EP1594651A1 - Vorrichtung und verfahren zur bearbeitung von elektrischen schaltungssubstraten mittels laser - Google Patents

Vorrichtung und verfahren zur bearbeitung von elektrischen schaltungssubstraten mittels laser

Info

Publication number
EP1594651A1
EP1594651A1 EP03785671A EP03785671A EP1594651A1 EP 1594651 A1 EP1594651 A1 EP 1594651A1 EP 03785671 A EP03785671 A EP 03785671A EP 03785671 A EP03785671 A EP 03785671A EP 1594651 A1 EP1594651 A1 EP 1594651A1
Authority
EP
European Patent Office
Prior art keywords
laser
khz
laser power
average
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03785671A
Other languages
English (en)
French (fr)
Inventor
Eddy Roelants
Stefan Lesjak
Sebastien Edme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Siemens AG
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Hitachi Via Mechanics Ltd filed Critical Siemens AG
Publication of EP1594651A1 publication Critical patent/EP1594651A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0038Etching of the substrate by chemical or physical means by laser ablation of organic insulating material combined with laser drilling through a metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0073Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces
    • H05K3/0082Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces characterised by the exposure method of radiation-sensitive masks

Definitions

  • the invention relates to an apparatus and a method for processing electrical circuit substrates
  • a workpiece holder for holding and positioning the substrate, a laser source with a diode-pumped, quality-controlled, pulsed solid-state laser,
  • EP 931 439 B1 discloses a method for forming at least two wiring levels on electrically insulating substrates, a laser, preferably an incad-YAG laser, being used both for drilling blind holes and for structuring conductor tracks.
  • a laser preferably an Arthurd-YAG laser
  • either the metal layer itself can be structured directly by the laser by partial ablation, or it is also possible to partially ablate an etching resist layer lying on the metal layer with the laser and then to etch away the area of the metal layer that is thereby exposed.
  • EP 1 115 031 A2 proposes using, for example, a titanium sapphire laser with repetition rates of more than 80 MHz, which generates a quasi-continuous UV laser beam.
  • the aim of the present invention is to provide a laser system and a corresponding laser processing method, which enables substrates to be processed using a wide variety of laser methods without costly additional investments and expensive retrofitting.
  • this aim is achieved with a device for processing electrical circuit substrates with a workpiece holder for holding and positioning the substrate, a laser source with a diode-pumped, quality-controlled, pulsed solid-state laser with a wavelength between 266 and 1064 nm, which is able to emit laser radiation in the following value ranges : - a pulse repetition frequency between 1 kHz and 1 MHz, - a pulse length of 30 ns to 200 ns and
  • an imaging unit and - a controller that is able to use the laser with different combinations depending on the application operate from medium laser power and repetition frequencies.
  • the inventive selection of the laser with a hitherto unknown spectrum of characteristic values and a controller that is able to set a predetermined combination of characteristic data for the type of substrate processing provided in each case makes it possible to carry out all laser processing steps occurring for printed circuit board processing, such as Boh - Removal of metal layers or of etch resist layers up to the mere exposure of photosensitive varnishes with a single laser source.
  • the effort for the provision of production facilities and for the changeover between different production steps is correspondingly simplified.
  • the device according to the invention is preferably operated with a laser with a wavelength between 350 and 550 nm, in particular with a UV laser with a 355 nm wavelength.
  • the laser can thus have a first operating mode for removing layers, in which it is operated with an average laser power of approximately 1 to 2 W and a repetition frequency of approximately 60 to 80 kHz. It should be noted that the somewhat higher laser power and the somewhat lower repetition frequency for structuring metallic layers, for example, and the somewhat lower laser power of approximately 1 W with the somewhat higher repetition frequency of 80 kHz for the removal of non-metallic layers, such as solder resist. is combined.
  • the laser In a second operating mode for drilling holes in metallic and dielectric layers of the circuit substrate, the laser can, for example, be set to an average laser power of 3 to 4 W and a repetition frequency of 10 to 30 kHz.
  • the laser is set to a significantly lower laser power in the order of about 100 mW at a repetition frequency of 200 kHz to 1 MHz.
  • a galvanometer mirror unit expediently serves as the deflection unit, which enables the high deflection speeds of typically 300 to 600 mm / s. With a suitable combination of laser power and spot diameter, a significantly higher deflection speed can also be used. At these speeds, the laser beam is moved essentially linearly when structuring layers, while circular movements are carried out in a known manner during drilling.
  • a method for processing an electrical circuit substrate wherein a laser with a wavelength between approximately 266 and approximately 1064 nm, a pulse repetition rate between 1 kHz and 1 MHz, a pulse length between 30 ns and 200 ns and an average laser power between approximately 0.1 W and approx. 5 W is used, has the following steps:
  • the substrate is fixed and positioned on a workpiece holder -
  • the laser beam is set to one of the following operating modes via a control unit: a) Drilling holes with an average laser power of 3 to 5 W, a repetition frequency of about 10 to 30 kHz. and a pulse length of approximately 30 to 50 ns, b) structuring of metallic or dielectric
  • the photosensitive layer exposed in operating mode c) is developed in a further step, and then the unexposed areas of the layer are removed.
  • FIG. 1 shows the schematic structure of a laser processing device designed according to the invention with a substrate provided for drilling holes
  • FIG. 2 shows a schematically illustrated substrate in which an etching resist layer is structured with the laser beam and the exposed pattern is subsequently etched
  • FIG. 3 shows a schematically shown substrate, in which a metallic surface layer is structured directly with the laser beam
  • FIG. 4 shows a schematically illustrated substrate, in which a photosensitive layer applied to a metal layer is exposed with the laser
  • FIG. 5 shows a substrate in plan view, in which, according to FIG. 4, a track is exposed with a laser and then washed out.
  • FIG. 1 the structure of a laser processing device is shown schematically.
  • the centerpiece is a laser 1, which is designed as a diode-pumped, quality-controlled, pulsed solid-state laser for the purposes of the invention.
  • the laser beam 2 emanating from this laser source is preferably emitted via a deflection unit 3 with two galvo mirrors 31 and 32 and one Imaging unit 4 formed by a lens is fed to a substrate 10 which is arranged on a receiving device 5, primarily a positioning table which can be adjusted in all directions.
  • a control unit 6 is used to control the device, which controls both the laser 1 and the “deflection unit 3 and the receiving device 5 in accordance with the desired processing.
  • the workpiece namely the substrate
  • the holding device 5 that is to say the positioning table
  • a certain field of the substrate intended for processing reaches the effective range of the laser beam 2 (X - Y positioning).
  • the substrate is held in the set position during laser processing, since the movements on the field to be processed are carried out by deflecting the laser beam via the deflection unit 3.
  • the deflection via galvo mirrors enables much higher speeds to be achieved than by adjusting the positioning table 5, which has a relatively large mass.
  • the deflection of the laser beam 2 on the field of the substrate 10 to be processed is therefore carried out by the control unit 6 via the galvo mirrors 31 and 32.
  • programs are stored in the control device with which the laser 1 is set to specific combinations of performance data for the respective application purposes.
  • the substrate has a central dielectric layer 11 and a metallic layer 12 and 13 on the top and bottom, respectively.
  • a blind hole 14 is drilled through the metallic layer 12 and the dielectric layer 11
  • the laser is set so that it emits an average laser power of, for example, 3.5 to 4 W at a repetition frequency of 10 to 30 kHz and a pulse length of 30 to 50 ns.
  • the laser itself is preferably a UV laser with a wavelength of 355 nm.
  • a laser with a wavelength of 532 nm could also be used.
  • the laser is now set to the specified power for the drilling mode, the required holes 14 are drilled in the substrate 10, the laser beam, for example, having to perform a certain number of circular movements in order to on the one hand the metallic layer 12 and on the other hand the dielectric layer 11 in the desired borehole.
  • an etching resist layer 15 can first be applied to the metal layer 12, which is removed with the laser in a predetermined pattern in regions 15a, so that in these areas, the metal layer 12 is exposed and can then be etched off.
  • the laser beam which is referred to in this figure as 2-2, is adjusted via the control unit so that it has, for example, an average laser power of approximately 1 W at a repetition frequency of 80 kHz and a pulse length of 60 ns for removing the etching resist , These values are only examples, since the exact setting depends on the layer to be removed, its nature, its thickness and the like.
  • FIG. 3 shows, for example, how a metal layer 12 is structured, ie partially removed, using a laser beam 2-3 directly according to a predetermined conductor pattern.
  • the metallic layer 12 therefore only remains where conductor tracks are desired, while the dielectric layer 11 is exposed in the regions 12a.
  • the laser beam 2-3 is tion set so that it has, for example, an average power of 1.5 W at a repetition frequency of 60 kHz and a pulse length of about 50 ns. In this case too, the exact setting depends on the nature and the thickness of the metal layer 12 to be removed.
  • FIG. 4 shows how structuring can be carried out on the substrate by means of photolithography.
  • a photosensitive layer 16 is first applied to the metal layer 12, which is exposed to a laser beam 2-4 in predetermined areas 16a.
  • the exposed layer is then developed and washed out, so that the underlying metal layer regions 12a are exposed and can be etched away.
  • FIG. 5 shows a photo in plan view of a substrate 10 with a photosensitive layer 16, which was exposed in the region 16a with a laser beam and then washed out.
  • a photoresist known under the trade name Probelec with a sensitivity of 1200 mJ / cm 2 at a laser wavelength of 355 nm was used. It was exposed with a frequency-tripled, diode-pumped semiconductor laser with a wavelength of 355 nm, a repetition frequency of 200 kHz and a pulse duration of approximately 100-200 ns with an average laser power of approximately 100 mW.
  • a line width of about 30 ⁇ was exposed with a deflection speed of about 100 to 600 nm / s. It can be seen in FIG.
  • the exposure can also be carried out with the same laser device as the structuring or drilling.
  • the achievable lines and spaces between the desired structures are determined by the diameter of the focused laser spot, the sensitivity of the photoresist and the repetition rate of the laser pulses.
  • the line width that can be achieved is a folding of the spatial beam distribution in focus with the spectral sensitivity of the photoresist.
  • it is a pulsed laser beam, a straight, continuous line is achieved by superimposing the successive pulses.
  • the corresponding setting of the laser repetition frequency and the deflection speed of the galvo mirror ensures that the photoresist is not removed but is exposed, so that the same effect as with the frequently used cw-Ar + laser is achieved.
  • line widths of about 30 ⁇ m can be generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

Zur Bearbeitung von elektrischen Schaltungssubstraten wird eine Laserquelle (1) mit einem diodengepumpten, gütegesteuerten, gepulsten Festkörper-Laser verwendet, der eine Laserstrahlung mit einer Wellenlänge zwischen 266 nm und 1064 nm, einer Pulswiederholrate zwischen 1 kHz und 1 MHz und einer Pulslänge von 30 ns bis 200 ns bei einer mittleren Laserleistung zwischen 0,1 W und ca. 5 W abzugeben vermag, wobei über eine Steuerung je nach Anwendungsfall vorgegebene Betriebsarten mit entsprechend unterschiedlichen Kombinationen von Laserleistung und Wiederholfrequenzen eingestellt werden können, um wahlweise mit dem gleichen Laser eine Bohrbetriebsart, eine Ablationsbetriebsart oder eine Belichtungsbetriebsart auszuführen. Mittels einer ebenfalls durch die Steuereinheit einstellbaren Galvospiegel-Ablenkeinheit wird der Laserstrahl auf dem Substrat entsprechend der jeweiligen Betriebsart abgelenkt.

Description

Beschreibung
Vorrichtung und Verfahren zur Bearbeitung von elektrischen Schaltungssubstraten mittels Laser
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Bearbeitung von elektrischen Schaltungssubstraten mit
- einer Werkstückaufnahme zur Halterung und Positionierung des Substrats, - einer Laserquelle mit einem diodengepumpten, gütegesteuerten, gepulsten Festkörperlaser,
- einer Ablenkeinheit,
- einer Abbildungseinheit und
- einer Steuerung zur Einstellung der Betriebskenngrößen des Lasers.
Es ist grundsätzlich bekannt, bei der Bearbeitung von Leiterplatten und vergleichbaren elektrischen Schaltungssubstraten die Energie eines Laserstrahls einzusetzen. So ist aus der US 5 593 606 die Verwendung eines UV-Lasersystems mit einem kontinuierlich gepumpten, gütegeschalteten Nd : YAG-Laser zum Bohren von Mikrolöchern in einem Mehrschichtsubstrat bekannt. Typischerweise werden dort Wiederholfrequenzen von bis zu 5 kHz verwendet.
Aus der EP 931 439 Bl ist ein Verfahren zur Bildung von mindestens zwei Verdrahtungsebenen auf elektrisch isolierenden Unterlagen bekannt, wobei ein Laser, vorzugsweise eine Νd- YAG-Laser sowohl zum Bohren von Sacklöchern als auch zur Strukturierung von Leiterbahnen verwendet wird. Bei der Bildung von Leiterbahnen kann entweder die Metallschicht selbst unmittelbar durch den Laser durch partielles Abtragen strukturiert werden, oder es ist auch möglich, eine auf der Metallschicht liegenden Ätzresistschicht mit dem Laser partiell abzutragen und den dadurch freigelegten Bereich der Metallschicht dann abzuätzen. Grundsätzlich ist es daneben auch bereits bekannt, Laserstrahlung zum Belichten von Fotoresistschichten zu verwenden. In der EP 1 115 031 A2 wird zu diesem Zweck vorgeschlagen, beispielsweise einen Titan-Saphir-Laser mit Wiederholraten von mehr als 80 MHz einzusetzen, der einen quasi kontinuierlichen UV-Laserstrahl erzeugt.
Je nach Anwendungsfall werden demnach unterschiedliche Lasersysteme eingesetzt, die einen erheblichen Investitionsaufwand bedingen, wenn in einer Leiterplattenfertigung verschiedene Bearbeitungsverfahren nebeneinander zur Anwendung kommen sollen.
Ziel der vorliegenden Erfindung ist es, ein Lasersystem und ein entsprechendes Laser-Bearbeitungsverfahren anzugeben, welches ohne kostspielige Zusatzinvestitionen und aufwendige Umrüstungen die Bearbeitung von Substraten mit den unterschiedlichsten Laser-Verfahren ermöglicht.
Erfindungsgemäß wird dieses Ziel erreicht mit einer Vorrichtung zur Bearbeitung von elektrischen Schaltungssubstraten mit einer Werkstückaufnahme zur Halterung und Positionierung des Substrats, - einer Laserquelle mit einem diodengepumpten, gütegesteuerten, gepulsten Festkörperlaser einer Wellenlänge zwischen 266 und 1064 nm, der eine Laserstrahlung in folgenden Wertebereichen abzugeben vermag: -einer Pulswiederholfrequenz zwischen 1 kHz und 1 MHz, - -einer Pulslänge von 30 ns bis 200 ns und
- -einer mittleren Laserleistung von ca. 0,1 W bis ca. 5W, ferner mit einer Ablenkeinheit, die Ablenkgeschwindigkeiten bis zu 600 mm/s ermöglicht,
- einer Abbildungseinheit und - einer Steuerung, welche in der Lage ist, je nach Anwendungsfall den Laser mit unterschiedlichen Kombinationen von mittlerer Laserleistung und Wiederholfrequenzen zu betreiben.
Durch die erfindungsgemäß vorgesehene Auswahl des Lasers mit einem bisher nicht bekannten Spektrum der Kennwerte und einer Steuerung, die für die jeweils vorgesehene Art der Substratbearbeitung eine vorgegebene Kombination an Kenndaten einzustellen vermag, ist es möglich, alle für die Leiterplattenbearbeitung vorkommenden Laser-Bearbeitungsschritte, wie Boh- ren, Abtragen von Metallschichten oder von Atzresistschichten bis hin zum bloßen Belichten von fotoempfindlichen Lacken, mit einer einzigen Laserquelle vorzunehmen. Entsprechend vereinfacht sich der Aufwand für die Bereitstellung von Fertigungseinrichtungen und für die Umrüstungen zwischen verschie- denen Fertigungsschritten.
Vorzugsweise wird die erfindungsgemäße Vorrichtung mit einem Laser mit einer Wellenlänge zwischen 350 und 550 nm, insbesondere einem UV-Laser mit 355 nm Wellenlänge, betrieben.
Wie erwähnt, können für bestimmte, in Betracht kommende Bearbeitungsschritte vorgegebene Kombinationen der Laser- Kennwerte vorgesehen werden. So kann der Laser eine erste Betriebsart zum Abtragen von Schichten aufweisen, bei der er mit einer mittleren Laserleistung von etwa 1 bis 2 W und einer Wiederholfrequenz von etwa 60 bis 80 kHz betrieben wird. Dabei sei angemerkt, daß die etwas höhere Laserleistung und die etwas geringere Wiederholfrequenz für das Strukturieren von beispielsweise metallischen Schichten und die etwas ge- ringere Laserleistung von etwa 1 W mit der etwas höheren Wiederholfrequenz von 80 kHz für das Abtragen von nichtmetallischen Schichten, wie Lötstoplack, kombiniert wird. In einer zweiten Betriebsart zum Bohren von Löchern in metallischen und dielektrischen Schichten des Schaltungssubstrats kann der Laser beispielsweise auf eine mittlere Laserleistung von 3 bis 4 W und eine Wiederholfrequenz von 10 bis 30 kHz eingestellt werden. In einer dritten Betriebsart zum Belichten von fotosensitiven Schichten wird der Laser auf eine wesentliche geringere Laserleistung in der Größenordnung von etwa 100 mW bei einer Wiederholfrequenz von 200 kHz bis 1 MHz eingestellt.
Als Ablenkeinheit dient zweckmäßigerweise eine Galvanometer- Spiegeleinheit, die die hohen Ablenkgeschwindigkeiten von typischerweise 300 bis 600 mm/s ermöglicht. Mit einer geeigneten Kombination von Laserleistung und Fleckdurchmesser ist auch eine wesentlich höhere Ablenkgeschwindigkeit einsetzbar. Mit diesen Geschwindigkeiten wird der Laserstrahl beim Strukturieren von Schichten im wesentlichen linear bewegt, während beim Bohren Kreisbewegungen in bekannter Weise ausgeführt werden.
Ein erfindungsgemäßes Verfahren zur Bearbeitung eines elektrischen Schaltungssubstrates, wobei ein Laser mit einer Wellenlänge zwischen etwa 266 und etwa 1064 nm, einer Pulswiederholrate zwischen 1 kHz und 1 MHz, einer Pulslänge zwischen 30 ns und 200 ns und einer mittleren Laserleistung zwischen ca. 0,1 W und ca. 5 W verwendet wird, weist folgende Schritte auf:
- das Substrat wird auf einer Werkstückaufnahme fixiert und positioniert, - der Laserstrahl wird über eine Steuereinheit auf eine der folgenden Betriebsarten eingestellt: a) Bohren von Löchern mit einer mittleren Laserleistung von 3 bis 5 W, einer Wiederholfrequenz von etwa 10 bis 30 kHz . und einer Pulslänge von etwa 30 bis 50 ns, b) Strukturieren von metallischen oder dielektrischen
Schichten mit einer mittleren Laserleistung von 1 bis 2 W, einer Wiederholfrequenz von etwa 50 bis 90 kHz, vorzugsweise 60 bis 80 kHz, und einer Pulslänge von etwa 50 bis 60 ns, c) Belichten einer fotosensitiven Schicht mit einer mittleren Laserleistung von annähernd 0,1 W, einer Wiederholfre- quenz von 200 kHz bis 1 MHz und einer Pulslänge von 100 bis 200 ns, vorzugsweise 120 ns, - das Substrat wird mit dem Laserstrahl in der eingestellten Betriebsart bearbeitet, wobei der Laserstrahl mittels ei- ner Galvospiegel-Ablenkeinheit mit einer Geschwindigkeit von 300 bis 600 mm/s bewegt wird.
In einer bevorzugten Ausgestaltung wird die in der Betriebsart c) belichtete fotosensitive Schicht in einem weiteren Schritt entwickelt, und danach werden die nicht belichteten Flächen der Schicht entfernt.
Die Erfindung wird nachfolgend an Ausführungsbeispielen anhand der Zeichnung näher erläutert: Es zeigt
Figur 1 den schematischen Aufbau einer erfindungsgemäß gestalteten Laser-Bearbeitungsvorrichtung mit einem zum Bohren von Löchern vorgesehenen Substrat, Figur 2 ein schematisch dargestelltes Substrat, bei dem mit dem Laserstrahl eine Ätzresistschicht strukturiert und das freigelegte Muster anschließend geätzt wird,
Figur 3 ein schematisch gezeigtes Substrat, bei dem eine metallische Oberflächenschicht unmittelbar mit dem Laserstrahl strukturiert wird, Figur 4 ein schematisch dargestelltes Substrat, bei dem eine auf eine Metallschicht aufgebrachte fotosensitive Schicht mit dem Laser belichtet wird, und
Figur 5 ein Substrat in Draufsicht, bei dem gemäß Figur 4 eine Spur mit einem Laser belichtet und dann ausgewaschen wer- de.
In Figur 1 ist der Aufbau einer Laserbearbeitungsvorrichtung schematisch gezeigt. Kernstück ist ein Laser 1, der als diodengepumpter, gütegesteuerter, gepulster Festkörperlaser für die Zwecke der Erfindung ausgelegt ist. Der von dieser Laserquelle ausgehende Laserstrahl 2 wird über eine Ablenkeinheit 3 mit zwei Galvospiegeln 31 und 32 und eine vorzugsweise aus einer Linse gebildete Abbildungseinheit 4 einem Substrat 10 zugeführt, das auf einer AufnähmeVorrichtung 5, vornehmlich einem nach allen Richtungen verstellbaren Positioniertisch, angeordnet ist. Zur Steuerung der Vorrichtung dient eine Steuereinheit 6, welche sowohl den Laser 1 als auch die „Ablenkeinheit 3 und die Aufnahmeeinrichtung 5 entsprechend der gewünschten Bearbeitung steuert.
In der Regel wird das Werkstück, nämlich das Substrat, mit der Aufnahmeeinrichtung 5, also dem Positioniertisch, in ho- rizontaler Richtung in eine derartige Position gebracht, daß ein bestimmtes, zur Bearbeitung vorgesehenes Feld des Substrats in den Wirkungsbereich des Laserstrahls 2 gelangt (X- Y-Positionierung) . Außerdem ist es möglich, durch eine vertikale Verstellung des Positioniertisches 5 das Substrat je nach gewünschter Fokussierung des Laserstrahls in den Fokus der Abbildungseinheit 4 oder in einen vorgegebenen Abstand vom Fokus zu bringen. Während der Laserbearbeitung wird das Substrat in der eingestellten Position gehalten, da die Bewegungen auf dem zu bearbeitenden Feld durch Ablenkung des La- serstrahls über die Ablenkeinheit 3 vorgenommen werden. Durch die Ablenkung über Galvospiegel sind wesentlich höhere Geschwindigkeiten erreichbar als durch Verstellung des Positioniertisches 5, der eine relativ große Masse besitzt. Die Ablenkung des Laserstrahls 2 auf dem zu bearbeitenden Feld des Substrats 10 wird also von der Steuereinheit 6 über die Galvospiegel 31 und 32 vorgenommen. Ferner sind in der Steuereinrichtung Programme gespeichert, mit denen der Laser 1 für die jeweiligen Anwendungszwecke auf bestimmte Kombinationen von Leistungsdaten eingestellt wird.
Im Beispiel von Figur 1 sei angenommen, daß in dem Substrat 10 Löcher, sog. Vias, in Form von Durchgangslöchern oder Sacklöchern gebohrt werden sollen. Das Substrat besitzt eine mittlere dielektrische Schicht 11 sowie auf der Oberseite und der Unterseite jeweils eine metallische Schicht 12 bzw. 13. Nimmt man an, daß ein Sackloch 14 durch die metallische Schicht 12 und die dielektrische Schicht 11 gebohrt werden soll, so wird der Laser so eingestellt, daß er eine mittlere Laserleistung von beispielsweise 3,5 bis 4 W bei einer Wiederholfrequenz von 10 bis 30 kHz und einer Pulslänge von 30 bis 50 ns abgibt. Der Laser selbst ist in diesem Fall vor- zugsweise ein UV-Laser mit 355 nm Wellenlänge. Es könnte aber auch ein Laser mit einer Wellenlänge von 532 nm verwendet werden. Ist der Laser nun auf die vorgegebene Leistung für die Bohrbetriebsart eingestellt, so werden die erforderlichen Löcher 14 in dem Substrat 10 gebohrt, wobei beispielsweise der Laserstrahl eine bestimmte Anzahl von Kreisbewegungen ausführen muß, um einerseits die metallische Schicht 12 und andererseits die dielektrische Schicht 11 in dem gewünschten Bohrloch abzutragen.
Soll nun auf dem Substrat 10 in einem anderen Arbeitsgang eine Strukturierung durch Ätzen von Leiterbahnen vorgenommen werden, so kann gemäß Figur 2 auf die Metallschicht 12 zunächst eine Ätzresistschicht 15 aufgebracht werden, welche mit dem Laser nach einem vorgegebenen Muster in Bereichen 15a abgetragen wird, damit in diesen Bereichen die Metallschicht 12 freiliegt und danach abgeätzt werden kann. Der Laserstrahl, der in dieser Figur als 2-2 bezeichnet ist, wird über die Steuereinheit so eingestellt, daß er zum Abtragen des Ätzresists beispielsweise eine mittlere Laserleistung von et- wa 1 W bei einer Wiederholfrequenz von 80 kHz und einer Pulslänge von 60 ns aufweist. Diese Werte sind nur Beispielsangaben, da die genaue Einstellung im einzelnen von der abzutragenden Schicht, ihrer Beschaffenheit, ihrer Dicke und dergleichen, abhängt.
In Figur 3 ist beispielsweise gezeigt, wie mit einem Laserstrahl 2-3 eine Metallschicht 12 unmittelbar nach einem vorgegebenen Leiterbahnmuster strukturiert, d.h. partiell abgetragen wird. Die metallische Schicht 12 bleibt also nur dort bestehen, wo Leiterbahnen gewünscht sind, während in den Bereichen 12a die dielektrische Schicht 11 freigelegt ist. Zu diesem Zweck wird der Laserstrahl 2-3 über die Steuereinrich- tung so eingestellt, daß er beispielsweise eine mittlere Leistung von 1,5 W bei einer Wiederholfrequenz von 60 kHz und einer Pulslänge von etw. 50 ns aufweist. Auch in diesem Fall hängt die genaue Einstellung von der Beschaffenheit und der Dicke der abzutragenden Metallschicht 12 ab.
In Figur 4 schließlich ist gezeigt, wie auf dem Substrat eine Strukturierung mittels Fotolithografie durchgeführt werden kann. Hierbei wird auf der Metallschicht 12 zunächst eine fo- tosensitive Schicht 16 aufgebracht, welche mit einem Laserstrahl 2-4 in vorgegebenen Bereichen 16a belichtet wird. Die belichtete Schicht wird danach entwickelt und ausgewaschen, so daß die darunterliegenden Metallschichtbereiche 12a frei liegen und abgeätzt werden können.
Figur 5 zeigt als Foto in Draufsicht ein Substrat 10 mit einer fotosensitiven Schicht 16, welche in dem Bereich 16a mit einem Laserstrahl belichtet und dann ausgewaschen wurde. In diesem Beispiel wurde ein unter dem Handelsnamen Probelec be- kanntes Photoresist mit einer Empfindlichkeit von 1200mJ/cm2 bei einer Laser-Wellenlänge von 355 nm verwendet. Es wurde mit einem frequenzverdreifachten, diodengepumpten Halbleiterlaser mit einer Wellenlänge von 355 nm, einer Wiederholfrequenz von 200 kHz und einer Pulsdauer von etwa 100 - 200 ns mit einer mittleren Laserleistung von etwa 100 mW belichtet. Mit einer Ablenkgeschwindigkeit von etwa 100 bis 600 nm/s wurde so eine Linienbreite von etwa 30 μ belichtet. In Figur 5 ist zu sehen, daß trotz der pulsförmigen Beaufschlagung mit dem Laserlicht ein im wesentlichen gerader Randverlauf des belichteten Streifens 16a erzielt wird. Man erkennt einen inneren Streifen mit der Breite bl, bei dem nach dem Auswaschen die Kupferschicht 12 ( Figur 4) besonders sauber hervortritt, und den Gesamtstreifen der Beleuchtung mit der Breite b2, dessen Randbereiche entsprechend der Energieverteilung des Laserstrahls etwas schwächer belichtet wurden, jedoch immer noch in ausreichendem Maße belichtet und dann abgetragen wur- den, so daß die Metallschicht in voller Breite b2 abgeätzt werden kann.
Durch diese mit der Erfindung gegebene Möglichkeit kann auch die Belichtung mit der gleichen Lasereinrichtung wie die Strukturierung oder das Bohren vorgenommen werden. Dabei sind die erzielbaren Linien und Zwischenräume der angestrebten Strukturen durch den Durchmesser des fokussierten Laserflecks vorgegeben, ferner durch die Empfindlichkeit des Fotoresists und die Wiederholrate der Laserpulse. Mathematisch betrachtet ist die erzielbare Linienbreite eine Faltung der räumlichen Strahlverteilung im Fokus mit der spektralen Empfindlichkeit des Fotoresists. Obwohl es sich um einen gepulsten Laser- strahl handelt, erzielt man durch die Überlagerung der aufeinanderfolgenden Pulse eine gerade, durchgehende Linie. Durch die entsprechende Einstellung der Laser- Wiederholfrequenz und der Ablenkgeschwindigkeit der Gal- vospiegel wird so erreicht, daß das Fotoresist nicht abgetra- gen, sondern belichtet wird, so daß der gleiche Effekt wie bei dem häufig verwendeten cw-Ar+-Laser erzielt wird. Mit den oben angegebenen Werten kann man beispielsweise Linienbreiten von etwa 30 um erzeugen.

Claims

Patentansprüche
1. Vorrichtung zur Bearbeitung von elektrischen Schaltungssubstraten mit einer Werkstückaufnahme (5) zur Halterung und Positionierung des Substrats (10), einer Laserquelle (1) mit einem diodengepumpten, gütegesteuerten, gepulsten Festkörperlaser einer Wellenlänge zwischen 266 nm und 1064 nm, der eine Laserstrahlung (2) in folgenden Wertebereichen abzugeben vermag: einer Pulswiederholfrequenz zwischen 1 kHz und 1 MHz, einer Pulslänge von 30 ns bis 200 ns und einer mittleren Laserleistung von ca. 0,1 W bis ca. 5 W, ferner mit einer im Strahlengang des Lasers angeordneten Ablenkeinheit (3), die Ablenkgeschwindigkeiten bis zu 600 mm/s ermöglicht, einer Abbildungseinheit (4) und einer Steuerung, welche in der Lage ist, je nach Anwendungs- fall den Laser mit unterschiedlichen Kombinationen von mittlerer Laserleistung und Wiederholfrequenzen zu betreiben.
2. Vorrichtung nach Anspruch 1, d a d u r c h g e k e n z e i c h n e t , daß ein Laser mit einer Wellenlänge zwischen 350 und 550 nm, vorzugsweise ein UV-Laser mit 355 nm Wellenlänge, verwendet wird.
3. Vorrichtung nach Anspruch 1 oder 2, d a d u r c h g e k e n z e i c h n e t , daß der Laser ei- ne erste Betriebsart zum Äbtragen von Schichten aufweist, bei der er mit einer mittleren Laserleistung von etwa 1 bis 2 W und einer Wiederholfrequenz von etwa 60 bis 80 kHz betrieben wird.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n z e i c h n e t , daß der Laser eine zweite Betriebsart zum Bohren von Löchern (14) in metalli- sehen (12) und dielektrischen Schichten (11) des Schaltungssubstrats (10) aufweist, bei der er mit einer mittleren Laserleistung von 3 bis 4 W und einer Wiederholfrequenz von 10 bis 30 kHz betrieben wird.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß der Laser eine dritte Betriebsart zum Belichten von fotosensitiven Schichten (16) aufweist, bei der er mit einer mittleren La- serleistung in der Größenordnung von 100 mW und einer Wiederholfrequenz von 200 kHz bis 1 MHz betrieben wird.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß als Ablenk- einheit eine Galvanometer-Spiegeleinheit (3) mit einer Ablenkgeschwindigkeit von 100 bis 600 mm/s verwendet ist.
7. Verfahren zur Bearbeitung eines elektrischen Schaltungssubstrats, wobei ein Laser (1) mit einer Wellenlänge zwischen etwa 266 nm und etwa 1064 nm, einer Pulswiederholrate zwischen 1 kHz und 1 MHz, einer Pulslänge zwischen 30 ns und 200 ns und einer mittleren Laserleistung zwischen ca. 0,1 W bis ca. 5 W verwendet wird, mit folgenden Schritten:
- das Substrat (10) wird auf einer Werkstückaufnahme (5) fi- xiert und positioniert,
- der Laserstrahl (2) wird über eine Steuereinheit (6) auf eine der folgenden Betriebsarten eingestellt: a) Bohren von Löchern (14) mit einer mittleren Laserleistung von 3 bis 5 W, einer Wiederholfrequenz von etwa 10 bis 30 kHz und einer Pulslänge von etwa 30 bis 50 ns, b) Strukturieren bzw. Abtragung von metallischen oder dielektrischen Schichten (15,12) mit einer mittleren Laserleistung von 1 bis 2 W, einer Wiederholfrequenz von etwa 50 bis 90, vorzugsweise 60 bis 80 kHz, und einer Pulslänge von etwa 50 bis 60 ns, c) Belichten einer fotosensitiven Schicht (16) mit einer mittleren Laserleistung von annähernd 0,1 W, einer Wieder- holfrequenz von 200 kHz bis 1 MHz und einer Pulslänge von ca. 100 bis 200 ns, vorzugsweise etwa 120 ns, und - das Substrat wird mit dem Laserstrahl (2) in der eingestellten Betriebsart bearbeitet, wobei der Laserstrahl mittels einer Galvospiegel-Ablenkeinheit (3) mit einer Geschwindigkeit von 300 bis 600 mm/s bewegt wird.
8. Verfahren nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß die in der Betriebsart c) belichtete fotosensitive Schicht (16) in einem weiteren Schritt entwickelt wird und daß danach die nicht belichteten Bereiche der Schicht (16) entfernt werden.
EP03785671A 2003-02-20 2003-11-26 Vorrichtung und verfahren zur bearbeitung von elektrischen schaltungssubstraten mittels laser Withdrawn EP1594651A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10307309A DE10307309B4 (de) 2003-02-20 2003-02-20 Vorrichtung und Verfahren zur Bearbeitung von elektrischen Schaltungssubstraten mittels Laser
DE10307309 2003-02-20
PCT/EP2003/013314 WO2004073917A1 (de) 2003-02-20 2003-11-26 Vorrichtung und verfahren zur bearbeitung von elektrischen schaltungssubstraten mittels laser

Publications (1)

Publication Number Publication Date
EP1594651A1 true EP1594651A1 (de) 2005-11-16

Family

ID=32841752

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03785671A Withdrawn EP1594651A1 (de) 2003-02-20 2003-11-26 Vorrichtung und verfahren zur bearbeitung von elektrischen schaltungssubstraten mittels laser

Country Status (8)

Country Link
US (1) US6849823B2 (de)
EP (1) EP1594651A1 (de)
JP (1) JP2006513862A (de)
KR (1) KR20050103951A (de)
CN (1) CN100448594C (de)
AU (1) AU2003294733A1 (de)
DE (1) DE10307309B4 (de)
WO (1) WO2004073917A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4348199B2 (ja) * 2004-01-16 2009-10-21 日立ビアメカニクス株式会社 レーザ加工方法およびレーザ加工装置
DE102004039023A1 (de) * 2004-08-11 2006-02-23 Siemens Ag Verfahren zur Bearbeitung eines Werkstücks mittels Laserstrahlung, Laserbearbeitungssystem
KR100570979B1 (ko) * 2004-10-26 2006-04-13 삼성에스디아이 주식회사 이미지 방향 조절기를 구비한 광학계 및 상기 광학계를구비한 레이저 조사장치
US7528342B2 (en) * 2005-02-03 2009-05-05 Laserfacturing, Inc. Method and apparatus for via drilling and selective material removal using an ultrafast pulse laser
TWI382795B (zh) * 2005-03-04 2013-01-11 Hitachi Via Mechanics Ltd A method of opening a printed circuit board and an opening device for a printed circuit board
JP2007021528A (ja) * 2005-07-15 2007-02-01 Matsushita Electric Ind Co Ltd レーザ加工装置およびその調整方法
US20080090396A1 (en) * 2006-10-06 2008-04-17 Semiconductor Energy Laboratory Co., Ltd. Light exposure apparatus and method for making semiconductor device formed using the same
WO2011082065A2 (en) * 2009-12-30 2011-07-07 Gsi Group Corporation Link processing with high speed beam deflection
NL1038611C2 (nl) * 2011-02-25 2012-08-28 Erik Bernardus Leeuwen Werkwijze en inrichting voor het door laser-etsen vervaardigen van een paneel voor gebruik als lichtpaneel, alsmede een dergelijk paneel en lichtpaneel en een weergeefinrichting voorzien van een dergelijk lichtpaneel.
US20160279737A1 (en) 2015-03-26 2016-09-29 Pratt & Whitney Canada Corp. Laser drilling through multi-layer components
CN107624086A (zh) * 2015-05-14 2018-01-23 应用材料公司 使用具有低吸收特性的激光波长来移除透明材料的方法
CN106425126B (zh) * 2016-11-11 2017-12-29 盐城工学院 一种多层印刷电路板飞秒激光打孔装置及其打孔方法
DE102018208715A1 (de) * 2017-12-20 2019-06-27 Magna Exteriors Gmbh Verfahren zum Herstellen eines Kunststoffbauteils, sowie Kunststoffbauteil und Bearbeitungsanlage
CN114176768B (zh) * 2021-12-10 2024-01-30 北京市汉华环球科技发展有限责任公司 一种点阵激光治疗仪中振镜偏转超时检测方法及装置
DE102022130159A1 (de) 2022-11-15 2024-05-16 Morino Stübe Displayschutzeinrichtung und verfahren zu deren herstellung

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3050985C3 (de) * 1979-05-24 1994-10-20 Gerber Scientific Instr Co Bilderzeugungsvorrichtung
US4761786A (en) * 1986-12-23 1988-08-02 Spectra-Physics, Inc. Miniaturized Q-switched diode pumped solid state laser
DE19513354A1 (de) * 1994-04-14 1995-12-14 Zeiss Carl Materialbearbeitungseinrichtung
US5593606A (en) 1994-07-18 1997-01-14 Electro Scientific Industries, Inc. Ultraviolet laser system and method for forming vias in multi-layered targets
US5841099A (en) * 1994-07-18 1998-11-24 Electro Scientific Industries, Inc. Method employing UV laser pulses of varied energy density to form depthwise self-limiting blind vias in multilayered targets
JP2000503484A (ja) 1996-09-30 2000-03-21 シーメンス ソシエテ アノニム 電気絶縁支持体上に少なくとも2つの配線面を形成する方法
DE19719700A1 (de) * 1997-05-09 1998-11-12 Siemens Ag Verfahren zur Herstellung von Sacklöchern in einer Leiterplatte
DE19737808A1 (de) * 1997-08-29 1999-03-18 Nwl Laser Tech Gmbh Verfahren zur Strukturierung und Herstellung von Leiterplatten
GB9811328D0 (en) * 1998-05-27 1998-07-22 Exitech Ltd The use of mid-infrared lasers for drilling microvia holes in printed circuit (wiring) boards and other electrical circuit interconnection packages
JP2003511240A (ja) * 1999-09-30 2003-03-25 シーメンス アクチエンゲゼルシヤフト 積層体をレーザー穿孔する方法及び装置
US20010030176A1 (en) * 1999-12-07 2001-10-18 Yunlong Sun Switchable wavelength laser-based etched circuit board processing system
JP2001255661A (ja) 2000-01-05 2001-09-21 Orbotech Ltd パルス光パターン書込み装置
US6541731B2 (en) * 2000-01-25 2003-04-01 Aculight Corporation Use of multiple laser sources for rapid, flexible machining and production of vias in multi-layered substrates
JP3522654B2 (ja) * 2000-06-09 2004-04-26 住友重機械工業株式会社 レーザ加工装置及び加工方法
JP4320926B2 (ja) * 2000-06-16 2009-08-26 パナソニック株式会社 レーザ穴加工方法及び装置
JP2002164650A (ja) * 2000-11-24 2002-06-07 Toyota Industries Corp めっき装置
US6781090B2 (en) * 2001-03-12 2004-08-24 Electro Scientific Industries, Inc. Quasi-CW diode-pumped, solid-state harmonic laser system and method employing same
DE10125397B4 (de) * 2001-05-23 2005-03-03 Siemens Ag Verfahren zum Bohren von Mikrolöchern mit einem Laserstrahl
US6756563B2 (en) * 2002-03-07 2004-06-29 Orbotech Ltd. System and method for forming holes in substrates containing glass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004073917A1 *

Also Published As

Publication number Publication date
WO2004073917A1 (de) 2004-09-02
CN1753755A (zh) 2006-03-29
DE10307309A1 (de) 2004-09-09
CN100448594C (zh) 2009-01-07
AU2003294733A1 (en) 2004-09-09
US6849823B2 (en) 2005-02-01
JP2006513862A (ja) 2006-04-27
US20040164057A1 (en) 2004-08-26
KR20050103951A (ko) 2005-11-01
DE10307309B4 (de) 2007-06-14

Similar Documents

Publication Publication Date Title
DE10307309B4 (de) Vorrichtung und Verfahren zur Bearbeitung von elektrischen Schaltungssubstraten mittels Laser
DE60008732T2 (de) Strahlformung und projektionsabbildung mittels uv gaussischen festkörperlaserstrahls zur herstellung von löchern
DE69737991T2 (de) Laserbearbeitungsvorrichtung, verfahren und vorrichtung zur herstellung einer mehrschichtigen, gedruckten leiterplatte
EP1425947B1 (de) Verfahren zum laserbohren, insbesondere unter verwendung einer lochmaske
DE60030195T2 (de) Laserverfahren zur Bearbeitung von Löchern in einer keramischen Grünfolie
DE10149559A1 (de) Verfahren und Vorrichtung zum Bohren gedruckter Verdrahtungsplatten
DE19534165A1 (de) Verfahren zur Bestrahlung einer Oberfläche eines Werkstücks und Einrichtung zur Bestrahlung einer Oberfläche eines Werkstücks
DE4417245A1 (de) Verfahren zur strukturierten Metallisierung der Oberfläche von Substraten
DE19513354A1 (de) Materialbearbeitungseinrichtung
DE112004002827T5 (de) Verfahren zum Bohren von Durchgangslöchern in homogenen und nicht-homogenen Substraten
DE102008063912B4 (de) Waferteilungsverfahren
DE112006002322T5 (de) Energieüberwachung oder Steuerung von individuellen Kontaktlöchern, die während Lasermikrobearbeitung ausgebildet werden
DE102004040068B4 (de) Verfahren zum Laserbohren eines mehrschichtig aufgebauten Werkstücks
DE10351775A1 (de) Laserbearbeitungsverfahren und Laserbearbeitungsvorrichtung
DE112004002009T5 (de) Laserbearbeitung eines lokal erhitzten Zielmaterials
EP3356078B1 (de) Verfahren zur herstellung eines metallisierten keramik substrates mit hilfe von picolasern ; entsprechend metallisiertes keramiksubstrat
EP1169893B1 (de) Verfahren zum einbringen von durchkontaktierungslöchern in ein beidseitig mit metallschichten versehenes, elektrisch isolierendes basismaterial
WO2006018370A1 (de) Verfahren zum bearbeiten eines werkstücks mittels pulslaserstrahlung mit steuerbaren energie einzelner laserpulse und zeitlichem abstand zwischen zwei aufeinanderfolgen laserpulsen, laserbearbeitungssystem dafür
DE10127357C1 (de) Verfahren und Einrichtung zur Strukturierung von Leiterplatten
DE2638474C3 (de)
EP0683007B1 (de) Materialbearbeitungseinrichtung
DE112004002064T5 (de) Abschluss von passiven elektronischen Bauteilen auf Laserbasis
EP1289354A1 (de) Mehrlagenleiterplatte und Verfahren zum Herstellen von Löchern darin
DE19938056B4 (de) Verfahren zum Entfernen leitfähiger Abschnitte
EP1210850A1 (de) Verfahren zum bearbeiten von mehrschichtsubstraten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HITACHI VIA MECHANICS, LTD.

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EDME, SEBASTIEN

Inventor name: LESJAK, STEFAN

Inventor name: ROELANTS, EDDY

17Q First examination report despatched

Effective date: 20091201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100413