EP1636402A2 - Kontaktoberflächen für elektrische kontakte und verfahren zur herstellung - Google Patents

Kontaktoberflächen für elektrische kontakte und verfahren zur herstellung

Info

Publication number
EP1636402A2
EP1636402A2 EP04741622A EP04741622A EP1636402A2 EP 1636402 A2 EP1636402 A2 EP 1636402A2 EP 04741622 A EP04741622 A EP 04741622A EP 04741622 A EP04741622 A EP 04741622A EP 1636402 A2 EP1636402 A2 EP 1636402A2
Authority
EP
European Patent Office
Prior art keywords
metal
alloys
deposited
layer
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04741622A
Other languages
English (en)
French (fr)
Inventor
Peter Rehbein
Volker Haas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1636402A2 publication Critical patent/EP1636402A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • H01R13/035Plated dielectric material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Definitions

  • the invention relates to improved contact surfaces for electrical contacts and a method for their production according to the preamble of the independent claims.
  • substrates made of a copper-based alloy are typically used, which ensures good electrical conductivity.
  • the substrate is made of a copper-based alloy with high strength and high stress relaxation resistance.
  • a cover layer is often applied to the substrate in order to reduce the insertion forces, wear, oxidation, to ensure the electrical function and to reduce tarnishing of the copper-based substrate at elevated temperature, and to improve the solderability.
  • Typical cover layers consist of silver, gold, nickel, palladium / nickel alloys, tin or tin alloys.
  • Tin is often used to minimize costs, and these are usually hot-dip tinned or galvanically deposited layers with thicknesses in the range of a few ⁇ m. Tin is characterized by its ductility and its good electrical conductivity. Disadvantages of these tin cover layers are their high susceptibility to fretting corrosion, their plastic deformation, their tendency to adhesion and their low wear resistance.
  • the substrate consists of copper-based alloys such as CuSn-Bronze, CuNiSi, etc., which often serve as the base material for electrical connectors. At elevated temperatures, copper can diffuse out of the substrate and settle with it Tin combined to form intermetallic compounds such as Cu 6 Sn 5 and Cu 3 Sn The formation of these intermetallic compounds reduces the amount of unreacted or free tin on the surface, which degrades the electrical, corrosion and other performance characteristics.
  • thermal tin has not proven to be a successful solution under all test conditions (e.g. chemical tests or abrasive loads) and therefore only has a negligible market share.
  • US-A-5,916,695 discloses electrical contact with a copper-based substrate provided with a tin-based top layer.
  • a barrier layer is applied between the substrate and the cover layer.
  • This barrier layer contains 20 to 40% by weight of nickel and preferably consists mainly of copper (Cu-based).
  • the tin-based cover layer can contain additives such as SiO 2 , Al 2 O 3 , SiC, graphite or MoS 2 as lubricants.
  • the contact surfaces according to the invention have the advantage over the prior art that, with good contacting, they require lower insertion forces.
  • antioxidants in the lubricant contained offers protection of the surface against corrosion.
  • a diffusion barrier layer is additionally deposited on the substrate.
  • the essence of the invention is the construction of a cover layer on a copper-based substrate for electrical contacts, which allows lower plug-in forces to be required with consistently good contacting and that good wear resistance is achieved over the entire service life of the electrical contact.
  • a contact surface 12 is first produced on the electrical contact, ie on the copper-based substrate 10, by means of galvanic processes, for example high-speed deposition in belt systems.
  • a metal for example tin, silver or copper
  • placeholder material a further substance that can be easily removed from the metal at a later time
  • the layer thickness is generally between approximately 0.5 and approximately 10 ⁇ m.
  • the placeholder material can be polystyrene balls, for example. However, latex balls or other plastics are also conceivable that can be easily thermally decomposed or dissolved.
  • Polyethylene, base metals, sulfur, phosphorus, sulfur compounds, phosphorus compounds, sisal, corn starch and the like can also be used.
  • the detachment of the substance can be carried out by means of thermal and / or solvent treatment, e.g. dissolving the polystyrene balls in toluene.
  • Thermal treatment lends itself to substances that decompose easily and pass into the gas phase, treatment with solvents, for example toluene, acetone, cleaning gasoline, alcohols and the like, is preferred if, for example, a thermal load causes a Melt forms, which is difficult to remove, or if it is easier, faster or cheaper in terms of process technology.
  • a highly porous skeleton formed by the metal, the so-called metal foam 14 remains. The pores form over the entire layer. It is important to ensure that the percentage of pores is in the range of approx. 20 to approx. 50%, otherwise the percolation of the lubricant is not guaranteed. If problems with mechanical stability should occur, the pore content should be adjusted so that the layer is also mechanically stable.
  • this metal foam is soaked with a lubricant.
  • This lubricant can be both solid lubricants such as graphite, MoS 2 and the like, as well as liquid lubricants such as oils or greases dissolved in solvents.
  • the lubricant Due to the very large capillary action due to the small pores 16 (average pore size in the range of 0.1 to 5 ⁇ m) of the metal foam 14, the lubricant is sucked into the pores 16 and held there. It is also possible to dissolve a solid lubricant in a solvent and then let it soak in. In this way, the metal foam represents a retention volume for the lubricant. It can therefore not be removed from the wear area be driven out and is available over the entire life of the contact.
  • the deposited metal can be, for example, copper and Cu alloys, for example with Be or similar metals, Sn and Sn alloys, in particular Sn-Ag, Ag and Ag alloys, and Au and Au alloys. Trade alloys. These metals can be used with or without diffusion barriers such as nickel plating, as well as with or without flash made of precious metal such as Au, Pt, Ru or Pd, these are preferably deposited on the Cu alloys.
  • the layer thickness of the deposited layer is generally between about 0.5 and 10 ⁇ m.
  • the pore geometry can be either round or multifaceted.
  • the average pore size depends on the size distribution of the placeholder material used and on the layer thickness, whereby pore size ⁇ layer thickness applies. Whether the pore geometry is round or extensive depends on the morphology of the placeholder material used. The proportion of pores is between 1 and 80% by volume of the layer formed.
  • the contact surfaces according to the invention allow lower insertion forces due to the lubricant present, which is preferably oil or fat, but can also be a solid lubricant in the form of graphite, MoS 2 or the like. Good contacting is guaranteed due to the electrical conductivity of the (solid) lubricant. Antioxidants contained in the lubricant protect the surface from corrosion, high wear resistance and a high number of mating cycles are obtained.
  • a great advantage of the contact surfaces according to the invention lies in the fact that the porous metal foam has a retention volume for the lubricant provides. This cannot be driven out of the wear hub and is therefore available over the entire service life of the contact.
  • 10 g / l polystyrene balls with a diameter of approximately 1 ⁇ m are electrodeposited together with Ag.
  • the polystyrene balls are installed in the Ag layer.
  • the balls are then removed with toluene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Contacts (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Switches (AREA)

Abstract

Es wird ein Verfahren zum Herstellen von Kontaktoberflächen für elektrische Kontakte vorgestellt, wobei auf einem kupferbasierten Substrat ein Metall mittels galvanischer Verfahren abgeschieden wird. Das Metall wird zusammen mit einem leicht aus dem Metall herauslösbaren Platzhaltermaterial auf dein Substrat abgeschieden, anschließend wird das Platzhaltermaterial aus der Metallschicht herausgelöst und der zurückbleibende poröse Metallschaum mit einem Schmiermittel getränkt.

Description

Kontaktoberflächen für elektrische Kontakte und Verfahren zur Herstellung
Die Erfindung betrifft verbesserte Kontaktoberflächen für elektrische Kontakte und ein Verfahren zu deren Herstellung nach dem Oberbegriff der unabhängigen Ansprüche.
Stand der Technik
In elektrischen Steckverbindern mit Buchsen, Kontakten und Messern (Pins) werden typischerweise Substrate aus einer Legierung auf Kupferbasis, das für eine gute elektrische Leitfähigkeit sorgt, angewendet. Wenn der elektrische Verbinder während des Betriebs erhöhter Temperatur ausgesetzt wird, wie bspw. unter der Motorhaube eines Kraftfahrzeugs, wird das Substrat aus einer Legierung auf Kupferbasis mit hoher Festigkeit und hohem Spannungsrelaxations- Widerstand hergestellt.
Zur Verringerung der Steckkräfte, des Verschleißes, der Oxidation, um die elektrische Funktion zu gewährleisten und ein Anlaufen des Substrats auf Kupferbasis bei erhöhter Temperatur zu verringern, sowie zur Verbesserung der Lötbarkeit wird häufig eine Deckschicht auf das Substrat aufgebracht. Typische Deckschichten bestehen aus Silber, Gold, Nickel, Palladium/Nickel-Legierungen, Zinn oder Zinnlegierungen. Zur Kostenminimierung wird häufig Zinn verwendet, wobei es sich meist um feuerverzinnte oder galvanisch abgeschiedene Schichten mit Dicken im Bereich weniger μm handelt. Hierbei zeichnet sich Zinn durch seine Duktilität sowie durch seine gute elektrische Leitfähigkeit aus. Nachteile dieser Zinn-Deckschichten Hegen in der hohen Reibkorrosionsanfälligkeit, seiner plastischen Verformung, seiner Adhäsionsneigung und seinem geringen Verschleißwiderstand. "Üblicherweise besteht das Substrat aus Kupfer-Basis-Legierungen wie z.B. CuSn- Bronze, CuNiSi, usw., die häufig als Grundwerkstoff iur elektrische Steckverbindungen dienen. Bei erhöhten Temperaturen kann es dazu kommen, dass Kupfer aus dem Substrat heraus diffundiert und sich mit dem Zinn unter Bildung intermetallischer Verbindungen wie Cu6Sn5 und Cu3Sn vereinigt. Die Bildung dieser intermetallischen Verbindungen verringert die Menge an unreagiertem oder freiem Zinn an der Oberfläche. Dies verschlechtert die elektrischen, Korrosions- und andere Leistungsmerkmale.
Als Thermozinn ist eine durch Warmauslagerung entstehende "Zirmschicht" bekannt, die zu 100% aus intermetallischen Phasen besteht. Darüber hinaus werden häufig AuCo-Legierungen mit Untemickelung sowie Ag-Oberflächen, z.T. mit Unterkupferung oder Untemickelung, eingesetzt.
Thermozinn hat sich bislang jedoch nicht unter allen Prüfbedingungen (z.B. chemische Tests oder abrasive Belastung) als erfolgreiche Lösung herausgestellt und hat daher nur einen vernachlässigbar kleinen Marktanteil.
Es ist weiterhin bekannt, dass Zinnlegierungen aufgrund ihrer geringen Härte bzw. ihres geringen Verschleißwiderstandes durch häufiges Stecken oder fahrzeug- bzw. motorbedingte Vibrationen leicht zur verstärkten Oxidation (Reibkorrosion) und zum Durchrieb neigen. Dieser Durchrieb bzw. die Reibkorrosion können zu einem Ausfell einer Komponente (Sensor, Steuergerät, elektrische Komponenten allgemein) fuhren.
Hinzu kommt, dass die Steckkräfte aufgrund der hohen Adhäsionsneigung und der plastischen Verformung für viele Anwendungsfölle zu hoch sind. Speziell Oberflächen auf der Basis von Zinn und Silber neigen zur Kaltverschweißung aufgrund von Adhäsion und sind in Selbstpaarungen durch hohe Reibwerte gekennzeichnet (Reibungskoeffizient μ ~ 1). Auch bei herkömmlichen Silber- oder Goldschichten kann es bei einem Schichtdurchrieb oder Schichtabplatzern aufgrund schlechter Haftung zu oxidativen Verschleißvorgängen des Grundmaterials oder der Zwischenschicht (häufig Cu oder Ni) kommen.
Aufgrund der Altautorichtlinie EG 2000/53 ist es untersagt, bleihaltige Zinnschichten zu verwenden. Da das Blei die Whiskerbildung (Whisker sind winzige haarförmige Kristalle) in galvanischen Oberflächenbeschichtungen hemmt, kommt es bei galvanischem Reinzinn verstärkt zum Whiskerwachstum, was zu Kurzschlüssen führen kann.
Die US-A-5,916,695 offenbart einen elektrischen Kontakt mit einem kupferbasierten Substrat, das mit einer zinnbasierten Deckschicht versehen ist. Um die Diffusion des Kupfers aus dem Substrat in die Deckschicht und die damit verbundene Bildung von intermetallischen Schichten zu verhindern, wird zwischen dem Substrat und der Deckschicht eine Sperrschicht aufgebracht. Diese Sperrschicht enthält 20 bis 40 Gew.-% Nickel und besteht vorzugsweise hauptsächlich aus Kupfer (Cu-Basis). Die zinnbasierte Deckschicht kann u.a. Zusätze wie SiO2, AI2O3, SiC, Graphit oder MoS2 als Schmierstoffe enthalten.
Vorteile der Erfindung
Die erfindungsgemäßen Kontaktoberflächen haben gegenüber dem Stand der Technik den Vorteil, dass sie bei weiterhin guter Kontaktierung niedrigere Steckkräfte erfordern.
Weiterhin ist vorteilhaft, dass sie durch den Gehalt an Antioxidanzien im enthaltenen Schmierstoff einen Schutz der Oberfläche vor Korrosion bieten.
Ein weiterer Vorteil besteht darin, dass der Schmierstoff über die gesamte Lebensdauer des Kontakts zur Verfügung steht und bei tribologischen Prozessen freigesetzt werden kann. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Maßnahmen.
So ist bspw. vorteilhaft, wenn zusätzlich eine Diffüsionsbarriereschicht auf das Substrat abgeschieden wird.
Kurze Beschreibung der Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Die einzige Figur zeigt schematisch den Aufbau der erfindungsgemäßen Kontaktoberfläche.
Ausführungsbeispiele
Kern der Erfindung ist der Aufbau einer Deckschicht auf einem kupferbasierten Substrat für elektrische Kontakte, die es erlaubt, dass bei gleichbleibend guter Kontaktierung niedrigere Steckkräfte erforderlich sind, und dass über die gesamte Lebensdauer des elektrischen Kontakts eine gute Verschleißbeständigkeit erreicht wird.
Wie in der Figur gezeigt, wird zunächst auf dem elektrischen Kontakt, d.h., auf dem kupferbasierten Substrat 10 eine Kontaktoberfläche 12 mittels galvanischer Verfahren, z.B. Hochgeschwindigkeitsabscheidung in Bandanlagen, erzeugt. Dazu wird ein Metall, z.B. Zinn, Silber oder Kupfer, zusammen mit einem zu einem späteren Zeitpunkt wieder leicht aus dem Metall herauslösbaren weiteren Stoff (im folgenden „Platzhaltermaterial" genannt) bis zum Erreichen der gewünschten Schichtdicke abgeschieden. Abhängig von der jeweiligen Applikation, von wirtschaftlichen Erwägungen und vom gewählten Prozess liegt die Schichtdicke im Allgemeinen zwischen ungefähr 0,5 und ungefähr 10 μm. Bei dem Platzhaltermaterial kann es sich bspw. um Polystyrolkugeln handeln. Denkbar sind aber auch Latexkugeln oder andere Kunststoffe, die gut thermisch zersetzt bzw. aufgelöst werden können. Auch Polyethylen, unedle Metalle, Schwefel, Phosphor, Schwefelverbindungen, Phosphorverbindungen, Sisal, Maisstärke und dgl. können verwendet werden.
Das Herauslösen des Stoffes kann mittels thermischer und/oder Lösungsmittelbehandlung, wie z.B. dem Lösen der Polystyrolkugeln in Toluol, erfolgen. Eine thermische Behandlung bietet sich bei Stoffen an, die sich leicht zersetzen und in die Gasphase übergehen, eine Behandlung mit Lösungsmitteln, bspw. Toluol, Aceton, Reinigungsbenzin, Alkohole und dgl., wird dann bevorzugt, wenn sich bspw. bei einer thermischen Belastung eine Schmelze bildet, die schwierig zu entfernen ist, oder aber wenn es prozesstechnisch einfacher, schneller oder kostengünstiger zu bewerkstelligen ist. Nach dem Herauslösen bleibt ein von dem Metall gebildetes hochgradig poröses Skelett, der sogenannte Metallschaum 14, zurück. Die Poren bilden sich dabei über die gesamte Schicht hinweg aus. Es ist dabei darauf zu achten, dass der Prozentanteil der Poren im Bereich von ca. 20 bis ca. 50% liegt, da sonst die Perkolation des Schmierstoffes nicht gewährleistet ist. Falls Probleme bzgl. der mechanischen Stabilität auftreten sollten, ist der Porenanteil so anzupassen, dass die Schicht auch mechanisch stabil ist.
In einem zweiten Schritt wird nun dieser Metallschaum mit einem Schmiermittel getränkt. Bei diesem Schmiermittel kann es sich sowohl um Festschmierstoffe wie bspw. Graphit, MoS2 und dgl., als auch um flüssige Schmierstoffe wie z.B. Öle oder in Lösungsmitteln gelöste Fette handeln.
Durch die aufgrund der kleinen Poren 16 (mittlere Porengröße im Bereich von 0,1 bis 5 μm) des Metallschaums 14 sehr großen Kapillarwirkung wird der Schmierstoff in die Poren 16 gesaugt und dort festgehalten. Es ist auch möglich, einen Festschmierstoff in einem Lösungsmittel zu lösen und dann einziehen zu lassen. Auf diese Weise stellt der Metallschaum ein Rückhaltevolumen für den Schmierstoff dar. Dieser kann somit nicht aus dem Verschleißgebiet herausgetrieben werden und steht über die gesamte Lebensdauer des Kontaktes zur Verfügung.
Bei dem abgeschiedenen Metall kann es sich bspw. um Kupfer und Cu- Legierungen, bspw. mit Be oder ähnlichen Metallen, um Sn- und Sn- Legierungen, insbesondere Sn-Ag, um Ag und Ag-Legierungen, sowie um Au und Au-Legierungen handeln. Dabei können diese Metalle mit oder auch ohne Diffusionsbarrieren wie Unternickelung, sowie mit oder ohne Flash aus Edelmetall wie z.B. Au, Pt, Ru oder Pd, diese vorzugsweise auf den Cu- Legierungen, abgeschieden werden.
Die Schichtdicke der abgeschiedenen Schicht liegt im Allgemeinen, je nach Anwendung, zwischen etwa 0,5 und 10 μm.
Bei einer mittleren Porengröße von ungefähr 0, 1 bis 5 μm kann die Porengeometrie entweder rund oder vielflächig sein. Die mittlere Porengröße hängt von der Größenverteilung des verwendeten Platzhaltermaterials sowie von der Schichtdicke ab, wobei gilt Porengröße < Schichtdicke. Ob die Porengeometrie rund oder vielflächig ist, hängt von der Morphologie des verwendeten Platzhaltermaterials ab. Der Porenanteil beträgt dabei zwischen 1 und 80 Vol.-% der gebildeten Schicht.
Die erfindungsgemäßen Kontaktoberflächen erlauben niedrigere Steckkräfte aufgrund des vorhandenen Schmierstoffs, der vorzugsweise Öl oder Fett ist, aber auch ein Festschmierstoff in Form von Graphit, MoS2 oder dgl. sein kann. Aufgrund der elektrischen Leitfähigkeit des (Fest-)Schmierstoffes ist eine gute Kontaktierung gewährleistet. Im Schmiermittel enthaltene Antioxidanzien schützen die Oberfläche vor Korrosion, es wird eine hohe Verschleißbeständigkeit sowie eine hohe Steckzyklenzahl erhalten. Ein großer Vorteil der erfindungsgemäßen Kontaktoberflächen liegt in der Tatsache gegründet, dass der poröse Metallschaum ein Rückhaltevolumen für den Schmierstoff zur Verfügung stellt. Dieser kann daher nicht aus der Verschleißnabe getrieben werden und steht somit über die gesamte Lebensdauer des Kontakts zur Verfügung.
Als Beispiel für das erfindungsgemäße Verfahren werden lOg/1 Polystyrolkugeln mit einem Durchmesser von ca. 1 μm zusammen mit Ag galvanisch abgeschieden. Dabei erfolgt der Einbau der Polystyrolkugeln in die Ag-Schicht. Anschließend werden dann die Kugeln mit Toluol wieder herausgelöst.

Claims

Ansprüche
1. Verfahren zum Herstellen von Kontaktoberflächen für elektrische Kontakte, wobei auf einem kupferbasierten Substrat ein Metall mittels galvanischer Verfahren abgeschieden wird, dadurch gekennzeichnet, dass das Metall zusammen mit einem leicht aus dem Metall herauslösbaren Platzhaltermaterial auf dem Substrat abgeschieden wird, anschließend das Platzhaltermaterial aus der Metallschicht herausgelöst, und der zurückbleibende poröse Metallschaum mit einem Schmiermittel getränkt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Metall ausgewählt ist aus der Gruppe bestehend aus Cu, Cu-Legierungen, Sn, Sn- Legierungen, Ag, Ag-Legierungen, sowie Au und Au-Legierungen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zusätzlich eine Diffusionsbarriereschicht auf das Substrat abgeschieden wird.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zusätzlich ein Flash aus Edelmetall auf dem Metall, insbesondere den Cu- Legierungen abgeschieden wird.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Platzhaltermaterial um ein Material handelt, das ausgewählt ist aus der Gruppe bestehend aus Kunststoff kugeln, Polyethylen, unedle Metalle, Schwefel, Phosphor, Schwefelverbindungen, Phosphorverbindungen, Sisal, Maisstärke und dgl.
6. Verfahren nach. Anspruch 5, dadurch gekennzeichnet, dass das Platzhaltermaterial aus Polystyrolkugeln oder Latexkugeln besteht.
7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Schichtdicke des abgeschiedenen Metalls im Bereich von 0,5 bis 10 μm liegt.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die mittlere Porengröße des Metallschaums im Bereich von 0,1 bis 5 μm liegt.
9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Porenanteil des Metallschaums im Bereich von 1 bis 25 Vol.-% der Schicht liegt.
10. Verfahren nach einem der vorstehenden Ansprüche, dass der Schmierstoff ausgewählt ist aus der Gruppe bestehend aus Graphit, M0S2, Polytetrafluorethylen (PTFE)3 Ölen und Fetten.
11. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Herauslösen des Platzhaltermaterials mittels thermischer und/oder Lösungsmittelbehandlung erfolgt.
12. Verbundmaterial, bestehend aus einem kupferbasierten Substrat und einer darauf angeordneten porösen Metallschicht.
13. Verbundmaterial nach Anspruch 12, dadurch gekennzeichnet, dass die Poren ein Schmiermittel enthalten.
14. Verwendung des Verbundmaterials nach Anspruch 12 oder 13 als Kontaktschicht für elektrische Kontakte.
EP04741622A 2003-06-13 2004-05-21 Kontaktoberflächen für elektrische kontakte und verfahren zur herstellung Withdrawn EP1636402A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003126788 DE10326788B4 (de) 2003-06-13 2003-06-13 Kontaktoberflächen für elektrische Kontakte und Verfahren zur Herstellung
PCT/EP2004/050881 WO2004111312A2 (de) 2003-06-13 2004-05-21 Kontaktoberflächen für elektrische kontakte und verfahren zur herstellung

Publications (1)

Publication Number Publication Date
EP1636402A2 true EP1636402A2 (de) 2006-03-22

Family

ID=33546557

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04741622A Withdrawn EP1636402A2 (de) 2003-06-13 2004-05-21 Kontaktoberflächen für elektrische kontakte und verfahren zur herstellung

Country Status (5)

Country Link
US (1) US20060204741A1 (de)
EP (1) EP1636402A2 (de)
JP (1) JP2006527305A (de)
DE (1) DE10326788B4 (de)
WO (1) WO2004111312A2 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855032B2 (ja) * 2005-09-29 2012-01-18 Dowaメタルテック株式会社 複合めっき材およびその製造方法
US7604871B2 (en) 2006-06-07 2009-10-20 Honeywell International Inc. Electrical components including abrasive powder coatings for inhibiting tin whisker growth
JP2008106290A (ja) * 2006-10-23 2008-05-08 Ricoh Co Ltd 電気接点部材
EP2092092A1 (de) * 2006-11-15 2009-08-26 Massachusetts Institute Of Technology Verfahren zur zuschneidung der oberflächentopographie eines nanokristallinen oder amorphen metalls oder einer nanokristallinen oder amorphen legierung und mithilfe dieser verfahren hergestellte artikel
EP2009146A1 (de) * 2007-06-22 2008-12-31 Danmarks Tekniske Universitet - DTU Mikroporöse Beschichtung oder Struktur und Herstellungsverfahren dafür
EP2006420A1 (de) * 2007-06-22 2008-12-24 Danmarks Tekniske Universitet - DTU Mikroporöse Schicht zur Minderung der Reibung bei Metallverformungsprozessen
JP2009209453A (ja) * 2008-02-05 2009-09-17 Kyushu Nogeden:Kk 錫めっき膜および該錫めっき膜を形成する錫めっき浴
FR2962856B1 (fr) * 2010-07-16 2012-08-17 Amc Holding Dispositif de connexion electrique a conductance amelioree
DE102011088793A1 (de) * 2011-12-16 2013-06-20 Tyco Electronics Amp Gmbh Elektrischer Steckverbinder mit mikrostrukturiertem Kontaktelement
JP5851231B2 (ja) * 2011-12-22 2016-02-03 日本圧着端子製造株式会社 部品
JP5851232B2 (ja) * 2011-12-22 2016-02-03 日本圧着端子製造株式会社 部品
KR20130096045A (ko) * 2012-02-21 2013-08-29 엘지전자 주식회사 다공성 금속 구조체 및 그 제조 방법
FR2996348B1 (fr) 2012-10-03 2015-05-15 Amc Holding Poudre et pate pour ameliorer la conductance des connexions electriques
FR2997788B1 (fr) 2012-11-05 2016-01-22 Amc Etec Dispositif de sectionnement d'une ligne d'alimentation electrique a courant de haute intensite
FR3008429A1 (fr) * 2013-07-12 2015-01-16 Commissariat Energie Atomique Procede de synthese d'une mousse metallique, mousse metallique, ses utilisations et dispositif comprenant une telle mousse metallique
DE102014005941A1 (de) * 2014-04-24 2015-11-12 Te Connectivity Germany Gmbh Verfahren zum Herstellen eines elektrischen Kontaktelements zur Vermeidung von Zinnwhiskerbildung, und Kontaktelement
JP6514031B2 (ja) * 2015-05-19 2019-05-15 日本圧着端子製造株式会社 圧着端子
DE102016214693B4 (de) * 2016-08-08 2018-05-09 Steinbeiss-Forschungszentrum, Material Engineering Center Saarland Elektrisch leitendes Kontaktelement für einen elektrischen Steckverbinder, elektrischer Steckverbinder, der ein solches Kontaktelement umfasst, und Verfahren zum Einschließen eines Hilfsstoffes unter der Kontaktoberfläche eines solchen Kontaktelements
JP7082337B2 (ja) * 2017-03-06 2022-06-08 帝国イオン株式会社 耐摩耗性皮膜及びその形成方法、並びに耐摩耗性部材
US20210265112A1 (en) * 2018-06-29 2021-08-26 Lg Chem, Ltd. Composite material
WO2020081448A1 (en) * 2018-10-15 2020-04-23 Semtech Corporation Semiconductor package for providing mechanical isolation of assembled diodes

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676308A (en) * 1969-06-19 1972-07-11 Udylite Corp Electrolytic codeposition of polyvinylidene and copolymer particles with copper
CH623851A5 (de) * 1975-10-04 1981-06-30 Akzo Nv
JPS5486041A (en) * 1977-12-14 1979-07-09 Daido Metal Co Ltd Bearing material
US4222828A (en) * 1978-06-06 1980-09-16 Akzo N.V. Process for electro-codepositing inorganic particles and a metal on a surface
JPS57110697A (en) * 1980-12-26 1982-07-09 Mazda Motor Corp Formation of abrasion resistant layer on metal surface
US4399339A (en) * 1981-03-02 1983-08-16 Cherry Electrical Products Corporation Electrical contact
JPS6045716B2 (ja) * 1982-05-21 1985-10-11 上村工業株式会社 複合めつき方法
JPS62158899A (ja) * 1986-01-08 1987-07-14 Toagosei Chem Ind Co Ltd 複合メツキ用樹脂
DE3735751A1 (de) * 1987-10-22 1989-05-03 Plansee Metallwerk Heteroporoeses formwerkzeug zur herstellung von gussformen aus formsand und verfahren zu dessen herstellung
US5141702A (en) * 1990-03-13 1992-08-25 Olin Corporation Method of making coated electrical connectors
US5227080A (en) * 1990-10-10 1993-07-13 Integral Corporation Intrinsically lubricated material compositions and products thereof
WO1997018905A1 (en) * 1995-11-20 1997-05-29 Berg Technology, Inc. Method of providing corrosion protection
US5916695A (en) * 1995-12-18 1999-06-29 Olin Corporation Tin coated electrical connector
US5667659A (en) * 1996-04-04 1997-09-16 Handy & Harman Low friction solder electrodeposits
US5967860A (en) * 1997-05-23 1999-10-19 General Motors Corporation Electroplated Ag-Ni-C electrical contacts
DE10246062A1 (de) * 2002-10-02 2004-04-15 Robert Bosch Gmbh Elektrischer Kontakt

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004111312A2 *

Also Published As

Publication number Publication date
WO2004111312A3 (de) 2005-06-16
DE10326788B4 (de) 2005-05-25
WO2004111312A2 (de) 2004-12-23
US20060204741A1 (en) 2006-09-14
DE10326788A1 (de) 2005-02-10
JP2006527305A (ja) 2006-11-30

Similar Documents

Publication Publication Date Title
DE10326788B4 (de) Kontaktoberflächen für elektrische Kontakte und Verfahren zur Herstellung
DE60200154T2 (de) Metallischer Gegenstand mit mehrlagigem Belag
DE10245343A1 (de) Elektrischer Kontakt
DE60221079T3 (de) Zinn-Silberbeschichtungen
DE102007047007A1 (de) Elektrisches Kontaktelement und ein Verfahren zum Herstellen desselben
DE19747756A1 (de) Klemmenmaterial und Anschlußklemme
DE102005005926A1 (de) Kontaktstecker
DE112007000680B4 (de) Edelmetallplattierung von Titankomponenten
EP1673836B1 (de) Kontaktoberflächen für elektrische kontakte
EP1157820B1 (de) Elektrisch leitfähiges Metallband und Steckverbinder
EP0919644A1 (de) Verfahren zur Herstellung eines metallischen Verbundbands
DE102014117410B4 (de) Elektrisches Kontaktelement, Einpressstift, Buchse und Leadframe
DE112013006396T5 (de) Anschlussverbinder und Verfahren zur Herstellung eines Anschlussverbinders
EP1421651B1 (de) Elektrischer kontakt
WO2015027982A1 (de) Kontaktelement mit goldbeschichtung
EP1158618A2 (de) Elektrisch leitfähiges Metallband und Steckverbinder hieraus
DE202005010364U1 (de) Zinnbeschichtete flexible Leiterplatten mit geringer Neigung zur Whiskerbildung
DE3838971C2 (de)
DE102011088211A1 (de) Kontaktelement und Verfahren zu seiner Herstellung
DE102005055742A1 (de) Verfahren zum Herstellen einer kontaktgeeigneten Schicht auf einem Metallelement
DE102018208116A1 (de) Kupferband zur Herstellung von elektrischen Kontakten und Verfahren zur Herstellung eines Kupferbandes und Steckverbinder
DE112017005378B4 (de) Elektrischer Kontaktpunkt, Verbinderanschlusspaar und Verbinderpaar
DE3434627A1 (de) Elektrischer gleitkontakt, insbesondere fuer kommutierungssysteme
DE10246062A1 (de) Elektrischer Kontakt
DE10139953A1 (de) Werkstoff für ein Metallband

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 20060113

17Q First examination report despatched

Effective date: 20110330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110810