EP1556890A1 - Elektronisches bauteil mit unterfülstoffen aus thermoplasten und verfahren zu dessen herstellung - Google Patents

Elektronisches bauteil mit unterfülstoffen aus thermoplasten und verfahren zu dessen herstellung

Info

Publication number
EP1556890A1
EP1556890A1 EP03776797A EP03776797A EP1556890A1 EP 1556890 A1 EP1556890 A1 EP 1556890A1 EP 03776797 A EP03776797 A EP 03776797A EP 03776797 A EP03776797 A EP 03776797A EP 1556890 A1 EP1556890 A1 EP 1556890A1
Authority
EP
European Patent Office
Prior art keywords
thermoplastic
electronic component
contacts
chip
flip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03776797A
Other languages
English (en)
French (fr)
Inventor
Michael Bauer
Christian Birzer
Gerald Ofner
Stephan STÖCKL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1556890A1 publication Critical patent/EP1556890A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16237Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Definitions

  • the invention relates to an electronic component with a semiconductor chip, which has flip-chip contacts and is fixed on a rewiring substrate, and to a method for producing the same.
  • Electronic components with flip-chip contacts and a rewiring substrate are packaged in a plastic housing made of thermosets.
  • a plastic housing made of thermosets.
  • the object of the invention is to specify an electronic component and a method for its production, which increases the reliability of electronic components.
  • an electronic component with a semiconductor chip which has flip-chip contacts on its active upper side, which are on contact pads of a rewiring substrate are fixed. This fixation can be carried out by means of a solder connection and / or by means of a conductive adhesive.
  • the intermediate space formed by the flip-chip contacts between the rewiring substrate and the semiconductor chip has a thermoplastic as the underfill. The glass transition temperature of this thermoplastic used as an underfill is below the melting temperature of the soldering material of the external contacts of the electronic component.
  • Such a component has the advantage that the failures of the electronic components are reduced when external contacts are soldered onto external contact surfaces and when external contacts of the electronic component are soldered onto higher-level circuit carriers.
  • the glass transition temperature and thus the softening point is in any case above the highest functional test temperature for electronic components, which can be between 70 and 150 ° C depending on the area of application. Consumer components do not become as hard and therefore with a smaller one highest functional test temperature tested as commercial components, such as electronic components for automotive technology, which are cyclically loaded with a highest functional test temperature of 150 ° during the function test.
  • the glass transition temperature for the thermoplastic to be used as the underfill is then correspondingly higher.
  • Another advantage of this electronic component is that the housing no longer has to be pre-dried before every soldering process in order to drive off the moisture, since a higher degree of moisture can be tolerated with the use of a thermoplastic as an underfill, without destroying the structure or the structure of the component.
  • thermoplastic One of the substances from the group polyamide, polyacetal, polycarbonate, polyethylene, polypropylene, polyethylene terephthalate or mixtures thereof can be used as the thermoplastic.
  • the desired softening temperature range and melting temperature range can be set in particular by mixing these thermoplastics. This ensures that the thermoplastic has the same strength at the highest functional test temperature as at room temperature, especially since the glass transition temperature for the thermoplastic is only reached above this.
  • thermoplastic In contrast to soldering, in which an electronic component is only partially heated and can only partially reach critical temperatures, the electronic components for the function test are completely exposed to a highest functional test temperature ⁇ , which can be up to 150 ° C. At such a temperature, the thermoplastic should have the same consistency and strength as at room temperature. Only at the much higher soldering temperature External contacts, which can reach 250 ° C, the thermoplastic as a filler has a plastic compliance or melt properties that prevent the components of the electronic component, in particular the semiconductor chip, the flip-chip contacts and the contact ' Terminal pads of the rewiring substrate damaged or destroyed or their connections to each other are interrupted.
  • a plastic package in which the semiconductor chip and the flip-chip contacts are packed can have a thermoplastic with the same glass transition temperature as the underfill. This has the advantage that the plastic housing pack and the underfill can be introduced in a single transfer molding step.
  • the flip-chip contacts can be securely fixed on corresponding contact connection areas of the U-wiring substrate, especially since the housing can be produced in the construction of the electronic component according to the invention without the semiconductor chip having its flip chip prior to packaging -Contacts must be pressed through a plastic film or a plastic layer on corresponding contact pads of the rewiring substrate.
  • the plastic housing package can also have a thermoplastic with a glass transition temperature which is above the melting temperature of the soldering material of the external contacts.
  • a thermoplastic with a glass transition temperature which is above the melting temperature of the soldering material of the external contacts.
  • the soldering temperature when partially reached, only the thermoplastic softening at a lower temperature, which is used as an underfill, will yield softening or molten.
  • This plastic giving way of the underfill is sufficient, however, to prevent damage or destruction of the connections between the semiconductor chip and the rewiring substrate.
  • two successive transfer molding processes are required in order to apply the two different thermoplastics first as an underfill and then as a plastic packaging.
  • the thermoplastic can advantageously have a molten state in a temperature range between 200 ° C. and 220 ° C. In such a molten state, the thermoplastic is yielding in such a way that loads caused by water vapor formation can be compensated for. In addition, this temperature range is well above a highest functional test temperature and below a soldering temperature of the external contacts.
  • a method for producing an electronic component has the following method steps. First, a rewiring substrate with contact pads on its upper side and external contact areas on its lower side is produced. In the rewiring substrate, the external contact areas on the underside are connected to the contact connection areas on the top side of the rewiring substrate via vias and rewiring lines. In addition, a semiconductor chip is produced using flip-chip technology with flip-chip contacts on its active top side.
  • the flip-chip contacts are placed on the rewiring substrate. brings and electrically connected to the contact pads. Finally, the space between the active Top of the semiconductor chip and the top of the rewiring substrate are filled with an underfill made of thermoplastic.
  • thermoset is used to fill up the intermediate space between the semiconductor chip and the rewiring substrate, which thermoplastic damages or destroys the connection between the semiconductor chip and the rewiring substrate when moisture occurs, in particular when soldering external contacts or when soldering the external contacts to a higher-level circuit carrier could.
  • the flip-chip contacts can be soldered to the contact pads of the rewiring substrate or with a before the thermoplastic is introduced as an underfill
  • Conductive adhesive can be fixed. Since this process step takes place before the underfill is introduced, a secure, reliable electrical connection can be created via the flip-chip contacts to the rewiring substrate and thus to the external contact areas of the rewiring substrate.
  • the underfill can be applied with the appropriate heating using dispersion technology, so that a high-pressure mold can be dispensed with. If the plastic housing pack consists of the same material as the underfill material, the plastic housing pack can be realized simultaneously with the underfill material. In this case, it is advantageous to apply the thermoplastic by means of injection molding technology, so that underfilling and molding of the
  • Plastic packaging can be done in one step. Before the thermoplastic is introduced onto the top of the rewiring substrate, it is heated to a processing temperature above the highest functional test temperature and below the melting temperature of the soldering material for external contacts. It is preferably provided that the thermoplastic is heated to temperatures between 200 and 220 ° C. before being applied to the rewiring structure.
  • Figure 1 shows a schematic cross section of an electronic component which is applied to a circuit carrier.
  • FIG. 2 shows a schematic cross section of a critical section of an electronic component.
  • FIG. 3 shows a schematic cross section of an electronic component with a plastic housing pack, which is applied to a circuit carrier.
  • FIG. 1 shows a schematic cross section of an electronic component 1, which is applied with its external contacts 10 to a circuit carrier 12 of a higher-level electronic circuit.
  • the electronic component 1 essentially consists of two main components, namely a semiconductor chip 2 and a rewiring substrate 6.
  • the rewiring substrate 6 has essentially five layers. Starting from its top 13, the five layers are staggered towards the bottom 15 as explained below.
  • the lower solder stop layer 23 covers the underside 15 of the rewiring substrate 6 except for external contact surfaces 13, on which external contacts 10 are soldered in the form of solder balls.
  • the external contact areas 14 belong to the lower rewiring layer 22, which is electrically connected to the upper rewiring layer 20 via vias 16.
  • the upper solder stop layer 19 only leaves the contact connection areas 5 free of solder resist from the upper rewiring layer 20.
  • the semiconductor chip 2 has an active upper side 4 and a passive rear side 24. Contact surfaces 18 are arranged on the active top side 4 and carry flip chip contacts 3 in the form of solder balls or bumps.
  • the two main components of the electronic component 1 are electrically connected to one another via the flip-chip contacts 3 of the semiconductor chip 2 and the contact connection areas 5 of the upper rewiring layer 20 of the rewiring substrate 6.
  • thermoplastic 8 Semiconductor chips 2 and the upper side 13 of the rewiring substrate 6 are filled with a thermoplastic 8.
  • thermoplastic 8 or the thermoplastic mixture has a glass transition temperature between 155 ° C and 250 ° C.
  • the critical phase in the assembly of such an electronic component 1 and in the assembly of such an electronic component 1 on the top of a circuit carrier 12 lies in the heating to the soldering temperature of the external contacts 10.
  • FIG. 2 shows a schematic cross section through a critical section of an electronic component 1.
  • This critical section is the intermediate space 7 between the active ven upper side 4 of the semiconductor chip 2 and the upper side 13 of the rewiring substrate 6.
  • This intermediate space has a fixed connection in the form of flip-chip contacts 3 between the contact surfaces 18 of the semiconductor chip 2 and contact connection surfaces 5 of the upper rewiring layer 20 of the rewiring substrate 6. Since plastics are hygroscopic, they absorb moisture when stored temporarily.
  • vapor bubbles 25 can form and exert pressure on the upper sides of the rewiring substrate 6 and the semiconductor chip 2 connected via the flip chip contacts 3.
  • An underfill 9 made of thermoplastic 8, which fills the intermediate space 7, can yield to this pressure, especially since it is plastically flexible or is molten in the area of the soldering temperature and can thus weaken the load caused by such a vapor bubble 25.
  • FIG. 3 shows a schematic cross section of an electronic component 1 with a plastic housing pack 11, which is applied to a circuit carrier 12.
  • Components with the same functions as in the previous figures are identified by the same reference symbols and are not discussed separately.
  • the difference between this electronic component 1 and the component 1 shown in FIG. 1 is that the passive rear side of the semiconductor chip 2 is not freely accessible as in FIG. 1, but is covered with a plastic housing package 11.
  • This' Künststoffgekorusepackung 11 has in this embodiment of the invention according to FIG 3 the same thermoplastic material 8 from which the underfilling is already formed. 9
  • the underfill 9 and the plastic housing package 11 were applied in a single transfer molding step. In order to avoid possible partial deformation or melting of the plastic housing package 11 during soldering, the plastic housing package 11 can be partially cooled during the soldering process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

Die Erfindung betrifft ein elektronisches Bauteil und ein Verfahren zur Herstellung desselben, wobei das Bauteil (1) einen Halbleiterchip (2) aufweist, der Flip-Chip-Kontakte (3) trägt. Diese Kontakte (3) sind auf einem Umverdrahtungssubstrat (6) fixiert, wobei der Zwischenraum (7) zwischen dem Umverdrahtungssubstrat (6) und dem Halbleiterchip (2) mit einem Thermoplast (8) aufgefüllt ist. Die Glasübergangstemperatur des Thermoplasten (8) liegt über der höchsten Funktionsprüftemperatur des Bauteils und unterhalb der Schmelztemperatur des Lötmaterials für Außenkontakte.

Description

Beschreibung
Elektronisches Bauteil mit Unterfüllstoffen aus Thermoplasten und Verfahren zu dessen Herstellung
Die Erfindung betrifft ein elektronisches Bauteil mit einem Halbleiterchip, der Flip-Chip-Kontakte aufweist und auf einem Umverdrahtungssubstrat fixiert ist sowie ein Verfahren zur Herstellung desselben.
Elektronische Bauteile mit Flip-Chip-Kontakten und einem Umverdrahtungssubstrat sind in einem Kunststoffgehäuse aus Duroplasten verpackt. Beim Anbringen von Außenkontakten auf Au- ßenkontaktflächen des Umverdrahtungssubstrats derartiger elektronischer Bauteile oder beim Anlöten der fertigen Außenkontakte auf einen übergeordneten Schaltungsträger versagen unerwarteterweise einige dieser elektronischen Bauteile, obgleich vorher ihre Funktionstüchtigkeit bei Temperaturzyklen zwischen einer obersten Funktionsprüftemperatur von etwa plus 150 °C und einer untersten Funktionsprüftemperatur von etwa minus 50°C erfolgreich getestet wurde.
Aufgabe der Erfindung ist es, ein elektronisches Bauteil und ein Verfahren zu seiner Herstellung anzugeben, das die Zuver- lässigkeit elektronischer Bauteile erhöht.
Gelöst wird diese Aufgabe mit dem Gegenstand der unabhängigen Ansprüche. Vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.
Erfindungsgemäß wird ein elektronisches Bauteil mit einem Halbleiterchip geschaffen, der Flip-Chip-Kontakte auf seiner aktiven Oberseite aufweist, die auf Kontaktanschlussflächen eines Umverdrahtungssubstrats fixiert sind. Diese Fixierung kann mittels einer Lötverbindung und/oder mittels eines Leitklebers erfolgen. Der durch die Flip-Chip-Kontakte gebildete Zwischenraum zwischen dem Umverdrahtungssubstrat und dem Halbleiterchip weist als Unterfüllstoff einen Thermoplast auf. Die Glasübergangstemperatur dieses als Unterfüllstoff eingesetzten Thermoplasten liegt unterhalb der Schmelztemperatur des Lötmaterials der Außenkontakte des elektronischen Bauteils .
Ein derartiges Bauteil hat den Vorteil, dass beim Anlöten von Außenkontakten auf Außenkontaktflachen und beim Auflöten von Außenkontakten des elektronischen Bauteils auf übergeordnete Schaltungsträger die Ausfälle der elektronischen Bauteile vermindert sind. Mit dem Einfügen eines Thermoplasten, der bei Lötvorgängen im Bereich der Außenkontakte seine Glasübergangstemperatur überschreitet und erweicht und bei erreichen der Löttemperatur in einen schmelzflüssigen Zustand übergeht, wird erreicht, dass Belastungen, wie sie durch Dampfphasen- bildungen bei duroplastischen Materialien als Kunststoffgehäusemasse auftreten, abgemildert werden. Der erweichte Thermoplast kann sich plastisch verformen und damit nachgeben ohne das Gefüge zwischen Flip-Chip-Kontakten des Halbleiterchips und Kontaktanschlussflächen auf einem Umverdrahtungs- Substrat zu zerstören. Somit wird die Ausfallrate beim Auflöten von Außenkontakten oder beim Auflöten auf übergeordnete Schaltungsträger vermindert.
Die Glasübergangstemperatur und damit der Erweichungspunkt liegt jedoch in jedem Fall über der höchsten Funktionsprüf- temperatur für elektronische Bauteile, die je nach Anwendungsgebiet zwischen 70 und 150 °C liegen kann. Konsumerbauteile werden nicht so hart und damit bei einer geringeren höchsten Funktionsprüftemperatur getestet als kommerzielle Bauteile, wie elektronische Bauteile für die KFZ-Technik, die mit einer höchsten Funktionsprüftemperatur von 150° zyklisch beim Funktionstest belastet werden. Entsprechend höher ist dann auch die Glasübergangstemperatur für den als Unterfüllstoff vorgesehenen Thermoplast zuwählen.
Ein weiterer Vorteil dieses elektronischen Bauteils ist es, dass das Gehäuse nicht mehr vor jedem Lötprozess vorgetrock- net werden muss, um die Feuchte auszutreiben, da ein höherer Feuchtegrad mit der Verwendung eines Thermoplastes als Unterfüllstoff toleriert werden kann, ohne dass es zur Zerstörung des Gefüges oder der Struktur des Bauteils kommt.
Als Thermoplast kann einer der Stoffe der Gruppe Polyamid, Polyacetal, Polycarbonat, Polyethylen, Polypropylen, Polye- thylenterephthalat oder Mischungen derselben eingesetzt werden. Insbesondere durch Mischen dieser Thermoplaste kann der erwünschte Erweichungstemperaturbereich und Schmelztempera- turbereich eingestellt werden. Damit wird sichergestellt, dass bei der höchsten Funktionsprüftemperatur der Thermoplast die gleiche Festigkeit aufweist wie bei Raumtemperatur, zumal erst darüber die die Glasübergangstemperatur für den Thermoplast erreicht wird.
Im Gegensatz zum Löten, bei dem ein elektronisches Bauteil nur partiell erwärmt wird und kritische Temperaturen lediglich partiell erreichen kann, werden die elektronischen Bauteile für den Funktionstest vollständig einer höchsten Funk- tionsprüftemperatur ■ ausgesetzt, die bei 150°C liegen kann. Bei einer derartigen Temperatur soll der Thermoplast die gleiche Konsistenz und Festigkeit aufweisen wie bei Raumtemperatur. Erst bei der wesentlich höheren Löttemperatur der Außenkontakte, die 250 °C erreichen kann, weist der Thermoplast als Unterfüllstoff eine plastische Nachgiebigkeit oder schmelzflüssige Eigenschaften auf, die es verhindern, dass die Komponenten des elektronischen Bauteils, insbesonde- re der Halbleiterchip, die Flip-Chip-Kontakte und die Kontak-' tanschlußflächen des Umverdrahtungssubstrat beschädigt oder zerstört oder ihre Verbindungen zueinander unterbrochen werden.
Eine Kunststoffgehäusepackung, in die der Halbleiterchip und die Flip-Chip-Kontakte eingepackt sind, kann einen Thermoplast mit gleicher Glasübergangstemperatur wie der Unterfüllstoff aufweisen. Dieses hat den Vorteil, dass die Kunst- stoffgehäusepackung und der Unterfüllstoff in einem einzigen Transfermoldschritt eingebracht werden können.
Vor dem Einbringen kann eine sichere Fixierung der Flip-Chip- Kontakte auf entsprechenden Kontaktanschlussflächen des U - verdrahtungssubstrats erfolgen, zumal bei dem erfindungsgemä- ßen Aufbau des elektronisches Bauteils das Gehäuse hergestellt werden kann, ohne dass der Halbleiterchip vor dem Verpacken mit seinen Flip-Chip-Kontakten durch eine Kunststoff- Folie oder eine Kunststoffschicht auf entsprechende Kontaktanschlussflächen des Umverdrahtungssubstrats gepresst werden muss.
Die Kunststoffgehäusepackung kann auch einen Thermoplast mit einer Glasübergangstemperatur aufweisen, der über der Schmelztemperatur des Lötmaterials der Außenkontakte liegt. In diesem Fall wird bei partieller Erreichung der Löttemperatur nur der bei niedrigerer Temperatur erweichende Thermoplast, der als Unterfüllstoff eingesetzt ist, erweichend oder schmelzflüssig nachgeben. Dieses plastische Nachgeben des Unterfüllstoffes reicht jedoch aus, um eine Beschädigung oder Zerstörung der Verbindungen zwischen Halbleiterchip und Umverdrahtungssubstrat zu verhindern. In diesem Fall sind zwei aufeinanderfolgende Transfermoldprozesse erforderlich, um die beiden unterschiedlichen Thermoplaste zunächst als Unterfüllstoff und dann als Kunststoffgehäusepackung aufzubringen.
Vorteilhafterweise kann der Thermoplast in einem Temperatur- bereich zwischen 200°C und 220°C einen schmelzflüssigen Zustand aufweisen. In einem derartigen schmelzflüssigen Zustand ist der Thermoplast derart nachgebend, dass Belastungen durch Wasserdampfbildung ausgeglichen werden können. Darüber hinaus liegt dieser Temperaturbereich deutlich über einer höchsten Funktionsprüftemperatur und unterhalb einer Löttemperatur der Außenkontakte .
Ein Verfahren zur Herstellung eines elektronischen Bauteils weist nachfolgende Verfahrensschritte auf. Zunächst wird ein Umverdrahtungssubstrat mit Kontaktanschlussflächen auf seiner Oberseite und Außenkontaktflächen auf seiner Unterseite hergestellt. In dem Umverdrahtungssubstrat werden die Außenkontaktflächen auf der Unterseite über Durchkontakte und über Umverdrahtungsleitungen mit den Kontaktanschlussflächen auf der Oberseite des Umverdrahtungssubstrats verbunden. Außerdem wird ein Halbleiterchip in Flip-Chip-Technologie mit Flip- Chip-Kontakten auf seiner aktiven Oberseite hergestellt.
Stehen sowohl das Umverdrahtungssubstrat als auch der Halb- leiterchip mit Flip-Chip-Kontakten zur Verfügung, so werden die Flip-Chip-Kontakte auf das Umverdrahtungssubstrat aufge- . bracht und elektrisch mit den Kontaktanschlussflächen verbunden. Abschließend kann der Zwischenraum zwischen der aktiven Oberseite des Halbleiterchips und der Oberseite des Umverdrahtungssubstrats mit einem Unterfüllstoff aus Thermoplast aufgefüllt werden.
Dieses Verfahren hat den Vorteil, dass zum Auffüllen des Zwischenraums zwischen dem Halbleiterchip und dem Umverdrahtungssubstrat kein Duroplast eingesetzt wird, der insbesondere beim Auflöten von Außenkontakten oder beim Auflöten der Außenkontakte auf einen übergeordneten Schaltungsträger die Verbindung zwischen Halbleiterchip und Umverdrahtungssubstrat bei Auftreten von Feuchte beschädigen oder zerstören könnte.
Die Flip-Chip-Kontakte können vor dem Einbringen des Thermoplastes als Unterfüllstoff auf die Kontaktanschlussflächen des Umverdrahtungssubstrats gelötet werden oder mit einem
Leitkleber fixiert werden. Da dieser Verfahrensschritt noch vor dem Einbringen des Unterfüllstoffes erfolgt, kann eine sichere, zuverlässige elektrische Verbindung über die Flip- Chip-Kontakte zu dem Umverdrahtungssubstrat und damit zu den Außenkontaktflächen des Umverdrahtungssubstrats geschaffen werden.
Der Unterfüllstoff kann bei entsprechender Erwärmung mittels Dispensionstechnik aufgebracht werden, so dass auf eine Hoch- druckform verzichtet werden kann. Besteht die Kunststoffgehäusepackung aus dem gleichen Material wie der Unterfüllstoff, so kann gleichzeitig mit dem Unterfüllstoff die Kunststoffgehäusepackung verwirklicht werden. In diesem Fall ist es vorteilhaft, den Thermoplasten mittels Spritzgusstechnik aufzubringen, so dass ein Unterfüllen und ein Formen der
Kunststoffgehäusepackung mit einem Schritt ausgeführt werden kann. Vor dem Einbringen des Thermoplastes auf die Oberseite des Umverdrahtungssubstrats wird dieser auf eine Verarbeitungstemperatur oberhalb der höchsten Funktionsprüftemperatur und unterhalb der Schmelztemperatur des Lötmaterials für Außen- kontakte erwärmt. Vorzugsweise ist es vorgesehen, den Thermoplasten vor dem Aufbringen auf die UmverdrahtungsStruktur auf Temperaturen zwischen 200 und 220 °C zu erwärmen.
Die Erfindung wird nun mit Bezug auf die beiliegenden Figuren näher erläutert.
Figur 1 zeigt einen schematischen Querschnitt eines elektronischen Bauteils, das auf einem Schaltungsträger aufgebracht ist.
Figur 2 zeigt einen schematischen Querschnitt eines kritischen Abschnitts eines elektronischen Bauteils.
Figur 3 zeigt einen schematischen Querschnitt eines elek- tronischen Bauteils mit Kunststoffgehäusepackung, das auf einem Schaltungsträger aufgebracht ist.
Figur 1 zeigt einen schematischen Querschnitt eines elektronischen Bauteils 1, das mit seinen Außenkontakten 10 auf ei- nem Schaltungsträger 12 einer übergeordneten elektronischen Schaltung aufgebracht ist. Das elektronische Bauteil 1 besteht im wesentlichen aus zwei Hauptkomponenten, nämlich einem Halbleiterchip 2 und einem Umverdrahtungssubstrat 6.
Das Umverdrahtungssubstrat 6 weist im wesentlichen fünf Lagen auf. Ausgehend von seiner Oberseite 13 sind die fünf Lagen zur Unterseite 15 hin wie nachfolgend erläutert gestaffelt. Eine obere Lötstopplage 19, eine obere Umverdrahtungslage 20, eine elektrisch isolierende Kernplatte 21, eine untere Umver- drahtungslage 22 und eine untere Lötstopplage 23. Die untere Lötstopplage 23 bedeckt die Unterseite 15 des Umverdrahtungssubstrats 6 bis auf Außenkontaktflächen 13, auf denen Außen- kontakte 10 in Form von Lotbällen aufgelötet sind. Die Außenkontaktflächen 14 gehören zur unteren Umverdrahtungslage 22, die mit der oberen Umverdrahtungslage 20 über Durchkontakte 16 elektrisch verbunden ist. Die obere Lötstopplage 19 lässt von der oberen Umverdrahtungslage 20 nur die Kontaktanschluß- flächen 5 frei von Lötstopplack.
Der Halbleiterchip 2 weist eine aktive Oberseite 4.und eine passive Rückseite 24 auf. Auf der aktiven Oberseite 4 sind Kontaktflächen 18 angeordnet, die Flip-Chip-Kontakte 3 in Form von Lötbällen bzw. Bumps tragen. Die beiden Hauptkompo- nenten des elektronischen Bauteils 1 sind über die Flip-Chip- Kontakte 3 des Halbleiterchips 2 und die Kontaktanschlussflächen 5 der oberen Umverdrahtungslage 20 des Umverdrahtungssubstrats 6 elektrisch miteinander verbunden. Ein sich bil- dender Zwischenraum 7 zwischen der aktiven Oberseite 4 des
Halbleiterchips 2 und der Oberseite 13 des Umverdrahtungssubstrats 6 ist mit einem Thermoplast 8 aufgefüllt.
Dieser Thermoplast 8 oder das Thermoplastgemisch weist eine Glasübergangstemperatur zwischen 155°C und 250 °C auf. Die kritische Phase beim Zusammenbau eines derartigen elektronischen Bauteils 1 und beim Anbau eines derartigen elektronischen Bauteils 1 auf die Oberseite eines Schaltungsträgers 12 liegt beim Erwärmen auf Löttemperatur der Außenkontakte 10.
Figur 2 zeigt einen schematischen Querschnitt durch einen kritischen Abschnitt eines elektronischen Bauteils 1. Dieser kritische Abschnitt ist der Zwischenraum 7 zwischen der akti- ven Oberseite 4 des Halbleiterchips 2 und der Oberseite 13 des Umverdrahtungssubstrats 6. Dieser Zwischenraum weist eine feste Verbindung in Form von Flip-Chip-Kontakten 3 zwischen den Kontaktflächen 18 des Halbleiterchips 2 und Kontaktan- schlussflächen 5 der oberen Umverdrahtungslage 20 des Umverdrahtungssubstrats 6 auf. Da Kunststoffe hygroskopisch sind, nehmen sie bei Zwischenlagerungen Feuchtigkeit auf.
Es können sich beim Auflöten von in Figur 2 nicht gezeigten Außenkontakten des elektronischen Bauteils Dampfblasen 25 bilden und einen Druck auf die über die Flip-Chip-Kontakte 3 verbundenen Oberseiten von Umverdrahtungssubstrat 6 und Halbleiterchip 2 ausüben. Diesem Druck kann ein Unterfüllstoff 9 aus dem Thermoplast 8, der den Zwischenraum 7 auffüllt, nach- geben, zumal er im Bereich der Löttemperatur plastisch nachgiebig ist oder schmelzflüssig ist und somit die Belastung durch eine derartige Dampfblase 25 abschwächen kann.
Die Gefahr einer Trennung der elektrischen Verbindung der Flip-Chip-Kontakte 3 von den Kontaktanschlußflächen 5 des Umverdrahtungssubstrats 6 ist vermindert. Es bleibt vielmehr die elektrische Verbindung sowohl beim Anlöten der Außenkontakte an die Außenkontaktflächen, wie sie in Figur 1 gezeigt werden, als auch beim Auflöten des elektronischen Bauteils auf einen Schaltungsträger erhalten.
Figur 3 zeigt einen schematischen Querschnitt eines elektronischen Bauteils 1 mit Kunststoffgehäusepackung 11, das auf einem Schaltungsträger 12 aufgebracht ist. Komponenten mit gleichen Funktionen wie in den vorhergehenden Figuren werden mit den gleichen Bezugszeichen gekennzeichnet und nicht extra erörtert. Der Unterschied dieses elektronischen Bauteils 1 gegenüber dem in Figur 1 gezeigten Bauteil 1 besteht darin, dass die passive Rückseite des Halbleiterchips 2 nicht frei zugänglich ist wie in Figur 1, sondern mit einer Kunststoffgehäusepak- kung 11 bedeckt ist. Diese 'Künststoffgehäusepackung 11 weist in dieser Ausführungsform der Erfindung nach Figur 3 den gleichen Thermoplast 8 auf, aus dem bereits der Unterfüllstoff 9 gebildet ist. Der Unterfüllstoff 9 und die Kunststoffgehäusepackung 11 wurden in einem einzigen Transfermold- schritt aufgebracht. Um ein mögliches partielles Deformieren oder Anschmelzen der Kunststoffgehäusepackung 11 beim Löten zu vermeiden, kann die Kunststoffgehäusepackung 11 während des Lötvorgangs teilweise gekühlt werden.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines elektronischen Bauteils, das folgende Verfahrensschritte aufweist: - Bereitstellen eines Umverdrahtungssubstrats (6) mit Kontaktanschlussflächen (5) auf seiner Oberseite (4)',
Bereitstellen eines Halbleiterchips (1) in Flip- Chip-Technologie mit Flip-Chip-Kontakten (3) auf seiner aktiven Oberseite (4),
Aufbringen und elektrisches Verbinden der Flip- Chip-Kontakte (3) auf den Kontaktanschlussflächen (5) des Umverdrahtungssubstrats (6), Auffüllen eines Zwischenraums (7) zwischen der ak- tiven Oberseite (4) des Halbleiterchips (2) und der
Oberseite (13) des Umverdrahtungssubstrats (6) mit einem Unterfüllstoff (9), der einen Thermoplast (8) aufweist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Flip-Chip-Kontakte (3) auf die Kontaktanschlussflächen (5) vor einem Einbringen des Unterfüllstoffes (9) gelötet werden.
3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass im wesentlichen gleichzeitig mit dem Einbringen des Unterfüllstoffes (9) eine Kunststoffgehäusepackung (11) aus gleichem Thermoplastmaterial zum Verpacken des Halbleiterchips (2) aufgebracht wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Thermoplast (8) vor dem Aufbringen auf das Umverdrahtungssubstrat (6) auf Temperaturen unterhalb der Schmelztemperatur des Lötmaterials für Außenkontakte (10) vorzugsweise auf Temperaturen zwischen 200 °C und 220 °C erwärmt und in einen Schmelzflüssigen Zustand gebracht wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Thermoplast (8) als Unterfüllstoff (9) mittels Dispensionstechnik oder Spritzgusstechnik aufgebracht wird.
6. Elektronisches Bauteil mit einem Halbleiterchip (2) , der Flip-Chip-Kontakte (3) auf seiner aktiven Oberseite (4) aufweist, die auf Kontaktanschlussflächen (5) eines Umverdrahtungssubstrats (6) fixiert sind, wobei der durch die Flip-Chip-Kontakte (3) auftretende Zwischenraum (7) zwischen dem Umverdrahtungssubstrat (6) und dem Halbleiterchip (2) als einen Unterfüllstoff (9) einen Thermoplast (8) aufweist, dessen Glasübergangstemperatur unterhalb der Schmelztemperatur eines Lötmaterials von Außenkontakten (10) des elektronischen Bauteils (1) liegt.
7. Elektronisches Bauteil nach Anspruch 6, dadurch gekennzeichnet, dass der Thermoplast (8) mindestens einen Stoff der Gruppe Polyamid, Polyacetal, Polycarbonat, Polyethylen, Poly- propylen Polyethylenterephthalat oder Mischungen derselben aufweist.
8. Elektronisches Bauteil nach Anspruch 6 oder Anspruch 7, dadurch gekennzeichnet, dass eine Kunststoffgehäusepackung (11) des elektronischen Bauteils (1) einen Thermoplast (8) mit gleicher Glas- Übergangstemperatur wie der Unterfüllstoff (9) aufweist.
9. Elektronisches Bauteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Thermoplast (8) in einem Temperaturbereich zwischen 200°C und 220°C einen schmelzflüssigen Zustand aufweist,
EP03776797A 2002-10-29 2003-10-20 Elektronisches bauteil mit unterfülstoffen aus thermoplasten und verfahren zu dessen herstellung Withdrawn EP1556890A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10250541 2002-10-29
DE10250541A DE10250541B9 (de) 2002-10-29 2002-10-29 Elektronisches Bauteil mit Unterfüllstoffen aus Thermoplasten und Verfahren zu dessen Herstellung
PCT/DE2003/003463 WO2004040640A1 (de) 2002-10-29 2003-10-20 Elektronisches bauteil mit unterfüllstoffen aus thermoplasten und verfahren zu dessen herstellung

Publications (1)

Publication Number Publication Date
EP1556890A1 true EP1556890A1 (de) 2005-07-27

Family

ID=32010484

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03776797A Withdrawn EP1556890A1 (de) 2002-10-29 2003-10-20 Elektronisches bauteil mit unterfülstoffen aus thermoplasten und verfahren zu dessen herstellung

Country Status (7)

Country Link
US (1) US20060088954A1 (de)
EP (1) EP1556890A1 (de)
JP (1) JP4545591B2 (de)
KR (1) KR100789349B1 (de)
CN (1) CN100449719C (de)
DE (1) DE10250541B9 (de)
WO (1) WO2004040640A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031889B4 (de) * 2004-06-30 2012-07-12 Infineon Technologies Ag Halbleiterbauteil mit einem Gehäuse und einem teilweise in eine Kunststoffgehäusemasse eingebetteten Halbleiterchip und Verfahren zur Herstellung desselben
WO2006043122A1 (en) * 2004-10-21 2006-04-27 Infineon Technologies Ag Semiconductor package and method to produce the same
WO2007017341A1 (de) * 2005-08-11 2007-02-15 Siemens Aktiengesellschaft Fluxing encapsulants - giessharze für dca-anwendungen auf basis kationisch härtbarer epoxidharze
DE102005047856B4 (de) * 2005-10-05 2007-09-06 Infineon Technologies Ag Halbleiterbauteil mit in Kunststoffgehäusemasse eingebetteten Halbleiterbauteilkomponenten, Systemträger zur Aufnahme der Halbleiterbauteilkomponenten und Verfahren zur Herstellung des Systemträgers und von Halbleiterbauteilen
KR101726262B1 (ko) * 2015-01-02 2017-04-13 삼성전자주식회사 패키지 기판용 필름, 이를 사용한 반도체 패키지 및 반도체 패키지를 포함하는 표시 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003943A (ja) * 1992-06-25 2000-01-07 Nitto Denko Corp フィルムキャリア、これらを用いた半導体装置およびフィルムキャリアの製造方法
US6329220B1 (en) * 1999-11-23 2001-12-11 Micron Technology, Inc. Packages for semiconductor die
US20020109241A1 (en) * 2000-12-19 2002-08-15 Takashi Kumamoto Molded flip chip package

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0051165A1 (de) * 1980-11-03 1982-05-12 BURROUGHS CORPORATION (a Michigan corporation) Aufnahmevorrichtung für auswechselbare ICs mit thermoplastischer Befestigung
JPH0677811B2 (ja) * 1986-01-20 1994-10-05 株式会社ハイベツク 自動半田付け装置
JP3088877B2 (ja) * 1992-06-25 2000-09-18 日東電工株式会社 フィルムキャリアの製造方法および半導体装置
US5371404A (en) * 1993-02-04 1994-12-06 Motorola, Inc. Thermally conductive integrated circuit package with radio frequency shielding
US5371328A (en) * 1993-08-20 1994-12-06 International Business Machines Corporation Component rework
US5659203A (en) * 1995-06-07 1997-08-19 International Business Machines Corporation Reworkable polymer chip encapsulant
US5783867A (en) * 1995-11-06 1998-07-21 Ford Motor Company Repairable flip-chip undercoating assembly and method and material for same
JP3376203B2 (ja) * 1996-02-28 2003-02-10 株式会社東芝 半導体装置とその製造方法及びこの半導体装置を用いた実装構造体とその製造方法
JPH1084014A (ja) * 1996-07-19 1998-03-31 Shinko Electric Ind Co Ltd 半導体装置の製造方法
JPH1167988A (ja) * 1996-10-17 1999-03-09 Ngk Spark Plug Co Ltd 配線基板構造物及び配線基板
US5981312A (en) * 1997-06-27 1999-11-09 International Business Machines Corporation Method for injection molded flip chip encapsulation
JPH11219984A (ja) * 1997-11-06 1999-08-10 Sharp Corp 半導体装置パッケージおよびその製造方法ならびにそのための回路基板
JP3741553B2 (ja) * 1998-11-20 2006-02-01 シャープ株式会社 半導体装置の接続構造および接続方法ならびにそれを用いた半導体装置パッケージ
US6373717B1 (en) * 1999-07-02 2002-04-16 International Business Machines Corporation Electronic package with high density interconnect layer
JP4179736B2 (ja) * 1999-07-16 2008-11-12 松下電器産業株式会社 半導体素子実装済部品の製造方法及び半導体素子実装済完成品の製造方法
EP1204136B1 (de) * 1999-07-16 2009-08-19 Panasonic Corporation Verfahren zur Herstellung einer verpackten Halbleiteranordnung
JP3598245B2 (ja) * 1999-10-21 2004-12-08 松下電器産業株式会社 電子部品の実装方法及び基板モジュール
JP2001203318A (ja) * 1999-12-17 2001-07-27 Texas Instr Inc <Ti> 複数のフリップチップを備えた半導体アセンブリ
US6700209B1 (en) * 1999-12-29 2004-03-02 Intel Corporation Partial underfill for flip-chip electronic packages
JP3491827B2 (ja) * 2000-07-25 2004-01-26 関西日本電気株式会社 半導体装置及びその製造方法
JP2002083904A (ja) * 2000-09-06 2002-03-22 Sanyo Electric Co Ltd 半導体装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003943A (ja) * 1992-06-25 2000-01-07 Nitto Denko Corp フィルムキャリア、これらを用いた半導体装置およびフィルムキャリアの製造方法
US6329220B1 (en) * 1999-11-23 2001-12-11 Micron Technology, Inc. Packages for semiconductor die
US20020109241A1 (en) * 2000-12-19 2002-08-15 Takashi Kumamoto Molded flip chip package

Also Published As

Publication number Publication date
US20060088954A1 (en) 2006-04-27
WO2004040640A1 (de) 2004-05-13
CN100449719C (zh) 2009-01-07
DE10250541B3 (de) 2004-04-15
CN1751386A (zh) 2006-03-22
JP4545591B2 (ja) 2010-09-15
DE10250541B9 (de) 2004-09-16
KR100789349B1 (ko) 2007-12-28
KR20050050679A (ko) 2005-05-31
JP2006504275A (ja) 2006-02-02

Similar Documents

Publication Publication Date Title
DE69725926T2 (de) Fügemethode für Substrate und Struktur
DE69532682T2 (de) Nachgiebige zwischenschicht für einen halbleiterchip
DE102011006489B4 (de) Leiterplatte mit eingebautem Halbleiterchip und Verfahren zur Herstellung derselben
US5659203A (en) Reworkable polymer chip encapsulant
DE60309422T2 (de) Multichip-modul und Herstellungsverfahren
DE102006001767B4 (de) Halbleitermodul mit Halbleiterchips und Verfahren zur Herstellung desselben
WO1996009646A1 (de) Polymer stud grid array
DE19848834A1 (de) Verfahren zum Montieren eines Flipchips und durch dieses Verfahren hergestellte Halbleiteranordnung
DE10045043A1 (de) Halbleiterbauteil und Verfahren zu dessen Herstellung
DE102011055884A1 (de) Gedruckte Schaltplatine für ein Halbleitergehäuse zum Verbessern der Lötverbindungszuverlässigkeit und Halbleitergehäuse dieselbe enthaltend
WO2006012846A1 (de) Halbleiterbasisbauteil mit verdrahtungssubstrat und zwischenverdrahtungsplatte für einen halbleiterbauteilstapel sowie verfahren zu deren herstellung
DE102010000407A1 (de) Halbleiter-Package mit einem aus Metallschichten bestehenden Band
DE10355068B4 (de) Verfahren zum Montieren und Verkapseln eines integrierten Schaltkreises
WO2006032250A1 (de) Halbleiterbauteil mit durchkontakten durch eine kunststoffgehäusemasse und verfahren zur herstellung derselben
DE102006033702B3 (de) Herstellungsverfahren für eine elektronische Schaltung in einer Package-on-Package-Konfiguration und elektronisches Bauelement in einer solchen Konfiguration
DE10223738B4 (de) Verfahren zur Verbindung integrierter Schaltungen
DE10016135A1 (de) Gehäusebaugruppe für ein elektronisches Bauteil
DE10250541B3 (de) Elektronisches Bauteil mit Unterfüllstoffen aus Thermoplasten und Verfahren zu dessen Herstellung
DE10059176C2 (de) Zwischenträger für ein Halbleitermodul, unter Verwendung eines derartigen Zwischenträgers hergestelltes Halbleitermodul sowie Verfahren zur Herstellung eines derartigen Halbleitermoduls
DE102005051414B3 (de) Halbleiterbauteil mit Verdrahtungssubstrat und Lotkugeln sowie Verfahren zur Herstellung des Halbleiterbauteils
DE10145468C1 (de) Verfahren und Vorrichtung zum Befestigen von Halbleitereinrichtungen auf einer Schalteinrichtung
DE19940564C2 (de) Chipkartenmodul und diesen umfassende Chipkarte, sowie Verfahren zur Herstellung des Chipkartenmoduls
WO1999003145A1 (de) Verfahren zur herstellung einer klebeverbindung zwischen einem elektronischen bauelement und einem trägersubstrat
DE19639934A1 (de) Verfahren zur Flipchip-Kontaktierung eines Halbleiterchips mit geringer Anschlußzahl
DE102011000866A1 (de) Elektrisches Bauelement mit einer elektrischen Verbindungsanordnung und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

RIN1 Information on inventor provided before grant (corrected)

Inventor name: OFNER, GERALD

Inventor name: STOECKL, STEPHAN

Inventor name: BAUER, MICHAEL

Inventor name: BIRZER, CHRISTIAN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: OFNER, GERALD

Inventor name: BIRZER, CHRISTIAN

Inventor name: BAUER, MICHAEL

Inventor name: STOECKL, STEPHAN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

17Q First examination report despatched

Effective date: 20111206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170113

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BAUER, MICHAEL

Inventor name: OFNER, GERALD

Inventor name: STOECKL, STEPHAN

Inventor name: BIRZER, CHRISTIAN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170524