EP1553039B1 - Machinerie pour ascenseur - Google Patents

Machinerie pour ascenseur Download PDF

Info

Publication number
EP1553039B1
EP1553039B1 EP05006056.5A EP05006056A EP1553039B1 EP 1553039 B1 EP1553039 B1 EP 1553039B1 EP 05006056 A EP05006056 A EP 05006056A EP 1553039 B1 EP1553039 B1 EP 1553039B1
Authority
EP
European Patent Office
Prior art keywords
drive
module
deflection
suspension means
drive module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP05006056.5A
Other languages
German (de)
English (en)
Other versions
EP1553039A2 (fr
EP1553039A3 (fr
Inventor
Christoph Liebetrau
Ruedi Stocker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34593654&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1553039(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Inventio AG filed Critical Inventio AG
Priority to SI200432129T priority Critical patent/SI1553039T1/sl
Priority to EP05006056.5A priority patent/EP1553039B1/fr
Priority to PL05006056T priority patent/PL1553039T3/pl
Publication of EP1553039A2 publication Critical patent/EP1553039A2/fr
Publication of EP1553039A3 publication Critical patent/EP1553039A3/fr
Application granted granted Critical
Publication of EP1553039B1 publication Critical patent/EP1553039B1/fr
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • B66B7/08Arrangements of ropes or cables for connection to the cars or cages, e.g. couplings

Definitions

  • the invention relates to an elevator installation with a drive, with a cabin and a counterweight, which drive is provided with at least one traction sheave and with at least one motor required for driving the traction sheave and with a deflection module with deflection roller, wherein the motor and the traction sheave to a drive module assembled and suspension means are guided over the traction sheave and the pulley.
  • An elevator system aims to transport people and goods within a building between floors.
  • a cabin serves to accommodate the people and goods.
  • a drive drives by means of suspension the cabin, which is thereby moved up and down in a vertically extending shaft.
  • the suspension element connects the cabin to a counterweight. It is guided by a traction sheave.
  • the traction sheave transmits the force required for the process or the holding to the suspension elements.
  • the traction sheave is driven or held by a drive device and / or by a braking device.
  • Another type of drive drives the cabin by means of hydraulic lifting devices.
  • the driving and holding force is from a pump unit directly via a piston acting, or acting indirectly by means of a cable or chain hoist, transmitted to the cabin.
  • Both drive types have specific usage characteristics and are subject to wear.
  • the usage characteristics are, for example, the driving speed or the load for which the elevator installation is designed. Wear occurs, for example, by prolonged use of the elevator system, which leads to signs of wear on components of the elevator system. If the usage requirements change or the wear becomes too great, the drive or at least the entire elevator system must be replaced or replaced.
  • the font shows EP 0 763 495 a drive machine, which causes a change in the support means distance (a) by changing the mounting inclination.
  • a support means distance the distance between the accruing to the drive machine suspension element strand and the running suspension element strand is called.
  • the drive machine shown has the disadvantage that it is dependent on a machine room with specially prepared Auflägesockeln and therefore is not suitable for installation in an existing engine room or in a shaft, a Changing the support means distance (a) causes a change in the wrap angle ( ⁇ ) and the unit is large, which adversely affects the introduction into an existing building.
  • the wrap angle ( ⁇ ) denotes the angle over which the suspension means wrap around the traction sheave. The transferable from the traction sheave on the support means force is usually dependent on the wrap angle ( ⁇ ).
  • WO 01/28911 is a drive machine is known, which is compact and can be mounted inside the shaft space.
  • the prime mover has a fixed support means distance.
  • the disadvantage of this solution is the lack of flexibility of the drive, as it does not allow adjustment of the support means distance.
  • WO 03/043927 shows such a drive machine.
  • the object of the invention is now to provide a drive for an elevator system, which is suitable for the replacement of existing drives, which is optimally adaptable to existing buildings, i. that it should be able to be arranged without further structural measures in an existing engine room or within the shaft space.
  • the support means distance should be easily adjustable and the drive should have small dimensions.
  • the elevator installation includes a drive, a carousel and a counterweight.
  • the car and the counterweight are arranged in a vertically extending shaft oppositely arranged up and down movable.
  • the support means connects the car with the counterweight and the support means is carried and driven by the drive by means of at least one traction sheave.
  • the drive is provided with the traction sheave, with at least one motor required for driving the traction sheave and with a deflection module.
  • the motor and the traction sheave are assembled into a drive module.
  • the core function of the drive is perceived by this drive module.
  • the drive module also includes a braking device.
  • the drive module and the deflection module are connected to each other by means of an extension, wherein the drive module and the deflection module are provided with interfaces which allow an adaptation of the drive to a required carrier distance together with the extension.
  • the drive module and / or the deflection module is provided with connection parts, which are used for fastening the drive within the shaft or in the engine room.
  • the drive can be optimally adapted to existing buildings and it can - using the connecting parts - be arranged without further structural measures in an existing machine room or within a shaft.
  • Carrier spacing can be easily adapted to given Tragseildistanzen using the extension and the interfaces to drive and deflection module.
  • the modular design of the drive module and deflection module as well as their ability to be fastened by means of their own connection parts allows small dimensions, as load-bearing forces are introduced directly into the building.
  • the connection parts are designed according to the building requirements.
  • the drive module and the deflection module have the corresponding interfaces. The parts are thus produced efficiently and in large quantities. This results in economically optimal production conditions.
  • the drive can be easily transported; for example, within an existing building, it can be transported with an existing elevator system close to the installation site. It is thus ideally suited for the conversion of elevator systems in existing buildings.
  • Another advantage is also that the installation height of the drive, regardless of the support means distance, is not changed, and thus there is no dependence of the height space requirement of the support means distance.
  • the drive module is provided with a guide roller.
  • the guide roller is placed in the drive module such that it allows, regardless of the Tragstoffdistanz, a tightly defined looping of the traction sheave. This eliminates complex investment-related proofs of sufficient propellability, as for the verification calculation few firmly defined Wrap angle can be considered.
  • the drive module can be produced thereby particularly economically.
  • a fastening for attachment of Tragstoffenden is integrated in the drive module and / or the deflection module.
  • This attachment is advantageously used in suspended elevator systems. All significant support points of the drive are thus placed in the drive itself. By the predetermined by the drive support points the entire suspension of the elevator system is added.
  • the prime mover is therefore ideally suited for use in existing buildings, as the introduction of forces in the building is reduced to a few places.
  • a monitoring device is advantageously arranged, which monitors the correct transmission of the driving forces to the propellant.
  • An insufficient transmission of the driving forces is determined, for example, by comparing the speed of the guide roller with the speed of the traction sheave.
  • predefined safety measures are initiated. As a result, the safety and availability of the elevator system is increased because the correct measures (maintenance request, shutdown, etc.) can be initialized case-specifically.
  • Fig. 1 shows an elevator system 1 with a support means 2 held on the car 3, and counterweight 4, which are in a vertically extending shaft 5, opposite, movable up and down.
  • a mounted below a shaft ceiling 6 drive 7 carries and drives the support means 2 and held by means of the support means 2 car 3 and counterweight. 4
  • an existing elevator installation 1 with machine room 8 is provided with a new drive 7.
  • the original required by the old engine 9 space is no longer needed for the new drive 7.
  • the old drive machine 9 can be left in the assembled state and disassembled at a later time, or the space can be used for other tasks.
  • a control 10 required for the new drive 7 can, as can be seen in the example, be arranged in the former machine room 8, or in the access area of a landing door, or at another location, preferably in the vicinity of the drive 7.
  • the new drive 7 is, as in the FIGS. 2 and 3 shown, modular design.
  • a drive module 11 is provided with a traction sheave 12 for the support means 2 of the car 3 and counterweight 4, with a motor 21 required for driving the traction sheave 12 and in the example shown with a braking device 14 required for braking the traction sheave 12.
  • the drive device 13 and the traction sheave 12 are connected to a drive module 11, as in FIG Fig. 4 exemplified, assembled.
  • the drive module 11 is provided with interfaces 15. These interfaces 15 allow the connection of connection parts 16. These connection parts 16 allow either a mounting of the drive module 11 within the shaft 5, for example, to the shaft ceiling 6 as in the Fig. 1 . 7 and 8 visible or on the floor of a conventional engine room 8 as in Fig. 5 represented or on the pedestals 17 a previously disassembled old prime mover 9, as in Fig. 6 shown.
  • the interfaces 15 further allow the connection of an extension 18, to which a deflection module 19 is connected as in the Fig. 1 . 2 and 3 shown.
  • the extension 18 together with the drive module 11 and the deflection module 19 allows adjustment of the support means distance according to the requirements of Elevator installation 1.
  • the deflection module 19 in turn contains interfaces 15 which allow the connection of fasteners as used in the drive module 11.
  • the interface 15 of the drive module 11 usn the interface 15 of the deflection module are identical. This allows for easy installation, since when attaching the extension 18 there is no possibility of confusion.
  • extension 18 and the deflection module 19 are designed such that the overall height of the drive 7 by the assembly of drive module 11, extension 18 and deflection module 19 is not changed.
  • the interfaces 15 are designed functionally. They allow a modular composition of the drive 7 according to the requirements of the building.
  • An additional advantage is that the individual modules and parts can be transported separately to the installation site.
  • the transport units are small and have a low individual weight. For example, they can be transported to the vicinity of the installation site in the building by means of an old elevator installation 9 intended for conversion.
  • this drive 7 is best suited for replacing existing drives 9 by being optimally adaptable to existing buildings, ie it can be arranged both inside the shaft 5 and in an existing machine room 8.
  • the support means distance is also easily adjustable. The setting of the support means distance does not affect the overall height of the drive 7.
  • the drive module 11 is optionally provided with a guide roller 20, which ensures a, independent of the support means distance, wrap around the traction sheave 12 by the support means 2. If the suspension element 2 is deflected using the guide roller 20, the wrap angle ( ⁇ ) is 90 ° to 180 °. This wrap can be changed by the arrangement of the guide roller 20. As a rule, a wrap angle ( ⁇ ) in the vicinity of 180 ° is desired.
  • the drive module 11 can also be used directly without the use of the guide roller 20. Depending on the arrangement, this results in a wrap angle ( ⁇ ) of 90 ° or 180 °, as in the schematic diagrams Fig. 4a, 4b and 4c shown.
  • wrap angle ( ⁇ ) can be defined independently of the carrier mean distance.
  • the drive module 11 is preferably provided with a monitoring device (not shown), which monitors the correct driving force transmission from the traction sheave 12 to the suspension element 2 and / or the correct tension of the suspension element 2.
  • a monitoring device not shown
  • the guide roller 20 allows control of the transmission of power by, for example, the speed of the guide roller 20 is compared with the speed of the traction sheave 12. If the two values differ noticeably from each other, there is an incorrect transmission of the driving forces.
  • the advantage of this design is the fact that the correct transmission of the driving force directly on the drive. 7 can be monitored. As a result, the safety and availability of the elevator installation 1 is increased, since case-specific the correct measures (maintenance request, shutdown, etc.) can be initialized quickly.
  • the support means 2 has, as in the Fig. 4d to 4f 12 has a substantially circular cross-section or has a substantially flat cross-section, the surface serving to transmit the driving force being smooth, longitudinal, serrated, studded, perforated or of any other structure, or the support means 2 has any cross-section ,
  • the traction sheave is designed such that the transmission of the driving force from the traction sheave on the support means 2 is functionally enabled.
  • the drive 7 is not limited to a specific support means 2. It is suitable for a variety of carrying professional forms. It is advantageous if support means 2 are used, which are suitable for small deflection radii. As a result, the drive 7 can be made particularly small.
  • the motor 21 of the drive module 11 arranged parallel axis to the traction sheave 12, wherein the motor 21 is connected by a drive belt 23 with a pulley 22 which is arranged coaxially with the traction sheave 12.
  • This design requires little space in the width of the drive 7 and the transmission of the drive torque is low vibration.
  • the motor 21 is arranged directly coaxial with the traction sheave 12.
  • the advantage of this alternative is to see that the length of the drive 7 is reduced.
  • the engine 21 is connected to the transmission shaft 24 by a transmission.
  • the advantage of this alternative is the use of commercially available translation devices.
  • the brake device 14 is advantageously arranged directly on the traction sheave shaft 24 or the traction sheave 12 acting. This arrangement significantly reduces the risk of brake failure, as the braking force is introduced directly into the traction sheave 12.
  • the advantage of this arrangement is that a safety-compliant braking system for stopping and holding a car 3 with intact support means 2 can be realized inexpensively.
  • the brake device 14 is arranged to act directly on the shaft of the drive motor 21. This arrangement is inexpensive because a braking device 14 can be used with low braking torque. This arrangement usually requires further, known in the market, safety measures to catch a failure of the connection of drive motor 21 to traction sheave shaft 24. Alternatively, the brake device 14 or a further braking device may be arranged on the deflection module 19.
  • the traction sheave 12 and / or a traction sheave shaft 24 and / or the pulley 22 is made in one piece. This embodiment enables a production-optimized and cost-effective design of the drive module 11.
  • the drive module 11 is provided with interfaces 15, which allows the cultivation of several connecting parts 16.
  • the advantage of this embodiment results from the universal applicability of the drive module 11.
  • the interfaces 15 allow the attachment of the connection parts 16 required for a specific elevator installation 1.
  • the interfaces 15 are, as in FIGS Fig. 3 . 4 . 9 and 10 seen, for example, slots or hole arrangements or jaws for receiving connection means.
  • the connection parts 16 are optionally extension 18, deflection module 19, suspension or support modules 25, 26, or suspension means end connections 27 or further aids.
  • the design of the drive module 11 with functional interfaces 15 allows the use of the drive module 11 for many types of elevators, and this allows a rational and cost-effective production of the product.
  • a first advantageous connection part 16 is an extension 18, which is arranged with an end region on the interface 15 of the drive module 11, and at the other end region of a deflection module 19 is attached.
  • the deflection module 19 has the drive module identical interface 15.
  • the deflection module 19 and the drive module 11 have the same interfaces 15. This is particularly advantageous because it increases the design options. For example, instead of the arrangement, drive module 11 and deflection module 19, two drive modules 11 can be used. As a result, the performance of the drive system 7 can be significantly increased.
  • the interface 15 of the drive module 11 and the deflection module 19 for extension 18 allows a fine adjustability of the Tragstoffdistanz.
  • This advantageous embodiment allows adjustment to the actually existing carrier distance. Thus, there is no skew, whereby a wear of the support means 2 is reduced.
  • connection part 16 is a suspension module 25 which is arranged on the interface 15 of the drive module 11 and / or the deflection module 19, which allows the suspension of the drive to a shaft ceiling 6, or another connection part 16 is a support module 26, which the interface 15 of the drive module 11 and / or the Umlenkmoduls 19 is arranged, which allows the attachment of the drive 7 in a machine room 8 or on a shaft wall.
  • the hanging or support modules 25,26 are advantageously provided with noise or vibration damping materials.
  • the advantage of this embodiment is the fact that a building type appropriate attachment can be used.
  • the suspension module 25 uses, for example, existing ones Openings in the shaft ceiling 6, or in the bottom of the overhead engine room 8 to hang the drive 7 to the shaft ceiling 6, wherein the counterplates required in the engine room 8 are made long and narrow, and are arranged between the existing machine sockets 17.
  • the counter plates may have other shapes, as they result usefully for the arrangement. For example, they can be round if required.
  • the drive module 11 and / or the deflection module 19 is advantageously provided with suspension means end connections 27.
  • the advantage here is that the interfaces are reduced to the building, since all supporting forces from the car 3 and counterweight 4 are performed on the drive unit 7 and are introduced via the suspension points of the drive 7 in the building.
  • the arrangement of the suspensions allows the use of a 2: 1 umhlindfitten arrangement in elevator systems 1, which were hung in the old version directly, or 1: 1. This arrangement is made possible by a particularly advantageous design of Tragstoffendriven.
  • the auxiliary hoist 28 is used for installation-related process of elevator material and / or installation personnel.
  • This supplement allows a particularly efficient sequence of assembly of the inventive drive 7, as in the Fig. 13 exemplified.
  • the inventive drive 7 is transported by means of the old elevator installation 1 in the vicinity of the installation site and completed there with the necessary connection parts 16.
  • the old cab 3 is now set and secured in the vicinity of the top stop and the old support members are dismantled.
  • the inventive drive 7 is preferably lifted using the existing cable bushings and a mounted in the machine room 8 drawbar 29 to the shaft ceiling 6 and fixed by means of suspension module 25.
  • auxiliary hoist 28 is now attached to, provided on the drive 7, interface 15.
  • the cab 3 can now be moved and any components of the old engine room equipment, such as drive machine, control boxes, etc. can be transported by means of the auxiliary hoist 28. If the replacement of the remaining manhole equipment, depending on the conversion agreement replaced, the new support means 2 can be retracted, the auxiliary hoist 28 can be removed and the elevator system 1 is again available to the customer after a short conversion time.
  • This described conversion process is just one possible example. It shows the advantageous use of the inventive drive 7.
  • a supplemental embodiment provides that the attachment Tragstoffendthetic 27 is provided with a monitoring for detecting the support means tension.
  • the advantage of this design is that suitable measures can be initialized in the event of a deviation of the suspension element tension, such as, for example, a request by a service person or a shutdown of the elevator installation 1 before an unsafe operating state arises.
  • the elevator 10 associated with the control and / or drive control is advantageously arranged in the engine room 8. Alternatively, it can also be arranged wholly or partly in the shaft 5 or in an easily accessible location, preferably in the vicinity of the drive.
  • a machine room 8 is often available.
  • the engine room 8 can not be used otherwise as a rule.
  • a use of the machine room 8 for the arrangement of the new controller 10 and / or drive control offers.
  • the electrical connection to the drive 7 is usually possible simply by existing openings in the shaft ceiling 6. It is particularly advantageous that an existing engine room 8 is used meaningful. Depending on the existing arrangement or possible use of the machine room 8, the best arrangement of the controller 10 and / or the drive control can be selected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)

Claims (9)

  1. Installation d'ascenseur comprenant un système d'entraînement (7), une cabine (3) et un contrepoids (4), lequel système d'entraînement (7) est muni d'au moins un disque d'entraînement (12) et d'au moins un moteur (21) nécessaire pour l'entraînement du disque d'entraînement (12) et d'un module de renvoi (19) avec une poulie de renvoi, le moteur (21) et le disque d'entraînement (12) étant assemblés pour former un module d'entraînement (11) et des moyens de support (2) étant guidés par le biais du disque d'entraînement (12) et de la poulie de renvoi, et des interfaces (15) pour la fixation de connexions d'extrémité de moyens de support (27) étant prévues au niveau du module d'entraînement (11) et/ou au niveau du module de renvoi (19), caractérisée en ce que les interfaces (15) sont des agencements de trous disposés sur une partie du boîtier du module d'entraînement (11) ou du module de renvoi (19).
  2. Installation d'ascenseur selon la revendication 1, caractérisée en ce que les connexions d'extrémité de moyens de support (27) sont disposées sur le module d'entraînement (11) en dessous du disque d'entraînement (12) ou sur le module de renvoi (19) en dessous de la poulie de renvoi.
  3. Installation d'ascenseur selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    les connexions d'extrémité de moyens de support (27) sont pourvues d'un système de surveillance pour établir la tension des moyens de support.
  4. Installation d'ascenseur selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    le module de renvoi (19) présente un boîtier d'une seule pièce au niveau duquel sont disposées la poulie de renvoi et les interfaces (15) pour la fixation des connexions d'extrémité de moyens de support (27).
  5. Installation d'ascenseur selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    les connexions d'extrémité de moyens de support (27) du côté de la cabine sont disposées au niveau du module d'entraînement (11) et les connexions d'extrémité de moyens de support (27) du côté du contrepoids sont disposées sur le module de renvoi (19).
  6. Installation d'ascenseur selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    pour l'ajustement de la distance des moyens de support, le module d'entraînement (11) et le module de renvoi (19) peuvent être connectés au moyen de prolongements (18).
  7. Installation d'ascenseur selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    l'axe longitudinal du module d'entraînement (11) est parallèle à l'axe longitudinal du module de renvoi (19).
  8. Installation d'ascenseur selon la revendication 7, caractérisée en ce que les connexions d'extrémité de moyens de support (27) forment une ligne droite qui est parallèle à l'axe longitudinal du module d'entraînement (11) ou du module de renvoi (19).
  9. Installation d'ascenseur selon la revendication 8, caractérisée en ce que les connexions d'extrémité de moyens de support (27) sont situées à l'intérieur de la distance des axes longitudinaux.
EP05006056.5A 2004-01-07 2004-12-28 Machinerie pour ascenseur Revoked EP1553039B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI200432129T SI1553039T1 (sl) 2004-01-07 2004-12-28 Pogon za dvigalo
EP05006056.5A EP1553039B1 (fr) 2004-01-07 2004-12-28 Machinerie pour ascenseur
PL05006056T PL1553039T3 (pl) 2004-01-07 2004-12-28 Napęd instalacji dźwigowej

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP04405010 2004-01-07
EP04405010 2004-01-07
EP05006056.5A EP1553039B1 (fr) 2004-01-07 2004-12-28 Machinerie pour ascenseur
EP04030856.1A EP1555236B1 (fr) 2004-01-07 2004-12-28 Entraînement d'ascenseur et procédés de conversion et d'installation d'un ;entraînement d'ascenseur

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP04030856.1 Division 2004-12-28
EP04030856.1A Division EP1555236B1 (fr) 2004-01-07 2004-12-28 Entraînement d'ascenseur et procédés de conversion et d'installation d'un ;entraînement d'ascenseur
EP04030856.1A Division-Into EP1555236B1 (fr) 2004-01-07 2004-12-28 Entraînement d'ascenseur et procédés de conversion et d'installation d'un ;entraînement d'ascenseur

Publications (3)

Publication Number Publication Date
EP1553039A2 EP1553039A2 (fr) 2005-07-13
EP1553039A3 EP1553039A3 (fr) 2007-03-07
EP1553039B1 true EP1553039B1 (fr) 2013-12-25

Family

ID=34593654

Family Applications (4)

Application Number Title Priority Date Filing Date
EP04030856.1A Active EP1555236B1 (fr) 2004-01-07 2004-12-28 Entraînement d'ascenseur et procédés de conversion et d'installation d'un ;entraînement d'ascenseur
EP05006056.5A Revoked EP1553039B1 (fr) 2004-01-07 2004-12-28 Machinerie pour ascenseur
EP05104962A Active EP1588978B1 (fr) 2004-01-07 2004-12-28 Entraînement d'ascenseur
EP14195765.4A Active EP2860144B1 (fr) 2004-01-07 2004-12-28 Entraînement pour un ascenseur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04030856.1A Active EP1555236B1 (fr) 2004-01-07 2004-12-28 Entraînement d'ascenseur et procédés de conversion et d'installation d'un ;entraînement d'ascenseur

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP05104962A Active EP1588978B1 (fr) 2004-01-07 2004-12-28 Entraînement d'ascenseur
EP14195765.4A Active EP2860144B1 (fr) 2004-01-07 2004-12-28 Entraînement pour un ascenseur

Country Status (2)

Country Link
EP (4) EP1555236B1 (fr)
PL (2) PL1555236T3 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1886957A1 (fr) 2006-08-11 2008-02-13 Inventio Ag Courroie d'élévateur pour un élévateur et procédé de fabrication d'une telle courroie d'élévateur
DE202008001786U1 (de) 2007-03-12 2008-12-24 Inventio Ag Aufzugsanlage, Tragmittel für eine Aufzugsanlage und Vorrichtung zur Herstellung eines Tragmittels

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI84050C (fi) * 1988-04-18 1991-10-10 Kone Oy Foerfarande foer kontroll av friktionen mellan drivskiva och baerlinor till en hiss.
JPH0761744A (ja) * 1993-08-18 1995-03-07 Otis Elevator Co 巻き上げ式エレベーター
EP0763495A1 (fr) 1995-09-15 1997-03-19 Inventio Ag Chassis de machine
JPH09151059A (ja) * 1995-12-01 1997-06-10 Hitachi Ltd エレベータ装置
ES2197280T3 (es) * 1996-11-11 2004-01-01 Inventio Ag Instalacion de ascensor con una unidad de accionamiento dispuesta en la caja de ascensor.
CN1267604C (zh) * 1998-02-26 2006-08-02 奥蒂斯电梯公司 用于电梯的拉伸件、牵引驱动器和滑轮及滑轮衬套
JP4391649B2 (ja) * 1999-12-20 2009-12-24 三菱電機株式会社 エレベータの巻上機支持装置
US6341669B1 (en) * 2000-06-21 2002-01-29 Otis Elevator Company Pivoting termination for elevator rope
US6619433B1 (en) * 2000-07-24 2003-09-16 Otis Elevator Company Elevator system using minimal building space
ES2220798T5 (es) * 2000-09-27 2010-05-12 Inventio Ag Ascensor con unidad motriz dispuesta lateralmente en la parte superior de la caja de ascensor.
DE60132925T2 (de) * 2001-03-29 2009-03-05 Mitsubishi Denki K.K. Verfahren zur installation einer fördervorrichtung
ES2280579T3 (es) * 2001-11-23 2007-09-16 Inventio Ag Ascensor con medio de transmision tipo correa, especialmente con correa dentada, como medio de soporte y/o medio motor.
EP1333000A1 (fr) * 2002-02-05 2003-08-06 Monitor S.p.A. Ascenseur à poulie de traction sans salle de machines
SG110016A1 (en) * 2002-02-18 2005-04-28 Inventio Ag Engine frame with counter-roller support for an elevator drive

Also Published As

Publication number Publication date
EP2860144B1 (fr) 2016-09-28
EP2860144A1 (fr) 2015-04-15
EP1553039A2 (fr) 2005-07-13
EP1555236B1 (fr) 2018-09-26
EP1555236A1 (fr) 2005-07-20
EP1588978A3 (fr) 2006-05-17
EP1588978A2 (fr) 2005-10-26
EP1588978B1 (fr) 2007-07-18
PL1553039T3 (pl) 2014-05-30
EP1553039A3 (fr) 2007-03-07
PL1555236T3 (pl) 2019-03-29

Similar Documents

Publication Publication Date Title
EP1621509B1 (fr) Positionnement de machine d'entraînement d'ascenseur
DE69919194T2 (de) Treiberschaltung
EP1640308B1 (fr) Positionnement de machine d'entraînement d'ascenseur
EP0917518A1 (fr) Ascenseur a poulies motrices
EP1772411A1 (fr) Méthode pour installer un moyen de support d'une cabine d'ascenseur sur une cabine d'ascenseur et dans une gaine d'ascenseur
DE112014006899T5 (de) Aufzughubmaschinen-Befestigungsvorrichtung
EP2082983A1 (fr) Installation d'ascenseur
EP1700809A1 (fr) Système d'ascenseur
DE112015006215T5 (de) Aufzug
EP3681835A1 (fr) Système d'ascenseur
EP2346771B1 (fr) Procédé de modernisation destiné à des installations d'ascenseur
WO2014090600A1 (fr) Ascenseur à deux niveaux avec distance entre cabines réglable
DE112012006547T5 (de) Aufzug und Aufzugsüberholungsverfahren
WO2011082897A1 (fr) Système d'ascenseur à deux cabines superposées
HUE032413T2 (hu) Hajtómû felvonóhoz
EP1553039B1 (fr) Machinerie pour ascenseur
EP3227216B1 (fr) Ascenseur
EP1555232B1 (fr) Procédé de conversion et de installation d'un entraînement d'asceneur
DE10319731B4 (de) Aufzug
DE202006016792U1 (de) Liftsystem und Aufzug ohne Maschinenraum
EP1045811B1 (fr) Ascenseur a cables avec poulie motrice
EP3235770B1 (fr) Procede de reequipement d'un ascenseur et ascenseur correspondant
DE10348151A1 (de) Antriebssystem für enge Triebwerksräume
DE20320076U1 (de) Antriebssystem für enge Triebwerksräume
EP4344430A1 (fr) Système de levage sans salle des machines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: B66B 7/08 20060101ALI20070131BHEP

Ipc: B66B 11/00 20060101AFI20050429BHEP

17P Request for examination filed

Effective date: 20070904

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130809

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STOCKER, RUEDI

Inventor name: LIEBETRAU, CHRISTOPH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1555236

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 646512

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014479

Country of ref document: DE

Effective date: 20140213

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20140304

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2450167

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20140400562

Country of ref document: GR

Effective date: 20140416

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20131022

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 15881

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502004014479

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E020056

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

26 Opposition filed

Opponent name: OTIS ELEVATOR COMPANY

Effective date: 20140922

Opponent name: THYSSENKRUPP ELEVATOR AG

Effective date: 20140924

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

R26 Opposition filed (corrected)

Opponent name: THYSSENKRUPP ELEVATOR AG

Effective date: 20140924

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502004014479

Country of ref document: DE

Effective date: 20140922

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20151223

Year of fee payment: 12

Ref country code: FI

Payment date: 20151211

Year of fee payment: 12

Ref country code: IE

Payment date: 20151223

Year of fee payment: 12

Ref country code: GR

Payment date: 20151217

Year of fee payment: 12

Ref country code: GB

Payment date: 20151221

Year of fee payment: 12

Ref country code: DE

Payment date: 20151211

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20151214

Year of fee payment: 12

Ref country code: FR

Payment date: 20151221

Year of fee payment: 12

Ref country code: PL

Payment date: 20151123

Year of fee payment: 12

Ref country code: SE

Payment date: 20151221

Year of fee payment: 12

Ref country code: AT

Payment date: 20151222

Year of fee payment: 12

Ref country code: BE

Payment date: 20151221

Year of fee payment: 12

Ref country code: SI

Payment date: 20151123

Year of fee payment: 12

Ref country code: HU

Payment date: 20151221

Year of fee payment: 12

Ref country code: RO

Payment date: 20151123

Year of fee payment: 12

Ref country code: SK

Payment date: 20151223

Year of fee payment: 12

Ref country code: PT

Payment date: 20151223

Year of fee payment: 12

Ref country code: NL

Payment date: 20151221

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151228

Year of fee payment: 12

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502004014479

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502004014479

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PLX

27W Patent revoked

Effective date: 20170102

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20170102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20131225

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20131225

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 646512

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170102

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20170818

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161229

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161229

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161229