that do not affect the properties of the steel. sought.
  • the holding time of the steel blank at a holding temperature T1 greater than Ac1 but less than Ac3 essentially depends on the thickness of the strip.
  • the thickness of the strip is typically between 0.3 and 3 mm. Therefore, to form a proportion of austenite greater than or equal to 25% by surface, the holding time M is preferably between 10 and 1000 s. If the steel blank is maintained at a holding temperature T1 for a holding time M greater than 1000 s, the austenite grains increase and the elastic limit Re of the steel after forming will be limited. In addition, the hardenability of the steel is reduced and the surface of the steel oxidizes. On the other hand, if the blank is held for a holding time M less than 10 s, the proportion of austenite formed will be insufficient, and sufficient residual austenite and bainite will not be formed during the cooling of the part between the tool.
  • the cooling rate V of the steel part in the forming tool depends on the deformation and the quality of the contact between the tool and the steel blank. To obtain a steel part having a multi-phased microstructure TRIP, it is preferable that the cooling rate V is between 10 ° C./s and 200 ° C./s. In fact, below 10 ° C / s, ferrite and carbide will be essentially formed, and insufficient residual austenite and martensite, and above 200 ° C / s, essentially martensite will be formed. insufficient residual austenite.
  • a multiphase steel part consisting, in% by surface, of ferrite at a proportion greater than or equal to 25%, of 3 to 30% of residual austenite, and possibly of martensite, is formed. / or bainite.
  • the TRIP effect can advantageously be used to absorb energy in the event of high speed shocks. Indeed, during a significant deformation of a TRIP steel part, the residual austenite is gradually transformed into martensite by selecting the orientation of the martensite. This has the effect of reducing the residual stresses in the martensite, reducing the internal stresses in the part, and finally limiting the damage of the part, because the rupture thereof will take place for an elongation A more important than if it was not TRIP steel.
  • the inventors have carried out tests both on steels presenting on the one hand a composition typical of that of mutli-phased microstructure steels comprising ferrite and martensite and / or bainite (point 1), and of on the other hand a composition typical of that of TRIP mutli-phased microstructure steels (point 2).
  • Blanks 400 x 600 mm in size are cut from a steel strip whose composition, indicated in Table I, is that of a steel grade DP780 (Dual Phase 780).
  • the strip has a thickness of 1.2 mm.
  • the Ac1 temperature of this steel is 705 ° C and the Ac3 temperature is 815 ° C.
  • the blanks are brought to a variable holding temperature T1, during a holding period of 5 minutes. Then, they are immediately transferred to a stamping tool in which they are both shaped and cooled with variable cooling rates V, keeping them in the tool for a period of 60 s.
  • the stamped parts are similar to an Omega shape structure
  • the purpose of this test is to show the interest of a hot shaping compared to a cold shaping, and to evaluate the elastic return.
  • a piece of DP780 grade steel is manufactured by cold stamping a blank cut from a 1.2 mm thick steel strip, the composition of which is indicated in Table I, but which, unlike the strip used in point 1, already has before stamping a multi-phased microstructure comprising 70% ferrite surface, 15% martensite surface, and 15% bainite surface.
  • FIG. 1 clearly shows that the part formed by cold stamping (marked in the figure by the letter G) has a strong springback, with respect to the piece A (see Table II) formed by hot stamping (marked by the letter AT).
  • Blanks measuring 200 ⁇ 500 mm are cut from a steel strip whose composition, indicated in Table III, is that of a TRIP 800 grade steel.
  • the strip has a thickness of 1.2 mm.
  • the Ac1 temperature of this steel is 751 ° C and the Ac3 temperature is 875 ° C.
  • the blanks are brought to a variable holding temperature T1, during a hold time of 5 minutes, and then immediately transferred to a stamping tool in which they are both shaped and cooled with a cooling rate V of 45 ° C / s, keeping them in the tool for 60 s.
  • the stamped parts are similar to an Omega shape structure.
  • Table III chemical composition of the steel according to the invention, expressed in% by weight, the balance being iron or impurities VS mn Yes al MB Cr P Ti Nb V 0.2 1.5 1.5 0.05 0,007 0.01 0,011 0.005 - - T1 (° C) Room Re (MPa) Rm (MPa) AT (%) Rm x A Microstructure (% surface area) * 760 H 541 1174 12.4 14558 35% F + 17% A + 48% M * 800 I 485 1171 12.8 14989 45% F + 11% A + 44% M * 840 J 454 1110 14.3 15873 45% F + 15% A + 38% M + 2% B * according to the invention

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Claims (17)

  1. Verfahren zur Herstellung eines Stahlteils, das eine mehrphasige Mikrostruktur aufweist, wobei die Mikrostruktur Ferrit enthält und in jedem der Bereiche des Teils homogen ist, wobei das Verfahren die folgenden Schritte aufweist:
    - Ausschneiden eines Zuschnitts in einem Stahlband, dessen Zusammensetzung enthält, in Gew.-%:
    0,01 ≤ C ≤ 0,50 %
    0,50 ≤ Mn ≤ 3,0 %
    0,001 ≤ Si ≤ 3,0 %
    0,005 ≤ Al ≤ 3,0 %
    Mo ≤ 1,0 %
    Cr ≤ 1,5 %
    P ≤ 0,10 %
    Ti ≤ 0,20 %
    V ≤ 1,0 %
    optional ein oder mehrere Elemente wie
    Ni ≤ 2,0 %
    Cu ≤ 2,0 %
    S ≤ 0,05 %
    Nb ≤ 0,15 %
    wobei der Rest der Zusammensetzung Eisen und aus der Bearbeitung resultierende Verunreinigungen sind,
    - eventuell kaltes Vorformen des Zuschnitts,
    - Erwärmen des Zuschnitts, bis eine Haltetemperatur T1 erreicht ist, die größer als Ac1, jedoch kleiner als Ac3 ist, und Halten desselben bei dieser Haltetemperatur T1 während einer Haltezeit M, die so eingestellt ist, dass der Stahl nach Erwärmung des Zuschnitts einen flächenbezogenen Anteil von Austenit enthält, der größer oder gleich 25 % ist,
    - Einsetzen des Zuschnitts ins Innere eines Tiefziehwerkzeugs, so dass das Teil warm tiefgezogen wird, und
    - Abkühlen des Teils im Inneren des Werkzeugs mit einer solchen Abkühlungsgeschwindigkeit V, dass die Mikrostruktur des Stahls nach Abkühlung des Teils eine mehrphasige Mikrostruktur ist, wobei die Mikrostruktur Ferrit mit einem flächenbezogenen Anteil enthält, der größer oder gleich 25 % ist, und in jedem der Bereiche des Teils homogen ist.
  2. Verfahren nach Anspruch 1, wobei die Zusammensetzung des Stahls enthält, in Gew.-%:
    0,01 ≤ C ≤ 0, 25 %
    0,50 ≤ Mn ≤ 2,50 %
    0,01 ≤ Si ≤ 2,0 %
    0,005 ≤ A1 ≤ 1,5 %
    0,001 ≤ Mo ≤ 0,50 %
    Cr ≤ 1,0 %
    P ≤ 0,10 %
    Ti ≤ 0,15 %
    Nb ≤ 0,15 %
    V ≤ 0,25 %,
    wobei der Rest der Zusammensetzung Eisen und aus der Bearbeitung resultierende Verunreinigungen sind, der Zuschnitt bei der Haltetemperatur T1 während einer Haltezeit M gehalten wird, die so eingestellt ist, dass der Stahl nach Erwärmung einen flächenbezogenen Anteil von Austenit enthält, der zwischen 25 und 75 % liegt, und die Mikrostruktur des Stahls nach Abkühlung des Teils eine mehrphasige Mikrostruktur ist, die Ferrit und entweder Martensit oder Bainit oder auch Martensit und Bainit enthält.
  3. Verfahren nach Anspruch 2, außerdem dadurch gekennzeichnet, dass der Stahl enthält, in Gew.-%:
    0,08 ≤ C ≤ 0,15 %
    1,20 ≤ Mn ≤ 2,0 %
    0,01 ≤ Si ≤ 0,50 %
    0,005 ≤ Al ≤ 1,0 %
    0,001 ≤ Mo ≤ 0,10 %
    Cr ≤ 0,50 %
    P ≤ 0,10 %
    Ti ≤ 0,15 %
    Nb ≤ 0,15 %
    V ≤ 0,25 %,
    wobei der Rest der Zusammensetzung Eisen und aus der Bearbeitung resultierende Verunreinigungen sind.
  4. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die Haltezeit M zwischen 10 und 1000 s liegt.
  5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Abkühlungsgeschwindigkeit V größer als 10 °C/s ist.
  6. Verfahren nach einem der Ansprüche 2 bis 5, außerdem dadurch gekennzeichnet, dass die mehrphasige Mikrostruktur des Stahls nach Abkühlung des Teils einen flächenbezogenen Anteil von 25 bis 75 % Ferrit und einen flächenbezogenen Anteil von 25 bis 75 % Martensit und/oder Bainit enthält.
  7. Verfahren nach Anspruch 1, wobei der Stahl enthält, in Gew.-%:
    0,05 ≤ C ≤ 0,50 %
    0,50 ≤ Mn ≤ 3, 0 %
    0,001 ≤ Si ≤ 3,0 %
    0,005 ≤ Al ≤ 3,0 %
    Mo ≤ 1,0 %
    Cr ≤ 1,50 %
    Ni ≤ 2,0 %
    Cu ≤ 2,0 %
    P ≤ 0, 10 %
    S ≤ 0,05 %
    Ti ≤ 0,20 %
    V ≤ 1,0 %,
    wobei der Rest der Zusammensetzung Eisen und aus der Bearbeitung resultierende Verunreinigungen sind und die Mikrostruktur des Stahls nach Abkühlung des Teils eine mehrphasige Mikrostruktur TRIP ist, die Ferrit, Restaustenit und eventuell Martensit und/oder Bainit enthält.
  8. Verfahren nach Anspruch 7, außerdem dadurch gekennzeichnet, dass der Stahl enthält, in Gew.-%:
    0,10 ≤ C ≤ 0, 30 %
    0,60 ≤ Mn ≤ 2,0 %
    0,01 ≤ Si ≤ 2,0 %
    0,005 ≤ Al ≤ 3,0 %
    Mo ≤ 0,60 %
    Cr ≤ 1,50 %
    Ni ≤ 0,20 %
    Cu ≤ 0,20 %
    P ≤ 0,10 %
    S ≤ 0,05 %
    Ti ≤ 0,20 %
    V ≤ 0,60 %,
    wobei der Rest der Zusammensetzung Eisen und aus der Bearbeitung resultierende Verunreinigungen sind.
  9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass die Haltezeit M zwischen 10 und 1000 s liegt.
  10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Abkühlungsgeschwindigkeit V zwischen 10 und 200 °C/s liegt.
  11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass nach Abkühlung des Teils die mehrphasige Mikrostruktur des TRIP-Stahls aus Ferrit mit einem flächenbezogenen Anteil, der größer oder gleich 25 % ist, aus Restaustenit mit einem flächenbezogenen Anteil von 3 bis 30 % und eventuell aus Martensit und/oder Bainit besteht.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Stahlband zuvor mit einem metallischen Überzug versehen wird, bevor es geschnitten wird, um einen Zuschnitt herzustellen.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass der metallische Überzug ein Überzug auf der Basis von Zink oder einer Zinklegierung ist.
  14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass der metallische Überzug ein Überzug auf der Basis von Aluminium oder einer Aluminiumlegierung ist.
  15. Tiefgezogenes Stahlteil, das eine mehrphasige Mikrostruktur aufweist, die in jedem der Bereiche des Teils homogen ist, wobei die Mikrostruktur Ferrit mit einem flächenbezogenen Anteil enthält, der größer oder gleich 25 % ist, und das mittels des Verfahrens nach einem der Ansprüche 1 bis 14 hergestellt ist.
  16. Verwendung des Stahlteils nach Anspruch 15, um die Energie zu absorbieren.
  17. Kraftfahrzeug, welches das Stahlteil nach Anspruch 15 aufweist.
EP06808157A 2005-09-21 2006-09-18 Verfahren zur herstellung eines stahlteils mit mehrphasiger mikrostruktur Active EP1929053B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06808157A EP1929053B1 (de) 2005-09-21 2006-09-18 Verfahren zur herstellung eines stahlteils mit mehrphasiger mikrostruktur
PL06808157T PL1929053T3 (pl) 2005-09-21 2006-09-18 Sposób wytwarzania części ze stali o mikrostrukturze wielofazowej
EP10010435A EP2287344A1 (de) 2005-09-21 2006-09-18 Herstellungsverfahren eines Stahlwerkstücks mit mehrphasigem Mikrogefüge

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05291958A EP1767659A1 (de) 2005-09-21 2005-09-21 Herstellungsverfahren eines Stahlwerkstücks mit mehrphasigem Mikrogefüge
EP06808157A EP1929053B1 (de) 2005-09-21 2006-09-18 Verfahren zur herstellung eines stahlteils mit mehrphasiger mikrostruktur
PCT/FR2006/002135 WO2007034063A1 (fr) 2005-09-21 2006-09-18 Procede de fabrication d’une piece en acier de microstructure multi-phasee

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP10010435.5 Division-Into 2010-09-23

Publications (2)

Publication Number Publication Date
EP1929053A1 EP1929053A1 (de) 2008-06-11
EP1929053B1 true EP1929053B1 (de) 2011-06-22

Family

ID=35351714

Family Applications (3)

Application Number Title Priority Date Filing Date
EP05291958A Withdrawn EP1767659A1 (de) 2005-09-21 2005-09-21 Herstellungsverfahren eines Stahlwerkstücks mit mehrphasigem Mikrogefüge
EP10010435A Withdrawn EP2287344A1 (de) 2005-09-21 2006-09-18 Herstellungsverfahren eines Stahlwerkstücks mit mehrphasigem Mikrogefüge
EP06808157A Active EP1929053B1 (de) 2005-09-21 2006-09-18 Verfahren zur herstellung eines stahlteils mit mehrphasiger mikrostruktur

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP05291958A Withdrawn EP1767659A1 (de) 2005-09-21 2005-09-21 Herstellungsverfahren eines Stahlwerkstücks mit mehrphasigem Mikrogefüge
EP10010435A Withdrawn EP2287344A1 (de) 2005-09-21 2006-09-18 Herstellungsverfahren eines Stahlwerkstücks mit mehrphasigem Mikrogefüge

Country Status (15)

Country Link
US (2) US8114227B2 (de)
EP (3) EP1767659A1 (de)
JP (1) JP5386170B2 (de)
KR (4) KR20110121657A (de)
CN (1) CN101292049B (de)
AT (1) ATE513932T1 (de)
BR (1) BRPI0616261B1 (de)
CA (1) CA2623146C (de)
ES (1) ES2366133T3 (de)
MA (1) MA29790B1 (de)
PL (1) PL1929053T3 (de)
RU (1) RU2403291C2 (de)
UA (1) UA96739C2 (de)
WO (1) WO2007034063A1 (de)
ZA (1) ZA200802385B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017144419A1 (en) 2016-02-23 2017-08-31 Tata Steel Ijmuiden B.V. Hot formed part and method for producing it
US11459628B2 (en) 2017-12-22 2022-10-04 Voestalpine Stahl Gmbh Method for producing metallic components having adapted component properties

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006053819A1 (de) * 2006-11-14 2008-05-15 Thyssenkrupp Steel Ag Verfahren zum Herstellen eines Bauteil durch Warmpresshärten und hochfestes Bauteil mit verbesserter Bruchdehnung
MX2009008557A (es) 2007-02-23 2009-08-21 Corus Staal Bv Metodo para conformacion termomecanica de un producto final con una tenacidad muy alta y producto elaborado por el mismo.
US8968495B2 (en) * 2007-03-23 2015-03-03 Dayton Progress Corporation Methods of thermo-mechanically processing tool steel and tools made from thermo-mechanically processed tool steels
US9132567B2 (en) * 2007-03-23 2015-09-15 Dayton Progress Corporation Tools with a thermo-mechanically modified working region and methods of forming such tools
WO2008104610A1 (en) 2007-07-19 2008-09-04 Corus Staal Bv Method for annealing a strip of steel having a variable thickness in length direction
US20100304174A1 (en) * 2007-07-19 2010-12-02 Corus Staal Bv Strip of steel having a variable thickness in length direction
EP2025771A1 (de) * 2007-08-15 2009-02-18 Corus Staal BV Verfahren zur Herstellung eines beschichteten Stahlbandes zur Herstellung von Platinenzuschnitten zur thermomechanischen Formgebung, so hergestelltes Band und Verwendung eines solchen Bandes
DE102008004371A1 (de) * 2008-01-15 2009-07-16 Robert Bosch Gmbh Bauelement, insbesondere eine Kraftfahrzeugkomponente, aus einem Dualphasen-Stahl
DE102008022399A1 (de) * 2008-05-06 2009-11-19 Thyssenkrupp Steel Ag Verfahren zum Herstellen eines Stahlformteils mit einem überwiegend ferritisch-bainitischen Gefüge
EP2325435B2 (de) 2009-11-24 2020-09-30 Tenaris Connections B.V. Verschraubung für [ultrahoch] abgedichteten internen und externen Druck
JP5327106B2 (ja) 2010-03-09 2013-10-30 Jfeスチール株式会社 プレス部材およびその製造方法
DE102010012830B4 (de) * 2010-03-25 2017-06-08 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung einer Kraftfahrzeugkomponente und Karosseriebauteil
EP2374910A1 (de) 2010-04-01 2011-10-12 ThyssenKrupp Steel Europe AG Stahl, Stahlflachprodukt, Stahlbauteil und Verfahren zur Herstellung eines Stahlbauteils
JP5126399B2 (ja) * 2010-09-06 2013-01-23 Jfeスチール株式会社 伸びフランジ性に優れた高強度冷延鋼板およびその製造方法
WO2012048841A1 (en) 2010-10-12 2012-04-19 Tata Steel Ijmuiden B.V. Method of hot forming a steel blank and the hot formed part
US9163296B2 (en) 2011-01-25 2015-10-20 Tenaris Coiled Tubes, Llc Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment
KR101257166B1 (ko) * 2011-01-28 2013-04-22 현대제철 주식회사 자동차 사이드 멤버 및 그 제조 방법
IT1403689B1 (it) 2011-02-07 2013-10-31 Dalmine Spa Tubi in acciaio ad alta resistenza con eccellente durezza a bassa temperatura e resistenza alla corrosione sotto tensioni da solfuri.
CN103476960B (zh) 2011-03-28 2016-04-27 新日铁住金株式会社 冷轧钢板及其制造方法
US9475113B2 (en) 2011-04-28 2016-10-25 Kobe Steel, Ltd. Process for producing hot press-formed product
MX361690B (es) * 2011-05-25 2018-12-13 Nippon Steel & Sumitomo Metal Corp Láminas de acero laminadas en frío y proceso para la producción de las mismas.
CN103597106B (zh) * 2011-06-10 2016-03-02 株式会社神户制钢所 热压成形品、其制造方法和热压成形用薄钢板
ES2714302T3 (es) * 2011-07-27 2019-05-28 Nippon Steel & Sumitomo Metal Corp Chapa de acero laminado en frío de alta resistencia que tiene una excelente abocardabilidad y perforabilidad de precisión, y un método fabricación de dicha chapa
CZ2011612A3 (cs) * 2011-09-30 2013-07-10 Západoceská Univerzita V Plzni Zpusob dosazení TRIP struktury ocelí s vyuzitím deformacního tepla
CN102560272B (zh) * 2011-11-25 2014-01-22 宝山钢铁股份有限公司 一种超高强度耐磨钢板及其制造方法
KR101377487B1 (ko) * 2011-11-28 2014-03-26 현대제철 주식회사 온간 프레스 성형을 이용한 강 제품 제조 방법
KR101636639B1 (ko) * 2012-03-28 2016-07-05 신닛테츠스미킨 카부시키카이샤 핫 스탬프용 테일러드 블랭크 및 핫 스탬프 부재 및 그들의 제조 방법
JP5942560B2 (ja) * 2012-04-18 2016-06-29 マツダ株式会社 鋼板のプレス成形方法
RU2495141C1 (ru) * 2012-05-11 2013-10-10 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Донской Государственный Технический Университет" (Дгту) Способ получения естественного феррито-мартенситного композита
DE102012104734A1 (de) 2012-05-31 2013-12-05 Outokumpu Nirosta Gmbh Verfahren und Vorrichtung zur Herstellung von umgeformten Blechteilen bei Tieftemperatur
DE102012111959A1 (de) * 2012-12-07 2014-06-12 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Kraftfahrzeugbauteils sowie Kraftfahrzeugbauteil
CN104903538B (zh) 2013-01-11 2018-05-08 特纳瑞斯连接有限公司 抗磨损钻杆工具接头和相应的钻杆
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
WO2014156188A1 (ja) * 2013-03-29 2014-10-02 Jfeスチール株式会社 水素用鋼構造物ならびに水素用蓄圧器および水素用ラインパイプの製造方法
EP2789701A1 (de) 2013-04-08 2014-10-15 DALMINE S.p.A. Hochfeste mittelwandige vergütete und nahtlose Stahlrohre und entsprechendes Verfahren zur Herstellung der Stahlrohre
EP2789700A1 (de) 2013-04-08 2014-10-15 DALMINE S.p.A. Dickwandige vergütete und nahtlose Stahlrohre und entsprechendes Verfahren zur Herstellung der Stahlrohre
KR102197204B1 (ko) 2013-06-25 2021-01-04 테나리스 커넥션즈 비.브이. 고크롬 내열철강
CN103331390B (zh) * 2013-07-10 2015-03-11 鞍钢股份有限公司 一种汽车u形梁的生产方法
ES2636780T3 (es) * 2013-08-22 2017-10-09 Thyssenkrupp Steel Europe Ag Procedimiento para la fabricación de un componente de acero
EP2851440A1 (de) * 2013-09-19 2015-03-25 Tata Steel IJmuiden BV Stahl zum Warmumformen
US20160289809A1 (en) * 2013-09-19 2016-10-06 Tata Steel Ijmuiden B.V. Steel for hot forming
EP4252930A3 (de) * 2013-10-21 2023-12-20 Magna International Inc Verfahren zum bearbeiten eines heissgeschmiedeten teils
CN105874091A (zh) * 2014-01-06 2016-08-17 新日铁住金株式会社 热成形构件及其制造方法
MX2016008810A (es) 2014-01-06 2016-09-08 Nippon Steel & Sumitomo Metal Corp Acero y metodo para fabricarlo.
CN106715745A (zh) * 2014-03-28 2017-05-24 塔塔钢铁艾默伊登有限责任公司 热成形涂覆的钢坯料的方法
WO2016016676A1 (fr) 2014-07-30 2016-02-04 ArcelorMittal Investigación y Desarrollo, S.L. Procédé de fabrication de tôles d'acier, pour durcissement sous presse, et pièces obtenues par ce procédé
CN104532142A (zh) * 2014-10-27 2015-04-22 内蒙古北方重工业集团有限公司 40CrNi3MoV标准物质
WO2016132165A1 (fr) * 2015-02-19 2016-08-25 Arcelormittal Procede de fabrication d'une piece phosphatable a partir d'une tole revetue d'un revetement a base d'aluminium et d'un revetement de zinc
JP2018512503A (ja) * 2015-03-16 2018-05-17 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv 熱間成形鋼材
WO2017098305A1 (en) * 2015-12-09 2017-06-15 Arcelormittal Vehicle underbody structure comprising a transversal beam of varying resistance to plastic deformation
BR102016001063B1 (pt) * 2016-01-18 2021-06-08 Amsted Maxion Fundição E Equipamentos Ferroviários S/A liga de aço para componentes ferroviários, e processo de obtenção de uma liga de aço para componentes ferroviários
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
DE102016117494A1 (de) * 2016-09-16 2018-03-22 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines umgeformten Bauteils aus einem mittelmanganhaltigen Stahlflachprodukt und ein derartiges Bauteil
JP6424195B2 (ja) * 2016-11-14 2018-11-14 株式会社豊田中央研究所 熱間プレス成形方法
CN106854731A (zh) * 2016-11-23 2017-06-16 安徽瑞鑫自动化仪表有限公司 一种耐酸碱温度传感器用合金钢及其制备方法
DE102016225833A1 (de) 2016-12-21 2018-06-21 Henkel Ag & Co. Kgaa Verfahren zur Dosierung von Reinigungsmitteln
WO2018220412A1 (fr) 2017-06-01 2018-12-06 Arcelormittal Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
CN107675093A (zh) * 2017-08-25 2018-02-09 合肥智鼎电控自动化科技有限公司 一种高低压柜用钣金
CN108060355B (zh) * 2017-11-23 2019-12-27 东北大学 一种钢材料及其制备方法
DE102017131247A1 (de) * 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Verfahren zum Erzeugen metallischer Bauteile mit angepassten Bauteileigenschaften
CN109023038B (zh) * 2018-07-20 2021-02-19 首钢集团有限公司 一种相变诱发塑性钢及其制备方法
CN109266956B (zh) * 2018-09-14 2019-08-06 东北大学 一种汽车b柱加强板用钢及其制备方法
WO2020058748A1 (en) * 2018-09-20 2020-03-26 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
KR102145494B1 (ko) * 2018-11-23 2020-08-18 주식회사 엘지화학 파우치 성형장치 및 성형방법, 그를 포함하는 이차전지 제조설비
US11433646B2 (en) * 2019-04-25 2022-09-06 GM Global Technology Operations LLC Metallic component and method of reducing liquid metal embrittlement using low aluminum zinc bath
WO2021009543A1 (en) * 2019-07-16 2021-01-21 Arcelormittal Method for producing a steel part and steel part
CN110551878B (zh) * 2019-10-12 2021-06-08 东北大学 一种超高强度超高韧性低密度双相层状钢板及其制备方法
WO2021116741A1 (en) * 2019-12-13 2021-06-17 Arcelormittal Heat treated cold rolled steel sheet and a method of manufacturing thereof
EP4153791A4 (de) * 2020-05-18 2024-04-10 Magna Int Inc Verfahren zur verarbeitung von fortschrittlichem hochfestem stahl
CN111647820B (zh) * 2020-06-15 2022-01-11 山东建筑大学 一种先进高强度钢及其分段制备方法与应用
CN112725687B (zh) * 2020-11-18 2022-06-14 邯郸钢铁集团有限责任公司 折弯及抗撞性能优良的边梁用750bl钢板及生产方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222796A (en) * 1979-02-05 1980-09-16 Ford Motor Company High strength dual-phase steel
JPS59211533A (ja) * 1983-05-16 1984-11-30 Nisshin Steel Co Ltd 延性の優れた低降伏比複合組織鋼板の製造方法
JPS6043430A (ja) * 1983-08-15 1985-03-08 Nippon Kokan Kk <Nkk> 高強度高加工性複合組織鋼板の製造方法
JPS62286626A (ja) * 1986-06-04 1987-12-12 Nippon Steel Corp 鋼板のプレス成形方法
FR2671749B1 (fr) * 1991-01-17 1995-07-07 Creusot Loire Procede de fabrication d'une piece de forme metallique a tres haute durete, notamment en acier et piece obtenue.
US5531842A (en) 1994-12-06 1996-07-02 Exxon Research And Engineering Company Method of preparing a high strength dual phase steel plate with superior toughness and weldability (LAW219)
JP2000501778A (ja) 1995-07-11 2000-02-15 ウラコ,カリ,マーティ 含窒素鉄系形状記憶及び振動減衰合金
JPH09143612A (ja) * 1995-11-21 1997-06-03 Kobe Steel Ltd 降伏比の低い高強度熱延鋼板部材
CA2278841C (en) * 1997-01-29 2007-05-01 Nippon Steel Corporation High strength steels having excellent formability and high impact energy absorption properties, and a method for producing the same
FR2780984B1 (fr) * 1998-07-09 2001-06-22 Lorraine Laminage Tole d'acier laminee a chaud et a froid revetue et comportant une tres haute resistance apres traitement thermique
FR2787735B1 (fr) * 1998-12-24 2001-02-02 Lorraine Laminage Procede de realisation d'une piece a partir d'une bande de tole d'acier laminee et notamment laminee a chaud
US6517955B1 (en) * 1999-02-22 2003-02-11 Nippon Steel Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
FR2807447B1 (fr) * 2000-04-07 2002-10-11 Usinor Procede de realisation d'une piece a tres hautes caracteristiques mecaniques, mise en forme par emboutissage, a partir d'une bande de tole d'acier laminee et notamment laminee a chaud et revetue
JP4524850B2 (ja) * 2000-04-27 2010-08-18 Jfeスチール株式会社 延性および歪時効硬化特性に優れた高張力冷延鋼板および高張力冷延鋼板の製造方法
JP3828466B2 (ja) * 2002-07-29 2006-10-04 株式会社神戸製鋼所 曲げ特性に優れた鋼板
JP2004160489A (ja) * 2002-11-13 2004-06-10 Nissan Motor Co Ltd パネル部品のプレス成形方法
DE10307184B3 (de) * 2003-02-20 2004-04-08 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines gehärteten Strukturbauteils für den Fahrzeugbau
US7314532B2 (en) * 2003-03-26 2008-01-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength forged parts having high reduction of area and method for producing same
DE10333165A1 (de) * 2003-07-22 2005-02-24 Daimlerchrysler Ag Pressgehärtetes Bauteil und Verfahren zur Herstellung eines pressgehärteten Bauteils
JP4288201B2 (ja) * 2003-09-05 2009-07-01 新日本製鐵株式会社 耐水素脆化特性に優れた自動車用部材の製造方法
JP4268535B2 (ja) * 2004-02-17 2009-05-27 株式会社神戸製鋼所 強度成形性バランスに優れた高強度冷延鋼板
JP4551694B2 (ja) * 2004-05-21 2010-09-29 株式会社神戸製鋼所 温熱間成形品の製造方法および成形品
WO2008110670A1 (fr) * 2007-03-14 2008-09-18 Arcelormittal France Acier pour formage a chaud ou trempe sous outil a ductilite amelioree
WO2012168564A1 (fr) * 2011-06-07 2012-12-13 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier laminée à froid et revêtue de zinc ou d'alliage de zinc, procédé de fabrication et utilisation d'une telle tôle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017144419A1 (en) 2016-02-23 2017-08-31 Tata Steel Ijmuiden B.V. Hot formed part and method for producing it
US11459628B2 (en) 2017-12-22 2022-10-04 Voestalpine Stahl Gmbh Method for producing metallic components having adapted component properties

Also Published As

Publication number Publication date
PL1929053T3 (pl) 2011-10-31
MA29790B1 (fr) 2008-09-01
KR20130017102A (ko) 2013-02-19
US8114227B2 (en) 2012-02-14
BRPI0616261A2 (pt) 2011-06-14
US10294557B2 (en) 2019-05-21
KR20120099526A (ko) 2012-09-10
UA96739C2 (ru) 2011-12-12
ES2366133T3 (es) 2011-10-17
US20080308194A1 (en) 2008-12-18
JP5386170B2 (ja) 2014-01-15
RU2403291C2 (ru) 2010-11-10
EP1767659A1 (de) 2007-03-28
WO2007034063A1 (fr) 2007-03-29
BRPI0616261B1 (pt) 2014-02-04
CA2623146C (fr) 2011-03-22
US20120211128A1 (en) 2012-08-23
CN101292049B (zh) 2011-12-14
ZA200802385B (en) 2009-01-28
EP2287344A1 (de) 2011-02-23
KR20080053312A (ko) 2008-06-12
KR101453697B1 (ko) 2014-10-22
JP2009508692A (ja) 2009-03-05
CA2623146A1 (fr) 2007-03-29
CN101292049A (zh) 2008-10-22
EP1929053A1 (de) 2008-06-11
RU2008115444A (ru) 2009-10-27
KR20110121657A (ko) 2011-11-07
ATE513932T1 (de) 2011-07-15

Similar Documents

Publication Publication Date Title
EP1929053B1 (de) Verfahren zur herstellung eines stahlteils mit mehrphasiger mikrostruktur
EP2137327B1 (de) Stahl für werkzeugloses warmformen oder abschrecken mit erhöhter biegbarkeit
EP2718469B1 (de) Kaltgewalztes stahlblech mit zink oder zinklegierungsbeschichtung, herstellungsverfahren dafür und verwendung eines solchen stahlblechs
CA3071152C (fr) Procede de fabrication de toles d&#39;acier pour durcissement sous presse, et pieces obtenues par ce procede
EP3783116B1 (de) Vorbeschichtete blätter, die die herstellung von druckgehärteten und beschichteten stahlteilen erlauben
EP2171112B1 (de) Verfahren zur herstellung eines stahlblechs mit sehr hohen festigkeits- und biegbarkeitseigenschaften und in diesem verfahren hergestellte bleche
EP1913169B1 (de) Herstellungsprozess von stahlblechen mit hoher festigkeit und exzellenter dehnung und hergestellte produkte
EP3024951B1 (de) Stahlblech mit sehr hohen mechanischen festigkeits- und dehnbarkeitseigenschaften, herstellungsverfahren und verwendung solcher bleche
EP2689045B1 (de) Warmgewalztblech und verfahrung zur herstellung dieses blech
EP2855725B1 (de) Warm- oder kaltgewalzter stahl mit niedriger dichte, verfahren zur realisierung davon und verwendung davon
EP1990431A1 (de) Verfahren zur Herstellung von kalt gewalzten und geglühten Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche
EP2123786A1 (de) Verfahren zur Herstellung von kalt gewalzten Zweiphasen-Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche
EP3631033A1 (de) Verfahren zur herstellung hochfester stahlteile mit verbesserter duktilität und nach diesem verfahren hergestellte teile
WO2011104443A1 (fr) Procédé de fabrication d&#39;une pièce a partir d&#39;une tôle revêtue d&#39;aluminium ou d&#39;alliage d&#39;aluminium
WO2004104254A1 (fr) Tole laminee a froid et aluminiee en acier dual phase a tres haute resistance pour ceinture anti-implosion de televiseur, et procede de fabrication de cette tole
EP2103705A1 (de) Herstellungsverfahren von rostfreien austenitischen Stahlblechen mit hohen mechanischen Eigenschaften
MX2008003770A (en) Method for making a steel part of multiphase microstructure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080627

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006022710

Country of ref document: DE

Effective date: 20110804

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2366133

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 9989

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110923

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111024

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111022

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E012308

Country of ref document: HU

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20120323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006022710

Country of ref document: DE

Effective date: 20120323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110922

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230822

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230823

Year of fee payment: 18

Ref country code: RO

Payment date: 20230913

Year of fee payment: 18

Ref country code: IT

Payment date: 20230822

Year of fee payment: 18

Ref country code: GB

Payment date: 20230823

Year of fee payment: 18

Ref country code: FI

Payment date: 20230823

Year of fee payment: 18

Ref country code: CZ

Payment date: 20230825

Year of fee payment: 18

Ref country code: AT

Payment date: 20230823

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230830

Year of fee payment: 18

Ref country code: SE

Payment date: 20230822

Year of fee payment: 18

Ref country code: PL

Payment date: 20230824

Year of fee payment: 18

Ref country code: HU

Payment date: 20230829

Year of fee payment: 18

Ref country code: FR

Payment date: 20230822

Year of fee payment: 18

Ref country code: DE

Payment date: 20230822

Year of fee payment: 18

Ref country code: BE

Payment date: 20230822

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231002

Year of fee payment: 18