EP1553301B1 - Flügelzellenvakuumpumpe - Google Patents

Flügelzellenvakuumpumpe Download PDF

Info

Publication number
EP1553301B1
EP1553301B1 EP02808018A EP02808018A EP1553301B1 EP 1553301 B1 EP1553301 B1 EP 1553301B1 EP 02808018 A EP02808018 A EP 02808018A EP 02808018 A EP02808018 A EP 02808018A EP 1553301 B1 EP1553301 B1 EP 1553301B1
Authority
EP
European Patent Office
Prior art keywords
rotor
vane
housing
vacuum pump
type vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP02808018A
Other languages
English (en)
French (fr)
Other versions
EP1553301A4 (de
EP1553301A1 (de
Inventor
Katsuhiko c/o Mitsubishi Denki KK KUSUMOTO
Shigeru c/o Mitsubishi Denki KK ONOUE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of EP1553301A1 publication Critical patent/EP1553301A1/de
Publication of EP1553301A4 publication Critical patent/EP1553301A4/de
Application granted granted Critical
Publication of EP1553301B1 publication Critical patent/EP1553301B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum

Definitions

  • This invention relates to a vane-type vacuum pump and, more particularly, to a vane-type vacuum pump for evacuating a tank for use in vehicles.
  • the conventional vane-type vacuum pump shown in section in Figs. 12 and 13 comprises a housing 1, which comprises a cup-shaped main body 3 including a suction port 2 and a discharge port 4 with a valve and a bracket 6 closing an open end of the main body 3 for defining a pump chamber 5 therein.
  • the pump chamber 5 is a cylindrical space defined in the housing 1 by two parallel end faces 7 and 8, and a cylindrical surface 9 between the end faces 7 and 8.
  • a bearing 10 of the bracket 6 supports a rotary shaft 11 in an eccentric relationship with respect to a central axis of the cylindrical pump chamber 5, and an inner end of the rotary shaft 11 is supported by a bearing 12 of the main body 13.
  • Secured to an outer end of the rotary shaft 11 are a pinion, a pulley, a sprocket, cum and the like 13 for receiving a driving power from an external drive unit (not illustrated) such as gears.
  • a rotor 14 is housed in a concentric relationship with the rotary shaft 11 and therefore in an eccentric relationship with the pump chamber 5 (housing 1).
  • the rotor 14 is a substantially cylindrical member having two end surfaces and a cylindrical surface and is rotated by the rotary shaft 11 within the housing 1.
  • the rotor 14 is provided with four slots 15 radially extending from one end surface to the other, the slots 15 each has inserted therein a vane 16 radially slidable and capable of being brought into a slidable contact at its tip with a cylindrical surface 9 of the housing 1
  • engine oil is supplied to various sliding contact portions of the vane-type vacuum pump such as those portions of the vanes 16 that is sliding-contacting with other portions such as the rotor 14, the end surfaces 7 and 8 and the cylindrical surface 9 and also to the bearing portions and those sliding contact portions are lubricated.
  • the portions between the side end surfaces 7 and 8 of the housing 1 and the axial end surfaces of the rotor 14 are also sliding portions, in which engine oil films are interposed to prevent abrasion between these portions and to establish hermetic seal between the rotor and the housing.
  • the oil films in these sliding portions can be locally broken. Once the oil films are broken, not only the problem of friction arises, but also the effect of hermetic seal is reduced, causing the problem of degrading the vacuum characteristics of the vane-type vacuum pump.
  • the former measure increases the overall dimensions of the vane-type vacuum pump and poses the problems such as poor mountability of the engine and increase the weight and the latter measure poses the problems such as shortened life due to increased vibration, increased mechanical wear and the like.
  • WO 02/18791 A1 is related to a vacuum pump of the rotary vane type in which a rotor is covered with sealing rings at the ends thereof.
  • the sealing rings have ribs, which are accommodated in grooves formed in the housing.
  • the object of the present invention is to provide a vane-type vacuum pump of small size that is improved in hermetic seal between the rotor and the housing to exhibits good vacuum characteristics, a sufficient lubrication can be maintained to reduce wear.
  • the vane-type vacuum pump of the present invention has the construction as described bellow.
  • a vane-type vacuum pump illustrated in Figs. 1 to 3 comprises a housing 21, which comprises a cup-shaped main body 23 having a suction port 22 and a discharge port 24 both with a valve, and a bracket 26 closing an open end of the main body 23 to define a pump chamber 25 therein.
  • the pump chamber 25 is a space defined by two parallel end surfaces 27 and 28 of the housing 21 and a cylindrical surface 29 between the end surfaces 27 and 28.
  • a bearing 30 of the bracket 26 supports a rotary shaft 31 disposed extending through the cylindrical pump chamber 25 and the inner end of the rotary shaft 31 is supported in an eccentric relationship relative to a central axis of the pump chamber 25.
  • An outer end of the rotary shaft 31 has secured thereto a pinion 33, pulley, sprocket, cum or the like for receiving a driving force from an external drive unit (not illustrated) such as gears or the like.
  • a rotor 34 concentric to the rotary shaft 31 and therefore eccentric to the pump chamber 25 (the housing 21) is accommodated.
  • the rotor 34 is a substantially cylindrical member having two flat end surfaces 35 and 36 and a cylindrical surface 37 and the rotor 34 is caused to rotated by the rotary shaft 31 within the housing 21.
  • the rotor 34 is provided with four slots 38 extending through the rotor 34 in the radial direction from one end surface to the other.
  • These slots 38 each has inserted therein a plate shaped vane 42 that can be brought into sliding contact at its tip end 39 with the cylindrical surface 29 of the housing 21 and that is in sliding contact at flat end surfaces 40 and 41 with the end surfaces 27 and 28 of the housing 21, the vanes 42 being slidable in the slots 38 in the radial direction.
  • the rotor 34 has provided on the end surfaces 35 and 36, except at the position where the slot 38 is formed, with an annular ridge or projection ring 43 concentric with the rototary shaft 31.
  • a continuous annular groove 44 is provided at the position corresponding to the annular projection ring 43 for receiving therein the projection ring 43.
  • the clearance 45 in the radial direction as well as the clearance 46 in the radial direction between the groove 44 and the projection ring 43 are made greater than the clearances between the end surfaces 35, 36 of the rotor 34 and the end surfaces 27, 28 of the housing 21, .and the axial clearance 46 is made greater than the radial clearance 45.
  • a space for maintaining engine oil is defined between the annular projection ring 43 and the annular groove 44. Since this space is defined between the projection ring 43 and the groove 44, it is a labyrinth seal for preventing the engine oil from flowing in the radial direction.
  • the sliding contact portion between the side end surfaces 27 and 28 of the housing 1 and the axial end surfaces 35 and 36 of the rotor 34 are provided with the annular projection ring 43 concentric to the rotary shaft 31 and the annular continuous groove 44 for receiving the projection ring 43 therein, whereby a U-shaped bent labyrinth-like seal is defined therebetween and at the same time a space in which engine oil can be maintained is defined. Therefore, this labyrinth-like seal can prevent the engine oil from flowing out through the sliding portion and the oil film from being broken, and the oil reservoir space can continue to supply engine oil, so that the wearing of the sliding contact portion can be prevented and the hermetic seal between the rotor and the housing can be maintained.
  • Figs. 5 to 7 illustrate an example in which an annular projection ring 47 is disposed on the side walls 27 and 28 of the housing 21 and an annular groove 48 is disposed in the end surfaces 35 and 36 of the rotor 34.
  • the projection ring 47 on the housing 21 is a continuous annular ridge-shaped projection having a substantially rectangular cross-section and concentric to the rotary shaft 31 of the rotor 34.
  • the groove 48 in the rotor 34 is an annular groove concentric to the rotary shaft 31 for receiving the projection ring 47 therein, but is discontinuous at the position where the slots 38 for accommodating the vanes 42 are located.
  • recesses 49 as escape grooves are provided for allowing the vanes 42 to be slidably movable within the slots 38 in the radial direction relative to the rotor 34 without interfering with the projection ring 47 on the housing 21.
  • the sliding contact portion between the side end surfaces 27 and 28 of the housing 1 and the axial end surfaces 35 and 36 of the rotor 34 are provided with the annular projection ring 47 on the housing 21 and the annular continuous groove 48 for receiving the projection ring 47 therein at the side of the rotor 34, whereby a U-shaped bent labyrinth-like seal is defined between the groove 48 and the projection ring 47, and at the same time a space in which engine oil can be maintained is defined. Therefore, the wearing of the sliding contact portion can be prevented and the hermetic seal between the rotor and the housing can be maintained.
  • rotor 34 is provided at the end surfaces with two annular projection rings 51 and 52 and the housing 21 is provided with two annular grooves 53 and 54.
  • Each of the projection rings 51 and 52 and the grooves 53 and 54 has similar structure to those shown in Figs. 1 to 4 .
  • labyrinth-like seal and the oil reservoir space are doubled, so that the sealing function is significantly improved as compared to that of the previous embodiments.
  • rotor 34 is provided at the end surfaces with two annular grooves 55 and 56 and the housing 21 is provided with two annular projection rings 57 and 58.
  • Each of the grooves 55 and 56 and the projection rings 57 and 58 has similar structure to those shown in Figs. 5 to 7 .
  • Escape grooves 59 provided in the end surfaces 47 and 48 of the vanes 42 have a radial dimension large enough to prevent interference with the doubled projection rings 55 and 56 and the doubled grooves 57 and 58.
  • labyrinth-like seal and the oil reservoir space are doubled, so that the sealing function is significantly improved as compared to that of the previous embodiments.
  • Fig. 10 is a schematic sectional view showing an example in which the vane-type vacuum pump shown in Figs. 1 to 4 is directly connected to a vehicular ac generator.
  • the vehicular ac generator 60 comprises a stator 62 supported within a housing 61 and a rotor 66 having a rotary shaft 65 supported by bearings 63 and 64 mounted to the housing 61, the rotary shaft 65 extends at its left-hand end as viewed in the figure to the outside of the housing 61 and into the housing 71 of the vane-type vacuum pump 70 of the present invention.
  • the bracket 72 of the housing 71 of the vane-type vacuum pump 70 is attached to the housing 61 of the vehicular ac generator 60, and, while the bracket 72 has no bearing, the bracket 72 has attached thereto a housing main body 73 to constitute the housing 71 of the pump.
  • Attached to the rotary shaft 65 within the housing 71 is the rotor 34 of the vane-type vacuum pump 70 and the annular projection rings 43 and the annular grooves 44 of the present invention are disposed between the rotor 34 and the housing 71, whereby a labyrinth-like seal extending in substantially entire circumference is provided.
  • Fig. 11 is a graph showing the comparison test results as to the vacuum degree of the vane-type vacuum pump shown in Figs. 1 to 4 and the conventional vane-type vacuum pump shown in Figs. 12 and 13 .
  • Two curves A and B show the degrees of vacuum expressed in the height (mmHg) of a mercury column at the suction side of the vane-type vacuum pump as plotted against the operation time (seconds) on abscissa, the curve A representing the vacuum characteristics of the vane-type vacuum pump of the present invention and the curve B representing the vacuum characteristics of the conventional vane-type vacuum pump.
  • the vane-type vacuum pump of the present invention comprises a labyrinth seal extending over an entire circumference, the labyrinth seal including at least one pair of circular ring-shaped grooves 48 and circular ridge-shaped projection rings 47 disposed concentrically to the rotary shaft 31 between the housing 21 and the rotor 34, the grooves and the projection rings engaging together and being relatively movable to each other in circumferential direction.
  • the circular ring-shaped grooves 48 may be disposed in side end surfaces of the rotor 34 and the circular ridge-shaped projection rings 47 may be disposed on the housing 21, and wherein grooves 49 may be provided in the side end surfaces of the vane 42 for receiving the projection rings 47 and not to impede the radial movement of the vane 42.
  • the labyrinth seal may be concentrically provided in a plurality of pairs, or the labyrinth seal may be disposed on both side end surfaces of the rotor.
  • the vane-type vacuum pump of the present invention is useful as a vacuum pump for evacuating a tank constituting a vehicular brake assistor, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Claims (4)

  1. Flügelzellenvakuumpumpe, mit:
    einem Gehäuse (21) mit einer zylindrischen Pumpenkammer (25), die eine Ansaugöffnung (22) und eine Ablassöffnung (24) umfasst;
    einem Rotor (34), der exzentrisch innerhalb der Pumpenkammer (25) untergebracht ist;
    einer Rotationswelle (31), die an dem Rotor (34) befestigt ist, zum Drehen des Rotors innerhalb der Pumpenkammer (25);
    einem Flügel (42), der radial bewegbar in den Rotor (34) eingeführt ist, während er einen gleitenden Kontakt mit dem Gehäuse (21) innerhalb der Pumpenkammer (25) beibehält; und
    einer Labyrinthdichtung (43, 44), die zwischen dem Gehäuse (21) und dem Rotor (34) angeordnet ist, wobei sie sich über einen gesamten Umfang erstreckt und zumindest ein Paar einer kreisförmig ringförmigen Nut (44) und eines kreisförmig rippenförmigen Vorsprungsrings (43), konzentrisch zu der Rotationswelle (31) angeordnet, umfasst, wobei die Nut (44) und der Vorsprungsring (43) zusammen eingreifen und relativ zueinander in Umfangsrichtung bewegbar sind;
    wobei die Luft innerhalb der Pumpenkammer (25) von der Ansaugöffnung (22) zu der Ablassöffnung (24) durch die Drehung des Rotors (34) gepumpt wird, um ein Vakuum auf der Seite der Ansaugöffnungsseite zu erzeugen;
    dadurch gekennzeichnet, dass
    die kreisförmig ringförmige Nut (44) in einer Seitenendoberfläche des Rotors (34) angeordnet ist, und der kreisförmig rippenförmige Vorsprungsring (43) an dem Gehäuse (21) angeordnet ist, und dass
    eine Aussparung (49) in der Seitenendfläche des Flügels (42) vorgesehen ist, zum Aufnehmen des Vorsprungsrings (43) und um die radiale Bewegung des Flügels (42) nicht zu behindern.
  2. Flügelzellenvakuumpumpe nach Anspruch 1, wobei die Labyrinthdichtung (43, 44) konzentrisch in einer Vielzahl von Paaren vorgesehen ist.
  3. Flügelzellenvakuumpumpe nach Anspruch 1 oder 2, wobei die Labyrinthdichtung (43, 44) an beiden Seitenendflächen des Rotors (34) angeordnet ist.
  4. Flügelzellenvakuumpumpe nach einem der Ansprüche 1 bis 3, wobei die Rotationswelle (31) eine Abtriebsrotationswelle eines Fahrzeuggenerators ist.
EP02808018A 2002-10-15 2002-10-15 Flügelzellenvakuumpumpe Expired - Fee Related EP1553301B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/010661 WO2004036046A1 (ja) 2002-10-15 2002-10-15 ベーン式真空ポンプ

Publications (3)

Publication Number Publication Date
EP1553301A1 EP1553301A1 (de) 2005-07-13
EP1553301A4 EP1553301A4 (de) 2006-10-11
EP1553301B1 true EP1553301B1 (de) 2008-09-03

Family

ID=32104819

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02808018A Expired - Fee Related EP1553301B1 (de) 2002-10-15 2002-10-15 Flügelzellenvakuumpumpe

Country Status (6)

Country Link
EP (1) EP1553301B1 (de)
JP (1) JP4014109B2 (de)
KR (1) KR100607321B1 (de)
CN (1) CN100370141C (de)
DE (1) DE60228765D1 (de)
WO (1) WO2004036046A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3849799B2 (ja) * 2005-02-16 2006-11-22 大豊工業株式会社 ベーンポンプ
JP4976827B2 (ja) * 2006-11-24 2012-07-18 パナソニック株式会社 ベーンポンプ
JP2008128201A (ja) * 2006-11-24 2008-06-05 Matsushita Electric Works Ltd ベーンポンプ
JP4811243B2 (ja) * 2006-11-24 2011-11-09 パナソニック電工株式会社 ベーンポンプ
ITTO20080033A1 (it) * 2008-01-16 2009-07-17 Vhit Spa Pompa volumetrica con barriera contro il trafilamento di fluido
CN102878080A (zh) * 2012-10-30 2013-01-16 东风汽车公司 电动真空泵
CN103306979B (zh) * 2013-06-28 2015-12-30 常州市东南电器电机股份有限公司 新能源车辆刹车真空助力器用电子真空泵
CN105317681B (zh) * 2014-07-07 2017-11-14 珠海格力节能环保制冷技术研究中心有限公司 螺杆压缩机
EP2987951B1 (de) * 2014-08-22 2017-02-15 WABCO Europe BVBA Vakuumpumpe mit exzentrisch angetriebenem Flügel
JP6382877B2 (ja) 2016-03-24 2018-08-29 大豊工業株式会社 ベーンポンプ
DE102018105144A1 (de) * 2018-03-06 2019-09-12 Schwäbische Hüttenwerke Automotive GmbH Axiales Dichtelement Vakuumpumpe
CN110374873A (zh) * 2019-08-20 2019-10-25 泓道(上海)科技有限公司 滑片式空气压缩机
KR102301479B1 (ko) * 2020-03-27 2021-09-13 엘지전자 주식회사 로터리 압축기

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB455994A (en) * 1935-05-02 1936-11-02 David Hamilton Cockburn Improvements in or relating to pumps and fluid-pressure motors of the rotating vane type
JPS53114510A (en) * 1977-03-17 1978-10-06 Nippon Carbureter Vacuum pump directly coupled to alternator
JP2947030B2 (ja) * 1993-11-10 1999-09-13 松下電器産業株式会社 ベーンロータリ圧縮機
JPH07279678A (ja) * 1994-04-15 1995-10-27 Tochigi Fuji Ind Co Ltd スクリュー式過給機
JPH07317674A (ja) * 1994-05-27 1995-12-05 Shuichi Kitamura 無給油式ベーンポンプ
JPH0874767A (ja) * 1994-09-07 1996-03-19 Shuichi Kitamura ベーンを有する無給油式ロータリポンプ
CN2239513Y (zh) * 1996-04-02 1996-11-06 花少华 一种湿真空泵
AUPO086196A0 (en) * 1996-07-08 1996-08-01 Boyle, Bede Alfred Rotary engine
SE0003075D0 (sv) * 2000-08-31 2000-08-31 Delaval Holding Ab Vacuum pump
JP2002161881A (ja) * 2000-11-30 2002-06-07 Denso Corp 真空ポンプ

Also Published As

Publication number Publication date
KR20040094737A (ko) 2004-11-10
WO2004036046A1 (ja) 2004-04-29
DE60228765D1 (de) 2008-10-16
JPWO2004036046A1 (ja) 2006-02-16
JP4014109B2 (ja) 2007-11-28
EP1553301A4 (de) 2006-10-11
KR100607321B1 (ko) 2006-07-31
CN100370141C (zh) 2008-02-20
EP1553301A1 (de) 2005-07-13
CN1623038A (zh) 2005-06-01

Similar Documents

Publication Publication Date Title
EP1553301B1 (de) Flügelzellenvakuumpumpe
KR100749040B1 (ko) 스크롤 압축기
CN112088250B (zh) 涡旋式压缩机
EP1260713B1 (de) Spiralverdichter mit einer Oldham Kupplung
US4561832A (en) Lubricating mechanism for a scroll-type fluid displacement apparatus
KR20180080885A (ko) 로터리 압축기
JPH02248675A (ja) スクロール流体機械
US6663367B2 (en) Shaft seal structure of vacuum pumps
JP2009174448A (ja) 流体ポンプ
JP2002122087A (ja) 真空ポンプにおける軸封構造
JPH0286976A (ja) スクロール流体機械
KR20000048834A (ko) 수평형 스크로울 컴프레서
JP7010202B2 (ja) 流体機械
JP2770732B2 (ja) 無潤滑真空ポンプ
WO2023042328A1 (ja) スクロール式流体機械
RU2103553C1 (ru) Насос
KR101557506B1 (ko) 압축기
KR101563006B1 (ko) 압축기
KR101575357B1 (ko) 압축기
JP2024048012A (ja) 流体機械
JP4488149B2 (ja) スクロール圧縮機
EP1087141A2 (de) Spiralverdichter
JPH09310689A (ja) スクロール型圧縮機
JPH0683977U (ja) ベーン形流体機械
JPH0752391Y2 (ja) スクロール流体機械

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040813

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MITSUBISHI DENKI KABUSHIKI KAISHA

A4 Supplementary search report drawn up and despatched

Effective date: 20060907

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 18/344 20060101AFI20040506BHEP

Ipc: F04C 25/02 20060101ALI20060901BHEP

Ipc: F01C 21/10 20060101ALI20060901BHEP

Ipc: F01C 21/08 20060101ALI20060901BHEP

17Q First examination report despatched

Effective date: 20070404

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 60228765

Country of ref document: DE

Date of ref document: 20081016

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101020

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101013

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60228765

Country of ref document: DE

Effective date: 20120501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102