EP1641103A2 - Moteur avec un rotor comprenant des aimants permanents intérieurs - Google Patents
Moteur avec un rotor comprenant des aimants permanents intérieurs Download PDFInfo
- Publication number
- EP1641103A2 EP1641103A2 EP05025811A EP05025811A EP1641103A2 EP 1641103 A2 EP1641103 A2 EP 1641103A2 EP 05025811 A EP05025811 A EP 05025811A EP 05025811 A EP05025811 A EP 05025811A EP 1641103 A2 EP1641103 A2 EP 1641103A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotor
- magnets
- grooves
- slits
- rotor core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
Definitions
- the present invention relates in general to motors for actuating air conditioners, industrial machines, electric vehicles, etc., and, more particularly, the invention relates to the structure of a motor having a rotor inside which permanent magnets are set so that reluctance torque as well as magnetic torque is utilized.
- FIG. 9 is a cross sectional view showing the rotor of such conventional motor.
- the rotor is shaped into a cylinder having substantially the same shaft as that of a stator (not illustrated) and is supported by a bearing (not illustrated) for rotating on a shaft 76.
- the rotor has eight permanent magnet slits 73 inside a rotor 71, and these slits are disposed, along the rotating direction of the rotor, at the intervals of substantially same spacing and are extended through the core along the direction of the shaft.
- an adhesive is applied, then plate shaped permanent magnets 72 are inserted, and the magnets 72 are stuck to the rotor core 71.
- the rotor has eight magnetic poles.
- the rotor is disposed inside the stator leaving a narrow annular clearance, then it is rotated by the attracting and repulsing force of the magnetic poles of the rotor to the stator teeth, which have rotating magnetic fields created by the electric current which runs through the windings of the stator.
- the rotor has the permanent magnet slits 73 in the rotor core 71, then the adhesive is applied to the walls of the slits 73, then the permanent magnets 72 are stuck inside the slits 73. Then, if the clearances between the slits 73 and the magnets 72 are large, the positions of the magnets 72 become unstable, then the magnetic flux disperses and the characteristic of the motor is deteriorated.
- the big clearances cause the use of thick layers of the adhesive, whereby the effective magnetic flux decreases, which results in a decrease in the torque.
- the magnetic resistance increases between them, so that the magnetic flux, which is produced by magnets 72 and runs into the stator, decreases, then the magnetic torque decreases and the output power of the motor also decreases.
- stabilization of the positions of the magnets 73 is tried by decreasing the clearances between the slits 73 and the magnets 72 by adjusting the section size of the magnets 72 and that of the inserting openings of the slits 73 to be substantially the same.
- the adhesive layers between the walls of the slits 73 and the magnets 72 mostly disappear, causing concern as to whether the magnets 72 are firmly stuck inside the slits or not. Also, if the adhesive layers are not thick enough, the motor may loose reliability on the problem of the dropping out of the magnets 72 at high speed rotation.
- the rotor of "the interior permanent magnet motor” is driven not only by the magnetic torque, which directly contributes for generating the torque by the magnetic flux which is produced by magnets 72 and runs into the stator, but also the motor is driven by utilizing the reluctance torque, which is generated by the above described difference between the inductance "Ld” and the inductance "Lq". While if the space of the outer rotor rim 75 between the magnets 72 and the outer rim edge of the rotor core 71 is narrow, the magnetic flux path becomes also narrow, then the magnetic saturation occurs, and the volume of the magnetic flux which runs there decreases and the reluctance torque becomes small.
- the rotor as illustrated in Fig. 10, has a groove 84 for absorbing the excess of an adhesive 88 applied to a portion where a cylindrical permanent magnet 82 is stuck to a shaft 86.
- the thickness of the adhesive layer 88 is enlarged.
- the structure is not the one in which the permanent magnet is set inside a rotor, but it is the one in which the cylindrical permanent magnet 82 is stuck to the surface of the shaft 86 with an adhesive, that is so called “a surface permanent magnet motor”, namely that is the motor in which the permanent magnet 82 is just stuck to the shaft 86 with the adhesive.
- the present invention aims to provide "an interior permanent magnet motor” having a rotor which has permanent magnets stuck surely inside it so that the reliability is improved, and the rotor also has wide outer rotor rim space between the permanent magnets and the outer rotor rim edge for providing a wide magnetic flux path, still the travels of the magnetic flux into the adjacent magnets are suppressed, so that the efficiency is also improved.
- the present invention provides a motor comprising a stator having a plurality of teeth provided with windings and a rotor including interior permanent magnets, then the rotor has a rotating shaft disposed at the center part, a rotor core fixed to the rotating shaft, permanent magnet slits formed inside the outer rim of the rotor, grooves formed at the walls of the slits, the magnets inserted into the slits, and adhesive layers inside the slits to stick the magnets to the rotor core.
- the adhesive remains at least in the grooves, so that the magnets are surely stuck to the rotor core. Also in the present invention, by forming the portions of low magnetic induction at the outer rotor rim side corners of the permanent magnet slits, the travels of the magnetic flux into the adjacent magnets are suppressed, so that the efficient motor is realized.
- the magnets are surely stuck to the rotor core and also the travels of the magnetic flux into the adjacent magnets are suppressed, which is extremely efficient.
- Fig. 1 is a cross sectional view showing a motor of the first exemplary embodiment of the present invention.
- Fig. 2 shows a cross sectional view of a rotor of the motor of Fig. 1.
- Fig. 3 is a partially enlarged cross sectional view of the rotor illustrated in Fig. 2.
- a stator 1 is formed by laminating a plurality of stator cores 2 made of annular magnetic plates, and comprises a plurality of teeth 3 and a yoke 4 for connecting the roots of the teeth.
- the teeth 3 are provided with windings 5.
- the rotor is shaped into a cylinder having substantially the same shaft with the stator 1 and is disposed inside the stator leaving annular clearance.
- a rotating shaft 16 is fixed, and the rotor is supported by a bearing (not illustrated) for rotating on the shaft 16.
- the rotor has eight permanent magnet slits 13 formed inside a rotor core 11, and these slits are disposed, along the rotating direction of the rotor, at the intervals of substantially same spacing and are extended through the core along the direction of the shaft.
- plate shaped permanent magnets 12 are inserted, then eight rotor magnetic poles are created. The rotor is rotated by the attracting and the repulsing force of the magnetic poles of the rotor to the stator teeth 3 which have rotating magnetic fields created by the electric current which runs through the stator windings 5.
- the adhesive applied to the walls of the slits 13 remains at least at the grooves 14 without being pressed out by the inserted magnet 12, so that the magnets 12 are stuck to the rotor core 11 with the remaining adhesive.
- the grooves 14 are formed at the inside slit 13 wall facing inner rim of the rotor core and also at both slit 13 corners facing the outer rim of the rotor core.
- the reason why the grooves 14 are formed at the outer rotor rim side corners of the slits 13 is as follows.
- Each of the magnets 12 has different polarities between the inner core rim side and the outer rotor rim side, so that there is the possibility of the magnetic flux short circuit of magnets 12 themselves.
- the grooves 14 illustrated in Fig. 3 the magnetic flux short circuit at the ends of the magnets 12 from one side to the other side of the magnets is suppressed.
- the suppression of the short circuit at the magnet ends becomes more effective and also the travels of the magnetic flux into the adjacent magnet, namely the magnetic flux leakage is decreased.
- the effective magnetic flux which is produced by the magnets 12 and contributes for generating torque by running into the stator 1 through the outer rotor core rim, increases.
- the strength of the rotor decreases, then there is the possibility of occurrence of a problem, for instance, at high speed rotation. In that case, by filling up the grooves 14 with the adhesive, the strength increases at the grooves 14 where the stress is concentrated during rotation, then the rotor withstands the high speed rotation.
- the magnets 12 inserted into the slits 13 and the rotor core 11 be in contact as much as possible. If there is an adhesive between the magnets 12 and the outer rotor rim side walls of the slits, the distance between the magnets 12 and the stator 1 becomes longer. Also, since the adhesive is generally non-magnetic material, if there is adhesive between the magnets 12 and the outer rotor rim side walls of the slits 13, the magnetic resistance increases, so that the magnetic flux, which is produced by the magnets 12 and runs into the stator 1, decreases.
- the magnets 12 and the rotor core 11 are contacted in at least one position, the decrease of the magnetic flux is suppressed. If the magnets 12 and the outer rotor rim side walls of slits 13 are solidly contacted, it is better. Further, if the magnets 12 and whole walls of each of the slits 13 are contacted except the portions of the grooves 14, it is still better from the stand point of generating the magnetic torque.
- the effective magnetic flux volume for generating the reluctance torque is not decreased for driving the motor utilizing the reluctance torque. Also even when the grooves 14 are formed at only inner core rim side walls of the slits 13, good effect is obtained.
- the adhesive filled in each groove spreads through the groove, so that the adhesive layers are surely formed.
- Fig. 4 is a cross sectional view showing the second exemplary embodiment of the present invention.
- a rotor core 21 is fixed to a rotating shaft 26, and grooves 24 are formed at the walls of permanent magnet slits 23, then at the grooves 24, adhesive layers are formed for sticking permanent magnets 22 inside the slits 23 of the rotor core 21.
- the grooves are formed at both slit 23 corners facing the outer rim of the rotor core, and also one groove and two grooves are alternately formed at each of the inner core rim side walls of the slits 23, along the rotating direction of the rotor.
- the rotor core 21 is formed as follows. A plurality of rotor core sheets made of magnetic plates are prepared, then on each of the sheets, the slits 23 and the grooves 24 are formed.
- the grooves 24 are formed at both slit 23 corners facing the outer rotor rim of the rotor core, and also one groove and two grooves are alternately formed at the inner core rim side wall of each of the slits 23 along the rotating direction of the rotor. Then the core sheets are laminated along the direction of the shaft, and each adjacent sheet is rotated by a predetermined angle so that each slit 23 agrees with each other.
- rotor core sheets are made, for instance, by pressing piece by piece. Then the sheets are laminated to the thickness unit of "P" and "Q" as shown in the illustration. Then the rotor core is formed by laminating these units, along the direction of the shaft, rotating each adjacent unit by the angle of permanent magnet disposition, namely in this exemplary embodiment 45° (360° / the number of rotor poles). Then by applying the adhesive to the grooves 24, enough adhesive layers are formed and the magnets 22 are surely stuck inside the slits 23.
- a plurality of the grooves 24 are formed at the inner core rim side walls of the slits 23.
- the grooves 24 are widely spread, so that the adhesive layers formed in the grooves 24 are evenly disposed.
- the rotor core 21 by forming the rotor core 21 with the method of laminating, along the shaft direction, rotated magnetic plates which has the different number of grooves on at least two different side walls of each of the slits 23, the grooves can be widely disposed with ease.
- the number of the grooves formed at inner core rim side walls is not limited to one or two, namely the number can be determined according to the necessity.
- the magnets 22 are more surely stuck to the rotor core 21.
- Fig. 6 is a cross sectional view showing the third exemplary embodiment of the present invention.
- a rotor is formed by laminating magnetic plates, and the rotor has a rotor core 31 fixed to a rotating shaft 36, permanent magnet slits 33 formed inside the outer rim of the rotor core 31, and plate shaped magnets 32 whose section is rectangular.
- the magnets 32 are stuck inside the slits 33 with an adhesive applied to the slits 33.
- grooves 34 of low magnetic induction are formed at both slit 33 corners facing the outer rim of the rotor core.
- the grooves 34 are extended through axially and are protruded toward the outer rotor rim side. With this structure, the distance between the outer rotor rim and the slits 33 becomes shortest at the points of the protruded grooves 34, which suppress the magnetic flux short circuit of the magnets 32 themselves at the ends of the magnets 32.
- the grooves at both rotor rim side corners of the slits 33 suppress the travels of the magnetic flux into the adjacent magnets.
- the interior permanent magnet motor which utilizes effectively reluctance torque as well as magnetic torque, is realized.
- the grooves 34 may be left empty, but it is better that these are filled up with an adhesive to increase the strength of the rotor.
- an adhesive By filling up the grooves 34 with an adhesive, the magnets 32 are stuck to the rotor core 31 with the adhesive layers in the grooves, even if the size of the slits 33 and the section size of the magnets 32 are adjusted to be substantially the same (naturally the magnets 32 are little smaller than the slits 33). Namely, when both sizes are almost same, there is possibility that the adhesive applied to the slits 33 is pressed out when the magnets 32 are inserted into the slits 33. However, by filling up the grooves 34 with the adhesive, at least the adhesive in the grooves 34 remains and the remaining adhesive surely sticks the magnets 32 to the rotor core 31.
- the grooves 34 are formed only at the corners of the slits 33. For instance, if the grooves are formed at the center part of the outer rotor rim side wall of each of the magnet slits 33, the magnetic flux is intercepted by the grooves. In addition, the magnets 32 and the walls of the slits 33 are better to be contacted as much as possible except the portions of grooves 34.
- the magnetic resistance between the magnets 32 and the outer rotor rim 35 becomes small, then the magnetic flux produced by the magnets 32 effectively runs to the outer rotor rim 35, then runs into the stator through the annular clearance between the rotor and the stator, and contributes effectively for generating the torque.
- Fig. 7 is a cross sectional view showing the fourth exemplary embodiment of the present invention.
- the difference from the third exemplary embodiment is that, in this exemplary embodiment, there are two types of permanent magnet slits 43 which are alternately disposed along the rotating direction of a rotor, one type has grooves 44 at both slit 43 corners facing the outer rim of the rotor core, and the other type has no groove.
- the travels of the magnetic flux into the adjacent magnets 43 are suppressed by the grooves 44, so that effective reluctance torque is obtained.
- Fig. 8 is a cross sectional view showing the fifth exemplary embodiment of the present invention.
- the grooves 54 are formed at one side of the outer rotor rim side corners of the permanent magnet slits 53. With this structure also, the travels of the magnetic flux into the adjacent magnets are suppressed by the groove 54 as in the third exemplary embodiment, so that an effective reluctance torque is obtained.
- the present invention as described above, in "an interior permanent magnet motor", by forming grooves at walls of permanent magnet slits formed inside the outer rim of a rotor core, and by forming adhesive layers in the grooves for sticking the inserted magnets to the rotor core, even if the slit size and the magnet section size are substantially same, since the adhesive remains at the grooves, the magnets are surely stuck to the rotor core.
- the magnets are set at one layer.
- the same effect is obtained on motors which have magnets at more than two layers, viz., on "a multi-layer interior permanent magnet motor”. And also the same effect is obtained on the motor which has magnetic poles other than eight.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27839397 | 1997-10-13 | ||
JP27839497A JP3970392B2 (ja) | 1997-10-13 | 1997-10-13 | 永久磁石埋め込み回転子 |
EP98119237A EP0909003B1 (fr) | 1997-10-13 | 1998-10-12 | Moteur avec un rotor comprenant des aimants permanents intérieurs |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98119237A Division EP0909003B1 (fr) | 1997-10-13 | 1998-10-12 | Moteur avec un rotor comprenant des aimants permanents intérieurs |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1641103A2 true EP1641103A2 (fr) | 2006-03-29 |
EP1641103A3 EP1641103A3 (fr) | 2006-04-05 |
EP1641103B1 EP1641103B1 (fr) | 2008-08-20 |
Family
ID=26552856
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05025811A Expired - Lifetime EP1641103B1 (fr) | 1997-10-13 | 1998-10-12 | Moteur avec un rotor comprenant des aimants permanents intérieurs |
EP98119237A Expired - Lifetime EP0909003B1 (fr) | 1997-10-13 | 1998-10-12 | Moteur avec un rotor comprenant des aimants permanents intérieurs |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98119237A Expired - Lifetime EP0909003B1 (fr) | 1997-10-13 | 1998-10-12 | Moteur avec un rotor comprenant des aimants permanents intérieurs |
Country Status (3)
Country | Link |
---|---|
US (1) | US6353275B1 (fr) |
EP (2) | EP1641103B1 (fr) |
DE (2) | DE69833081T2 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008064969A1 (fr) * | 2006-12-01 | 2008-06-05 | Brose Fahrzeugteile Gmbh & Co. Kg, Würzburg | Rotor à aimant permanent doté de poches de réception d'aimants permanents fermées au moyen d'un ruban adhésif |
CN103516148A (zh) * | 2012-06-27 | 2014-01-15 | 丰田纺织株式会社 | 用于制造转子芯的方法 |
CN104022588A (zh) * | 2014-05-16 | 2014-09-03 | 铜陵和武机械制造有限责任公司 | 一种转子 |
CN104037964A (zh) * | 2014-05-16 | 2014-09-10 | 铜陵和武机械制造有限责任公司 | 一种防震转子 |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6563246B1 (en) * | 1999-10-14 | 2003-05-13 | Denso Corporation | Rotary electric machine for electric vehicle |
JP3523557B2 (ja) * | 2000-03-03 | 2004-04-26 | 株式会社日立製作所 | 永久磁石式回転電機及びそれを用いたハイブリット電気自動車 |
JP4363746B2 (ja) * | 2000-05-25 | 2009-11-11 | 株式会社東芝 | 永久磁石式リラクタンス型回転電機 |
JP2002010547A (ja) * | 2000-06-16 | 2002-01-11 | Yamaha Motor Co Ltd | 永久磁石回転子及びその製造方法 |
DE10056036A1 (de) * | 2000-11-11 | 2002-05-29 | Bosch Gmbh Robert | Anker |
US6809456B2 (en) * | 2001-02-08 | 2004-10-26 | Jae Shin Yun | Vector motor |
JP3797122B2 (ja) * | 2001-03-09 | 2006-07-12 | 株式会社日立製作所 | 永久磁石式回転電機 |
US6552459B2 (en) | 2001-03-20 | 2003-04-22 | Emerson Electric Co. | Permanent magnet rotor design |
JP2002320363A (ja) * | 2001-04-20 | 2002-10-31 | Denso Corp | 車両用発電電動機 |
DE10131474A1 (de) * | 2001-06-29 | 2003-05-28 | Bosch Gmbh Robert | Elektrische Maschine |
JP2003088076A (ja) * | 2001-09-03 | 2003-03-20 | Jianzhun Electric Mach Ind Co Ltd | 直流ブラシレスモーター |
US7230359B2 (en) * | 2002-03-22 | 2007-06-12 | Ebm-Papst St. Georgen Gmbh & Co. Kg | Electric motor with poles shaped to minimize cogging torque |
DE10227129A1 (de) * | 2002-06-18 | 2004-01-29 | Cornelius Peter | Elektrische Maschine |
US6946766B2 (en) * | 2002-08-28 | 2005-09-20 | Emerson Electric Co. | Permanent magnet machine |
US6891298B2 (en) * | 2002-08-28 | 2005-05-10 | Emerson Electric Co. | Interior permanent magnet machine with reduced magnet chattering |
US6717314B2 (en) * | 2002-08-28 | 2004-04-06 | Emerson Electric Co. | Interior permanent magnet motor for use in washing machines |
US6727623B2 (en) * | 2002-08-28 | 2004-04-27 | Emerson Electric Co. | Reduced impedance interior permanent magnet machine |
US20050057106A1 (en) * | 2002-12-10 | 2005-03-17 | Ballard Power Systems Corporation | Methods and systems for electric machines having windings |
US20040217666A1 (en) * | 2002-12-11 | 2004-11-04 | Ballard Power Systems Corporation | Rotor assembly of synchronous machine |
US7057323B2 (en) * | 2003-03-27 | 2006-06-06 | Emerson Electric Co. | Modular flux controllable permanent magnet dynamoelectric machine |
US6946762B2 (en) | 2003-08-26 | 2005-09-20 | Deere & Co. | Electric motor drive for a reel mower |
US6984908B2 (en) * | 2003-08-26 | 2006-01-10 | Deere & Company | Permanent magnet motor |
DE10357502A1 (de) * | 2003-12-09 | 2005-07-07 | BSH Bosch und Siemens Hausgeräte GmbH | Elektrische Maschine |
US6911756B1 (en) * | 2004-03-23 | 2005-06-28 | Chio-Sung Chang | Rotor core with magnets on the outer periphery of the core having a sine or trapezoidal wave |
JP4599088B2 (ja) * | 2004-05-13 | 2010-12-15 | 東芝コンシューマエレクトロニクス・ホールディングス株式会社 | 回転電機の回転子及びその製造方法 |
JP2008501080A (ja) * | 2004-05-28 | 2008-01-17 | 松下電器産業株式会社 | 密閉型圧縮機 |
JP4734957B2 (ja) * | 2005-02-24 | 2011-07-27 | トヨタ自動車株式会社 | ロータ |
JP4867194B2 (ja) * | 2005-04-28 | 2012-02-01 | トヨタ自動車株式会社 | ロータ |
JP4626405B2 (ja) * | 2005-06-01 | 2011-02-09 | 株式会社デンソー | ブラシレスモータ |
TW200701595A (en) * | 2005-06-28 | 2007-01-01 | Delta Electronics Inc | Motor rotor |
DE102005048546A1 (de) * | 2005-10-11 | 2007-04-12 | Robert Bosch Gmbh | Rotor für eine elektrische Maschine |
DE102005049541A1 (de) * | 2005-10-17 | 2007-04-19 | Robert Bosch Gmbh | Rotor für eine elektrische Maschine |
US7504754B2 (en) | 2005-10-31 | 2009-03-17 | Caterpillar Inc. | Rotor having multiple permanent-magnet pieces in a cavity |
US7436095B2 (en) | 2005-10-31 | 2008-10-14 | Caterpillar Inc. | Rotary electric machine |
US7436096B2 (en) | 2005-10-31 | 2008-10-14 | Caterpillar Inc. | Rotor having permanent magnets and axialy-extending channels |
DE102006006882A1 (de) * | 2005-11-21 | 2007-05-24 | Robert Bosch Gmbh | Elektromaschine und Rotor für eine Elektromaschine |
JP4854001B2 (ja) * | 2005-11-29 | 2012-01-11 | 三菱重工プラスチックテクノロジー株式会社 | 射出成形機用モータ、埋め込み磁石型モータの回転子 |
US20100295401A1 (en) * | 2006-01-13 | 2010-11-25 | Matsushita Electric Industrial Co., Ltd. | Motor and device using the same |
JP4842670B2 (ja) * | 2006-02-27 | 2011-12-21 | トヨタ自動車株式会社 | ロータおよび電動車両 |
US7385328B2 (en) * | 2006-05-23 | 2008-06-10 | Reliance Electric Technologies, Llc | Cogging reduction in permanent magnet machines |
JP4725442B2 (ja) * | 2006-07-10 | 2011-07-13 | トヨタ自動車株式会社 | Ipmロータおよびipmロータの製造方法 |
US7932658B2 (en) * | 2007-03-15 | 2011-04-26 | A.O. Smith Corporation | Interior permanent magnet motor including rotor with flux barriers |
US7923881B2 (en) * | 2007-05-04 | 2011-04-12 | A.O. Smith Corporation | Interior permanent magnet motor and rotor |
US20090140593A1 (en) * | 2007-11-30 | 2009-06-04 | Gm Global Technology Operations, Inc. | Methods and apparatus for a permanent magnet machine with added rotor slots |
EP2304863B1 (fr) * | 2008-07-30 | 2018-06-27 | Regal Beloit America, Inc. | Moteur à aimants permanents intérieurs comprenant un rotor avec des pôles inégaux |
JP5433198B2 (ja) | 2008-10-16 | 2014-03-05 | 日立オートモティブシステムズ株式会社 | 回転電機及び電気自動車 |
US8528686B2 (en) * | 2008-12-12 | 2013-09-10 | Steering Solutions Ip Holding Corporation | Methods and systems involving electromagnetic torsion bars |
JP5418467B2 (ja) * | 2010-11-02 | 2014-02-19 | 株式会社安川電機 | 回転電機 |
JP5378345B2 (ja) * | 2010-12-09 | 2013-12-25 | 株式会社日立産機システム | 永久磁石モータ及びその製造方法 |
KR20130019088A (ko) * | 2011-08-16 | 2013-02-26 | 엘지이노텍 주식회사 | 모터의 적층 로터 코어 |
US9634530B2 (en) | 2013-03-15 | 2017-04-25 | Steering Solutions Ip Holding Corporation | Interior permanent magnet motor with shifted rotor laminations |
JP5892106B2 (ja) * | 2013-04-15 | 2016-03-23 | 株式会社安川電機 | 回転電機及び回転子の製造方法 |
WO2015037127A1 (fr) * | 2013-09-13 | 2015-03-19 | 三菱電機株式会社 | Moteur électrique à aimant permanent intégré, compresseur et dispositif de réfrigération et de climatisation |
WO2015087445A1 (fr) | 2013-12-13 | 2015-06-18 | 三菱電機株式会社 | Machine électrique rotative de type à aimants permanents intégrés |
CN104883024A (zh) * | 2014-02-27 | 2015-09-02 | 睿能机电有限公司 | 一种直流无刷电机用永磁体内嵌式转子 |
US9985485B2 (en) * | 2014-04-01 | 2018-05-29 | GM Global Technology Operations LLC | Magnet insert design for rotor lamination |
JP6403982B2 (ja) * | 2014-04-30 | 2018-10-10 | マブチモーター株式会社 | ブラシレスモータ |
CN104283344A (zh) * | 2014-05-28 | 2015-01-14 | 莱克电气股份有限公司 | 一种转子及其加工装配方法 |
US10523071B2 (en) | 2014-07-04 | 2019-12-31 | Samsung Electronics Co., Ltd. | Magnetic motor with stator and rotor |
US9787148B2 (en) * | 2015-01-07 | 2017-10-10 | Asmo Co., Ltd. | Motor |
KR102446182B1 (ko) * | 2015-05-27 | 2022-09-22 | 엘지이노텍 주식회사 | 로터 및 상기 로터를 포함하는 모터 |
DE102015110617A1 (de) | 2015-07-01 | 2017-01-05 | Metabowerke Gmbh | Rotor für einen Elektromotor |
US10389196B2 (en) * | 2016-03-31 | 2019-08-20 | Nidec Motor Corporation | Spoked rotor with tapered pole segments and tapered ear recesses |
US10790721B2 (en) | 2018-06-04 | 2020-09-29 | Abb Schweiz Ag | Bonded rotor shaft |
CN114072989A (zh) * | 2019-07-11 | 2022-02-18 | 三菱电机株式会社 | 转子、电动机及转子的制造方法 |
JP2022116563A (ja) * | 2021-01-29 | 2022-08-10 | 株式会社ミクニ | 永久磁石埋込型モータ及びポンプ装置 |
US11646617B2 (en) * | 2021-08-30 | 2023-05-09 | Hiwin Mikrosystem Corp. | High-frequency rotating structure with permanent magnet rotor having grooves and magnetic barrier spaces |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4486679A (en) * | 1983-10-28 | 1984-12-04 | General Electric Company | Permanent magnet rotor and method of making same |
JPH05236684A (ja) * | 1992-02-20 | 1993-09-10 | Daikin Ind Ltd | ブラシレスdcモータ |
JPH09261901A (ja) * | 1996-03-21 | 1997-10-03 | Hitachi Ltd | 永久磁石回転電機及びそれを用いた電動車両 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4322648A (en) * | 1980-03-03 | 1982-03-30 | Allen-Bradley Company | Permanent magnet motor armature |
GB2217924B (en) * | 1988-04-25 | 1992-10-07 | Matsushita Electric Works Ltd | Permanent magnet rotor |
US5159220A (en) * | 1990-06-25 | 1992-10-27 | General Electric Company | Realizations of folded magnet AC motors |
JPH05284680A (ja) * | 1992-04-01 | 1993-10-29 | Toshiba Corp | 永久磁石式回転子 |
JPH07107687A (ja) * | 1993-09-30 | 1995-04-21 | Toyota Motor Corp | 回転子 |
JPH08251850A (ja) | 1995-03-14 | 1996-09-27 | Fuji Electric Co Ltd | 原動機回転子 |
JP3487667B2 (ja) * | 1995-03-15 | 2004-01-19 | 松下電器産業株式会社 | ロータの構造 |
US5811904A (en) * | 1996-03-21 | 1998-09-22 | Hitachi, Ltd. | Permanent magnet dynamo electric machine |
US6133662A (en) * | 1996-09-13 | 2000-10-17 | Hitachi, Ltd. | Permanent magnet dynamoelectric rotating machine and electric vehicle equipped with the same |
-
1998
- 1998-10-12 DE DE69833081T patent/DE69833081T2/de not_active Expired - Lifetime
- 1998-10-12 EP EP05025811A patent/EP1641103B1/fr not_active Expired - Lifetime
- 1998-10-12 EP EP98119237A patent/EP0909003B1/fr not_active Expired - Lifetime
- 1998-10-12 DE DE69839927T patent/DE69839927D1/de not_active Expired - Lifetime
- 1998-10-13 US US09/170,702 patent/US6353275B1/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4486679A (en) * | 1983-10-28 | 1984-12-04 | General Electric Company | Permanent magnet rotor and method of making same |
JPH05236684A (ja) * | 1992-02-20 | 1993-09-10 | Daikin Ind Ltd | ブラシレスdcモータ |
JPH09261901A (ja) * | 1996-03-21 | 1997-10-03 | Hitachi Ltd | 永久磁石回転電機及びそれを用いた電動車両 |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 017, no. 698 (E-1481), 20 December 1993 (1993-12-20) -& JP 05 236684 A (DAIKIN IND LTD), 10 September 1993 (1993-09-10) * |
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 02, 30 January 1998 (1998-01-30) -& JP 09 261901 A (HITACHI LTD;HITACHI CAR ENG CO LTD), 3 October 1997 (1997-10-03) * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008064969A1 (fr) * | 2006-12-01 | 2008-06-05 | Brose Fahrzeugteile Gmbh & Co. Kg, Würzburg | Rotor à aimant permanent doté de poches de réception d'aimants permanents fermées au moyen d'un ruban adhésif |
US8324778B2 (en) | 2006-12-01 | 2012-12-04 | Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg | Permanent magnet rotor with accommodating pockets, sealed by means of an adhesive film, for the permanent magnets |
CN101601179B (zh) * | 2006-12-01 | 2013-01-09 | 博泽汽车部件有限公司及两合公司,乌茨堡 | 具有借助于粘合膜封闭的永磁体接纳槽的永磁体转子 |
KR101345850B1 (ko) * | 2006-12-01 | 2013-12-30 | 브로제 파르초이크타일레 게엠베하 운트 코. 카게, 뷔르츠부르크 | 영구 자석용 수용 포켓이 접착 필름에 의해 시일되는 영구 자석 로터 |
CN103516148A (zh) * | 2012-06-27 | 2014-01-15 | 丰田纺织株式会社 | 用于制造转子芯的方法 |
US9755489B2 (en) | 2012-06-27 | 2017-09-05 | Toyota Boshoku Kabushiki Kaisha | Method for manufacturing rotor core |
CN104022588A (zh) * | 2014-05-16 | 2014-09-03 | 铜陵和武机械制造有限责任公司 | 一种转子 |
CN104037964A (zh) * | 2014-05-16 | 2014-09-10 | 铜陵和武机械制造有限责任公司 | 一种防震转子 |
CN104022588B (zh) * | 2014-05-16 | 2016-09-07 | 铜陵和武机械制造有限责任公司 | 一种转子 |
CN104037964B (zh) * | 2014-05-16 | 2017-01-11 | 铜陵和武机械制造有限责任公司 | 一种防震转子 |
Also Published As
Publication number | Publication date |
---|---|
US6353275B1 (en) | 2002-03-05 |
EP1641103B1 (fr) | 2008-08-20 |
EP0909003A3 (fr) | 2000-09-13 |
EP0909003A2 (fr) | 1999-04-14 |
DE69833081D1 (de) | 2006-03-30 |
EP1641103A3 (fr) | 2006-04-05 |
DE69833081T2 (de) | 2006-08-31 |
DE69839927D1 (de) | 2008-10-02 |
EP0909003B1 (fr) | 2006-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0909003B1 (fr) | Moteur avec un rotor comprenant des aimants permanents intérieurs | |
EP0923186B1 (fr) | Moteur électrique du type à aimants permanents | |
JP5961344B2 (ja) | 永久磁石を備える、磁束収束タイプの同期回転電気機械 | |
KR101018990B1 (ko) | 영구 여기된 전기 기계의 회전자 박판들의 배치 | |
KR100877465B1 (ko) | 단상 전동기 및 밀폐형 압축기 | |
US6703744B2 (en) | Generator-motor for vehicle | |
EP0678967A1 (fr) | Rotor pour moteur à aimants permanents | |
JP2006158008A (ja) | 永久磁石埋め込み型ロータ及び回転電機 | |
JP7293371B2 (ja) | 回転電機の回転子 | |
EP1744437B1 (fr) | Moteur auto-magnétisant et stator pour ceci | |
CN113273057B (zh) | 具有磁通分配空隙的内置永磁体电机 | |
JP2000245087A (ja) | 永久磁石電動機 | |
JP3776171B2 (ja) | 磁石回転子 | |
US7388309B2 (en) | Magnetic circuit structure for rotary electric machine | |
WO2021235267A1 (fr) | Rotor et moteur électrique | |
JPH11191939A (ja) | 永久磁石を埋設したロータを用いたモータ | |
KR102492064B1 (ko) | 계자 권선형 모터용 로터 | |
JP2002238190A (ja) | 永久磁石形電動機の回転子及び永久磁石形電動機の回転子の製造方法及び永久磁石形電動機及び圧縮機及び冷凍サイクル | |
JP2001359263A (ja) | 磁石併用同期機 | |
WO2020146309A1 (fr) | Machine électrique à aimants permanents intérieurs à structure de pont effilé | |
JP2014225959A (ja) | 回転電機の回転子及びその製造方法 | |
JP7520998B2 (ja) | 回転子 | |
JP7114005B1 (ja) | 回転電機 | |
JP2000037052A (ja) | 永久磁石回転電機 | |
WO2022219923A1 (fr) | Rotor et moteur électrique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
17P | Request for examination filed |
Effective date: 20051125 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 0909003 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20060620 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 0909003 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69839927 Country of ref document: DE Date of ref document: 20081002 Kind code of ref document: P |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: PANASONIC CORPORATION |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20121018 Year of fee payment: 15 Ref country code: DE Payment date: 20121010 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20121010 Year of fee payment: 15 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20131012 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69839927 Country of ref document: DE Effective date: 20140501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131012 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140501 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131031 |