EP1537010A2 - Verfahren und vorrichtung zur lagegenauen montage einer klappe an einem bauteil - Google Patents

Verfahren und vorrichtung zur lagegenauen montage einer klappe an einem bauteil

Info

Publication number
EP1537010A2
EP1537010A2 EP03773621A EP03773621A EP1537010A2 EP 1537010 A2 EP1537010 A2 EP 1537010A2 EP 03773621 A EP03773621 A EP 03773621A EP 03773621 A EP03773621 A EP 03773621A EP 1537010 A2 EP1537010 A2 EP 1537010A2
Authority
EP
European Patent Office
Prior art keywords
gripping tool
robot
flap
assembly
door
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03773621A
Other languages
English (en)
French (fr)
Inventor
Volker Brose
Helmut Kraus
Enrico Philipp
Michael Riestenpatt Genannt Richter
Bernd Schuler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31983926&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1537010(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1537010A2 publication Critical patent/EP1537010A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1684Tracking a line or surface by means of sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36503Adapt program to real coordinates, software orientation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37459Reference on workpiece, moving workpiece moves reference point
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39114Hand eye cooperation, active camera on first arm follows movement of second arm
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39397Map image error directly to robot movement, position with relation to world, base not needed, image based visual servoing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40307Two, dual arm robot, arm used synchronously, or each separately, asynchronously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49771Quantitative measuring or gauging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49778Method of mechanical manufacture with testing or indicating with aligning, guiding, or instruction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49778Method of mechanical manufacture with testing or indicating with aligning, guiding, or instruction
    • Y10T29/4978Assisting assembly or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49828Progressively advancing of work assembly station or assembled portion of work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49895Associating parts by use of aligning means [e.g., use of a drift pin or a "fixture"]
    • Y10T29/49902Associating parts by use of aligning means [e.g., use of a drift pin or a "fixture"] by manipulating aligning means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53022Means to assemble or disassemble with means to test work or product

Definitions

  • the invention relates to a method for assembling a flap on a workpiece, the flap being positioned precisely in relation to a reference area on the workpiece, according to the preamble of claim 1, as is known, for example, from EP 470 939 AI.
  • the invention further relates to a device for performing this method.
  • flaps are attached to vehicle bodies at different locations inside and outside.
  • the term "flap” is intended to refer generally to a pivotable attachment which is fastened to another component - in the present case the body - with the aid of a hinge, a swivel joint or the like. Examples of such flaps in vehicle construction are driver and rear doors, bonnets , Trunk lid, fuel cap, etc.
  • the driver's door and the rear door must be fitted into the door cutout of the body in such a way that gap dimensions that are as uniform as possible Transitions and depth dimensions to the adjacent areas of the body, in particular with respect to the A or C pillar, the B pillar and the roof area can be achieved.
  • Each of these two doors is attached to the body using two hinges.
  • the doors In order to ensure a highly precise alignment of the driver and rear doors with respect to the adjacent body areas, the doors must first be fitted in the optimum position in the door cut-out in question and then attached to the hinges in this position.
  • a door is removed from the load carrier with the gripping tool and the equipped gripping tool is moved back to the reference position, in which another (second) set of images is taken with the cameras mounted on the gripping tool, from which the position of the door held in the gripping tool is calculated.
  • a displacement vector is determined by which the gripping tool has to be displaced in order to achieve the desired alignment of the door with respect to the door cutout.
  • the gripping tool is offset by this displacement vector, and in the position of the gripping tool relative to the door cutout now assumed, the hinges provided on the door are connected to the body (using welding robots).
  • the method known from EP 470 939 A1 is based on two image data sets of the door cutout or the door, both of which are recorded in a (fixed) reference position of the gripping tool.
  • the method is therefore based on a detection of the absolute positions of the body and of the door relative to the reference position in the working space of the robot, on the arm of which the gripping tool is attached.
  • each camera used for the position determination must be able to determine individual measured values metrically in relation to their internal reference coordinate system ("internal metric calibration of the cameras").
  • EP 470 939 AI Another problem of the method proposed in EP 470 939 AI is that the image data acquisition of the body-door cutout on the one hand and the door on the other hand take place in different, staggered process steps. Even slight movements of the body rie during the positioning process therefore lead to large errors and must be excluded.
  • the invention is therefore based on the object of proposing a method for accurately fitting a flap on a workpiece, in particular on a vehicle body, which is associated with a significantly reduced calibration effort and which - even when using inexpensive sensors - an increase in accuracy compared to conventional methods allowed.
  • the invention is also based on the object of proposing a device which is suitable for carrying out the method.
  • a robot-guided gripping tool is used to position and attach the flap to the body, which includes a fixing device for the flap and a sensor system that is firmly connected to the gripping tool.
  • the fixation device of the gripping tool is equipped with a flap and is first brought into a proximity position with respect to the body (controlled by the robot, regardless of the current position of the body in the work area of the robot).
  • the gripping tool is then brought into an assembly position by means of a control process, in which the flap held in the fixing device is aligned in the desired “optimal” installation position relative to the adjacent areas on the body.
  • the gripping tool is moved from the approach position into transferred to the assembly position, the sensor system generates (actual) measured values from selected reference areas on the body and on the flap, which (actual) measured values are compared with (target) measured values generated in a previous set-up phase shifted by a displacement vector (including linear displacements and / or rotations), which using a so-called “Jacobi matrix” (or “sensitivity matrix”) is calculated from the difference between the (actual) and (target) measured values.
  • Both the (target) measured values and the Jacobian matrix are determined in the course of a set-up phase - upstream of the actual positioning and assembly process - in which the gripping tool is taught in for the specific assembly task.
  • This setup phase is carried out once in the course of setting a new combination of tool, sensor system, body type and type and installation position of the flap to be used.
  • the next process step begins, in the course of which the flap is mounted on the body.
  • a predefined assembly program is run in a robot-controlled manner, in which - in addition to the gripping tool - other robot-guided tools (such as welding robots, screwing robots, feeding devices for fastening elements, ...) are also involved.
  • the assembly program is being processed, the assembly position found in the course of the positioning process and arranged precisely in relation to the body is used as a reference position for all other tools and work steps involved in the assembly.
  • the controlled positioning process in which the flap held in the gripping tool is moved from the (robot-controlled) approach position to the (position-oriented to the body) assembly position, differs fundamentally from the positioning process known from EP 470 939 AI:
  • EP method 470 939 AI the absolute position of the body (or the door cutout) in the robot's workspace is determined during the positioning process, which then forms the basis for the alignment of the gripping tool.
  • the method according to the invention is based on relative measurements conditions, within the framework of which (in the set-up phase) information - corresponding to a set of (target) measured values of the sensor system - is restored via the control process.
  • an external metric calibration of the sensors is no longer necessary:
  • the position of the sensors no longer has to be determined metrically in relation to the working space of the robot or the coordinate system of the robot hand in order to be able to calculate suitable correction movements.
  • the sensors only have to be attached to the gripping tool in such a way that they can record suitable measurement data of the reference areas on the body and the flap in their capture area.
  • the metric measuring function which can generally only be determined at great expense, and the calibration device shown in EP 470 939 A1 can thus be completely dispensed with when using the method according to the invention. Therefore, metrically uncalibrated sensors can be used, which are much simpler and therefore cheaper than calibrated sensors. Both the instrumental structure as well as the establishment and operation of the overall system is therefore very cost-effective when using the method according to the invention. affordable to implement. Furthermore, when using the method according to the invention, the initial setup and maintenance of the assembly system is drastically simplified and can also be carried out by trained personnel.
  • the number of degrees of position freedom that can be compensated for in the positioning phase with the method according to the invention can be freely selected and depends only on the configuration of the sensor system.
  • the number of sensors used can also be freely selected.
  • the number of (scalar) sensor information provided need only be equal to or greater than the number of degrees of freedom to be controlled.
  • a larger number of sensors can be provided, and the redundant sensor information can be used, for example in order to be able to better detect shape errors in the body area under consideration and / or the flap to be fitted, or to improve the accuracy of the positioning process.
  • sensor information from different non-contact and / or tactile sources can be used (eg a combination of CCD cameras, optical gap sensors and tactile distance sensors).
  • the measurement results of different quality-relevant sizes can be taken into account during the fitting process of the flap.
  • the method according to the invention can be very easily adapted to new problems, since only the sensor data acquisition and processing, but not the regulating system core, has to be adapted. It is not necessary to use model knowledge about the body and the flap to be inserted during the positioning process.
  • the invention allows a much faster compensation of residual uncertainties that can occur when the flap is positioned in relation to the body cutout;
  • residual uncertainties can arise due to conveyor-related position errors of the body in the working area of the robot, by positional deviations of the flap in the gripping tool and / or by shape errors of the flap or body to be inserted, which are caused by component tolerances.
  • Due to this quick position control of the gripping tool relative to the body the body does not have to be clamped stationary during the positioning process, but can be moved (for example on an assembly line or other suitable conveyor technology) relative to the robot. This enables a high degree of flexibility of the method according to the invention, which can thus be used for a wide variety of applications of flap assembly on stationary and moving workpieces.
  • the controlled approach to the assembly position can be done in a single control loop;
  • an iterative method is advantageously used in which threshold values are specified as termination criteria: the iteration process is terminated when the deviation between the (target) measured value and the (actual) measured value lies below a predetermined threshold value; the iteration process is also terminated when the reduction in the deviation between the (target) measured value and (actual) measured value which can be achieved in successive iteration steps is below a further predetermined threshold value.
  • the fastening elements (hinges, joints, ...), by means of which the flap is connected to the body, can be part of the flap to be assembled, so that these fastening elements - after completion of the positioning of the flap in the body cutout described above - only in this Assembly position need to be connected to the workpiece.
  • hinges are used to link flaps to bodies, which are first attached to the vehicle body before the flap is hinged to the hinges.
  • the assembly process advantageously comprises the following process steps:
  • a The gripping tool is equipped with a flap to be installed and is moved - according to the iterative control process described above - from the (approached) approach position to the assembly position opposite the body, in which the flap is precisely aligned with the body cutout;
  • B the gripping tool is moved robot-controlled from the assembly position by a fixed predetermined offset into an evasive position in order to make room in the assembly area for a robot-guided hinge assembly system;
  • C the hinge mounting system for example a screwing tool equipped with hinges, fixes the hinges in a predetermined fastening area of the body in a robot-controlled manner and then withdraws from the working area;
  • D the gripping tool is robot-controlled and moved by the predefined offset from the avoidance position back to the assembly position (and the flap is thus positioned precisely in the assembly area);
  • E the flap is attached to the hinges using a robot-controlled assembly tool (e.g.
  • the gripping tool is moved to a retracted position in a robot-controlled manner, in which - without the risk of the gripping tool colliding with the body - the body can be removed from the robot's work area and a new body can be added.
  • Process step B corresponds to a "swap" of the flap, which is reversed in process step D.
  • process steps B, D and E are robot-controlled as relative movements to the assembly position found in process step A, so that the The assembly position found in the control process of process step A is used as a reference position for the other tools involved in these process steps.
  • the hinge assembly comprises the following work steps: Cl
  • the hinge assembly system is equipped with hinges and is moved in an iterative control process - analogous to the control process described above for fitting the flap - into a working position in relation to the gripping tool, in which the Hinge mounting system is positioned precisely in relation to the hinge screwing surface of the door or is aligned with an auxiliary surface of the gripping tool (in the evasive position); the hinge mounting system is connected to the mounting position of the flap (found in process step A) by this control process; C-2, starting from the working position, the hinge assembly system runs robot-controlled through a predetermined machining program in which the hinges are fastened to the body cutout, for example with the aid of screwdrivers from the hinge assembly system; C-3 the hinge assembly system is moved out of the machining area under robot control so that the gripping tool can
  • Steps A and C-l correspond to iterative control procedures, in the course of which the flap to be used is positioned in the body cutout (step A) or the hinge mounting system is aligned with the flap or gripping tool (step C-l).
  • FIG. 1 is a schematic view of a vehicle body with a mounting system for installing a rear door
  • FIG. 2a shows a schematic plan view of the rear door held in a gripping tool
  • FIG. 2b shows a schematic sectional view of the rear door which is held in an assembly position with respect to the body by means of the gripping tool;
  • FIG. 3 shows a schematic plan view of a hinge assembly tool with hinges held therein
  • Figure 4 is a schematic representation of the trajectories of the gripping tool and the hinge assembly tool carrying robot hands when processing the door assembly.
  • FIG. 5 shows a schematic view of the vehicle body with the gripping tool located in the evasive position and the hinge mounting tool located in the working position.
  • 1 shows a section of a vehicle body 1 with a rear door cutout 2 into which a rear door 3 is inserted and a front door cutout 2 "into which a driver's door (not shown in FIG. 1) is to be mounted.
  • This body 1 is an example of a workpiece 1 with a cutout 2, in which a pivotable flap 3 (adapted to the shape of the cutout) is to be inserted.
  • the assembly of the rear door 3 in the body 1 is carried out with the aid of an automatic assembly system 4 (shown schematically in FIG. 1) with a work space 27.
  • the assembly system 4 comprises a gripping tool 5 guided by an industrial robot 7, which feeds the rear door 3 and is located precisely opposite the Body 1 positioned.
  • the mounting system 4 comprises a hinge mounting system 6 guided by an industrial robot 8, which feeds the hinges 9 to the body 1, aligns them with the body 1 and the precisely positioned door, and fastens them to a hinge joining area 39 in the door cutout 2.
  • a control system 10 is provided for position and movement control of the robots 7, 8 and thus of the tools 5, 6.
  • the driver's doors are installed using appropriately adapted additional mounting systems analogous to the rear door assembly.
  • the hinges 9 are first fastened in the hinge joining areas 39 of the door cutout 2; then the rear door 3 is attached to the hinges 9 in a defined position.
  • the position in which the hinges 9 are fastened in the door cutout 2 determines the position of the fully assembled rear door 3 in the door cut-out 2.
  • the rear door 3 In order to ensure a high-quality visual impression of the body 1, the rear door 3 must be positioned precisely (in terms of position and angular position) relative to the areas 11 of the body adjacent to the door cut-out 2 1 can be installed; these surrounding areas 11 thus form a so-called reference area for aligning the rear door 3 with respect to the body 1.
  • the gripping tool 5, which is used to position the rear door 3 in the door cutout 2 and the subsequent assembly, is shown schematically in FIG. 2a.
  • This gripping tool 5, which is fastened to the hand 12 of the industrial robot 7, comprises a frame 13, to which a fixing device 14 is fastened, by means of which the rear door 3 can be picked up in a well-defined position.
  • the rear door 3 is advantageously received by the fixing device 14 on the inside 15 of the rear door 3 in the immediate vicinity of the hinge receiving surfaces 16, to which the fastening hinges 9 are screwed in the course of the door assembly.
  • This choice of the points of application of the fixing device 14 on the rear door 3 ensures that the shape distortion that occurs when the door is installed is minimal. Settling phenomena of door 3 are thus taken into account.
  • the fixing device 14 is designed such that the area of the hinge receiving surfaces 16 on the inside of the door 15 is freely accessible, so that the hinges 9 can be mounted while the door 3 is in the fixing device 14.
  • the design of the fixing device 14 shown in FIG. 2a further ensures that the door 3 can be positioned on the body 1 by the gripping tool 5 in the installed position (ie in the closed state).
  • the fixing device 14 is arranged such that it can be rotated and / or swiveled relative to the frame 13 of the gripping tool 5, so that after installation through the window cutout 17 of the assembled and closed door 3 can be removed.
  • the door 3 can also be gripped on the outer paneling.
  • the gripping tool 5 is provided with a sensor system 18 with a plurality (five in the schematic illustration of FIG. 2a) of sensors 19 which are rigid with the frame 13 of the gripping tool 5 are connected; they thus form a structural unit with the gripping tool 5. These sensors 19 are used to determine joint, gap and depth dimensions between edge areas 20 of the rear door 3 and the adjacent areas 11 of the door cutout 2 on the body 1. With the aid of this sensor system 18, the gripping tool 5 is held in place as described below Rear door 3 aligned in an iterative control process with respect to the door cutout 2 of the body 1.
  • the hinge mounting system 6 is fastened to the hand 21 of the second industrial robot 8 and comprises two hinge clamps 22, in which the two hinges 9, which are necessary for fastening the door 3 in the door cutout 2, are accommodated in a defined orientation in terms of position and angle (see figure 3). Furthermore, the hinge mounting system 6 (not shown in FIG. 3) comprises robot-controlled torque screwdrivers for fastening the hinges 9 in the door cutout 2 of the body 1.
  • the hinge clamps 22 are designed in such a way and arranged opposite the screwdrivers that the screw surfaces 23, which the hinges 9 are connected to the body 1, for the screwdriver are accessible.
  • the hinges 9 are inserted (automatically or manually) into the receptacles 22, it being possible for the fastening screws (not shown in FIG.
  • the hinge mounting system 6 is further provided with a sensor system 24, which comprises a plurality (two in the schematic illustration of FIG. 3) of sensors 25, which form a structural unit with the hinge mounting system 6. As will be described later, these sensors 25 serve to position the hinge mounting system 6 relative to the gripping tool 5.
  • the assembly system 4 is to be set for a new machining task - for example, for the rear door assembly in a new vehicle type or for the driver's door assembly - a so-called setup phase must first be carried out in which the gripping tool 5 and the hinge assembly system 6 are configured.
  • the sensor system 18 of the gripping tool 5 is “taught in” by — as described below under I.
  • (target) measurement values of the sensor system 18 on a “master” body 1 ′ and a “master” door 3 ′ are recorded and the controlled path sections of the trajectory of the robot 7 are programmed in.
  • the hinge mounting system 6 is configured according to the assembly task, provided with sensors 25 and "taught” by also for this tool - as described below under II -) Measured values of the sensors 25 are recorded in a reference area 26 of the gripping tool 5 and the path sections of the path of the robot 8 to be traversed to be controlled are programmed.
  • a sensor system 18 adapted to the assembly task is selected for the gripping tool 5 and fastened to the frame 13 together with the fixing device 14.
  • the gripping tool 5 thus assembled is attached to the robot hand 12.
  • the fixing device 14 is then fitted with a (“master” -) rear door 3 'and ' (.manually or “interactively) aligned in such a way with respect to a (" master ") body 1 'in the working space 27 of the robot 7, that there is an “optimal” alignment of the (“master”) rear door 3 'with respect to the (“master”) body 1' (see FIG. 2b).
  • Such an “optimal” alignment can be defined, for example, by the fact that a gap 28 between the (“master” -) rear door 3 'and (“master” -) body 1' is as uniform as possible, or by the gap 28 determining certain regions
  • the relative position of the gripping tool 5 in relation to the (“master”) body 1 ' is referred to below as the assembly position 29.
  • the number and the position of the sensors 19 on the frame 13 are selected such that the sensors 19 are directed to suitable areas 30 'on the (“master”) body 1 ′ or areas 31 that are particularly important for the “optimal” alignment 2a.
  • Five sensors 19 are used in the exemplary embodiment in FIG. 2a, which are directed to the areas 30, 31 shown in FIG. 1, so that three sensors 19 point to the gap 28 in the Area of the B-pillar 32 are directed, while the other two sensors 19) carry out gap measurements in the rear area of the rear door 3.
  • these areas 30, 31 are particularly important for the position and orientation of the rear door 3 in the door cutout 2.
  • the number of Individual sensors 19 and the surrounding Exercises 30, 31 to which they are aimed are selected in such a way that they allow the best possible characterization of the quality features relevant to the respective application.
  • further sensors can be provided which, for example, measure a (depth) distance and / or a transition between the body 1 and the rear door 3.
  • the method for determining the Jacobian matrix is described, for example, in "A tutorial on Visual servo control" by S. Hutchinson, G. Hager and P. Corke, IEEE Transactions on Robotics and Automation 12 (5), October 1996, pages 651— 670. This article also describes the requirements for the travel paths and the measurement environments (continuous speed, monotony, ...) that must be fulfilled in order to obtain a valid Jacobi matrix.
  • the incremental movements are selected in such a way that no collisions of the gripping tool 5 or the (“master”) rear door 3 ′ with the (“master”) body 1 ′ can occur during this setting-up process.
  • the Jacobian matrix generated in the set-up phase is stored together with the “target measured values” in the evaluation unit 33 of the sensor system 18 and form the basis for the later positioning control process A-2 in the working phase (see below under III.).
  • a trajectory 35 of the robot hand 12 (and thus of the gripping tool 5) is generated in the set-up phase, which trajectory III. is controlled.
  • This trajectory 35 is shown schematically in FIG. 4.
  • the starting point of the trajectory 35 is a so-called “retreat position” 36, which is selected such that a new body 1 can be introduced into the working space 27 of the robot 7 without the body 1 colliding with the gripping tool 5 or the rear door held therein 3.
  • This retraction position 36 can correspond, for example, to an assembly station (not shown in the figures) in which the gripping tool 5 is (manually) equipped with a rear door 3 to be built in.
  • the retraction position 36 can correspond to a removal station in which the Gripping tool 5 removes a rear door 3 to be installed from a load carrier, starting from this retreat position 36, the travel path 35 comprises the following separate sections:
  • the gripping tool 5 with an inserted (“master”) rear door 3 ′ is brought from a retracted position 36 into a “proximity position” 37 on a path A1 to be passed through in a controlled manner, which is selected such that all the individual sensors 19 of the sensor system 18 have valid measurements - values of the respective area 30, 31 of the (“master” -) rear door 3 'and / or of the (“master”) body 1', while at the same time ensuring that no collisions of the gripping tool 5 or the rear door 3 with the Body 1 can occur.
  • A-2 The gripping tool 5 with an inserted (“master”) rear door 3 ′ is moved on a path A-2 to be controlled in a controlled manner from the approach position 37 into the (taught-in “position” as described above), in which the gripping position Tool (5) held ("master" -) rear door 3 'is aligned precisely and angularly with respect to the door cutout 2' of the ("master") body 1 '. What happens in detail during this regulated process step is described below (in III. Work phase).
  • the gripping tool 5 with an inserted (“master”) rear door 3 ' is moved on a path B to be passed through in a controlled manner from the assembly position 29 into an evasive position 38, in which the (“master”) rear door 3 ′ covers the joining area 39 of the Hinges 9 in the door cutout 2 'are not impaired.
  • the gripping tool 5 thus deviates in a defined manner in order to make room for the installation of the hinges 9.
  • the gripping tool 5 is moved back into the withdrawal position 36 in a robot-controlled manner.
  • the path 35 of the gripping tool 5 generated during the set-up phase thus consists of four controlled to be current sections Al, B, D and F as well as a section A-2 to be followed in a regulated manner.
  • Steps A1, B, D and F can be entered interactively during the learning phase of the gripping tool 5, or they can be stored in the control system 10 in the form of a (offline generated) CNC program.
  • the so-called “working position” 41 of the hinge mounting system 6 is first taught in here.
  • the gripping tool 5 is in the avoidance position 28 (end position of the track section B) relative to the (“master”) body 1 'positioned.
  • the hinge assembly system 6 is then equipped with two hinges 9 and (manually or interactively) aligned with the door cutout 2 ′ of the (“master”) body 1 ′ in such a way that the hinges 9 in the joining area 39 of the door cutout 2 ′ in FIG an "optimal" orientation and mounting position are positioned.
  • the relative position of the hinge mounting system 6 in relation to the ("master") body 1 ' is referred to below as the "working position” 41 of the hinge mounting system 6.
  • the sensors 25 are attached to the hinge mounting system 6 in such a way that they are directed to a selected reference area 26 on the gripping tool 5, in the present exemplary embodiment to an auxiliary surface 42 of the gripping tool 5.
  • the “auxiliary surface” 42 is a flat surface, the surface normal 43 of which is approximate. runs approximately parallel to the vehicle longitudinal direction 44 when the gripping tool 5 is in the avoidance position 38 (shown in FIG. 5).
  • the sensors 25 are (optical) distance sensors, which measure (for example using the triangulation principle) the distance to the auxiliary surface 42.
  • the distance of the hinge mounting system 6 in the vehicle longitudinal direction 44 from the auxiliary surface 42 can be determined by evaluating the measured values of the sensors 25; Furthermore, the angular position of the hinge mounting system 6 relative to the auxiliary surface 42 (and thus relative to the avoidance position 38 of the gripping tool 5) can be calculated.
  • the hinge mounting system 6 with the sensors 25 is now “taught” with the help of the hinge robot 8 to the (manually or interactively set) working position 41 opposite the auxiliary surface 42 of the gripping tool 5.
  • This iterative teaching takes place analogously to the teaching process of the gripping tool described under I 5, in which the gripping tool 5 has been taught in the mounting position 29 opposite the (“master”) body 1 ': first, while the hinge mounting system 6 is in the working position 41, measured values of the auxiliary surface 42 are measured using the sensors 25 recorded and stored as “target measured values” in an evaluation unit 45 belonging to the sensor system 24, which is integrated into the control system 10.
  • the Jacobi matrix (sensitivity matrix) of the hinge mounting system 6 is calculated from the changes in the measured values of the sensors 25, which describes the relationship between the incremental movements of the hinge robot 8 and the changes in the measured values of the sensors 25 that occur in the process.
  • the incremental movements are selected in such a way that no collisions of the hinge assembly system 6 with the (“master”) body 1 ′ can occur during this set-up process.
  • the Jacobi matrix generated is stored together with the “target measured values” in the evaluation unit 45 of the sensor system 24 and forms the basis for the subsequent control process in the positioning phase of the hinge mounting system 6 (see below under Cl).
  • a path 46 of the hinge robot hand 21 is generated in the set-up phase of the hinge mounting system 6, which - together with the path 35 of the robot hand 12 of the. Gripping tool 5- cal ' matically shown in Figure' 4 ' .
  • the starting point of the trajectory 46 of the hinge mounting system 6 is a so-called “hinge mounting position” 47, which is selected such that a new body 1 can be inserted into the working space 27 of the robot 8 without the body 1 colliding with the hinge mounting system 6.
  • the hinge clamps 22 can be fitted with hinges 9 to be installed.
  • the travel path 46 of the hinge mounting system 6 comprises the following separate sections:
  • the hinge mounting system 6 with inserted hinges 9 is brought on a path C-0 to be passed through in a controlled manner from the hinge receiving position 47 into a so-called proximity position 48, which is selected such that the sensors 25 have valid measured values of the auxiliary surface 42 of the (in the evasive position 38) gripping tool 5.
  • hinge mounting system 6 with inserted hinges 9 is moved from the approach position 48 to the (learned position) (as described above) on a path C1 to be run through in a controlled manner, in which the hinge mounting system 6 is accurate in terms of angle and distance from the auxiliary surface 42 of the gripping tool 5 is aligned.
  • C-3 The hinge mounting system 6 is moved back into the hinge mounting position 47 by robot control.
  • the travel path 46 of the hinge mounting system 6 generated in the course of this set-up phase thus consists of two sections C-0 and C-3 to be controlled and one section C-1 to be controlled.
  • bodies 1 are sequentially fed and clamped to the working space 27 of the assembly system 4, and for each body 1, the gripping tool 5 and the hinge mounting system 6 traverse the trajectories 35, 46 generated in the set-up phases.
  • the gripping tool 5 While the new body 1 is being fed, the gripping tool 5 is in the retracted position 36 and is or is being fitted with a rear door 3 to be fitted; the hinge mounting system 6 is in the hinge receiving position 47, in which the hinge clamps 22 are fitted with hinges 9. As soon as the new body 1 has been moved into the working space 27 and fixed there, the gripping tool 5 with the inserted rear door 3 is moved into the approach position 37 in a controlled manner.
  • Track section A-2 (positioning phase of gripping tool 5):
  • a positioning phase of the tool (path section A-2 in FIG. 4) is run through, in the context of which the rear door held in the gripping tool 5 3 is brought into the assembly position 29 (learned during the learning phase) with respect to the body 1 and is aligned precisely with respect to the door cutout 2 of the body 1.
  • sensors 19 of the sensor system 18 record measured values in selected areas 30, 31 of the rear door 3 and the body 1.
  • a movement increment (displacement vector) is calculated, which reduces the difference between the current (actual) sensor measured values and the (target) sensor measured values.
  • the rear door 3 held in the gripping tool 5 is then moved and / or pivoted by this movement increment with the aid of the robot 7, and new (actual) sensor measured values are recorded during the ongoing movement.
  • This iterative measuring and shifting process is repeated in a control loop until the difference between the current (actual) and the desired (target) sensor measured values falls below a predetermined error level, or until this difference no longer exceeds one in advance set threshold changes.
  • the rear door 3 is now (within the accuracy specified by the error measure or threshold value) in the assembly position 29 (shown in FIG. 3) relative to the body 1.
  • the iterative minimization carried out in this positioning phase A-2 eliminates inaccuracies of the body 1 with regard to its position and orientation in the working space 27 of the robot 7 as well as any shape errors of the body 1 (ie deviations from the ("master") body 1 Simultaneously, inaccuracies of the rear door 3 with regard to their position and orientation in the gripping tool 5 and any existing shape errors of the rear door 3 are compensated for (ie deviations from the (“master”) rear door 3 ').
  • the rear door 3 is thus in the course of this iterative control process - regardless of shape and position inaccuracies - in the "optimal" manner in the door cutout 2 of the body 1 fitted.
  • additional sensors can be provided on the gripping tool 5, the measured values of which are used exclusively or partially to record the shape errors. Furthermore, the measured values of the individual sensors 19 can be provided with different weighting factors in order to bring about a weighted position optimization of the rear door 3 in relation to the door cutout 2 of the body 1.
  • the positional and angular displacement of the rear door 3 held in the gripping tool 5 (corresponding to the displacement between the approach position 37 and the assembly position 29) that occurred during the control process of this positioning phase A-2 can be passed on to the control system 10 of the robot 7 in the form of a so-called zero point correction ,
  • the control system 10 of the robot 7 thus “knows” the starting position (corresponding to the mounting position 29), which corresponds to the optimal fit of the rear door 3 in the door cutout 2.
  • An important property of this positioning phase is its independence from the robot accuracy: since the positioning process is based on an iterative comparison based on the (actual) measured values with (target) measured values, any positional inaccuracy of the robot 7 is immediately compensated for by the iterative control process.
  • Track sections B and C-0 (avoidance phase of the gripping tool 5 and preparation of the hinge mounting system 6):
  • the gripping tool 5 with the rear door 3 held therein is now transported by the robot 7 into the avoidance position 38 in a controlled manner. In this way, space is created in the joining area 39 of the door cutout 2 for the hinge mounting system 6 equipped with hinges 9, which subsequently or simultaneously with the evasion phase B of the gripping Tool 5 is brought into the approach position 48 controlled.
  • the hinge mounting system 6 is now brought into the working position 41 (learned during the teach-in phase) relative to the gripping tool 5 located in the avoidance position 38.
  • This positioning phase is analogous to the positioning phase of section A-2, in the course of which the gripping tool 5 was positioned relative to the body 1:
  • measured values of the auxiliary surface 42 are recorded on the gripping tool 5, and these measured values are used with the help of the Jacobian matrix determined in the set-up phase, a movement increment is calculated by which the hinge assembly system 6 is moved with the aid of the robot 8.
  • This measuring and shifting process is repeated iteratively until the difference between the current (actual) and the desired (target) sensor measured values falls below a predetermined error level, or until this difference no longer exceeds a threshold value set in advance changes.
  • the hinge mounting system 6 is then in the working position 41 (shown in FIG. 5) with respect to the gripping tool 5 and with respect to the body 1.
  • the spatial position of the robot hand 21 corresponding to this working position 41 is stored in the control system 10.
  • Sensors 49 on the auxiliary surface 42 measure the position of the hinges 9 and also save the result as a target data record in the control system 10.
  • the hinge mounting system 6 is aligned with the gripping tool 5 on the basis of distance measurements from the flat surface 42, which is oriented approximately perpendicular to the longitudinal direction 44 of the vehicle, this enables although the hinge assembly tool 6 is positioned in the longitudinal direction 44 of the vehicle, it is not perpendicular to it.
  • the movement of the hinge assembly tool 6 in the vehicle transverse direction is carried out in a controlled manner (in contrast to the movement in the vehicle longitudinal direction, which takes place in a controlled manner), so that the hinge assembly system 6 is moved towards the joining area 39 in the door cutout 2 in a controlled manner perpendicular to the vehicle direction 44, and the hinges 9 are moved with it Can be pressed onto the joining area 39 with the aid of springs or suitable pneumatics.
  • the hinge clamps 22 are opened and the hinges 9 are released.
  • the position of the screwed-on hinges 9 is measured with the hinge position (stored as a target data set in the control computer 10) in the unscrewed state.
  • the hinges 9 are again fixed in the hinge clamps 22 and moved robotically by the measured offset. This process is repeated until the position of the screwed hinges 9 with the position of the unscrewed Hinges matches. In this way, the elastic and plastic influences of the screwing process can be compensated and a particularly high positional accuracy of the hinges 9 in the joining area 39 can be achieved.
  • the hinge clamps 22 are opened and the hinges 9 are released.
  • the hinge mounting system 6 (without the hinges 9) is withdrawn from the working position 41 into the hinge receiving position 47 in a robot-controlled manner.
  • the space around the joining area 39 is cleared again, and the gripping tool 5 with the rear door 3 can be moved back from the evasive position 38 into the assembly position 29 in a robot-controlled manner.
  • the high-precision alignment of the hinge assembly tool 6 relative to the gripping tool 5 ensures that the hinge receiving surfaces 16 of the rear door 3 come to lie on the hinges 9 in a highly precisely aligned manner, while the alignment (carried out in section A-2) of the gripping tool 5 relative to the body 1 ensures that the rear door 3 is optimally aligned with the door cutout 2.
  • the fixing device 14 of the gripping tool 5 After mounting the vehicle door 3, the fixing device 14 of the gripping tool 5 is released, so that the door 3 hangs freely on the body 1. In this position, control measurements of the joint dimensions, gaps and depth dimensions are carried out in the regions 30, 31 (with the aid of the sensors 14). If deviations from the nominal dimensions are found, the operator of the system is sent defined information for rework.
  • Track section F (retraction of gripping tool 5):
  • the fixing device 14 of the gripping tool 5 is pivoted out of the engagement position in such a way that the gripping tool 5 can be moved back from the assembly position 29 into the retracting position 36 in a robot-controlled manner.
  • the body 1 is relaxed, lifted and conveyed, and at the same time the tools 5, 6 are equipped with a new door 3, hinges 9 and screws, and a new body 1 is fed to the work space 4.
  • TCP / lP interface For data communication between the different system components (evaluation units 33, 45 of the sensor systems 18, 24 and the controls of the robots 7, 8 in the control system 10), one is advantageously used in the present exemplary embodiment TCP / lP interface used, which enables a high data rate.
  • Such a high data rate is necessary in order to manage regulation of the overall system (sensor systems / robots) with the large number of individual sensors 19, 25 in the interpolation cycle of the robots 7,8 (typically 12 milliseconds) during the positioning phases A-2 and Cl to be carried out in a controlled manner can.
  • the control can also be implemented via a conventional serial interface.
  • the method can also be transferred to the assembly of any other flaps (tank flap, bonnet, tailgate, etc.) which have to be mounted on the body 1 in the correct position.
  • the method is not limited to the scope of assembly on bodies 1 but can basically be applied to any assembly problems in which a flap is to be mounted on a workpiece with the aid of robot-guided tools 5, 6.
  • robot-guided tools are to be understood quite generally as tools that are mounted on a multi-axis manipulator, in particular a six-axis industrial robot 7, 8.
  • any optical sensors can be used as sensors 19 for detecting the actual position of the flap 3 relative to the reference area 11 on the workpiece 1.
  • area-measuring CCD cameras can be used as sensors 19, with the help of which (in combination with suitable image evaluation algorithms) the spatial positions and the mutual offset of edges as well as spatial distances etc. can be generated as measured variables.
  • sensors 25 which are used for the alignment of the hinge mounting system 6 with respect to the auxiliary surface 42 on the gripping tool 5.
  • any tactile and / or non-contact measuring system can be used, the selection of the suitable sensors being strongly dependent on the respective application.
  • the auxiliary surface 42 permits position measurement and alignment of the hinge assembly tool 6 only in the vehicle longitudinal direction; In this case, the positioning in the transverse direction of the vehicle is controlled, as described above.
  • the reference surface 26 can be any surface that enables the hinge mounting system 6 to be spatially aligned with respect to the gripping tool 5 in all three spatial directions.
  • the hinge assembly tool 6 can be aligned with the hinge screw surface 16 of the door 3.
  • the hinges 9 can be assembled manually in the door cutout 2 of the body 1: in this case, process steps C-0 to C-2 of the automatic preparation, positioning and assembly of the hinges 9 are omitted and are instead replaced by a manual hinge assembly process.
  • a (first) sensor system 18 is provided on the gripping tool 5, which serves to position the gripping tool 5 relative to the body 1, while a (second) sensor system 24 is provided on the hinge mounting system 6, which is used for positioning tion of the hinge mounting system 6 relative to the gripping tool 5 is used.
  • the positioning of the hinge mounting system 6 with respect to the gripping tool 5 can also take place with the aid of additional sensors on the gripping tool 5; in this case, the auxiliary surface 42 is not provided on the gripping tool 5, but on the hinge mounting system 26.
  • only a single sensor system 24 can be used, which is attached to the gripping tool and contains both sensors 19 for aligning the gripping tool 5 with respect to the body and sensors 25 for aligning the hinge mounting system 6 with the gripping tool 5.
  • the position control of the gripping tool 5 with respect to the body cannot be limited to the positioning phase A-2, but the gripping tool 5 can monitor the body 1 with the aid of selected (additional) sensors during the entire assembly process.
  • the body algorithms need not be clamped stationary during the positioning and assembly process due to the fast algorithms for position control, but they can be moved (for example on an assembly line or other suitable conveyor technology) relative to the robots 7, 8. This enables a high degree of flexibility of the method according to the invention, which can thus be used for a wide variety of applications of flap assembly on stationary and moving workpieces.

Abstract

Die Erfindung betrifft ein Verfahren zur lagegenauen Montage einer Klappe (3) an einem Werkstück (1), insbesondere zur Montage einer Fahrzeugtür in einer Fahrzeugkarosserie. Hierzu wird ein robotergeführtes Greifwerkzeug (5) verwendet, das eine Fixiervorrichtung (14) zur Halterung der Klappe (3) und ein Sensorsystem (18) aufweist, welches fest dem Greifwerkzeug (5) verbunden ist. In einem ersten Schritt wird das Greifwerkzeug (5) im Rahmen einer Positionierphase (A-2) von einer Näherungsposition (37), welche unabhängig von der Lage des Werkstücks (1) im Arbeitsraum (27) des Roboters (7) ist, in eine Montageposition (29) bewegt, in welcher die in der Fixiervorrichtung (14) des Greifwerkzeugs (5) gehaltene Klappe (3) lagegenau gegenüber dem Werkstück (1) ausgerichtet ist. Zum Anfahren der Montageposition (29) wird ein iterativer Regelvorgang durchlaufen, im Zuge dessen zunächst ein (Ist-)Messwert des Sensorsystems (18) erzeugt wird, welcher mit einem im Rahmen einer Einrichtphase erzeugten (Soll-) Messwert verglichen wird. Aus der Differenz zwischen (Ist-) Messwert und (Soll-) Messwert wird unter Verwendung einer im Rahmen der Einrichtphase berechneten Jacobi-Matrix ein Verschiebungsvektor des Greifwerkzeugs (5) berechnet, und das Greifwerkzeug (5) wird um diesen Verschiebungsvektor verschoben. Anschliessend wird die Klappe (3) mit Hilfe von Befestigungselementen (9) an dem Werkstück (1) befestigt. Zur Lösung dieser Positionieraufgabe kann auf eine metrische Kalibrierung des Sensorsystems (18) des Greifwerkzeugs (5) verzichtet werden.

Description

Verfahren und Vorrichtung zur lagegenauen Montage einer Klappe an einem Bauteil
Die Erfindung betrifft ein Verfahren zur Montage einer Klappe an einem Werkstück, wobei die Klappe lagegenau gegenüber einem Referenzbereich auf dem Werkstück positioniert wird, nach dem Oberbegriff des Patentanspruchs 1, wie es beispielsweise aus der EP 470 939 AI als bekannt hervorgeht. Weiterhin betrifft die Erfindung eine Vorrichtung zur Durchführung dieses Verfahrens .
An Fahrzeugkarosserien werden im Zuge der Montage an unterschiedlichen Stellen im Außen- und im Innenbereich Klappen angebracht. Der Begriff „Klappe" soll dabei ganz allgemein ein schwenkbares Anbauteil bezeichnen, welches mit Hilfe eines Scharniers, eines Drehgelenks o.a. an einem anderen Bauteil - im vorliegenden Fall der Karosserie - befestigt ist. Beispiele für solche Klappen im Fahrzeugbau sind Fahrer- und Fondtüren, Motorhauben, Kofferraumdeckel, Tankdeckel etc. Im Interesse einer qualitativ hochwertigen Anmutung der Karosserie ist es notwendig, diese Klappen hochgenau gegenüber benachbarten Bereichen auf der Karosserie bzw. gegenüber anderen (benachbarten) An- und Einbauteilen auszurichten und so zu positionieren, dass ein vorgegebener Übergang zwischen der Klappe und den angrenzenden Karosseriebereichen gewährleistet ist. Hierzu muss die Klappe lagegenau gegenüber der Karosserie ausgerichtet und in diesem Zustand mit Hilfe der Verbindungselemente (Scharnieren, Gelenken, Schrauben, ... ) an der Karosserie befestigt werden.
So müssen beispielsweise die Fahrer- und die Fondtür in einer solchen Weise in den Türausschnitt der Karosserie eingepasst werden, dass umlaufend möglichst gleichmäßige Spaltmaße, Ü- bergänge und Tiefenmaße zu den benachbarten Bereichen der Karosserie, insbesondere gegenüber der A- bzw. der C-Säule, der B-Säule und dem Dachbereich erreicht werden. Jede dieser beiden Türen wird mit Hilfe von zwei Scharnieren an der Karosserie befestigt. Um also eine hochgenaue Ausrichtung der Fahrer- und der Fondtüre gegenüber den benachbarten Karosserie- bereichen sicherzustellen, müssen die Türen zunächst in Optimallage in den betreffenden Türausschnitt eingepasst werden und dann in dieser Lage an den Scharnieren angebunden werden.
In der EP .470 939. AI wird ein Montageverfahren vorgeschlagen, mit Hilfe dessen eine lagegenaue Ausrichtung und Befestigung einer Fahrzeugtür im Türausschnitt einer Karosserie erreicht werden soll. Hierbei kommt ein robotergeführtes Greifwerkzeug zum Einsatz, das die einzusetzende Tür aus einem Ladungsträger entnimmt und in den Türausschnitt einsetzt. Bei dem Verfahren der EP 407 939 AI wird zunächst das unbestückte Greif- Werkzeug in eine (raumfeste) Referenzposition gegenüber dem Türausschnitt bewegt, in der mit Hilfe von Kameras, die fest auf dem Greifwerkzeug montiert sind, Bilder des Türausschnitts der Karosserie aufgenommen werden; aus diesem (ersten) Satz von Bildern wird die Position des Türausschnitts relativ zur Referenzposition des Greif erkzeugs berechnet. Anschließend wird mit dem Greifwerkzeug eine Tür aus dem Ladungsträger entnommen und das bestückte Greifwerkzeug wieder in die Referenzposition bewegt, in der mit Hilfe der auf dem Greifwerkzeug montierten Kameras ein weiterer (zweiter) Satz von Bildern aufgenommen, aus denen die Position der im Greifwerkzeug gehaltenen Tür berechnet wird. Durch einen Vergleich der Bilddatensätze wird ein Verschiebungsvektor ermittelt, um den das GreifWerkzeug verschoben werden muss, um die gewünschte Ausrichtung der Tür gegenüber dem Türausschnitt zu erreichen. Das GreifWerkzeug wird um diesen Verschiebungsvektor versetzt, und in der nun eingenommenen Relativlage des Greif erkzeugs zum Türausschnitt werden die an der Tür vorgesehenen Scharniere (unter Verwendung von Schweißrobotern) mit der Karosserie verbunden. Das aus der EP 470 939 AI bekannte Verfahren geht aus von zwei Bilddatensätzen des Türausschnitts bzw. der Tür, die beide in einer (raumfesten) Referenzposition des Greifwerkzeugs aufgenommen werden. Das Verfahrens basiert somit auf einer Erfassung der Absolutlagen der Karosserie und der Türe relativ zu der Referenzposition im Arbeitsraum des Roboters, an dessen Arm das Greifwerkzeug befestigt ist. Zur erfolgreichen Anwendung dieses Verfahrens müssen mehrere Randbedingungen erfüllt sein:
- Zunächst muss jede für die Positionsbestimmung zum Einsatz kommende Kamera in der Lage sein, einzelne Messwerte metrisch in bezug auf ihr internes Bezugskoordinatensystem zu bestimmen („interne metrische Kalibrierung der Kameras").
- Weiterhin muss die Lage der Kameras im Arbeitsraum des Greifwerkzeug-Roboters bekannt sein („externe metrische Kalibrierung der Kameras").
- Schließlich müssen die Einzelmessungen der Kameras auf eine solche Weise kombiniert und verdichtet werden, dass die genaue Lage des TürausSchnitts bzw. der Tür in bezug auf den Arbeitsraum des Roboters konsistent und prozesssicher berechnet werden kann.
Zur Kalibrierung der Sensoren ist in der EP 470 939 AI eine nicht näher beschriebene Kalibriervorrichtung vorgesehen, die in jedem Zyklus des Roboters angefahren werden muss. Erfahrungsgemäß ist dabei allerdings der für die Erfüllung der o- bengenannten Randbedingungen notwendige Einricht- und Kalibrieraufwand der Kameras und des Gesamtsystems sehr hoch und nur von Experten zu leisten. Außerdem ist eine hohe Genauigkeit und Reproduzierbarkeit der Messwerte nur durch hochwertige (und daher teuere) Sensoren zu leisten.
Eine weitere Problematik des in der EP 470 939 AI vorgeschlagenen Verfahrens besteht darin, dass die Bilddatengewinnung des Karosserie-Türausschnitts einerseits und der Tür andererseits in unterschiedlichen, zeitlich versetzten Prozessschritten erfolgen. Auch geringfügige Bewegungen der Karosse- rie während des Positioniervorgangs führen daher zu großen Fehlern und müssen ausgeschlossen werden.
Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur lagegenauen Montage einer Klappe an einem Werkstück, insbesondere an einer Fahrzeugkarosserie, vorzuschlagen, das mit einem wesentlich reduzierten Kalibrieraufwand verbunden ist und das - auch bei Verwendung kostengünstiger Sensoren - eine Steigerung der Genauigkeit gegenüber konventionellen Verfahren gestattet. Der Erfindung liegt weiterhin die Aufgabe zugrunde, eine -zur Durchführung des Verfahrens geeignete Vorrichtung vorzuschlagen.
Die Aufgabe wird erfindungsgemäß durch die Merkmale der Ansprüche 1 und 8 gelöst .
Zur Positionierung und Befestigung der Klappe an der Karosserie kommt ein robotergeführtes GreifWerkzeug zum Einsatz, das eine Fixiervorrichtung für die Klappe und ein fest mit dem Grei erkzeug verbundenes Sensorsystem umfasst . Die Fixiervorrichtung des GreifWerkzeugs wird mit einer Klappe bestückt und zunächst robotergesteuert in eine (fest einprogrammierte, von der aktuellen Lage der Karosserie im Arbeitsraum des Roboters unabhängige) Näherungsposition gegenüber der Karosserie gebracht. Anschließend wird das Greifwerkzeug mittels eines Regelprozesses in eine Montageposition gebracht, in der die in der Fixiervorrichtung gehaltene Klappe lagegenau in der gewünschten „optimalen" Einbaulage gegenüber den benachbarten Bereichen auf der Karosserie ausgerichtet ist. In diesem Regelprozess, der das Greif erkzeug von der Näherungsposition in die Montageposition überführt, werden vom Sensorsystem (Ist-) Messwerte ausgewählter Referenzbereiche auf der Karosserie und auf der Klappe erzeugt; diese (Ist-) Messwerte werden mit (Soll-) Messwerten verglichen, die in einer vorausgehenden Einrichtphase erzeugt wurden. Anschließend wird das Greifwerkzeug um einen Verschiebungsvektor (umfassend Linearverschiebungen und/oder Drehungen) verschoben, der unter Zu- hilfenahme einer sogenannten „Jacobimatrix" (oder „Sensitivi- tätsmatrix") aus der Differenz zwischen den (Ist-) und (Soll- ) Messwerten berechnet wird. Sowohl die (Soll-) Messwerte als auch die Jacobimatrix werden im Rahmen einer - dem eigentlichen Positionier- und Montagevorgang vorgeschalteten - Einrichtphase ermittelt, im Rahmen derer das Greifwerkzeug auf die konkrete Montageaufgabe eingelernt wird. Diese Einricht- phase wird im Zuge der Einstellung einer neuen Kombination aus Werkzeug, Sensorsystem, Karosserietyp und Art und Einbauposition der einzusetzenden Klappe einmalig durchlaufen.
Ist der oben beschriebene Regelvorgang abgeschlossen und befindet sich die im Greifwerkzeug gehaltene Klappe somit in der gewünschten Montageposition gegenüber der Karosserie, so beginnt der nächste Verfahrensschritt, im Zuge dessen die Klappe an die Karosserie montiert wird. Hierbei wird robotergesteuert ein vorgegebenes Montageprogramm durchlaufen, an dem - neben dem Greifwerkzeug - auch weitere robotergeführte Werkzeuge (wie z.B. Schweißroboter, Schraubroboter, Zuführeinrichtungen für Befestigungselemente, ...) beteiligt sind. Wesentlich dabei ist die Tatsache, dass bei der Abarbeitung des Montageprogramms die im Zuge des Positioniervorgangs aufgefundene, lagegenau zur Karosserie angeordnete Montageposition als Referenzlage für alle an der Montage beteiligten weiteren Werkzeuge und Arbeitsschritte verwendet wird.
Der geregelt durchlaufene Positioniervorgang, im Rahmen dessen die im GreifWerkzeug gehaltene Klappe von der (robotergesteuert angefahrenen) Näherungsposition in die (lagegenau zur Karosserie ausgerichtete) Montageposition gebracht wird, unterscheidet sich grundlegend von dem aus der EP 470 939 AI bekannten Positioniervorgang: Im Verfahren der EP 470 939 AI wird nämlich im Zuge der Positionierung zunächst die Absolut- Position der Karosserie (bzw. des Türausschnitts) im Arbeitsraum des Roboters ermittelt, die dann die Basis für die Ausrichtung des bestückten GreifWerkzeugs bildet. Im Unterschied dazu beruht das erfindungsgemäße Verfahren auf Relativmessun- gen, im Rahmen derer eine (in der Einrichtphase interlegte) Information - entsprechend einem Satz von (Soll-) Messwerten des Sensorsystems - über de Regelvorgang wiederhergestellt wird.
Dies führt zu zwei wesentlichen Vereinfachungen gegenüber dem Stand der Technik:
— Zum einen ist keine interne metrische Kalibrierung der Sensoren mehr notwendig, da die zum Einsatz kommenden Sensoren nicht mehr „messen", sondern lediglich auf eine monotone Inkrementalbewegung des Roboters mit einer monotonen Änderung ihres Sensorsignals reagieren. Dies bedeutet beispielsweise, dass bei Verwendung einer Fernseh- bzw. CCD- Kamera als Sensor die kamerainternen Linsenverzeichnungen nicht kompensiert werden müssen bzw. dass bei Verwendung eines Triangulationssensors die exakte metrische Berechnung von Abstandswerten entfällt .
- Weiterhin ist keine externe metrische Kalibrierung der Sensoren mehr notwendig: Im Unterschied zum Stand der Technik muss die Lage der Sensoren nicht mehr metrisch in bezug auf den Arbeitsraum des Roboters bzw. das Koordinatensystem der Roboterhand ermittelt werden, um geeignete Korrekturbewegungen berechnen zu können. Die Sensoren müssen lediglich in einer solchen Weise am Greifwerkzeug befestigt werden, dass sie in ihrem Fangbereich überhaupt geeignete Messdaten der Referenzbereiche auf der Karosserie und der Klappe erfassen können.
Auf die in der Regel nur mit großem Aufwand zu ermittelnde metrische Messfunktion und die in der EP 470 939 AI gezeigte Kalibriervorrichtung kann somit bei Verwendung des erfindungsgemäßen Verfahrens vollständig verzichtet werden. Daher können metrisch unkalibrierte Sensoren zum Einsatz kommen, die wesentlich einfacher und somit auch billiger sind als kalibrierte Sensoren. Sowohl der instrumenteile Aufbau als auch die Einrichtung und der Betrieb des Gesamtsystems ist daher bei Verwendung des erfindungsgemäßen Verfahrens sehr kosten- günstig realisierbar. Weiterhin wird bei Verwendung des erfindungsgemäßen Verfahrens die Ersteinrichtung und Wartung des Montagesystems drastisch vereinfacht und kann auch von angelerntem Personal vorgenommen werden.
Das Ergebnis der Klappenpositionierung gegenüber der Karosserie ist weiterhin unabhängig von der absoluten Positioniergenauigkeit des verwendeten Roboters, da eventuelle Roboterun- genauigkeiten bei der Anfahrt der Montageposition ausgeregelt werden. Aufgrund der daraus resultierenden kurzen Fehlerketten ist bei Bedarf eine sehr hohe Wiederholgenauigkeit im Positionierergebnis erzielbar. Roboter-Positionierungenauig- keiten aufgrund von Temperaturschwankungen, fehlerhafter Ein- messung des Roboters etc . werden ausgeregelt .
Die Anzahl der Positionsfreiheitsgrade, die mit dem erfindungsgemäßen Verfahren in der Positionierphase kompensiert werden können, ist frei wählbar und hängt nur von der Konfiguration des Sensorsystems ab. Ebenso ist die Anzahl der verwendeten Sensoren frei wählbar. Die Anzahl der bereitgestellten (skalaren) Sensorinformationen muss lediglich gleich oder größer der Anzahl der zu regelnden Freiheitsgrade sein. Insbesondere kann eine größere Zahl von Sensoren vorgesehen werden, und die redundante Sensorinformation kann verwendet werden, z.B. um Formfehler des betrachteten Karosseriebereichs und/oder der einzupassenden Klappe besser erfassen zu können oder den Positioniervorgang in seiner Genauigkeit zu verbessern. Schließlich kann Sensorinformation aus unterschiedlichen berührungsfreien und/oder taktilen Quellen verwendet werden (z.B. eine Kombination von CCD-Kameras, optischen Spaltsensoren und taktilen Abstandssensoren) . Somit können durch Verwendung geeigneter Sensoren die Messergebnisse unterschiedlicher qualitätsrelevanter Größen (Spaltmaße, Übergangsmaße, Tiefenmaße) beim Einpassprozess der Klappe berücksichtigt werden. Das erfindungsgemäße Verfahren kann sehr leicht auf neue Problemstellungen adaptiert werden, da lediglich die Sensordatengewinnung und -aufarbeitung, nicht aber der regelnde Systemkern adaptiert werden muss. Auf eine Nutzung von Modellwissen über die Karosserie und die einzufügende Klappe kann während des Positioniervorgangs verzichtet werden.
Im Vergleich zu dem Verfahren der EP 470 939 AI gestattet die Erfindung einen wesentlich schnelleren Ausgleich von Restunsicherheiten, die bei der Positionierung der Klappe gegenüber dem Karosserieausschnitt auftreten können; solche Restunsicherheiten können zustande kommen durch fördertechnisch bedingte Lagefehler der Karosserie im Arbeitsbereich des Roboters, durch Lageabweichungen der Klappe im Greif erkzeug und/oder durch Formfehler der einzufügenden Klappe bzw. der Karosserie, welche durch Bauteiltoleranzen bedingt sind. Aufgrund dieser schnellen Positionsregelung des GreifWerkzeugs gegenüber der Karosserie braucht die Karosserie während des Positioniervorgangs nicht stationär aufgespannt sein, sondern sie kann (beispielsweise auf einem Montageband oder einer anderen geeigneten Fördertechnik) gegenüber dem Roboter bewegt werden. Dies ermöglicht eine hohe Flexibilität des erfindungsgemäßen Verfahrens, das somit auf unterschiedlichste Anwendungsfälle der Klappenmontage an stationären und bewegten Werkstücken anwendbar ist.
Das geregelte Anfahren der Montageposition kann in einer einzigen Regelschleife erfolgen; vorteilhafterweise wird dabei jedoch ein iteratives Verfahren eingesetzt, bei dem Schwellwerte als Abbruchkriterien vorgegeben werden: So wird der I- terationsvorgang abgebrochen, wenn die Abweichung zwischen dem (Soll-) Messwert und dem (Ist-) Messwert unterhalb eines vorgegebenen Schwellwerts liegt; weiterhin wird der Iterationsvorgang abgebrochen, wenn die bei aufeinanderfolgenden I- terationsschritten zu erreichende Reduktion der Abweichung zwischen (Soll-) Messwert und (Ist-) Messwert unterhalb eines weiteren vorgegebenen Schwellwerts liegt. Die Befestigungselemente (Scharniere, Gelenke, ...), mittels derer die Klappe mit der Karosserie verbunden wird, können Teil der zu montierenden Klappe sein, so dass diese Befestigungselemente - nach Beendigung der oben beschriebenen Positionierung der Klappe im Karosserieausschnitt - nur noch in dieser Montagelage mit dem Werkstück verbunden zu werden brauchen. Vielfach werden allerdings zum Anlenken von Klappen an Karosserien Scharniere verwendet, welche zunächst an der Fahrzeugkarosserie befestigt werden, bevor die Klappe an den Scharnieren angelenkt wird. In diesem Fall ist vorteilhaft, die Montage der Scharniere an der Karosserie im selben Arbeitsschritt wie die Klappenmontage durchzuführen. In diesem Fall umfasst das Montageverfahren vorteilhafterweise die folgenden Prozessschritte:
A Das Greif erkzeug wird mit einer einzubauenden Klappe bestückt und wird - entsprechend des oben beschriebenen iterativen Regelvorgangs - von der (gesteuert angefahrenen) Näherungsposition in die Montageposition gegenüber der Karosserie bewegt, in der die Klappe lagegenau gegenüber dem Karosserieausschnitt ausgerichtet ist; B das Greifwerkzeug wird robotergesteuert aus der Montageposition um einen fest vorgegebenen Versatz in eine Ausweichposition verschoben, um im Montagebereich Platz für ein robotergeführtes Scharniermontagesystem zu schaffen; C das Scharniermontagesystem, z.B. ein mit Scharnieren bestücktes Schraubwerkzeug, befestigt robotergesteuert die Scharniere in einem vorgegebenen Befestigungsbereich der Karosserie und zieht sich dann aus dem Arbeitsbereich zurück; D das Greifwerkzeug wird robotergesteuert um den fest vorgegebenen Versatz aus der Ausweichposition zurück in die Montageposition verschoben (und die Klappe somit wieder lagegenau im Montagebereich positioniert) ; E die Klappe wird mit Hilfe eines robotergesteuerten Montagewerkzeugs (z.B. eines am GreifWerkzeug befestigten Schraubers) an den Scharnieren befestigt; F das Greifwerkzeug wird robotergesteuert in eine Rückzugsposition bewegt, in der - ohne Gefahr einer Kollision des GreifWerkzeugs mit der Karosserie - die Karosserie aus dem Arbeitsbereich des Roboters entfernt und eine neue Karosserie zugeführt werden kann.
Der Prozessschritt B entspricht hierbei einer „Auslagerung" der Klappe, welcher in Prozessschritt D rückgängig gemacht wird. Wesentlich dabei ist die Tatsache, dass die Prozessschritte B, D und E robotergesteuert als Relativbewegungen zu der in Prozessschritt A aufgefundenen Montageposition durchgeführt werden, so dass die im Regelvorgang des Prozessschritts A aufgefundene Montageposition als Referenzlage für die an diesen Prozessschritten beteiligten weiteren Werkzeuge verwendet wird.
Um eine besonders hohe Genauigkeit zu erreichen, ist es vorteilhaft, auch die Scharniermontage (Prozessschritt C) an die in Prozessschritt A aufgefundene Montageposition als Referenzlage anzukoppeln. In diesem Fall umfasst die Scharniermontage (Prozessschritt C) die folgenden Arbeitsschritte: C-l Das Scharniermontagesystem wird mit Scharnieren bestückt und wird in einem iterativen Regelvorgang - analog zu dem oben beschriebenen Regelvorgangs zur Einpassung der Klappe - in eine Arbeitsposition gegenüber dem Greifwerkzeug bewegt, in der das ScharniermontageSystem lagegenau gegenüber der Scharnieranschraubfläche der Tür o- der gegenüber einer Hilfsfläche des (in der Ausweichposition befindlichen) GreifWerkzeugs ausgerichtet ist; das Scharniermontagesystem wird durch diesen Regelvorgang an die (in Prozesschritt A aufgefundene) Montageposition der Klappe angebunden; C-2 ausgehend von der Arbeitsposition durchläuft das Scharniermontagesystem robotergesteuert ein vorgegebenes Bearbeitungsprogramm, bei dem die Scharniere - z.B. mit Hilfe von Schraubern des Scharniermontagesystem - am Karosserieausschnitt befestigt werden; C-3 das Scharniermontagesystem wird robotergesteuert aus dem Bearbeitungsbereich herausbewegt, so dass das Greifwerkzeug mit der Klappe ohne Kollisionsgefahr in die Montageposition zurückbewegt werden kann.
In dem hier beschriebenen Verfahrensablauf erfolgen - mit Ausnahme der Schritte A und C-l - alle Verfahrensschritte robotergesteuert, d.h. durch Abarbeitung vorgegebener Bearbeitungsprogramme bzw. Bahnverschiebungen der beteiligten Roboter und Werkzeuge. Die Schritte A und C-l entsprechen iterativen Regel orgängen, im Zuge derer die einzusetzende Klappe lagegenau im Karosserieausschnitt positioniert wird (Schritt A) bzw. das Scharniermontagesystem gegenüber der Klappe bzw. dem Greifwerkzeug ausgerichtet wird (Schritt C-l) .
Weitere vorteilhafte Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen. Im folgenden wird die Erfindung anhand eines in den Zeichnungen dargestellten Ausführungsbei- spiels näher erläutert; dabei zeigen:
Fig. 1 eine schematische Ansicht einer Fahrzeugkarosserie mit einem Montagesystem zum Einbau einer Fondtür,-
Fig. 2a eine schematische Aufsicht auf die in einem Greif- Werkzeug gehaltene Fondtür;
Fig. 2b eine schematische Schnittansieht der Fondtür, die mit Hilfe des GreifWerkzeugs in einer Montageposition gegenüber der Karosserie gehalten ist;
Fig. 3 eine schematische Aufsicht auf ein Scharniermontagewerkzeug mit darin gehaltenen Scharnieren;
Fig. 4 eine schematische Darstellung der Verfahrbahnen der das Greif erkzeug und das Scharniermontagewerkzeug tragenden Roboterhände bei der Abarbeitung der Türmontage;
Fig. 5 eine schematische Ansicht Fahrzeugkarosserie mit dem in der Ausweichposition befindlichen Greifwerkzeug und dem in der Arbeitsposition befindlichen Scharniermontagewerkzeug. Figur 1 zeigt einen Ausschnitt einer Fahrzeugkarosserie 1 mit einem hinteren Türausschnitt 2, in den eine Fondtür 3 eingesetzt ist und einem vorderen Türausschnitt 2" , in den eine (in Figur 1 nicht dargestellte) Fahrertür montiert werden soll. Diese Karosserie 1 ist ein Beispiel für ein Werkstück 1 mit einem Ausschnitt 2, in den eine (dem Ausschnitt bezüglich seiner Form angepasste) schwenkbare Klappe 3 eingesetzt werden soll.
Die Montage der Fondtür 3 in die Karosserie 1 erfolgt mit Hilfe eines (in Figur 1 schematisch dargestellten) automatischen Montagesystems 4 mit einem Arbeitsraum 27. Das Montagesystem 4 umfasst ein von einem Industrieroboter 7 geführtes Greifwerkzeug 5, das die Fondtür 3 zuführt und lagegenau gegenüber der Karosserie 1 positioniert . Weiterhin umfasst das Montagesystem 4 ein von einem Industrieroboter 8 geführtes Scharniermontagesystem 6, das der Karosserie 1 Scharniere 9 zuführt, gegenüber der Karosserie 1 und der lagegenau positionierten Tür ausrichtet und an einem Scharnierfügebereich 39 im Türausschnitt 2 befestigt. Zur Lage- und BewegungsSteuerung der Roboter 7,8 und somit der Werkzeuge 5,6 ist ein Steuersystem 10 vorgesehen.
Analog zum Montagesystem 4 der Figur 1 für die Montage der linken Fondtür 3 ist (auf der gegenüberliegenden Seite der Karosserie 1) ein weiteres Montagesystem für die rechte Fondtür vorgesehen, dessen Aufbau und Funktionsweise dem des Montagesystems 4 (spiegelbildlich) entspricht. Die Montage der Fahrertüren erfolgt unter Verwendung entsprechend angepasster zusätzlicher MontageSysteme analog zur Fondtürmontage .
Zur Montage der Fondtür 3 im Türausschnitt 2 werden zunächst die Scharniere 9 in den Scharnierfügebereichen 39 des Türausschnitts 2 befestigt; anschließend wird die Fondtür 3 in definierter Lage an den Scharnieren 9 angeschlagen. Die Lage, in der die Scharniere 9 im Türausschnitt 2 befestigt sind, bestimmt dabei in entscheidender Weise die Lage der fertig montierten Fondtür 3 im Türausschnitt 2. Um einen qualitativ hochwertigen optischen Eindruck der Karosserie 1 sicherzustellen, muss die Fondtür 3 lagegenau (in bezug auf Position und Winkellage) gegenüber den dem Türausschnitt 2 benachbarten Bereichen 11 der Karosserie 1 montiert werden; diese Umgebungsbereiche 11 bilden somit einen sogenannten Referenzbereich zur Ausrichtung der Fondtür 3 gegenüber der Karosserie 1.
Das GreifWerkzeug 5, das zur Positionierung der Fondtür 3 im Türausschnitt 2 und der anschließenden Montage zum Einsatz kommt, ist schematisch in Figur 2a gezeigt. Dieses an der Hand 12 des Industrieroboters 7 befestigte Greifwerkzeug 5 umfasst einen Rahmen 13, an dem eine Fixiervorrichtung 14 befestigt ist, mit Hilfe derer die Fondtür 3 in einer wohldefinierten Lage aufgenommen werden kann. Die Aufnahme der Fondtür 3 durch die Fixiervorrichtung 14 erfolgt vorteilhafterweise an der Innenseite 15 der Fondtür 3 in unmittelbarer Nachbarschaft der Scharnieraufnahmeflächen 16, an denen im Zuge der Türmontage die Befestigungsscharniere 9 angeschraubt werden. Durch diese Wahl der Angriffspunkte der Fixiervorrichtung 14 an der Fondtür 3 wird sichergestellt, dass der beim Türeinbau auftretende Formverzug minimal ist. Setzerscheinungen der Tür 3 werden somit berücksichtigt. Damit wird gewährleistet, Die Fixiervorrichtung 14 ist so gestaltet, dass der Bereich der Scharnieraufnahmeflächen 16 auf der Türinnenseite 15 frei zugänglich ist, so dass die Scharniere 9 montiert werden können, während sich die Tür 3 in der Fixiervorrichtung 14 befindet. Durch die in Figur 2a gezeigte Gestaltung der Fixiervorrichtung 14 ist weiterhin sichergestellt, das die Tür 3 durch das Greif erkzeug 5 in Einbaulage (d.h. im geschlossenen Zustand) an der Karosserie 1 positioniert werden kann. Die Fixiervorrichtung 14 ist dreh- und/oder schwenkbar gegenüber dem Rahmen 13 des Greifwerkzeugs 5 angeordnet, so dass sie nach der Montage durch den Fensterausschnitt 17 der montierten und geschlossenen Tür 3 entfernt werden kann. Alternativ kann die Tür 3 auch an der Außenbeplankung gegriffen werden.
Zur Vermessung der Lage und Ausrichtung der im Greifwerkzeug 5 fixierten Fondtür 3 gegenüber der Karosserie 1 ist das Greifwerkzeug 5 mit einem Sensorsystem 18 mit mehreren (in der schematischen Darstellung der Figur 2a fünf) Sensoren 19 versehen, die starr mit dem Rahmen 13 des Greifwerkzeugs 5 verbunden sind; sie bilden somit mit dem Greifwerkzeug 5 eine bauliche Einheit. Diese Sensoren 19 dienen zur Ermittlung von Fugen-, Spalt- und Tiefenmaßen zwischen Randbereichen 20 der Fondtür 3 und den Nachbarbereichen 11 des Türausschnitts 2 auf der Karosserie 1. Mit Hilfe dieses Sensorsystems 18 wird - wie weiter unten beschrieben - die in dem Greifwerkzeug 5 gehaltene Fondtür 3 in einem iterativen Regelvorgang gegenüber dem Türausschnitt 2 der Karosserie 1 ausgerichtet.
Das Scharniermontagesystem 6 ist an der Hand 21 des zweiten Industrieroboters 8 befestigt und umfasst zwei Scharnierspanner 22, in denen die beiden Scharniere 9, die zur Befestigung der Tür 3 im Türausschnitt 2 notwendig sind, in definierter läge- und winkelgenauer Ausrichtung aufgenommen werden (siehe Figur 3) . Weiterhin umfasst das Scharniermontagesystem 6 (in Figur 3 nicht gezeigte) robotergesteuerte Drehmomenten- Schrauber zur Befestigung der Scharniere 9 im Türausschnitt 2 der Karosserie 1. Die Scharnierspanner 22 sind in einer solchen Weise gestaltet und so gegenüber den Schraubern angeordnet, dass die Schraubflächen 23, an denen die Scharniere 9 mit der Karosserie 1 verbunden werden, für die Schrauber zugänglich sind. Die Scharniere 9 werden (automatisch oder manuell) in die Aufnahmen 22 eingelegt, wobei die (in Figur 3 nicht gezeigten) Befestigungsschrauben, mit denen die Scharniere 9 an der Karosserie 1 befestigt werden, gemeinsam mit den Scharnieren 9 eingelegt oder später automatisch zugeführt werden können. Das Scharniermontagesystem 6 ist weiterhin mit einem Sensorsystem 24 versehen, das mehrere (in der schematischen Darstellung der Figur 3 zwei) Sensoren 25 umfasst, die mit dem Scharniermontagesystem 6 eine bauliche Einheit bilden. Diese Sensoren 25 dienen - wie später beschrieben wird - zur Positionierung des Scharniermontagesystems 6 gegenüber dem Greif- Werkzeug 5.
Soll das Montagesystem 4 auf eine neue Bearbeitungsaufgabe - beispielsweise auf die Fondtürmontage in einem neuen Fahrzeugtyp, oder auf die Fahrertürmontage - eingestellt werden, so muss zunächst eine sogenannte Einrichtphase durchlaufen werden, in der das Greifwerkzeug 5 und das Scharniermontage- system 6 konfiguriert werden. Dabei wird eine der zu montierenden Tür 3 angepasste Fixiervorrichtung 14, ein geeignet gestalteter Rahmen 13 und das Sensorsystem 18 mit den entsprechenden Sensoren 19 ausgewählt und gemeinsam zu einem Greifwerkzeug 5 konfiguriert. Im Anschluss daran wird das Sensorsystem 18 des Greifwerkzeugs 5 „eingelernt", indem - wie im folgenden unter I. beschrieben - (Soll-) Messwerte des Sensorsystems 18 auf einer „Master" -Karosserie 1' und einer „Master" -Tür 3' aufgenommen und die gesteuert zu durchlaufenden Bahnabschnitte der Verfahrbahn des Roboters 7 einprogrammiert werden. Weiterhin wird das Scharniermontagesystem 6 der Montageaufgabe entsprechend konfiguriert, mit Sensoren 25 versehen und „eingelernt", indem auch für dieses Werkzeug - wie im folgenden unter II. beschrieben - (Soll-) Messwerte der Sensoren 25 in einem Referenzbereich 26 des Greifwerkzeugs 5 aufgenommen und die gesteuert zu durchlaufenden Bahnabschnitte der Verfahrbahn des Roboters 8 einprogrammiert werden. Nach Beendigung dieser Einrichtphase steht das so konfigurierte und eingemessene Montagesystem 4 nun zum Serieneinsatz bereit, bei dem für jede dem Arbeitsraum 27 der Roboter 7,8 zugeführte Karosserie 1 eine sogenannte Arbeitsphase durchlaufen wird, bei der - wie im folgenden unter III. beschrieben - eine zugehörige Tür 3 am Türausschnitt 2 positioniert und befestigt wird. I. Einrichtphase des GreifWerkzeugs 5:
Zur Lösung einer neu gestellten Montageaufgabe wird in einem ersten Schritt zunächst ein der Montageaufgabe angepasstes Sensorsystem 18 für das Greifwerkzeug 5 ausgewählt und gemeinsam mit der Fixiervorrichtung 14 am Rahmen 13 befestigt. Das so zusammengebaute Greif erkzeug 5 wird an der Roboterhand 12 befestigt. Die Fixiervorrichtung 14 wird dann mit einer („Master"-) Fondtür 3' bestückt und '(.manuell bzw. "interaktiv) in einer solchen Weise gegenüber einer („Master"-) Karosserie 1' im Arbeitsraum 27 des Roboters 7 ausgerichtet, dass eine „optimale" Ausrichtung der („Master"-) Fondtür 3' gegenüber der („Master"-) Karosserie 1' gegeben ist (siehe Figur 2b) . Eine solche „optimale" Ausrichtung kann beispielsweise dadurch definiert sein, dass ein Spalt 28 zwischen der („Master"-) Fondtür 3' und („Master"-) Karosserie 1' möglichst gleichförmig ist, oder dass der Spalt 28 in bestimmten Regionen bestimmte Werte einnimmt. Die dabei eingenommene Relativposition des GreifWerkzeugs 5 gegenüber der („Master"-) Karosserie 1' wird im folgenden als Montageposition 29 bezeichnet .
Die Zahl und die Lage der Sensoren 19 auf dem Rahmen 13 ist so gewählt, dass die Sensoren 19 auf geeignete, für die „optimale" Ausrichtung besonders wichtige, Bereiche 30' auf der („Master"-) Karosserie 1' bzw. Bereiche 31' der („Master"-) Fondtür 3' gerichtet sind. Im Ausführungsbeispiel der Figur 2a werden fünf Sensoren 19 verwendet werden, die auf die in Figur 1 gezeigten Bereiche 30,31 gerichtet sind, so dass drei Sensoren 19 auf den Spalt 28 im Bereich der B-Säule 32 gerichtet sind während die beiden anderen Sensoren 19) Spaltmessungen im hinteren Bereich der Fondtür 3 durchführen. Diese Bereiche 30,31 sind erfahrungsgemäß von besonders hoher Bedeutung für die Lage und Ausrichtung der Fondtür 3 im Türausschnitt 2. Die Zahl der Einzelsensoren 19 sowie die Umge- bungen 30,31, auf die sie ausgerichtet sind, werden in einer solchen Weise ausgewählt, dass sie eine bestmögliche Charakterisierung der für den jeweiligen Anwendungsfall relevanten Qualitätsmerkmale gestatten. Neben den Spaltmessungssensoren 19 können weitere Sensoren vorgesehen sein, die beispielsweise einen (Tiefen-) Abstand und/oder einen Übergang zwischen Karosserie 1 und Fondtür 3 messen.
Das GreifWerkzeug 5 mit dem Sensorsystem 18 und mit der in der Fixiervorrichtung 14 gehaltenen („Master"-) Fondtür 3' wird nun mit Hilfe des Roboters 7 auf die (durch as manuell bzw. interaktiv Ausrichten eingestellte, in der Darstellung der Figur 2b eingenommene) Montageposition 29 gegenüber der („Master"-) Karosserie 1' „eingelernt". Hierbei werden zunächst Messwerte aller Sensoren 19 in der Montageposition 29 aufgenommen und als „Soll-Messwerte" in einer Auswerteeinheit 33 des Sensorsystems 18 abgelegt; diese Sensor- Auswerteeinheit 33 ist zweckmäßigerweise in das Steuersystem 10 integriert. Anschließend wird - ausgehend von der Montageposition 29 - mit Hilfe des Roboters 7 die Lage des Greifwerkzeugs 5 und der darin gehaltenen („Master"-) Fondtür 3' gegenüber der („Master"-) Karosserie 1' entlang bekannter Verfahrbahnen - wie in Figur 2b durch Pfeile 34 angedeutet - systematisch verändert; in der Regel sind dies Inkrementalbe- wegungen des Roboters 7 in seinen Freiheitsgraden. Die dabei auftretenden Veränderungen der Messwerte der Sensoren 19 werden (vollständig oder in Teilen) aufgezeichnet. Aus diesen Sensorinformationen wird - in bekannter Weise - eine sogenannte Jacobimatrix (Sensitivitätsmatrix) errechnet, die den Zusammenhang zwischen den Inkrementalbewegungen des Roboters 7 und den dabei auftretenden Änderungen der Sensormesswerte beschreibt. Das Verfahren zur Ermittlung der Jacobimatrix ist beispielsweise beschrieben in „A tutorial on Visual servo control" von S. Hutchinson, G. Hager und P. Corke, IEEE Tran- sactions on Robotics and Automation 12(5), Oktober 1996, Seiten 651—670. In diesem Artikel sind auch die Anforderungen an die Verfahrwege bzw. die Messumgebungen beschrieben (Stetig- keit, Monotonie, ...), die erfüllt sein müssen, um eine gültige Jacobimatrix zu erhalten. - Die Inkrementalbewegungen sind in einer solchen Weise ausgewählt, dass während dieses Einrichtvorgangs keine Kollisionen des Greifwerkzeugs 5 bzw. der („Master"-) Fondtür 3' mit der („Master"-) Karosserie 1' auftreten können.
Die in der Einrichtphase erzeugte Jacobimatrix wird zusammen mit den „Soll-Messwerten" in der Auswerteeinheit 33 des Sensorsystems 18 abgelegt und bilden die Grundlage für den späteren Positionier-Regelvorgang A-2 in der Arbeitsphase (siehe unten unter III.) .
Weiterhin wird in der Einrichtphase eine Verfahrbahn 35 der Roboterhand 12 (und somit des GreifWerkzeugs 5) generiert, die in der späteren Arbeitsphase III. gesteuert durchlaufen wird. Diese Verfahrbahn 35 ist schematisch in Figur 4 dargestellt. Den Ausgangspunkt der Verfahrbahn 35 bildet eine sogenannte „Rückzugsposition" 36, die so gewählt ist, dass eine neue Karosserie 1 in den Arbeitsraum 27 des Roboters 7 eingeführt werden kann, ohne dass Kollisionen der Karosserie 1. mit dem Greifwerkzeug 5 oder der darin gehaltenen Fondtür 3 zu befürchten sind. Diese Rückzugsposition 36 kann beispielsweise einer (in den Figuren nicht dargestellten) Bestückungsstation entsprechen, in der das GreifWerkzeug 5 (manuell) mit einer zu verbauenden Fondtür 3 bestückt wird. Alternativ kann die Rückzugsposition 36 einer Entnahmestation entsprechen, in der das Greifwerkzeug 5 eine zu verbauende Fondtür 3 aus einem Ladungsträger entnimmt. Ausgehend von dieser Rückzugsposition 36 umfasst die Verfahrbahn 35 folgende separate Abschnitte :
A-l Das GreifWerkzeug 5 mit eingelegter („Master"-) Fondtür 3' wird auf einer gesteuert zu durchlaufenden Bahn A-l von der Rückzugsposition 36 in eine sogenannte „Näherungsposition" 37 gebracht, die so gewählt ist, dass alle Einzelsensoren 19 des Sensorsystems 18 gültige Mess- werte des jeweiligen Bereiches 30,31 der („Master"-) Fondtür 3' und/oder der („Master"-) Karosserie 1' erfassen können, während gleichzeitig gewährleistet ist, dass keine Kollisionen des GreifWerkzeugs 5 oder der Fondtür 3 mit der Karosserie 1 auftreten können.
A-2 Das GreifWerkzeug 5 mit eingelegter („Master"-) Fondtür 3' wird auf einer geregelt zu durchlaufenden Bahn A-2 von der Näherungsposition 37 in die (wie oben beschrieben „eingelernte") Montageposition 29 gebracht, in der die im Greif erkzeug 5 gehaltene („Master"-) Fondtür 3' läge- und winkelgenau gegenüber dem Türausschnitt 2' der („Master"-) Karosserie 1' ausgerichtet ist. Was während dieses geregelt zu durchlaufenden Prozessschritts im einzelnen geschieht, wird weiter unten (in III. Arbeitsphase) beschrieben.
B. Das GreifWerkzeug 5 mit eingelegter („Master"-) Fondtür 3' wird auf einer gesteuert zu durchlaufenden Bahn B von der Montageposition 29 in eine Ausweichposition 38 bewegt, in der die („Master"-) Fondtür 3' den Fügebereich 39 der Scharniere 9 im Türausschnitt 2' nicht beeinträchtigt. Das Greifwerkzeug 5 weicht also definiert aus, um Platz für den Einbau der Scharniere 9 zu schaffen.
D. Das Greifwerkzeug 5 mit eingelegter („Master"-) Fondtür 3' wird auf einer geregelt zu durchlaufenden Bahn D von der Ausweichposition 39 in die (wie oben beschrieben „eingelernte") Montageposition 29 zurücktransportiert, in der die im GreifWerkzeug 5 gehaltene („Master"-) Fondtür 3' läge- und winkelgenau gegenüber dem Türausschnitt 2' der („Master"-) Karosserie 1' ausgerichtet ist. Diese Bahn D kann insbesondere die „Umkehr" der Bahn B sein.
F. Das GreifWerkzeug 5 wird robotergesteuert in die Rückzugsposition 36 zurückbewegt.
Die im Rahmen der Einrichtphase erzeugte Verfahrbahn 35 des Greif erkzeugs 5 besteht somit aus vier gesteuert zu durch- laufenden Abschnitten A-l, B, D und F sowie einem geregelt zu durchlaufenden Abschnitt A-2. Die Schritte A-l, B, D und F können während der Einlernphase des Greifwerkzeugs 5 interaktiv eingegeben werden, oder sie können in Form eines (offline generierten) CNC-Programms im Steuersystem 10 abgelegt werden.
II. Einrichtphase des Scharniermontagesystems 6:
In einem nächsten Schritt wird die Verfahrbahn 40 des (mit mehreren Sensoren 25 versehenen und an der Roboterhand 21 des Scharnierroboters 21 befestigten) Scharniermontagesystems 6 eingelernt :
Analog zum oben beschriebenen Einlernen der Montageposition 29 des GreifWerkzeugs 5 wird hier zunächst die sogenannte „Arbeitsposition" 41 des Scharniermontagesystems 6 eingelernt. Hierzu wird das GreifWerkzeug 5 in der Ausweichposition 28 (Endposition des Bahnabschnitts B) gegenüber der („Master"-) Karosserie 1' positioniert. Anschließend wird das Scharniermontagesystem 6 mit zwei Scharnieren 9 bestückt und (manuell bzw. interaktiv) in einer solchen Weise gegenüber dem Türausschnitt 2' der („Master"-) Karosserie 1' ausgerichtet, dass die Scharniere 9 im Fügebereich 39 des Türausschnitts 2' in einer „optimale" Ausrichtung und Befestigungsposition positioniert sind. Die dabei eingenommene Relativposition des Scharniermontagesystems 6 gegenüber der („Master" - ) Karosserie 1' wird im folgenden als „Arbeitsposition" 41 des Scharniermontagesystems 6 bezeichnet.
Die Sensoren 25 sind in einer solchen Weise am Scharniermontagesystem 6 befestigt, dass sie dabei auf einen ausgewählten Referenzbereich 26 auf dem Greifwerkzeug 5, im vorliegenden Ausführungsbeispiel auf eine Hilfsfläche 42 des Greifwerkzeugs 5 gerichtet sind. Die „Hilfsfläche" 42 ist im vorliegenden Fall eine ebene Fläche, deren Flächennormale 43 nähe- rungsweise parallel zur Fahrzeuglängsrichtung 44 verläuft, wenn das GreifWerkzeug 5 sich in der (in Figur 5 dargestellten) Ausweichposition 38 befindet. Die Sensoren 25 sind dabei (optische) Abstandssensoren, die (z.B. mit Hilfe des Triangulationsprinzips) die Distanz zur Hilfsfläche 42 messen. Durch Auswertung der Messwerte der Sensoren 25 kann der Abstand des Scharniermontagesystems 6 in Fahrzeuglängsrichtung 44 gegenüber der Hilfsfläche 42 ermittelt werden; weiterhin kann die Winkellage des Scharniermontagesystems 6 gegenüber der Hilfsfläche 42 (und somit gegenüber der Ausweichposition 38 des GreifWerkzeugs 5) errechnet werden.
Das Scharniermontagesystem 6 mit den Sensoren 25 wird nun mit Hilfe des Scharnierroboters 8 auf die (manuell bzw. interaktiv eingestellte) Arbeitsposition 41 gegenüber der Hilfsfläche 42 des Greifwerkzeugs 5 „eingelernt" . Dieses iterative Einlernen erfolgt analog zu dem unter I . beschriebenen Einlernvorgang des GreifWerkzeugs 5, bei dem das Greif erkzeug 5 in die Montageposition 29 gegenüber der („Master"-) Karosserie 1' eingelernt wurde: Es werden zunächst - während sich das Scharniermontagesystem 6 in der Arbeitsposition 41 befindet - mit Hilfe der Sensoren 25 Messwerte der Hilfsfläche 42 aufgenommen und als „Soll-Messwerte" in einer zum Sensorsystem 24 gehörigen Auswerteeinheit 45 abgelegt, die in das Steuersystem 10 integriert ist. Anschließend wird - ausgehend von dieser Arbeitsposition 41 - mit Hilfe des Roboters 8 die Lage des Scharniermontagesystems 6 gegenüber der Hilfsfläche 42 des GreifWerkzeugs 5 entlang bekannter Verfahrbahnen systematisch verändert. Aus den damit verbundenen Veränderungen der Messwerte der Sensoren 25 wird die Jacobimatrix (Sensiti- vitätsmatrix) des Scharniermontagesystems 6 errechnet, die den Zusammenhang zwischen den Inkrementalbewegungen des Scharnierroboters 8 und den dabei auftretenden Änderungen der Messwerte der Sensoren 25 beschreibt. Die Inkrementalbewegungen sind in einer solchen Weise ausgewählt, dass während dieses Einrichtvorgangs keine Kollisionen des Scharniermontage- Systems 6 mit der („Master"-) Karosserie 1' auftreten können. Die erzeugte Jacobimatrix wird zusammen mit den „Soll- Messwerten" in der Auswerteeinheit 45 des Sensorsystems 24 abgelegt und bildet die Grundlage für den späteren Regelvorgang in der Positionierphase des Scharniermontagesystems 6 (siehe unten unter C-l) .
Zusätzlich zum Einlernen der Arbeitsposition 41 wird in der Einrichtphase des Scharniermontagesystems 6 eine Verfahrbahn 46 der Scharnierroboterhand 21 erzeugt, die - gemeinsam mit der Verfahrbahn 35 der Roboterhand 12 des . Greifwerkzeugs 5- sche'matisch in Figur' 4 dargestellt ist'. Den Ausgangspunkt der Verfahrbahn 46 des Scharniermontagesystems 6 bildet eine sogenannte „Scharnieraufnahmeposition" 47, die so gewählt ist, dass eine neue Karosserie 1 in den Arbeitsraum 27 des Roboters 8 eingeführt werden kann, ohne dass Kollisionen der Karosserie 1 mit dem Scharniermontagesystem 6 auftreten können. In dieser Scharnieraufnahmeposition 47 können die Scharnierspanner 22 (manuell oder automatisch) mit einzubauenden Scharnieren 9 bestückt werden. Ausgehend von dieser Scharnieraufnahmeposition 47 umfasst die Verfahrbahn 46 des Scharniermontagesystems 6 folgende separate Abschnitte :
C-0 Das Scharniermontagesystem 6 mit eingelegten Scharnieren 9 wird auf einer gesteuert zu durchlaufenden Bahn C-0 von der Scharnieraufnahmeposition 47 in eine sogenannte Näherungsposition 48 gebracht, die so gewählt ist, dass die Sensoren 25 gültige Messwerte der Hilfsfläche 42 des (in der Ausweichposition 38 befindlichen) Greifwerkzeugs 5 liefern.
C-l Das Scharniermontagesystem 6 mit eingelegten Scharnieren 9 wird auf einer geregelt zu durchlaufenden Bahn C-l von der Näherungsposition 48 in die (wie oben beschrieben „eingelernte") Arbeitsposition 41 gebracht, in der das Scharniermontagesystem 6 winkel- und abstandsgenau gegenüber der Hilfsfläche 42 des GreifWerkzeugs 5 ausgerichtet ist . C-3 Das Scharniermontagesystem 6 wird robotergesteuert in die Scharnieraufnahmeposition 47 zurückbewegt.
Die im Rahmen dieser Einrichtphase erzeugte Verfahrbahn 46 des Scharnieraufnahmesystems 6 besteht somit aus zwei gesteuert zu durchlaufenden Abschnitten C-0 und C-3 sowie einem geregelt zu durchlaufenden Abschnitt C-l.
III . Arbeitsphase
In der Arbeitsphase werden dem Arbeitsraum 27 des Montagesystems 4 sequentiell Karosserien 1 zugeführt und eingespannt, und für jede Karosserie 1 werden vom Greifwerkzeug 5 und dem Scharniermontagesystem 6 die in den Einrichtphasen generierten Verfahrbahnen 35,46 durchlaufen.
Verfahrbahn-Abschnitt A-l:
Während des Zufuhrens der neuen Karosserie 1 befindet sich das GreifWerkzeug 5 in der Rückzugsposition 36 und ist bzw. wird mit einer zu montierenden Fondtür 3 bestückt; das Scharniermontagesystem 6 befindet sich in der Scharnieraufnahmeposition 47, in der die Scharnierspanner 22 mit Scharnieren 9 bestückt werden. Sobald die neue Karosserie 1 in den Arbeits- raum 27 hineinbewegt und dort fixiert worden ist, wird das Greifwerkzeug 5 mit eingelegter Fondtür 3 gesteuert in die Näherungsposition 37 bewegt.
Verfahrbahn-Abschnitt A-2 (Positionierphase des Greifwerkzeugs 5) :
Ausgehend von der Näherungsposition 37 wird eine Positionierphase des Werkzeugs (Bahnabschnitt A-2 in Figur 4) durchlaufen, im Rahmen derer die im Greifwerkzeug 5 gehaltene Fondtür 3 in die (während der Einlernphase eingelernte) Montageposition 29 gegenüber der Karosserie 1 gebracht und dabei lagegenau gegenüber dem Türausschnitt 2 der Karosserie 1 ausgerichtet wird. Hierzu werden durch die Sensoren 19 des Sensorsystems 18 Messwerte in ausgewählten Bereichen 30,31 der Fondtür 3 und der Karosserie 1 aufgenommen. Mit Hilfe dieser Messwerte und der in der Einrichtphase bestimmten Jacobimatrix wird ein Bewegungsinkrement (Verschiebungsvektor) berechnet, das die Differenz zwischen den aktuellen (Ist-) Sensormesswerten und den (Soll-) Sensormesswerten verkleinert. Die im Greif- Werkzeug 5 gehaltene Fondtür 3 wird dann mit Hilfe des Roboters 7 um dieses Bewegungsinkrement verschoben und/oder geschwenkt, und während der laufenden Bewegung werden neue (Ist-) Sensormesswerte aufgenommen.
Dieser iterative Mess- und Verschiebe-Vorgang wird in einer Regelschleife so lange wiederholt, bis die Differenz zwischen den aktuellen (Ist-) und den angestrebten (Soll-) Sensormesswerten ein vorgegebenes Fehlermaß unterschreitet, oder bis sich diese Differenz nicht mehr über einen im Vorfeld festgesetzten Schwellenwert hinaus ändert. Die Fondtür 3 befindet sich nun (im Rahmen der durch Fehlermaß bzw. Schwellenwert vorgegebenen Genauigkeit) in der (in Figur 3 dargestellten) Montageposition 29 gegenüber der Karosserie 1.
Durch die in dieser Positionierphase A-2 durchlaufene iterative Minimierung werden sowohl Ungenauigkeiten der Karosserie 1 bezüglich ihrer Lage und Ausrichtung im Arbeitsraum 27 des Roboters 7 als auch eventuell vorhandene Formfehler der Karosserie 1 (d.h. Abweichungen von der /(„Master") - Karosserie 1') kompensiert. Simultan werden Ungenauigkeiten der Fondtür 3 bezüglich ihrer Lage und Ausrichtung im Greifwerkzeug 5 und eventuell vorhandene Formfehler der Fondtür 3 kompensiert (d.h. Abweichungen von der („Master") - Fondtür 3'). Die Fondtür 3 wird also im Zuge dieses iterativen Regelprozesses - unabhängig von Form- und Lageungenauigkeiten - in der „optimalen" Weise in den Türausschnitt 2 der Karosserie 1 eingepasst . Zur separaten Erkennung und Bewertung von Formfehlern der Fondtür 3 und der Karosserie 1 können auf dem Greifwerkzeug 5 zusätzliche Sensoren vorgesehen werden, deren Messwerte ausschließlich oder teilweise zur Erfassung der Formfehler verwendet werden. Weiterhin können die Messwerte der Einzelsensoren 19 mit unterschiedlichen Gewichtungsfakto- ren versehen werden, um eine gewichtete Lageoptimierung der Fondtür 3 gegenüber dem Türauschnitt 2 der Karosserie 1 herbeizuführen.
Die im Rahmen des Regelvorgangs dieser Positionierphase A-2 erfolgte Lage- und Winkelverschiebung der im Greifwerkzeug 5 gehaltenen Fondtür 3 (entsprechend der Verschiebung zwischen der Näherungsposition 37 und der Montageposition 29) kann in Form einer sogenannten Nullpunktskorrektur an das Steuersystem 10 des Roboters 7 weitergegeben werden. Das Steuersystem 10 des Roboters 7 „kennt" somit die (der Montageposition 29 entsprechende) Ausgangslage, die der Optimaleinpassung der Fondtür 3 in den Türausschnitt 2 entspricht. Eine wichtige Eigenschaft dieser Positionierphase ist ihre Unabhängigkeit von der Robotergenauigkeit: Da der Positioniervorgang auf einem iterativen Vergleich der (Ist-) Messwerte mit (Soll-) Messwerten beruht, wird jede Positionsungenauigkeit des Roboters 7 sofort durch den iterativen Regelprozess kompensiert.
Verfahrbahn-Abschnitte B und C-0 (Ausweichphase des GreifWerkzeugs 5 und Vorbereitung des Scharniermontage- Systems 6) :
Ausgehend von der Montageposition 29 wird das Greifwerkzeug 5 mit der darin gehaltenen Fondtür 3 nun vom Roboter 7 gesteuert in die Ausweichposition 38 transportiert. Auf diese Weise wird im Fügebereich 39 des TürausSchnitts 2 Platz geschaffen für das mit Scharnieren 9 bestückte Scharniermontagesystem 6, das anschließend oder simultan zur Ausweichphase B des Greif- Werkzeugs 5 gesteuert in die Näherungsposition 48 gebracht wird.
Verfahrbahn-Abschnitt C-l (Positionierphase des ScharniermontageSystems 6) :
Ausgehend von der Näherungsposition 48 wird das Scharniermontagesystem 6 nun in die (während der Einlernphase eingelernte) Arbeitsposition 41 gegenüber dem in der Ausweichposition 38 befindlichen Greifwerkzeug 5 gebracht. Diese Positionierphase verläuft analog zu der Positionierphase des Abschnitts A-2, im Zuge derer das Greifwerkzeug 5 gegenüber der Karosserie 1 positioniert wurde: Mit Hilfe der Sensoren 25 des ScharniermontageSystems 6 werden Messwerte der Hilfsfläche 42 auf dem Greifwerkzeug 5 aufgenommen, und aus diesen Messwerten wird mit Hilfe der in der Einrichtphase bestimmten Jacobimatrix ein Bewegungsinkrement berechnet, um das das ScharniermontageSystem 6 mit Hilfe des Roboters 8 verschoben wird. Dieser Mess- und Verschiebe-Vorgang wird iterativ so lange wiederholt, bis die Differenz zwischen den aktuellen (Ist-) und den angestrebten (Soll-) Sensormesswerten ein vorgegebenes Fehlermaß unterschreitet, oder bis sich diese Differenz nicht mehr über einen im Vorfeld festgesetzten Schwellenwert hinaus ändert. Das Scharniermontagesystem 6 befindet sich dann in der (in Figur 5 dargestellten) Arbeitsposition 41 gegenüber dem Greifwerkzeug 5 und gegenüber der Karosserie 1. Die dieser Arbeitsposition 41 entsprechende Raumlage der Roboterhand 21 wird im Steuersystem 10 gespeichert. Sensoren 49 auf der Hilfsfläche 42 messen die Lage der Scharniere 9 und speichern das Ergebnis als Soll-Datensatz ebenfalls im Steuersystem 10.
Da die Ausrichtung des Scharniermontagesystems 6 gegenüber dem GreifWerkzeug 5 anhand von Abstandsmessungen zu der ebenen Fläche 42 erfolgt, die näherungsweise senkrecht zur Fahrzeuglängsrichtung 44 ausgerichtet ist, ermöglicht dieser Pro- zessschritt zwar eine Positionierung des Scharniermontagewerkzeugs 6 in Fahrzeuglängsrichtung 44, nicht aber senkrecht dazu. Die Bewegung des Scharniermontagewerkzeugs 6 in Fahrzeugquerrichtung wird in diesem Fall gesteuert durchgeführt (im Unterschied zur Bewegung in Fahrzeuglängsrichtung, die geregelt erfolgt) , so dass das Scharniermontagesystem 6 senkrecht zur Fahrzeugrichtung 44 gesteuert an den Fügebereich 39 im Türausschnitt 2 heranbewegt wird und die Scharniere 9 mit Hilfe von Federn oder einer geeigneten Pneumatik an den Fügebereich 39 angedrückt werden.
Arbeitsgang C-2 (Befestigung der Scharniere 9 im Türausschnitt 2)
In der Arbeitsposition 41 des Scharniermontagesystems 6, in der die Scharniere 9 an der gewünschten Stelle im Fügebereich 39 des Türausschnitts 2 und positioniert und angedrückt sind, erfolgt nun die Montage der Scharniere 9 in den Türausschnitt 2. Hierfür können beispielsweise Schrauber zum Einsatz kommen, die auf dem Scharniermontagesystem 6 vorgesehen sind (a- ber in den Figuren nicht gezeigt sind) und für diesen Arbeitsschritt an den Befestigungsschrauben der Scharniere 9 zum Eingriff kommen. Alternativ können weitere Schrauber zum Einsatz kommen, die an zusätzlichen Robotern oder Handlingssystemen befestigt sind.
Nach der Montage der Scharniere 9 werden die Scharnierspanner 22 geöffnet und die Scharniere 9 freigegeben. Mit Hilfe der Sensoren 49 auf der Hilfsfläche 42 wird die Lage der angeschraubten Scharniere 9 gemessen mit der (als Soll-Datensatz im Steuerrechner 10 abgelegten) Scharnierlage im unver- schraubten Zustand verglichen. Im Falle von Abweichungen werden die Scharniere 9 nochmals in den Scharnierspannern 22 fixiert und robotergesteuert um den gemessenen Offset verschoben. Dieser Prozess wird so oft wiederholt, bis die Lage der verschraubten Scharniere 9 mit der Lage der unverschraubten Scharniere übereinstimmt. Auf diese Weise können die elastischen und plastischen Einflüsse des Schraubvorgangs kompensiert und eine besonders hohe Lagegenauigkeit der Scharniere 9 im Fügebereich 39 erreicht werden.
Sind die Scharniere in der gewünschten (Soll-) Lage im Füge- bereich 39 des Türausschnitts 2 befestigt, so werden die Scharnierspanner 22 geöffnet und die Scharniere 9 freigegeben.
Verfahrbahn-Abschnitte C-3 und D (Rückzug des Scharniermontagesystems 6 und Annäherung des Greifwerkzeugs 5) :
Anschließend wird zunächst das Scharniermontagesystem 6 (ohne die Scharniere 9) robotergesteuert aus der Arbeitsposition 41 in die Scharnieraufnahmeposition 47 zurückgezogen. Dadurch wird der Raum um den Fügebereich 39 herum wieder frei, und das Greifwerkzeug 5 mit der Fondtür 3 kann robotergesteuert aus der Ausweichposition 38 in die Montageposition 29 zurückbewegt werden. Durch die (im vorherigen Prozessabschnitt C-l erreichte) hochgenaue Ausrichtung des Scharniermontagewerkzeugs 6 gegenüber dem Greifwerkzeug 5 wird dabei sichergestellt, dass die Scharnieraufnahmeflächen 16 der Fondtür 3 hochgenau ausgerichtet an den Scharnieren 9 zu liegen kommen, während die (in Abschnitt A-2 durchgeführte) Ausrichtung des GreifWerkzeugs 5 gegenüber der Karosserie 1 gewährleistet, dass die Fondtür 3 optimal gegenüber dem Türausschnitt 2 ausgerichtet ist.
Arbeitsgang E (Befestigung der Fondtür 3 an den Scharnieren 9)
In der nun wieder eingenommenen Montageposition 29 des Greif- Werkzeugs 5, in der die Fondtür 3 optimal gegenüber dem Tür- ausschnitt 2 positioniert ist, erfolgt nun die Befestigung der Fondtür 3 an den Scharnieren 9 im Türausschnitt 2. Hierfür können (in den Figuren nicht gezeigte) Schrauber zum Einsatz kommen, die beispielsweise auf dem Greifwerkzeug 6 montiert sind und für diesen Arbeitsschritt an den Scharnieren 9 bzw. an Befestigungsschrauben zum Eingriff kommen. Alternativ können zusätzliche Schrauber zum Einsatz kommen, die an weiteren Robotern oder Handlingssystemen befestigt sind.
Nach dem Montieren der Fahrzeugtür 3 wird die Fixiervorrichtung 14 des GreifWerkzeugs 5 gelöst, so dass die Tür 3 frei an der Karosserie 1 hängt. In dieser Lage werden (mit Hilfe der Sensoren 14) Kontrollmessungen der Fugenmaße, Spalte und Tiefenmaße in den Bereichen 30,31 durchgeführt. Sollten dabei Abweichungen von den Sollmaßen festgestellt werden, so wird dem Bediener der Anlage eine definierte Information zur Nacharbeit zugesandt .
Verfahrbahn-Abschnitt F (Rückzug des GreifWerkzeugs 5) :
Ist die Fondtür 3 in der richtigen Lage im Türausschnitt 2 befestigt, so wird die Fixiervorrichtung 14 des GreifWerkzeugs 5 in einer solchen Weise aus der Eingriffsposition herausgeschwenkt, dass das GreifWerkzeug 5 kollisionsfrei robotergesteuert von der Montageposition 29 in die Rückzugsposition 36 zurückbewegt werden kann. Die Karosserie 1 wird entspannt, ausgehoben und gefördert, und parallel dazu werden die Werkzeuge 5,6 mit einer neuen Tür 3, Scharnieren 9 und Schrauben bestückt und eine neue Karosserie 1 wird dem Arbeitsraum 4 zugeführt .
Zur Datenkommunikation zwischen den unterschiedlichen Systemkomponenten (Auswerteeinheiten 33,45 der Sensorsysteme 18,24 und den Steuerungen der Roboter 7,8 im Steuersystem 10) wird im vorliegenden Ausführungsbeispiel vorteilhafterweise eine TCP/lP-Schnittstelle eingesetzt, die eine hohe Datenrate ermöglicht. Eine solche hohe Datenrate ist notwendig, um während der geregelt zu durchlaufenden Positionierphasen A-2 und C-l eine Regelung des Gesamtsystems (Sensorsysteme/Roboter) mit der Vielzahl der Einzelsensoren 19,25 im Interpolationstakt der Roboter 7,8 (typischerweise 12 Millisekunden) bewältigen zu können. Für Regelungsprobleme geringerer Komplexität - d.h. bei niedrigeren Anforderungen an die Genauigkeit und längeren Regelzeiten - kann die Regelung auch über eine konventionelle serielle Schnittstelle realisiert werden.
In der bisherigen Beschreibung wurde der Spezialfall der Montage einer Fondtür 3 in eine Karosserie 1 beschrieben. Selbstverständlich ist das Verfahren ebenso auf die Montage von Fahrertüren in Karosserien 1 anwendbar, wobei Fondtür und Fahrertür aus Gründen der besseren Zugänglichkeit für die zugehörigen Werkzeuge 5,6 vorteilhafterweise nicht gleichzeitig, sondern sequentiell positioniert und montiert werden.
Weiterhin ist das Verfahren neben der Türmontage auf die Montage beliebiger anderer Klappen (Tankklappe, Motorhaube, Heckklappe etc.) übertragbar, welche lagegenau an der Karosserie 1 montiert werden müssen. Schließlich beschränkt sich das Verfahren nicht auf Montageumfänge an Karosserien 1 sondern ist grundsätzlich auf beliebige Montageprobleme anwendbar, bei denen eine Klappe mit Hilfe robotergeführter Werkzeuge 5,6 lagegenau an einem Werkstück montiert werden soll. Unter „robotergeführten" Werkzeugen sind im Zusammenhang der vorliegenden Anmeldung ganz allgemein Werkzeuge zu verstehen, die auf einem mehrachsigen Manipulator, insbesondere einem sechsachsigen Industrieroboter 7,8, montiert sind.
Als Sensoren 19 zur Erfassung der Ist-Lage der Klappe 3 gegenüber dem Referenzbereich 11 auf dem Werkstück 1 können neben den bisher beschriebenen Spaltsensoren beliebige optische Sensoren zum Einsatz kommen. Beispielsweise können flächen- haft messende CCD-Kameras als Sensoren 19 eingesetzt werden, mit Hilfe derer (in Kombination mit geeigneten Bildauswertungsalgorithmen) die Raumlagen und der gegenseitige Versatz von Kanten sowie räumliche Abstände etc. als Messgrößen generiert werden kann. Gleiches gilt für die Sensoren 25, die für die Ausrichtung des Scharniermontagesystems 6 gegenüber der Hilfsfläche 42 auf dem GreifWerkzeug 5 verwendet werden. Weiterhin können beliebige taktile und/oder berührungsfreie Messsysteme verwendet werden, wobei die Auswahl der geeigneten Sensoren stark vom jeweiligen Einsatzfall abhängt.
Im Ausführungsbeispiel der Figur 5, in dem der Referenzbereich auf dem Greifwerkzeug 5 als ebene Fläche 42 senkrecht zur Fahrzeuglängsrichtung 44 gestaltet ist und die Sensoren 25 Abstandssensoren sind, gestattet die Hilfsfläche 42 eine Positionsmessung und Ausrichtung des Scharniermontagewerkzeugs 6 lediglich in Fahrzeuglängsrichtung; die Positionierung in Fahrzeugquerrichtung erfolgt in diesem Fall - wie o- ben beschrieben - gesteuert. Ganz allgemein kann die Referenzfläche 26 eine beliebig geformte Fläche sein, die eine räumliche Ausrichtung des Scharniermontagesystems 6 gegenüber dem Greifwerkzeug 5 in allen drei Raumrichtungen ermöglicht. Insbesondere kann das Scharniermontagewerkzeug 6 gegenüber der Scharnieranschraubfläche 16 der Tür 3 ausgerichtet werden.
Weiterhin kann die Montage der Scharniere 9 im Türausschnitt 2 der Karosserie 1 manuell erfolgen: In diesem Fall entfallen die Prozessschritte C-0 bis C-2 der automatischen Vorbereitung, Positionierung und Montage der Scharniere 9 und werden stattdessen durch einen manuellen Scharniermontageprozess ersetzt .
Im Ausführungsbeispiel der Figuren 1 bis 5 ist auf dem Greifwerkzeug 5 ein (erstes) Sensorsystem 18 vorgesehen, das zur Positionierung des GreifWerkzeugs 5 gegenüber der Karosserie 1 dient, während auf dem Scharniermontagesystem 6 ein (zweites) Sensorsystem 24 vorgesehen ist, welches zur Positionie- rung des Scharniermontagesystems 6 gegenüber dem Greifwerkzeug 5 dient. Anstelle dieser doppelten Sensorsysteme 18,24 kann die Positionierung des Scharniermontagesystems 6 gegenüber dem Greifwerkzeug 5 auch mithilfe zusätzlicher Sensoren auf dem Greifwerkzeug 5 erfolgen; in diesem Falle ist die Hilfsfläche 42 nicht am Greif erkzeug 5, sondern am Scharniermontagesystem 26 vorgesehen. Auf diese Weise kann nur ein einziges Sensorsystem 24 verwendet werden, das auf dem Greifwerkzeug befestigt ist und sowohl Sensoren 19 zur Ausrichtung des Greifwerkzeugs 5 gegenüber der Karosserie als auch Sensoren 25 zur Ausrichtung des Scharniermontagesystems 6 gegenüber dem Greif erkzeug 5 enthält.
Weiterhin kann die Positionsregelung des Greifwerkzeugs 5 gegenüber der Karosserie nicht auf die Positionierphase A-2 beschränkt sein, sondern das Greifwerkzeug 5 kann die Karosserie 1 mit Hilfe ausgewählter (zusätzlicher) Sensoren während des gesamten Montageprozesses beobachten. Aufgrund der schnellen Algorithmen zur Positionsregelung braucht in einem solchen Fall die Karosseril e während des Positionier- und Montagevorgangs nicht stationär aufgespannt sein, sondern sie kann (beispielsweise auf einem Montageband oder einer anderen geeigneten Fδrdertechnik) gegenüber den Robotern 7,8 bewegt werden. Dies ermöglicht eine hohe Flexibilität des erfindungsgemäßen Verfahrens, das somit auf unterschiedlichste Anwendungsfälle der Klappenmontage an stationären und bewegten Werkstücken anwendbar ist.
.oOo.

Claims

Patentansprüche
Verfahren zur Montage einer Klappe (3) an einem Werkstück (1) , insbesondere an einer Fahrzeugkarosserie (1) , wobei die Klappe (3) lagegenau gegenüber einem Referenzbereich (11,30) auf dem Werkstück (1) positioniert wird,
- bei welchem Verfahren ein mittels eines Roboters (7) geführtes Greifwerkzeug (5) verwendet wird, welches eine Fixiervorrichtung (14) zur Aufnahme der Klappe (3) und ein fest mit dem GreifWerkzeug (5) verbundenes Sensorsystem (18) mit mindestens einem Sensor (19) umfasst,
- wobei das GreifWerkzeug (5) zunächst im Rahmen einer Positionierphase (A-2) ausgehend von einer Näherungs- position (37) , welche unabhängig von der Lage des Werkstücks (1) im Arbeitsraum (27) des Roboters (7) ist, in eine Montageposition (29) bewegt wird, in welcher die im Greifwerkzeug (5) gehaltene Klappe (3) lagegenau gegenüber dem Referenzbereich (11,30) des Werkstücks (1) ausgerichtet ist
- und wobei die Klappe (3) dann dieser Montageposition
(29) des Greifwerkzeugs (5) mit dem Werkstück (1) verbunden wird, d a d u r c h g e k e n n z e i c h n e t , dass zum Anfahren der Montageposition (29) ein iterativer Regelvorgang durchlaufen wird, im Zuge dessen
- ein (Ist-) Messwert des mindestens einen Sensors (19) erzeugt wird,
- dieser (Ist-) Messwert mit einem im Rahmen einer Einrichtphase erzeugten (Soll-) Messwert verglichen wird,
- aus der Differenz zwischen (Ist-) Messwert und (Soll-) Messwert unter Verwendung einer im Rahmen der Einricht- phase berechneten Jacobi-Matrix ein Verschiebungsvektor des GreifWerkzeugs (5) berechnet wird,
- das Greif erkzeug (5) um diesen Verschiebungsvektor verschoben wird.
2. Verfahren nach Anspruch 1 d a d u r c h g e k e n n z e i c h n e t , dass der iterative Regelvorgang abgebrochen wird, wenn
- entweder die Abweichung zwischen (Soll-) Messwert und (Ist-) Messwert unterhalb eines vorgegebenen Schwellwerts liegt, oder
- die bei aufeinanderfolgenden Iterationsschritten zu erreichende Reduktion dieser Abweichung unterhalb eines vorgegebenen Schwelle liegt.
3. Verfahren nach Anspruch 1 oder 2 , d a d u r c h g e k e n n z e i c h n e t ,
- dass das Greifwerkzeug (5) nach dem geregelten Anfahren der Montageposition (29) gesteuert in eine Ausweichposition (38) verschoben wird,
- dass unter Verwendung eines robotergeführten ScharniermontageSystems (6) Befestigungselemente (9) am Werkstück (1) befestigt werden,
- dass das Greifwerkzeug (5) gesteuert von der Ausweichposition (38) in die Montageposition (29) zurückbewegt wird und
- dass die im GreifWerkzeug (5) gehaltene Klappe (3) an den Befestigungselementen (9) befestigt wird.
4. Verfahren nach Anspruch 3 d a d u r c h g e k e n n z e i c h n e t , dass zur Befestigung der Befestigungselemente (9) am
Werkstück (1)
- das Scharniermontagesystem (6) zunächst robotergesteuert in eine Näherungsposition (48) gebracht wird, welche unabhängig von der Lage des Werkstücks (1) im Arbeitsraum (27) des Roboters (8) ist, - anschließend das Scharniermontagesystem (6) in einem iterativen Regelvorgang in eine Arbeitsposition (41) bewegt wird, in welcher das Scharniermontagesystem (6) lagegenau gegenüber dem Greif erkzeug (5) ausgerichtet ist,
- und anschließend robotergesteuert ein Bearbeitungsvorgang (C-2) durchgeführt wird, im Zuge dessen die im Scharniermontagesystem (6) zugeführten Befestigungselemente (9) mit dem Werkstück (1) verbunden werden.
5. Verfahren nach einem der .Ansprüche 1 bis 4 d a d u r c h g e k e n n z e i c h n e t , dass die Befestigungselemente (9) Scharniere sind, die mit dem Werkstück (1) und der Klappe (3) verschraubt werden.
6. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass zur Kommunikation zwischen dem Steuersystem (10) des Roboters (7,8) und der Auswerteeinheit (33,45) des Sensorsystems (18,24) eine TCP/lP-Schnittstelle verwendet wird.
7. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , dass das Verfahren zur Montage einer Fahrzeugtür (3) an einer Fahrzeugkarosserie (1) verwendet wird.
8. Vorrichtung zur Montage einer Klappe (3) auf einem Werkstück (1) , insbesondere zur Montage einer Fahrzeugtür an einer Fahrzeugkarosserie
- mit einem mit Hilfe eines Roboters (7) geführten GreifWerkzeug (5) ,
- mit einem Sensorsystem (18) , welches fest mit dem Greifwerkzeug (5) verbunden ist und mindestens einen Sensor (19) umfasst, — mit einem Steuersystem (10) zur Steuerung des Roboters
(7) und des Greif erkzeugs (5) ,
— und mit einer Auswerteeinheit (33) zur Auswertung der Messwerte des Sensorsystems (18) d a d u r c h g e k e n n z e i c h n e t , dass mindestens einer der Sensoren (19) ein metrisch un- kalibrierter Sensor ist.
9. Vorrichtung nach Anspruch 8 , d a d u r c h g e k e n n z e i c h n e t , dass der mindestens eine Sensor (19) ein optischer Spaltmesssensor ist.
EP03773621A 2002-09-13 2003-09-06 Verfahren und vorrichtung zur lagegenauen montage einer klappe an einem bauteil Withdrawn EP1537010A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10242710 2002-09-13
DE10242710A DE10242710A1 (de) 2002-09-13 2002-09-13 Verfahren zum Herstellen eines Verbindungsbereiches auf einem Werkstück
PCT/EP2003/009921 WO2004026672A2 (de) 2002-09-13 2003-09-06 Verfahren und vorrichtung zur lagegenauen montage einer klappe an einem bauteil

Publications (1)

Publication Number Publication Date
EP1537010A2 true EP1537010A2 (de) 2005-06-08

Family

ID=31983926

Family Applications (5)

Application Number Title Priority Date Filing Date
EP03797278.3A Revoked EP1539562B1 (de) 2002-09-13 2003-09-06 Verfahren und vorrichtung zur lagegenauen montage eines anbauteils an eine fahrzeugkarosserie
EP03750493.3A Revoked EP1537008B1 (de) 2002-09-13 2003-09-06 Verfahren und vorrichtung zum herstellen eines verbindungsbereichs auf einem werkstück
EP03797275A Withdrawn EP1537011A2 (de) 2002-09-13 2003-09-06 Verfahren und vorrichtung zur bearbeitung eines bewegten werkstücks, insbesondere einer fahrzeugkarosserie
EP03753391A Withdrawn EP1537009A2 (de) 2002-09-13 2003-09-06 Verfahren und vorrichtung zur montage mehrerer anbauteile an ein werkst ck
EP03773621A Withdrawn EP1537010A2 (de) 2002-09-13 2003-09-06 Verfahren und vorrichtung zur lagegenauen montage einer klappe an einem bauteil

Family Applications Before (4)

Application Number Title Priority Date Filing Date
EP03797278.3A Revoked EP1539562B1 (de) 2002-09-13 2003-09-06 Verfahren und vorrichtung zur lagegenauen montage eines anbauteils an eine fahrzeugkarosserie
EP03750493.3A Revoked EP1537008B1 (de) 2002-09-13 2003-09-06 Verfahren und vorrichtung zum herstellen eines verbindungsbereichs auf einem werkstück
EP03797275A Withdrawn EP1537011A2 (de) 2002-09-13 2003-09-06 Verfahren und vorrichtung zur bearbeitung eines bewegten werkstücks, insbesondere einer fahrzeugkarosserie
EP03753391A Withdrawn EP1537009A2 (de) 2002-09-13 2003-09-06 Verfahren und vorrichtung zur montage mehrerer anbauteile an ein werkst ck

Country Status (5)

Country Link
US (5) US20060107508A1 (de)
EP (5) EP1539562B1 (de)
JP (5) JP2005537990A (de)
DE (1) DE10242710A1 (de)
WO (6) WO2004026537A2 (de)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10242710A1 (de) * 2002-09-13 2004-04-08 Daimlerchrysler Ag Verfahren zum Herstellen eines Verbindungsbereiches auf einem Werkstück
DE10348500B4 (de) * 2003-10-18 2009-07-30 Inos Automationssoftware Gmbh Verfahren und Vorrichtung zum Erfassen eines Spaltmaßes und/oder eines Versatzes zwischen einer Klappe eines Fahrzeugs und der übrigen Fahrzeugkarosserie
US7194326B2 (en) * 2004-02-06 2007-03-20 The Boeing Company Methods and systems for large-scale airframe assembly
DE102004021388A1 (de) * 2004-04-30 2005-12-01 Daimlerchrysler Ag Positionier- und Bearbeitungssystem und geeignetes Verfahren zum Positionieren und Bearbeiten mindestens eines Bauteils
DE102004033485A1 (de) * 2004-07-10 2006-01-26 Daimlerchrysler Ag Industrierobotersystem mit einer Messeinrichtung
DE102005051533B4 (de) * 2005-02-11 2015-10-22 Vmt Vision Machine Technic Bildverarbeitungssysteme Gmbh Verfahren zur Verbesserung der Positioniergenauigkeit eines Manipulators bezüglich eines Serienwerkstücks
DE102005014354B4 (de) * 2005-03-24 2008-04-03 Thyssenkrupp Drauz Nothelfer Gmbh Verfahren zur Beeinflussung der Bauteillage bei der Herstellung von zu fügenden/partiell umzuformenden Kraftfahrzeugkarosseriebauteilen
JP2006293445A (ja) * 2005-04-06 2006-10-26 Honda Motor Co Ltd 生産管理システム
FR2888522A1 (fr) * 2005-07-12 2007-01-19 Renault Sas Dispositif de prehension de tole comportant un dispositif de controle de la presence d'ecrou
DE102005048278B4 (de) * 2005-10-08 2013-11-21 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Automatische Schraubeinrichtung für ein Chassis eines Kraftfahrzeugs
DE102006006246A1 (de) * 2006-02-10 2007-08-16 Battenberg, Günther Verfahren und Vorrichtung zur vollautomatischen Endkontrolle von Bauteilen und/oder deren Funktionseinheiten
DE102006011341B4 (de) * 2006-03-09 2011-08-18 Deutsches Zentrum für Luft- und Raumfahrt e.V., 51147 Anordnung zur Montage eines Anbauteiles an ein bewegtes Basisbauteil
DE102006019917B4 (de) * 2006-04-28 2013-10-10 Airbus Operations Gmbh Verfahren und Vorrichtung zur Sicherung der Maßhaltigkeit von mehrsegmentigen Konstruktionsstrukturen beim Zusammenbau
DE102006041886A1 (de) * 2006-09-06 2008-03-27 Abb Patent Gmbh Verfahren zur Positionierung von Werkstücken und Positioniersystem dazu
DE102006049956A1 (de) * 2006-10-19 2008-04-24 Abb Ag System und Verfahren zur automatisierten Ver- und/oder Bearbeitung von Werkstücken
SE530573C2 (sv) * 2006-11-16 2008-07-08 Hexagon Metrology Ab Förfarande och anordning för kompensering av geometriska fel i bearbetningsmaskiner
EP1967333A1 (de) * 2007-03-09 2008-09-10 Abb Research Ltd. Erkennung von Statusänderungen in einem industriellen Robotersystem
DE202007004183U1 (de) * 2007-03-16 2008-08-07 Kuka Systems Gmbh Rahmungseinrichtung
WO2008154237A1 (en) * 2007-06-07 2008-12-18 Utica Enterprises, Inc. Vehicle door mounting
DE102007028581A1 (de) * 2007-06-19 2008-12-24 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und Verfahren zum Fügen von Bauteilen mittels Klebens
ES2362312T3 (es) * 2007-10-01 2011-07-01 Abb Technology Ab Método para controlar una pluralidad de ejes en un sistema de robot industrial y sistema de robot industrial.
DE102007057065B4 (de) 2007-11-27 2020-07-23 Reiner Götz Verfahren zum Vermitteln eines Cockpitmoduls in einem Kraftwagen
DE102008005286A1 (de) 2007-12-18 2009-06-25 Daimler Ag Verfahren zum Verbinden von Bauteilen eines Kraftwagens
JP2009173091A (ja) * 2008-01-22 2009-08-06 Kanto Auto Works Ltd 蓋物建付最良値算出方法および蓋物建付最良値算出装置
DE102008007382A1 (de) * 2008-02-01 2009-08-13 Kuka Innotec Gmbh Verfahren und Vorrichtung zum Positionieren eines Werkzeugs an einem Werkstück einer Scheibe in ein Kraftfahrzeug
US8157155B2 (en) 2008-04-03 2012-04-17 Caterpillar Inc. Automated assembly and welding of structures
US8150165B2 (en) * 2008-04-11 2012-04-03 Recognition Robotics, Inc. System and method for visual recognition
US9576217B2 (en) 2008-04-11 2017-02-21 Recognition Robotics System and method for visual recognition
DE102008021624A1 (de) * 2008-04-30 2008-12-18 Daimler Ag Verfahren zum Einrichten eines Messpunktes für einen Sensor
JP5155754B2 (ja) * 2008-07-09 2013-03-06 トヨタ自動車株式会社 ウィンドウガラスの取付装置及び取付方法
US8923602B2 (en) * 2008-07-22 2014-12-30 Comau, Inc. Automated guidance and recognition system and method of the same
US8239063B2 (en) * 2008-07-29 2012-08-07 Fanuc Robotics America, Inc. Servo motor monitoring and hood/deck exchange to enhance the interior coating process
DE102008036501B4 (de) * 2008-08-05 2015-01-15 Dürr Somac GmbH Verfahren zum Betrieb eines Robotergreifers und Robotergreifer
CA2735820A1 (en) * 2008-09-03 2010-03-11 Honda Motor Co., Ltd. Workpiece mounting system, workpiece mounting method, sunroof unit holding device, and sunroof unit holding method
JP2010173018A (ja) * 2009-01-29 2010-08-12 Honda Motor Co Ltd 部品取付けロボット及び部品取付け装置
US8144193B2 (en) * 2009-02-09 2012-03-27 Recognition Robotics, Inc. Work piece tracking system and method
JP4815505B2 (ja) * 2009-04-08 2011-11-16 関東自動車工業株式会社 自動車ルーフ組付装置
DE102009017972B3 (de) * 2009-04-21 2010-11-04 Benteler Maschinenbau Gmbh Vorrichtung zum Lochen von Bauteilen
DE102009020312A1 (de) * 2009-05-05 2010-11-11 Dürr Somac GmbH Verfahren und Vorrichtung zur Befüllung von Baugruppen mit Betriebsstoffen an Fertigungslinien der Automobilindustrie
JP5549129B2 (ja) 2009-07-06 2014-07-16 セイコーエプソン株式会社 位置制御方法、ロボット
DE102009035177A1 (de) 2009-07-29 2010-02-18 Daimler Ag Montageverfahren zur passgenauen Anbindung einer Heckleuchte an einem Kraftfahrzeug und Montagevorrichtung
DE102009040734A1 (de) 2009-09-09 2010-04-22 Daimler Ag Anbindungseinrichtung und Montageverfahren zur passgenauen Anbindung einer Heckleuchte an einem Kraftfahrzeug
EP2420359A4 (de) * 2010-02-03 2013-04-17 Panasonic Corp Steuerungsverfahren für ein robotersystem
DE102010016215A1 (de) * 2010-03-30 2011-10-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Messen der Geometrie und/oder Struktur eines Bauteils
US8842191B2 (en) 2010-06-03 2014-09-23 Recognition Robotics, Inc. System and method for visual recognition
DE102010024190A1 (de) 2010-06-17 2011-02-10 Daimler Ag Verfahren zur Montage eines Anbauteils an einer Karosserie eines Kraftwagens
DE102010032084A1 (de) 2010-07-23 2011-03-17 Daimler Ag Tür für einen Kraftwagen und Verfahren zu deren lagerichtigen Montage
DE202010014359U1 (de) * 2010-10-15 2012-01-17 Hermann Eiblmeier Abtastvorrichtung
EP2463182B1 (de) * 2010-12-13 2012-11-28 C.R.F. Società Consortile per Azioni Selbstadaptivverfahren zur Montage von Seitentüren an Fahrzeugkarosserien
DE102010055957A1 (de) 2010-12-23 2012-06-28 Daimler Ag Verfahren zum Herstellen von Kraftwagen und Kraftwagen
DE102011011776A1 (de) 2011-02-18 2012-01-26 Daimler Ag Verfahren zur Montage eines Anbauteils an einem Aufbau eines Kraftwagens sowie Verfahren zum Verbinden eines ersten Steckerteils mit einem dazu korrespondierenden zweiten Steckerteil
DE102011014911A1 (de) 2011-03-24 2012-01-05 Daimler Ag Verfahren zur automatisierten Montage eines Befestigungselementes an einem Fahrzeugkarosseriebereich sowie Montagewerkzeug
US8534630B2 (en) 2011-12-07 2013-09-17 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle hood opening and closing devices and methods for opening vehicle hoods
DE102012012638A1 (de) 2012-06-26 2014-01-02 Daimler Ag Verfahren zum Verbinden von zumindest zwei Rohbauelementen
DE102012012630A1 (de) 2012-06-26 2014-01-02 Daimler Ag Verfahren zu einer Montage eines Anbauelements an einem Karosseriebauteil
JP5832388B2 (ja) * 2012-07-09 2015-12-16 本田技研工業株式会社 作業方法及び作業装置
CN103158036A (zh) * 2012-11-20 2013-06-19 苏州工业园区高登威科技有限公司 防漏装装置
DE102012023416A1 (de) 2012-11-29 2013-08-01 Daimler Ag Verfahren zum Verbinden eines Anbauelements mit einem korrespondierenden Bauelement eines Kraftwagens
DE102012023415A1 (de) 2012-11-29 2013-08-01 Daimler Ag Verfahren zum Verbinden eines Anbauelements mit einem Bauelement eines Kraftwagens
DE102012112025B4 (de) * 2012-12-10 2016-05-12 Carl Zeiss Ag Verfahren und Vorrichtungen zur Positionsbestimmung einer Kinematik
DE102013200682A1 (de) 2013-01-17 2014-07-17 Adolf Würth GmbH & Co. KG Integraler Spenglerschraubendübel und zugehörige Handlochstanze mit Stanzabstandseinstellfunktion
KR101427970B1 (ko) * 2013-03-26 2014-08-07 현대자동차 주식회사 차체의 갭/단차 측정을 위한 도어 규제장치 및 그 제어 방법
DE102013005538A1 (de) 2013-03-30 2014-03-27 Daimler Ag Verfahren zur Montage einer Klappe an einem Werkstück
KR101427975B1 (ko) 2013-07-11 2014-08-07 현대자동차주식회사 다 차종 공용 도어 탈거장치
KR101490921B1 (ko) 2013-07-11 2015-02-06 현대자동차 주식회사 자동차 부품의 품질 검사 장치 및 그 방법
JP6049579B2 (ja) * 2013-09-25 2016-12-21 本田技研工業株式会社 接合装置及びそれを用いる接合方法
DE102014004441A1 (de) 2014-03-27 2014-09-18 Daimler Ag Verfahren zum Montieren eines ersten Bauelements an einem zweiten Bauelement eines Kraftwagens
DE102014007883A1 (de) 2014-05-24 2015-11-26 Daimler Ag Verfahren und Hilfseinrichtung zum Ausrichten eines Flügelelements relativ zu einer Karosserie eines Personenkraftwagens
KR101610524B1 (ko) 2014-10-20 2016-04-07 현대자동차주식회사 도어 어셈블리 조립 검사용 통합 지그 및 그 작동방법
SI3012695T1 (en) 2014-10-23 2018-01-31 Comau S.P.A. System for monitoring and control of an industrial plant
DE102014221877A1 (de) 2014-10-28 2016-04-28 Bayerische Motoren Werke Aktiengesellschaft System und Verfahren zum lagegenauen Platzieren eines zu bearbeitenden Objekts an einer Fertigungsvorrichtung
KR101655586B1 (ko) 2014-11-28 2016-09-07 현대자동차주식회사 검사 그리퍼 및 이를 이용한 검사 방법
WO2016104097A1 (ja) * 2014-12-26 2016-06-30 本田技研工業株式会社 自動車車体の組立方法及び装置
DE102015204599B3 (de) * 2015-03-13 2016-08-11 Kuka Roboter Gmbh Verfahren zur Steuerung eines Manipulators zur Ausführung eines Arbeitsprozesses
DE102015005511B4 (de) 2015-04-30 2020-09-24 Audi Ag Montageanlage
US10272851B2 (en) * 2015-10-08 2019-04-30 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle emblem alignment and installation tools and methods of use
US10275565B2 (en) * 2015-11-06 2019-04-30 The Boeing Company Advanced automated process for the wing-to-body join of an aircraft with predictive surface scanning
KR101734241B1 (ko) * 2015-12-10 2017-05-11 현대자동차 주식회사 트렁크 리드 힌지 지능형 로더유닛
US20170210489A1 (en) * 2016-01-22 2017-07-27 The Boeing Company Methods and systems for wing-to-body joining
JP6430986B2 (ja) 2016-03-25 2018-11-28 ファナック株式会社 ロボットを用いた位置決め装置
JP6434943B2 (ja) * 2016-09-20 2018-12-05 本田技研工業株式会社 組立装置
DE102017004199B4 (de) 2017-04-29 2018-11-15 Audi Ag Roboteranlage
TWI642385B (zh) * 2017-08-31 2018-12-01 川湖科技股份有限公司 滑軌總成及其滑軌機構
JP7077742B2 (ja) * 2018-04-17 2022-05-31 トヨタ自動車株式会社 搬送方法
IT201800005091A1 (it) 2018-05-04 2019-11-04 "Procedimento per monitorare lo stato di funzionamento di una stazione di lavorazione, relativo sistema di monitoraggio e prodotto informatico"
WO2020056353A1 (en) 2018-09-13 2020-03-19 The Charles Stark Draper Laboratory, Inc. Food-safe, washable, thermally-conductive robot cover
CN109186457B (zh) * 2018-09-14 2021-02-12 天津玛特检测设备有限公司 一种双目的零件识别方法和装置及使用该装置的生产线
US10712730B2 (en) 2018-10-04 2020-07-14 The Boeing Company Methods of synchronizing manufacturing of a shimless assembly
US11449021B2 (en) * 2018-12-17 2022-09-20 Divergent Technologies, Inc. Systems and methods for high accuracy fixtureless assembly
US11911914B2 (en) 2019-01-28 2024-02-27 Cognex Corporation System and method for automatic hand-eye calibration of vision system for robot motion
JP7176438B2 (ja) * 2019-02-22 2022-11-22 マツダ株式会社 ドア取付方法、およびそれに用いられるドア移動装置ならびに治具
DE102019127867A1 (de) * 2019-10-16 2021-04-22 HELLA GmbH & Co. KGaA Verfahren zum Rüsten einer Fügevorrichtung zum Fügen einer Lichtscheibe mit einem Gehäuse einer Kraftfahrzeugbeleuchtungseinrichtung
KR20220006416A (ko) * 2020-07-08 2022-01-17 현대모비스 주식회사 서라운드뷰 모니터링 시스템 및 방법
CN112191734B (zh) * 2020-08-26 2022-09-13 上海工众机械技术有限公司 一种高柔性x型机器人冲孔枪
KR102435467B1 (ko) * 2020-10-05 2022-08-24 주식회사 오토메스텔스타 비전센서를 이용한 차량 차체의 조립홀 가공 방법
US11738943B2 (en) * 2021-09-07 2023-08-29 Lasso Loop Recycling LLC. Processed used-material collection and transfer system and method
US20240091947A1 (en) 2022-09-21 2024-03-21 GM Global Technology Operations LLC Collaborative dual-robot hinge installation system including a single multi-purpose vision system
DE102022128155A1 (de) 2022-10-25 2024-04-25 Bayerische Motoren Werke Aktiengesellschaft Bearbeitungsstation zum Bearbeiten einer Fahrzeugkomponente sowie Verfahren zum Betreiben einer derartigen Bearbeitungsstation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930087A1 (de) 1999-06-30 2001-01-11 Charalambos Tassakos Verfahren und Vorrichtung zur Regelung der Vorhalteposition eines Manipulators eines Handhabungsgeräts

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283918A (en) * 1963-12-02 1966-11-08 George C Devol Coordinated conveyor and programmed apparatus
US6317953B1 (en) * 1981-05-11 2001-11-20 Lmi-Diffracto Vision target based assembly
US4666303A (en) * 1983-07-11 1987-05-19 Diffracto Ltd. Electro-optical gap and flushness sensors
US4559184A (en) * 1983-11-14 1985-12-17 Stauffer Chemical Company Phosphate ester synthesis without phosphorylation catalyst
JPS60252077A (ja) * 1984-05-26 1985-12-12 Mazda Motor Corp 車体組立システム
GB2168934B (en) * 1984-12-19 1988-07-27 Honda Motor Co Ltd Method and apparatus for mounting parts to both sides of a main body
JPS6212483A (ja) * 1985-05-30 1987-01-21 Nachi Fujikoshi Corp 自動車窓ガラスの自動取付装置
JPS62106503A (ja) * 1985-11-05 1987-05-18 Nissan Motor Co Ltd ロボツトの組付動作補正方法
US4667805A (en) * 1985-11-06 1987-05-26 Westinghouse Electric Corp. Robotic part presentation system
US4670974A (en) 1985-11-06 1987-06-09 Westinghouse Electric Corp. Windshield insertion system for a vehicle on a moving conveyor apparatus
US4852237A (en) * 1985-11-09 1989-08-01 Kuka Method and apparatus for mounting windshields on vehicles
JPH0818579B2 (ja) * 1986-12-04 1996-02-28 マツダ株式会社 ウインドガラス取付方法
US4909869A (en) * 1986-12-04 1990-03-20 Mazda Motor Corporation Method of mounting a window glass on a vehicle body
US4876656A (en) * 1987-08-28 1989-10-24 Motorola Inc. Circuit location sensor for component placement apparatus
US5579444A (en) * 1987-08-28 1996-11-26 Axiom Bildverarbeitungssysteme Gmbh Adaptive vision-based controller
JP2512766B2 (ja) * 1987-09-30 1996-07-03 マツダ株式会社 自動車ドア開閉装置
US4945493A (en) * 1988-09-26 1990-07-31 Ford Motor Company Method and system for correcting a robot path
JPH02110489U (de) * 1989-02-17 1990-09-04
US5228177A (en) * 1990-03-03 1993-07-20 Herzog Maschinenfabrik Gmbh & Co. Sample preparation system for iron and steel samples
IT1240540B (it) * 1990-08-08 1993-12-17 Comau Spa Procedimento per l'assemblaggio di portiere su scocche di autoveicoli ed apparecchiatura per l'attuazione di tale procedimento.
JPH0490125U (de) * 1990-12-18 1992-08-06
JPH05147457A (ja) * 1991-11-29 1993-06-15 Nissan Motor Co Ltd インストルメントパネルの取付方法
CA2089017C (en) * 1992-02-13 1999-01-19 Yasurou Yamanaka Method of mounting wheel to vehicle
US5430643A (en) * 1992-03-11 1995-07-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Configuration control of seven degree of freedom arms
US5737500A (en) * 1992-03-11 1998-04-07 California Institute Of Technology Mobile dexterous siren degree of freedom robot arm with real-time control system
JP2858186B2 (ja) * 1992-04-23 1999-02-17 本田技研工業株式会社 自動車の車体組立装置
DE4214863A1 (de) * 1992-05-05 1993-11-11 Kuka Schweissanlagen & Roboter Verfahren und Vorrichtung zur Montage von Türen in Fahrzeugkarosserien
JP3308095B2 (ja) * 1993-04-15 2002-07-29 マツダ株式会社 車両シ−トの車両への搭載方法および車両シ−ト把持用ロボットハンド
JPH07314359A (ja) * 1994-05-30 1995-12-05 Nippon Telegr & Teleph Corp <Ntt> マニピュレータ用追従装置およびその制御方法
JP3396342B2 (ja) * 1995-07-17 2003-04-14 三菱電機株式会社 スプライン補間機能を有する数値制御装置
GB2312876B (en) * 1996-04-24 2000-12-06 Rover Group A method of assembling a motor vehicle
DE19902635A1 (de) * 1999-01-23 2000-07-27 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zum Montieren einer Fahrzeugtür
US6278906B1 (en) * 1999-01-29 2001-08-21 Georgia Tech Research Corporation Uncalibrated dynamic mechanical system controller
DE29918486U1 (de) * 1999-04-27 1999-12-16 Daimler Chrysler Ag Vorrichtung zur Positionierung und Herstellung von Schraubverbindungsstellen an Blechpreßteilen einer Fahrzeugkarosserie
ES2193087T3 (es) * 1999-06-26 2003-11-01 Kuka Schweissanlagen Gmbh Procedimiento y dispositivo para calibrar estaciones de medicion con robots, manipuladores y dispositivos opticos de medicion asociados.
JP2001088074A (ja) * 1999-09-24 2001-04-03 Yaskawa Electric Corp ロボットの制御装置
DE10007837A1 (de) * 2000-02-21 2001-08-23 Nelson Bolzenschweis Technik G Verfahren zum Positionieren eines Schweißbolzens und Bolzenschweißkopf
JP4265088B2 (ja) * 2000-07-10 2009-05-20 株式会社豊田中央研究所 ロボット装置及びその制御方法
US6876697B2 (en) * 2000-12-12 2005-04-05 Sierra Wireless, Inc. Apparatus and method for power ramp up of wireless modem transmitter
DE10143379A1 (de) * 2001-09-05 2003-04-03 Daimler Chrysler Ag Montagesystem zum Einbau eines Dachmoduls in eine Fahrzeugkarosserie
JP3577028B2 (ja) * 2001-11-07 2004-10-13 川崎重工業株式会社 ロボットの協調制御システム
ATE531488T1 (de) 2002-03-04 2011-11-15 Vmt Vision Machine Technic Bildverarbeitungssysteme Gmbh Verfahren zur bestimmung der lage eines objektes und eines werkstücks im raum zur automatischen montage des werkstücks am objekt
US6876897B2 (en) * 2002-08-27 2005-04-05 Pilkington North America, Inc. Positioning device and method for operation
DE10242710A1 (de) * 2002-09-13 2004-04-08 Daimlerchrysler Ag Verfahren zum Herstellen eines Verbindungsbereiches auf einem Werkstück

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930087A1 (de) 1999-06-30 2001-01-11 Charalambos Tassakos Verfahren und Vorrichtung zur Regelung der Vorhalteposition eines Manipulators eines Handhabungsgeräts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2004026672A3

Also Published As

Publication number Publication date
DE10242710A1 (de) 2004-04-08
JP2006514588A (ja) 2006-05-11
US20060107507A1 (en) 2006-05-25
WO2004026672A3 (de) 2004-09-23
WO2004026673A2 (de) 2004-04-01
WO2004026670A3 (de) 2004-08-26
US20060107508A1 (en) 2006-05-25
US20060015211A1 (en) 2006-01-19
EP1537008A2 (de) 2005-06-08
EP1539562B1 (de) 2015-06-03
WO2004026537A3 (de) 2004-06-03
WO2004026669A3 (de) 2004-12-16
US20070017081A1 (en) 2007-01-25
JP2005537990A (ja) 2005-12-15
JP2005537989A (ja) 2005-12-15
EP1539562A2 (de) 2005-06-15
WO2004026672A2 (de) 2004-04-01
WO2004026537A2 (de) 2004-04-01
EP1537009A2 (de) 2005-06-08
WO2004026671A3 (de) 2004-08-26
WO2004026669A2 (de) 2004-04-01
EP1537008B1 (de) 2015-05-06
WO2004026670A2 (de) 2004-04-01
WO2004026673A3 (de) 2004-07-22
WO2004026671A2 (de) 2004-04-01
US20060137164A1 (en) 2006-06-29
JP2005537988A (ja) 2005-12-15
JP2005537939A (ja) 2005-12-15
EP1537011A2 (de) 2005-06-08

Similar Documents

Publication Publication Date Title
EP1537010A2 (de) Verfahren und vorrichtung zur lagegenauen montage einer klappe an einem bauteil
EP1602456B1 (de) Verfahren und Vorrichtung zum Steuern von Handhabungsgeräten
DE3632477C2 (de)
DE102005030944B4 (de) Verfahren und Vorrichtung zum Fügen von Fügestrukturen, insbesondere in der Montage von Fahrzeugbauteilen
DE60319787T2 (de) Montageverfahren und -vorrichtung
DE102019114070B4 (de) Verfahren zum Steuern eines Robotersystems zum Montieren von Komponenten
DE3143834C2 (de)
WO1993022186A1 (de) Verfahren und vorrichtung zur montage von türen in fahrzeugkarosserien
EP1971516B1 (de) Montageverfahren und montageanlage für türen an fahrzeugkarosserien
EP2297621B1 (de) Verfahren und system zur applikation eines beschichtungsmaterials mit einem programmierbaren roboter
WO2005108019A2 (de) Positionier-und bearbeitungssystem und geeignetes verfahren zum positionieren und bearbeiten mindestens eines bauteils
EP0763406B1 (de) Verfahren zum Bestimmen der Lage eines Körpers im Raum
DE102015119589B4 (de) Vorrichtung und Verfahren zum robotergestützen Rollfalzen
WO2009095267A1 (de) Verfahren und vorrichtung zum positionieren eines werkzeugs an einem werkstück einer scheibe in ein kraftfahrzeug
DE102013005538A1 (de) Verfahren zur Montage einer Klappe an einem Werkstück
DE102010024190A1 (de) Verfahren zur Montage eines Anbauteils an einer Karosserie eines Kraftwagens
DE202017102466U1 (de) Vorrichtung zur Erkennung der genauen Position und Lage eines Bauteils in einer Bearbeitungsstation
WO2020193801A1 (de) Montageanordnung light
DE102004032392A1 (de) Verfahren und Vorrichtung zum Umlegen von Bördelkanten eines Werkstücks
DE102018132639A1 (de) Verfahren zum Messen eines in einer Spanneinrichtung angeordneten Werkstücks
DE10026192A1 (de) Verfahren zum Einbau von Türen in ein Kraftfahrzeug
WO2004026539A2 (de) Verfahren zur vermessung der lage von robotergeführten werkstücken und messeinrichtung hierzu

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050311

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KRAUS, HELMUT

Inventor name: PHILIPP, ENRICO

Inventor name: RIESTENPATT GENANNT RICHTER, MICHAEL

Inventor name: SCHULER, BERND

Inventor name: BROSE, VOLKER

17Q First examination report despatched

Effective date: 20060324

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140401