EP1532094A1 - Verfahren zur hydroformylierung von olefinisch ungesättigten verbindungen, insbesondere olefinen in gegenwart cyclischer kohlensäureester - Google Patents
Verfahren zur hydroformylierung von olefinisch ungesättigten verbindungen, insbesondere olefinen in gegenwart cyclischer kohlensäureesterInfo
- Publication number
- EP1532094A1 EP1532094A1 EP03790872A EP03790872A EP1532094A1 EP 1532094 A1 EP1532094 A1 EP 1532094A1 EP 03790872 A EP03790872 A EP 03790872A EP 03790872 A EP03790872 A EP 03790872A EP 1532094 A1 EP1532094 A1 EP 1532094A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hydroformylation
- reaction
- carbonic acid
- olefinically unsaturated
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D319/00—Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D319/04—1,3-Dioxanes; Hydrogenated 1,3-dioxanes
- C07D319/06—1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/49—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
- C07C45/50—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/96—Esters of carbonic or haloformic acids
Definitions
- the present invention relates to a process for the preparation of aldehydes by hydroformylation catalyzed by metals of the 8th to 10th group of the Periodic Table of the Elements in the presence of cyclic carbonic acid esters.
- hydroformylation The reactions between olefin compounds, carbon monoxide and hydrogen in the presence of a catalyst to form a carbon atom-rich aldehydes are known as hydroformylation (oxidation).
- hydroformylation with rhodium compounds generally offers the advantage of higher selectivity and is therefore usually more economical.
- complexes are mostly used which consist of rhodium and preferably trivalent phosphorus compounds as ligands.
- Hydroformylations are often carried out in the presence of solvents in order to be able to simply recycle the catalyst after the reaction product has been separated off.
- the high boiler mixtures which are formed as a by-product of the hydroformylation are used as solvents. Corresponding methods are described for example in DE 2062 703, DE 2 715 685, DE 2 802 922 or EP 017183.
- inert organic liquids DE 3 126 265
- reaction products aldehydes, alcohols, aliphatic and aromatic hydrocarbons
- Ester, ether and water can be used as solvents.
- GB 1 197 902 describes saturated hydrocarbons, aromatics, alcohols and n-paraffins used.
- Polar substances are understood to mean substances from the following classes of compounds: nitriles, cyclic acetals, alcohols, pyrrolidones, lactones, formamides, sulfoxides and water.
- carbonic acid esters as cobalt-catalyzed hydroformylation reactions as a polar additive
- the carbonic acid ester is used not as a solvent but as a promoter in the presence of organophosphine complexes.
- the carbonic acid esters are used in a molar ratio of 1: 2 to the cobalt compound.
- the olefin is used in a more than 100-fold excess over the catalyst metal and the carbonic acid ester.
- non-polar solvents aliphatic, alicyclic and aromatic hydrocarbons, ethers, amines, carboxylic acid esters, ketones, silanes, silicones and carbon dioxide.
- US 5 648 554 discloses selective extraction of high boilers and selective extraction the catalyst complex with polar solvents such as water, ketones, alcohols, nitriles, amides, diols and carboxylic acids.
- US 5 138 101 describes the extraction of the reaction product with alcohol-water mixtures.
- aldehydes can react with conventional phosphite ligands.
- the addition of water and / or carboxylic acid can lead to hydrolytic decomposition in the case of phosphite, phosphonite and phosphinite ligands.
- Amides can displace ligands from the metal center due to their complex formation properties.
- Alkadienes are known as catalyst poisons (P.W.N.M. van Leeuven in P.W.N.M. van Leeuven, C. Claver, "Rhodium Catalyzed Hydroformylation", Klüver Academic Publishers, Dordrecht, Boston, London, 2000).
- the known hydroformylation processes can be improved with regard to the selectivity to linear aldehydes, i.e. the use of an additional solvent should, in addition to an improved workup, ideally also improve the selectivity.
- JP 10-226662 describes a process for the hydroformylation of olefinic compounds in which a rhodium catalyst with a sodium salt of sulfonated triphenylphosphines is used as the cocatalyst, ie a modified catalyst.
- the reaction is carried out in the presence of a polar solvent and a carboxylic acid.
- a polar solvent z.
- B dimethyl sulfoxide, sulfolane, N-methylpyrrolidone, N, N-dimethylformamide, acetonitrile, butanediol, polyalkylene glycols, but also ethylene carbonate can be used.
- the polar solvent can be returned to the hydroformylation reaction together with the acid and the catalyst.
- This procedure is the first time an alkylene carbonate is used as a solvent.
- a carboxylic acid must also be used. Although this can be recycled, this additional compound may contaminate the desired target product.
- the contamination by the acid itself can take place; on the other hand, catalyzed by the acid, by-products can arise, e.g. B. by aldolization, which lead to undesirable impurities.
- the applicability of the process mentioned is also limited to the hydroformylation of the comparatively reactive terminal olefins. In the case of less reactive olefins, internal olefins and in particular highly internal branched olefins, the activity of the catalyst is far from sufficient for industrial use.
- the object of the present invention was therefore to provide a combination of solvent or solvent mixture and ligands for use in a hydroformylation reaction which does not have the disadvantages described.
- the present invention accordingly relates to a process for the hydroformylation of olefinically unsaturated compounds having 3 to 24 carbon atoms, in particular olefins, with catalysis by at least one metal from 8th to 10th Group of the Periodic Table of the Elements, the hydroformylation in the presence of at least 0.1 mol%, based on the Olefin, at least one cyclic carbonic acid ester of formula I.
- R 1 , R 2 , R 3 , R 4 in each case the same or different: H, substituted or unsubstituted, aliphatic, alicyclic, aromatic, aliphatic-alicyclic, aliphatic-aromatic, alicyclic-aromatic hydrocarbon radicals having 1 to 27 C atoms n: 0 - 5
- X Divalent substituted or unsubstituted, aliphatic, alicyclic, aromatic, aliphatic-alicyclic, aliphatic-aromatic
- Hydrocarbon radical having 1 to 27 carbon atoms and at least one ligand which has no sulfonic acid group or sulfonate group is carried out.
- ligands which have no sulfonic acid group or sulfonate group and which in particular are not sulfonated phosphines means that the use of carboxylic acids in the hydroformylation reaction mixture can be completely dispensed with.
- Preferred ligands are ligands which contain nitrogen, phosphorus, arsenic or antimony as donor atoms, and phosphorus-containing ligands are particularly preferred.
- the ligands can be monodentate or multidentate, with chiral ligands both the racemate and an enantiomer or diastereomer can be used.
- Phosphine, phosphine oxides, phosphites, phosphonites and phosphinites are to be mentioned in particular as phosphorus ligands.
- ligands in combination with carbonates can now also be used as solvents in the process according to the invention, which are hydrolyzed in the presence of acid and therefore have low long-term stability Show presence of acids.
- the substituents R 1 to R 4 and X can be identical or different and can be substituted by O, N, NH, N-alkyl or N-dialkyl radicals.
- these radicals can carry functional groups such as, for example, halogens (fluorine, chlorine, bromine, iodine), -OH, -OR, -C (O) alkyl, -CN or -C (O) O-alkyl.
- C, CH or CH 2 radicals in these radicals can be replaced by O, N, NH, N-alkyl or N-dialkyl radicals if they are at least three C atoms away from the O atom of the ester group.
- the alkyl groups can in turn contain 1 to 27 carbon atoms.
- ethylene carbonate, propylene carbonate, butylene carbonate or mixtures thereof such as, for example, a mixture (50: 50% by volume) of ethylene carbonate and propylene carbonate, as the cyclic carbonic acid ester.
- cyclic carbonic acid esters based on the olefin or olefinically unsaturated compound used, be used with at least 0.1 mol%, preferably in the following ranges: 0.1-10 6 mol%
- the hydroformylation reaction according to the invention is therefore carried out in the presence of at least 0.1 mol%, based on the olefin or the olefinically unsaturated compound, of at least one solvent which is immiscible with the cyclic carbonic acid ester I.
- Carbonic acid esters of formula I have a dielectric constant of over 30.
- the non-polar solvents used in the process according to the invention which are immiscible with the cyclic carbonic acid esters, have D k values of less than 20, preferably from 1.1 to 10, particularly preferably from 1.1 to 5.
- Substituted or unsubstituted hydrocarbons having 5 to 50 carbon atoms such as, for. B. the high-boiling by-products of the hydroformylation reaction, Texanol or the isomer mixtures which are obtained in the tetra- or pentamerization of propene or butene with subsequent hydrogenation, d. H. Tetrabutane, pentabutane, tetrapropane and / or pentapropane.
- olefins or olefinically unsaturated compounds having 3 to 24 carbon atoms in particular the olefin used as starting material for the hydroformylation or the olefinically unsaturated compound used, as the non-polar solvent.
- the non-polar solvents should be largely inert under the reaction conditions of the hydroformylation reaction.
- the reaction mixture in the hydroformylation reactor can be single or two-phase over the entire conversion range. However, it is also possible that the feed mixture is initially two-phase with a low conversion and becomes single-phase in the course of the reaction with higher conversions.
- the process according to the invention can be carried out using different catalytically active metals and optionally different ligands.
- the metals of the 8th to 10th group of the Periodic Table of the Elements such as rhodium, cobalt, platinum or ruthenium, are suitable as catalytically active metal.
- the process according to the invention is carried out in the presence of ligands such as phosphonites, phosphites, phosphine oxides, phosphines and / or phosphinites and Phosphinins or phosphinanes performed.
- ligands such as phosphonites, phosphites, phosphine oxides, phosphines and / or phosphinites and Phosphinins or phosphinanes performed.
- the choice of the added ligands of the metal is only limited in the process according to the invention to the extent that no sulfonic acid groups or ligands having sulfonate groups, in particular no sulfonated arylphosphines, are used.
- the choice of the ligands added depends in particular on the olefin or olefin mixture used or on the olefinically unsaturated compounds used and on the desired products.
- Preferred ligands are ligands which contain nitrogen, phosphorus, arsenic or antimony as donor atoms; phosphorus-containing ligands are particularly preferred.
- the ligands can be monodentate or multidentate, with chiral ligands both the racemate and an enantiomer or diastereomer can be used.
- Phosphine, phosphine oxides, phosphites, phosphonites and phosphinites are to be mentioned in particular as phosphorus ligands.
- phosphines are triphenylphosphine, tris (p-tolyl) phosphine, tris (m-tolyl) phosphine, tris (o-tolyl) phosphine, tris (p-methoxyphenyl) phosphine, tris (p-fluorophenyl) phosphine, tris (p- chlorophenyl) phosphine, tris (p-dimethylaminophenyl) phosphine, ethyldiphenylphosphine, propyldiphenylphosphine, t-butyldiphenylphosphine, n-butyldiphenylphosphine, n-hexyldiphenylphosphine, c-hexyldiphenylphosphine, dicyclohexylphenyl
- Tricyclohexylphosphine Tricyclopentylphosphine, triethylphosphine, tri- (l-naphthyl) phosphine, tri-2-furylphosphine, tribenzylphosphine, benzyldiphenylphosphine, tri-n-butylphosphine, tri-i-butylphosphine, tri-t-butylphosphine, tri-butylphosphine .
- Neomenthyldiphenylphosphine 1,2-bis (dicyclohexylphosphino) ethane
- phosphinins include a. 2,6-dimethyl-4-phenylphosphinine, 2,6-bis (2,4-dimethylphenyl) -4-phenylphosphinine and further ligands described in WO 00/55164.
- phosphinanes include a. 2,6-bis (2,4-dimethylphenyl) -l-octyl-4-phenylphosphinane, l-octyl-2,4,6-triphenylphosphinane and further ligands described in WO 02/00669.
- phosphites are trimethyl phosphite, triethyl phosphite, tri-n-propyl phosphite, tri-i-propyl phosphite, tri-n-butyl phosphite, tri-i-butyl phosphite, tri-t-butyl phosphite, tris (2-ethylhexyl) phosphite, triphenyl phosphite, tris ( 2,4-di-t-butylphenyl) phosphite, tris (2-t-butyl-4-methoxyphenyl) phosphite, tris (2-t-butyl-4-methylphenyl) phosphite, tris (p-cresyl) phosphite.
- Substituted triphenyl phosphites are preferably used, each with 1 or 2 isopropyl and / or tert-butyl groups on the phenyl rings, preferably in the ortho position to the phosphite ester group.
- Bisphosphite ligands which, inter alia, in EP 1 099 677, EP 1 099 678, WO 02/00670, JP 10279587, EP 472017, WO 01/21627, WO 97/40001, WO 97/40002, US
- Examples of phosphonites are methyldiethoxyphosphine, phenyldimethoxyphosphine, phenyldiphenoxyphosphine, 6-phenoxy-6H-dibenz [c, e] [1,2] oxaphosphorin and its derivatives, in which the hydrogen atoms are completely or partially replaced by alkyl, aryl or halogen atoms and ligands which are described in WO 98/43935, JP 09-268152 and DE 198 10 794 and in German patent applications DE 199 54721 and DE 199 54 510.
- the active catalyst complex for the hydroformylation reaction is formed from a salt or a compound of the metal (catalyst precursor), the ligand and synthesis gas; this advantageously takes place in situ during the hydroformylation.
- Typical catalyst precursors are, for example, octanoates, nonanoates or acetylacetonates.
- the molar ratio between metal and ligand is 1/1 to 1/1000, preferably between 1/1 and 1/50.
- the concentration of the metal in the reaction mixture is in the range from 1 ppm to 1000 ppm, preferably in the range between 5 ppm and 300 ppm.
- the starting materials for a hydroformylation according to the process of the invention are compounds which contain ethylenically (olefinically) unsaturated CC double bonds, olefins or mixtures of olefins, in particular monoolefins having 3 to 24, preferably 4 to 16, particularly preferably 3 to 12 carbon atoms with end - or internal CC double bonds, such as. B.
- olefins or olefin mixtures which are obtained by Fischer-Tropsch synthesis, and olefins which have been obtained by oligomerizing ethene, or olefins which are accessible via methathesis reactions.
- Preferred educts are C 4 -, C 8 -, C 9 -, C 12 - or C ⁇ 6 -olefin mixtures.
- the volume ratio of carbon monoxide to hydrogen in the synthesis gas is generally between 2: 1 and 1: 2, in particular in the volume ratio 1: 1.
- the synthesis gas is advantageous in excess, for example up to three times the stoichiometric Amount used.
- the hydroformylations are generally carried out at pressures from 1 to 350 bar, preferably at pressures from 15 to 270 bar.
- the pressure used depends on the structure of the olefins used, the catalyst used and the desired effect. For example, ⁇ -olefins can be converted to the corresponding aldehydes with rhodium catalysis at pressures below 64 bar with high space-time yields. In contrast, higher pressures are appropriate for olefins with internal double bonds, in particular for branched olefins.
- reaction temperatures of the process according to the invention are between 20 and 250 ° C, preferably between 60 ° C and 180 ° C, preferably between 90 ° C and 150 ° C.
- the separation of product and catalyst solution is preferably carried out by means of a phase separation using thermal separation processes.
- the reactor discharge consisting of possibly unreacted olefins or olefinically unsaturated compounds, reaction products, reaction by-products, at least one cyclic carbonic acid ester, optionally a non-polar solvent, the catalyst and, if appropriate, free ligand is fed into a phase separation apparatus, e.g. B. a dwell (settier), which can optionally be preceded by a heat exchanger for cooling the reactor discharge.
- a phase separation apparatus e.g. B. a dwell (settier), which can optionally be preceded by a heat exchanger for cooling the reactor discharge.
- the phase separation is carried out at temperatures from 0 ° C. to 130 ° C., but preferably between 10 ° C. and 60 ° C.
- the phase separation is carried out at pressures from 1 bar to 270 bar, but preferably at the same pressure that is selected in the hydroformylation step.
- a phase separator essentially contains unreacted olefins or olefinically unsaturated compounds, a catalyst complex and optionally free ligand and non-polar solvent lighter phase, which is fed back into the reactor, and a heavier phase, which mainly consists of at least one cyclic carbonic acid ester, reaction products and reaction by-products, and is worked up further.
- this is done by separation into aldehydes (alcohols), unreacted olefins or olefinically unsaturated compounds, residual solvents and by-products and can be done, for example, by distillation. Separated solvent is returned to the hydroformylation reactor.
- composition of these phases is determined by the type of ligand used, residual olefin or aldehyde content and the type and amount of solvent used. A different composition of the phases can therefore easily be observed.
- the method according to the invention can be carried out in several variants.
- reaction effluent from the hydroformylation reaction is separated into a fraction predominantly containing the catalyst and the cyclic carbonic acid ester and a fraction predominantly containing the hydroformylation products.
- This process variant is suitable when using a polar catalyst and an optional further non-polar solvent.
- the non-polar solvent can also be identical to the starting olefin or the olefinically unsaturated compounds used, so that either the hydroformylation reaction is not carried out until conversion is complete (for example only up to 90%, preferably 80%) or by addition of the olefin or the olefinically unsaturated compound during or after the hydroformylation reaction.
- FIG. 1 Variant A of the process is explained in more detail by FIG. 1: synthesis gas (1), olefins or olefinically unsaturated compounds (2) and catalyst solution (3), which appropriately contains the cyclic carbonic acid esters, are reacted in the hydroformylation reactor (4).
- the reactor discharge (5) can optionally be freed of excess synthesis gas (7) in a flash tank (6).
- the stream (8) thus obtained is preferably in a settier (9) a heavy phase (10), which contains most of the cyclic carbonic acid ester and the catalyst, and a light phase (11), which contain the hydroformylation products, unreacted olefin or olefinically unsaturated compound and possibly the non-polar solvent, Cut.
- reaction products (alcohol and aldehyde) (15) are separated off and fed to a further work-up or hydrogenation.
- the also separated fraction (16) contains z. B. residues of the cyclic carbonic acid ester, high-boiling by-products, reaction products or possibly the further added non-polar solvent.
- Fraction (16) can be returned to the hydroformylation reactor (4).
- a work-up is carried out beforehand in which undesired by-products are discharged and discarded.
- the catalyst separation can also be carried out as an extraction in which at least part of the fraction (16) is fed directly to the stream (8).
- the extraction can be single-stage or operated as a multi-stage process in countercurrent, countercurrent or crossflow.
- the reactor discharge of the hydroformylation reaction is separated into a fraction predominantly containing the catalyst and a nonpolar solvent and a fraction predominantly containing the hydroformylation products and the cyclic carbonic acid ester.
- Variate B is preferably used when adding a non-polar solvent or solvent mixture that is not miscible with the cyclic carbonic acid ester. This variant is particularly useful when either no further feed olefin or no further olefinically unsaturated compound is to be added or when the hydroformylation reaction is carried out to a high or complete conversion.
- a non-polar solvent By adding a non-polar solvent, variant B is particularly useful when using non-polar catalyst systems which, for. B. contain phosphite ligands, suitable. Process variant B is explained in more detail below by FIG.
- synthesis gas (1), olefin or olefinically unsaturated are in the hydroformylation reactor (4) Compound (s) (2), which advantageously already contains the non-polar solvent and the catalyst, in the presence of the cyclic carbonic acid ester (3).
- the reactor discharge (5) is optionally freed of excess syngas (7) in a separation tank (6) and fed to the separation tank (9) as a stream (8).
- a light phase (10) containing the catalyst, unreacted olefin or unreacted olefinically unsaturated compound and the nonpolar solvent is separated from a heavy phase (11) containing the reaction products and the cyclic carbonic acid ester.
- the fraction (10) is expediently returned to the hydroformylation reactor.
- Fraction (11) can optionally be freed of catalyst residues in a container (12) and is then fed to the distillation stage (14).
- the reaction products (15) are separated from the cyclic carbonic acid ester (16), which are returned to the hydroformylation reactor (4).
- the catalyst can also be separated off as an extraction by feeding at least part of the fraction (16) to the stream (8).
- the extraction can be single-stage or operated as a multi-stage process in countercurrent, countercurrent or crossflow.
- olefins or olefinically unsaturated compounds can be added before and after the hydroformylation reaction.
- the same olefins / olefin mixtures or olefinically unsaturated compounds are preferably used.
- process variant is particularly suitable when using a non-polar catalyst and when no additional non-polar solvent is to be used.
- Further variants are possible in process variant C: Either additional olefin or olefinically unsaturated compound can be fed in after the actual hydroformylation reaction, or the hydroformylation reaction can only be carried out up to a certain partial turnover (for example 50 to 70%).
- the phase separation gives a light phase (11) which contains the olefin or the olefinically unsaturated compound and the catalyst; this phase is returned to the hydroformylation reactor (4).
- the heavy phase (10) contains the reaction products and the cyclic carbonic acid ester and is subjected to a distillation (13) after an optional catalyst separation (12).
- the reaction products (14) are separated from the cyclic carbonic acid ester (15), which is returned to the hydroformylation reactor.
- the catalyst separation can also be carried out as a single-stage extraction or multi-stage in countercurrent, cocurrent or crossflow.
- the mentioned variants of the process according to the invention include the separation of the reactor discharge and optionally the hydroformylation products; this can be done for example by distillation.
- the use of other separation processes such.
- Various procedures can be used for the technical implementation of the separation.
- Separation via falling film, short-range or thin-film evaporators or combinations of these apparatuses is preferred.
- the advantage of such a combination can, for example, be the separation of synthesis gas still dissolved in a first step as well as part of the products and the starting olefms still present (for example in a falling film evaporator) and then in a second step (for example in a thin film evaporator) to carry out the final separation of the catalyst.
- the extractive separation is advantageously carried out continuously. It can be carried out as a single-stage process or can be operated as a multi-stage process in counterflow or crossflow.
- reaction products freed from catalyst, excess synthesis gas and most of the solvent are further separated into aldehydes (alcohols), olefins or olefinically unsaturated compounds, solvents and by-products. This can be done, for example, by distillation. Olefin or olefinically unsaturated compound and / or solvent separated from the reaction discharge or the hydroformylation products can be recycled into the hydroformylation reaction.
- reaction gas which has been freed from synthesis gas and catalyst and, if appropriate, from solvent can be hydrogenated before or after olefin removal (removal of the olefinically unsaturated compound) and then worked up by distillation onto pure alcohol.
- the fraction containing the catalyst is expediently returned to the hydroformylation reaction. This is of course independent of the composition of the fractions in which the catalyst is dissolved.
- the method according to the invention can be carried out in one or more stages. After a first hydroformylation reaction, it is possible to go through a second hydroformylation step which, under “more severe” operating conditions, also converts the difficultly hydroformylatable, internal olefins to the desired aldehydes.
- a separation of unreacted olefins and products is preferably carried out first and not reacted products are fed to a further hydroformylation stage, which in turn differentiates between the different process variants, in those process variants in which unreacted olefins, If catalyst and optionally also free ligand are present in different fractions after the separation of the reactor discharge, it is possible to use a completely different catalyst system (different metal and / or different ligands) in the second hydroformylation stage. If unreacted olefins, catalyst and possibly free ligand are not present in different fractions, this is of course not possible.
- cyclic carbonic acid esters are also conceivable for other metal-catalyzed reactions.
- Areas of application are e.g. B. cyanation, hydrocyanation, isomerization of olefins, hydration, Heck reaction, condensation reactions such as aldol condensation or hydration or esterification reactions.
- a 31-stirring autoclave was charged under nitrogen with 1070 g propylene carbonate, 0.22 g rhodium nonanoate and 3.4 g tris (2,4-di-tert-butylphenyl) phosphite.
- the rhodium concentration in the reaction mixture was 40 ppm and the molar ratio of phosphorus to rhodium was 10.
- syngas molar ratio of hydrogen to carbon monoxide 1: 1
- 280 g of 1-octene were introduced. It was hydroformylated at a reaction pressure of 20 bar and a temperature of 100 ° C with stirring.
- the hydroformylation was carried out at a temperature of 100 ° C. and a synthesis gas pressure of 20 bar. After the reaction had ended, the mixture was cooled to ambient temperature and the phases were separated. The hydrocarbon phase containing the active catalyst complex remained in the reactor. The propylene carbonate phase predominantly containing the aldehyde was discharged from the reactor and worked up to the crude aldehyde at 125 ° C. and 25 hPa on a thin-film evaporator. The propylene carbonate obtained as bottom product was used together with 140 g of olefin mixture and the catalyst solution remaining in the reactor in an oxidation according to the procedure described above. (The return is carried out a total of eight times, see table 1 experiments 3.1 to 3.8.)
- Example 4 (Comparative Experiment to Example 3) Analogous to Example 3, a further series of experiments was carried out with the following differences: Instead of propylene carbonate and n-decane, tetrabutane was used as the solvent, a mixture of C 6 alkanes, which by oligomerization and subsequent hydrogenation of 1- Butene is created. After the reaction had taken place, the entire reaction mixture was distilled on a thin-film evaporator at 125 ° C. and 25 hPa. The crude aldehyde was obtained as the top product. The bottom product was a hydrocarbon mixture containing the catalyst and consisting predominantly of tetrabutane. This solution, together with 140 g of olefin mixture, was used again in an oxidation according to the procedure described above. (The return is carried out a total of eight times, see Table 1 experiments 4.1 to 4.8.)
- Table 1 summarizes the normalized gross rate constants for some feedback cycles from the example tests. The comparison shows that the catalyst activity remains practically constant in the example according to the invention, whereas a clear decrease in the catalyst activity can be observed in the conventional procedure practiced in the comparative example. The catalyst stability can thus be increased considerably by using the method according to the invention.
- Example 3 rel. Gross Geschw.konst.
- Example 4 rel. Gross Geschw.konst. fc] u
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10240253 | 2002-08-31 | ||
DE10240253 | 2002-08-31 | ||
DE10327434A DE10327434A1 (de) | 2002-08-31 | 2003-06-18 | Verfahren zur Hydroformylierung von olefinisch ungesättigten Verbindungen, insbesondere Olefinen in Gegenwart cyclischer Kohlensäureester |
DE10327434 | 2003-06-18 | ||
PCT/EP2003/008736 WO2004020380A1 (de) | 2002-08-31 | 2003-08-07 | Verfahren zur hydroformylierung von olefinisch ungesättigten verbindungen, insbesondere olefinen in gegenwart cyclischer kohlensäureester |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1532094A1 true EP1532094A1 (de) | 2005-05-25 |
Family
ID=31979464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03790872A Withdrawn EP1532094A1 (de) | 2002-08-31 | 2003-08-07 | Verfahren zur hydroformylierung von olefinisch ungesättigten verbindungen, insbesondere olefinen in gegenwart cyclischer kohlensäureester |
Country Status (12)
Country | Link |
---|---|
US (1) | US7317130B2 (pt) |
EP (1) | EP1532094A1 (pt) |
JP (1) | JP4523411B2 (pt) |
KR (1) | KR20050059116A (pt) |
CN (1) | CN1315767C (pt) |
AU (1) | AU2003253389A1 (pt) |
BR (1) | BR0313866A (pt) |
CA (1) | CA2496838A1 (pt) |
MX (1) | MXPA05002283A (pt) |
PL (1) | PL206145B1 (pt) |
RU (1) | RU2337090C2 (pt) |
WO (1) | WO2004020380A1 (pt) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE50211172D1 (de) * | 2001-09-26 | 2007-12-20 | Oxeno Olefinchemie Gmbh | Phthalsäurealkylestergemische mit kontrollierter viskosität |
DE10149348A1 (de) | 2001-10-06 | 2003-04-10 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von 1-Olefin mit Palladiumcarbenverbindungen |
DE10220801A1 (de) * | 2002-05-10 | 2003-11-20 | Oxeno Olefinchemie Gmbh | Verfahren zur Rhodium-katalysierten Hydroformylierung von Olefinen unter Reduzierung der Rhodiumverluste |
DE10223593A1 (de) * | 2002-05-27 | 2003-12-11 | Degussa | Hydroxydiphosphine und deren Verwendung in der Katalyse |
DE10225565A1 (de) | 2002-06-10 | 2003-12-18 | Oxeno Olefinchemie Gmbh | Katalysator und Verfahren zur Hydrierung von aromatischen Verbindungen |
EP1532094A1 (de) | 2002-08-31 | 2005-05-25 | Oxeno Olefinchemie GmbH | Verfahren zur hydroformylierung von olefinisch ungesättigten verbindungen, insbesondere olefinen in gegenwart cyclischer kohlensäureester |
DE10257499A1 (de) | 2002-12-10 | 2004-07-01 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von 1-Olefinen durch katalytische Spaltung von 1-Alkoxyalkanen |
DE10329042A1 (de) * | 2003-06-27 | 2005-01-13 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von 1-Octen aus Crack-C4 |
DE10359628A1 (de) * | 2003-12-18 | 2005-07-21 | Oxeno Olefinchemie Gmbh | Katalysator und Verfahren zur Herstellung von 1-Olefinen aus 2-Hydroxyalkanen |
DE102004033410A1 (de) * | 2004-02-14 | 2005-09-01 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von Olefinen mit 8 bis 12 Kohlenstoffatomen |
DE102004021128A1 (de) * | 2004-04-29 | 2005-11-24 | Oxeno Olefinchemie Gmbh | Vorrichtung und Verfahren für die kontinuierliche Umsetzung einer Flüssigkeit mit einem Gas an einem festen Katalysator |
DE102005036039A1 (de) | 2004-08-28 | 2006-03-02 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von 2,7-Octadienylderivaten |
DE102004059293A1 (de) | 2004-12-09 | 2006-06-14 | Oxeno Olefinchemie Gmbh | Verfahren zur Hydroformylierung von Olefinen |
DE102004063673A1 (de) * | 2004-12-31 | 2006-07-13 | Oxeno Olefinchemie Gmbh | Verfahren zur kontinuierlichen katalytischen Hydrierung von hydrierbaren Verbindungen an festen, im Festbett angeordneten Katalysatoren mit einem wasserstoffhaltigen Gas |
DE102005014055A1 (de) * | 2005-03-23 | 2006-09-28 | Degussa Ag | Unsymmetrisch substituierte Phospholankatalysatoren |
DE102005035816A1 (de) * | 2005-07-30 | 2007-02-01 | Oxeno Olefinchemie Gmbh | Verfahren zur Hydrierung von Oxo-Aldehyden mit hohen Estergehalten |
DE102005042464A1 (de) | 2005-09-07 | 2007-03-08 | Oxeno Olefinchemie Gmbh | Carbonylierungsverfahren unter Zusatz von sterisch gehinderten sekundären Aminen |
DE102006058682A1 (de) * | 2006-12-13 | 2008-06-19 | Evonik Oxeno Gmbh | Bisphosphitliganden für die übergangsmetallkatalysierte Hydroformylierung |
DE102007006442A1 (de) | 2007-02-05 | 2008-08-07 | Evonik Oxeno Gmbh | Gemisch von Diestern von Dianhydrohexitolderivaten mit Carbonsäuren der Summenformel C8H17COOH, Verfahren zur Herstellung dieser Diester und Verwendung dieser Gemische |
DE102008006400A1 (de) | 2008-01-28 | 2009-07-30 | Evonik Oxeno Gmbh | Gemische von Diisononylestern der Terephthalsäure, Verfahren zu deren Herstellung und deren Verwendung |
DE102008002187A1 (de) * | 2008-06-03 | 2009-12-10 | Evonik Oxeno Gmbh | Verfahren zur Herstellung von C5-Aldehydgemischen mit hohem n-Pentanalanteil |
CA2769033C (en) | 2009-07-23 | 2019-09-03 | Evonik Fibres Gmbh | Polyimide membranes made of polymerization solutions |
DE102009028975A1 (de) | 2009-08-28 | 2011-03-03 | Evonik Oxeno Gmbh | Esterderivate der 2,5-Furandicarbonsäure und ihre Verwendung als Weichmacher |
DE102009029050A1 (de) | 2009-08-31 | 2011-03-03 | Evonik Oxeno Gmbh | Organophosphorverbindungen basierend auf Tetraphenol(TP)-substituierten Strukturen |
DE102009029284A1 (de) | 2009-09-08 | 2011-03-10 | Evonik Oxeno Gmbh | Verfahren zur Oligomerisierung von Olefinen |
DE102009047351A1 (de) | 2009-12-01 | 2011-06-09 | Evonik Goldschmidt Gmbh | Komposit-Siliconmembranen mit hoher Trennwirkung |
DE102010041821A1 (de) | 2010-09-30 | 2012-04-05 | Evonik Oxeno Gmbh | Einsatz von Supported Ionic Liquid Phase (SILP) Katalysatorsystemen in der Hydroformylierung von olefinhaltigen Gemischen zu Aldehydgemischen mit hohem Anteil von in 2-Stellung unverzweigten Aldehyden |
DE102010043558A1 (de) | 2010-11-08 | 2012-05-10 | Evonik Oxeno Gmbh | Verfahren zur Hydroformylierung von ungesättigten Verbindungen |
DE102012202779A1 (de) | 2012-02-23 | 2013-08-29 | Evonik Oxeno Gmbh | Verfahren und Vorrichtung zur technischen Hydroformylierung von Isobuten und zum Auftrennen des Produktgemisches |
ES2603929T3 (es) | 2012-10-12 | 2017-03-02 | Evonik Degussa Gmbh | Bisfosfito asimétrico |
DE102012223572A1 (de) | 2012-12-18 | 2014-06-18 | Evonik Industries Ag | Steuerung der Viskosität von Reaktionslösungen in Hydroformylierungverfahren |
RU2527455C1 (ru) * | 2013-03-28 | 2014-08-27 | Открытое акционерное общество "Нефтяная компания "Роснефть" | Способ получения альдегидов |
DE102014209534A1 (de) * | 2014-05-20 | 2015-11-26 | Evonik Degussa Gmbh | Neue Monophosphitliganden mit einer Carbonat-Gruppe |
CN106008184B (zh) * | 2016-05-30 | 2018-04-20 | 大庆高新利华环保科技有限公司 | 异丁烯制备3‑甲基丁醛的方法 |
EP3887348B1 (en) * | 2018-11-29 | 2022-11-02 | Dow Technology Investments LLC | Hydroformylation process |
Family Cites Families (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1197902A (en) | 1967-04-05 | 1970-07-08 | British Petroleum Co | Low Pressure Oxo Process |
GB1243508A (en) | 1968-10-29 | 1971-08-18 | British Petroleum Co | Ultrafiltration of metal compounds |
GB1338237A (en) | 1969-12-22 | 1973-11-21 | Union Carbide Corp | Hydroformylation process |
GB1312076A (en) | 1970-05-15 | 1973-04-04 | Bp Chem Int Ltd | Hydroformylation process |
US3992453A (en) * | 1974-05-22 | 1976-11-16 | Universal Oil Products Company | Hydroformylation process |
CA1090823A (en) | 1976-04-08 | 1980-12-02 | Everard A.V. Brewester | Cyclic hydroformylation process |
ZA78146B (en) | 1977-01-25 | 1978-12-27 | Union Carbide Corp | Improved hydroformylation process |
NO156742C (no) | 1979-03-28 | 1987-11-18 | Union Carbide Corp | Fremgangsmaate for fremstilling av et hydroformyleringsmedium, og fremgangsmaate for fremstilling av aldehyder. |
DE3126265A1 (de) | 1981-07-03 | 1983-01-20 | Basf Ag, 6700 Ludwigshafen | Verfahren zur hydroformylierung olefinisch ungesaettigter verbindungen |
US4599206A (en) | 1984-02-17 | 1986-07-08 | Union Carbide Corporation | Transition metal complex catalyzed reactions |
US4490559A (en) * | 1984-03-27 | 1984-12-25 | Shell Oil Company | Process for making aldehydes from diesters of carbonic acid |
US4748261A (en) | 1985-09-05 | 1988-05-31 | Union Carbide Corporation | Bis-phosphite compounds |
US4668651A (en) | 1985-09-05 | 1987-05-26 | Union Carbide Corporation | Transition metal complex catalyzed processes |
US4885401A (en) | 1985-09-05 | 1989-12-05 | Union Carbide Corporation | Bis-phosphite compounds |
US4774361A (en) | 1986-05-20 | 1988-09-27 | Union Carbide Corporation | Transition metal complex catalyzed reactions |
US4835299A (en) | 1987-03-31 | 1989-05-30 | Union Carbide Corporation | Process for purifying tertiary organophosphites |
NL8700881A (nl) | 1987-04-14 | 1988-11-01 | Shell Int Research | Werkwijze voor het afscheiden van produkt uit een homogeen katalysatorsysteem-bevattend reaktiemengsel. |
ZA895347B (en) * | 1988-07-14 | 1990-07-25 | Union Carbide Chem Plastic | Process for catalyst aldehyde product separation |
US5113022A (en) | 1988-08-05 | 1992-05-12 | Union Carbide Chemicals & Plastics Technology Corporation | Ionic phosphites used in homogeneous transition metal catalyzed processes |
US5059710A (en) | 1988-08-05 | 1991-10-22 | Union Carbide Chemicals And Plastics Technology Corporation | Ionic phosphites and their use in homogeneous transition metal catalyzed processes |
DE3842819A1 (de) | 1988-12-20 | 1990-06-21 | Hoechst Ag | Verfahren zur abtrennung von metallorganischen verbindungen und/oder metallcarbonylen aus ihren loesungen in organischen medien |
US5012008A (en) * | 1990-01-08 | 1991-04-30 | Drago Russell S | Supported amorphous phase heterogeneous catalysts for biphasic hydroformylation |
DE4025245A1 (de) | 1990-08-09 | 1992-02-13 | Huels Chemische Werke Ag | Verfahren zur herstellung von gesaettigten alkoholen aus aldehyden |
DE4026406A1 (de) | 1990-08-21 | 1992-02-27 | Basf Ag | Rhodiumhydroformylierungskatalysatoren mit bis-phosphit-liganden |
DE4026777A1 (de) | 1990-08-24 | 1992-03-05 | Haerle Anton | Scharfgaengige knochenschraube und/oder gewindebohrer fuer osteosynthesearbeiten |
US5179055A (en) | 1990-09-24 | 1993-01-12 | New York University | Cationic rhodium bis(dioxaphosphorus heterocycle) complexes and their use in the branched product regioselective hydroformylation of olefins |
US5260491A (en) | 1990-09-24 | 1993-11-09 | New York University | Cationic rhodium bis(dioxaphosphorus heterocycle) complexes and their use in the branched product regioselective hydroformylation of olefins |
US5087763A (en) * | 1990-11-09 | 1992-02-11 | Union Carbide Chemicals & Plastics Technology Corporation | Hydroformylation process |
TW213465B (pt) | 1991-06-11 | 1993-09-21 | Mitsubishi Chemicals Co Ltd | |
US5138101A (en) | 1991-07-19 | 1992-08-11 | Eastman Kodak Company | Recovery of high-boiling aldehydes from rhodium-catalyzed hydroformylation processes |
US5360938A (en) | 1991-08-21 | 1994-11-01 | Union Carbide Chemicals & Plastics Technology Corporation | Asymmetric syntheses |
DE4204808A1 (de) | 1992-02-18 | 1993-08-19 | Basf Ag | Verfahren zur herstellung von (omega)-formylalkancarbonsaeureestern |
US5288918A (en) | 1992-09-29 | 1994-02-22 | Union Carbide Chemicals & Plastics Technology Corporation | Hydroformylation process |
US5395979A (en) | 1993-02-25 | 1995-03-07 | Exxon Chemical Patents Inc. | Method for separating catalyst from a hydroformylation reaction product using alkylated ligands |
US5426238A (en) | 1993-06-10 | 1995-06-20 | Mitsubishi Kasei Corporation | Method for producing an aldehyde |
US5475146A (en) | 1993-09-02 | 1995-12-12 | E. I. Du Pont De Nemours And Company | Enantioselective hydroformylation |
JPH0782281A (ja) | 1993-09-10 | 1995-03-28 | Mitsui Toatsu Chem Inc | ジホスフィナイト化合物及びそれを用いるオレフィンのヒドロホルミル化反応方法 |
US5648554A (en) | 1995-04-12 | 1997-07-15 | Mitsubishi Chemical Corporation | Method for producing aldehydes |
DE19632600A1 (de) | 1996-08-13 | 1998-02-19 | Hoechst Ag | Verfahren zur Herstellung von Aldehyden |
EP0787831A4 (en) * | 1995-08-11 | 1998-11-11 | Nippon Steel Corp | RESIN CHROMATE COMPOSITION AND SURFACE TREATED SHEET |
DE69610844T2 (de) * | 1995-08-25 | 2001-03-29 | Dsm N.V., Heerlen | Hydroformylierungsverfahren. |
US5618983A (en) * | 1995-08-25 | 1997-04-08 | E. I. Du Pont De Nemours And Company | Hydroformylation process |
US5763679A (en) | 1995-12-06 | 1998-06-09 | Union Carbide Chemicals & Plastics Technology Corporation | Metal-ligand complex catalyzed processes |
JPH09268152A (ja) | 1996-04-03 | 1997-10-14 | Mitsubishi Chem Corp | アルデヒド類の製造方法 |
US5821389A (en) | 1996-04-24 | 1998-10-13 | Union Carbide Chemicals & Technology Corporation | Processes for producing hydroxyaldehydes |
US5886237A (en) | 1996-04-24 | 1999-03-23 | Union Carbide Chemicals & Plastics Technology Corporation | Processes for producing alkenals and alkenols |
DE19625168A1 (de) * | 1996-06-24 | 1998-01-08 | Hoechst Ag | Katalysator und ein Verfahren zur Herstellung von Aldehyden in Gegenwart dieses Katalysators |
US5710344A (en) | 1996-11-08 | 1998-01-20 | E. I. Du Pont De Nemours And Company | Process to prepare a linear aldehyde |
DE19654340A1 (de) | 1996-12-24 | 1998-08-06 | Huels Chemische Werke Ag | Verfahren zur Herstellung von höheren Oxo-Alkoholen |
JPH10226662A (ja) * | 1997-02-18 | 1998-08-25 | Kuraray Co Ltd | オレフィン性化合物のヒドロホルミル化方法 |
WO1998043935A1 (fr) | 1997-03-27 | 1998-10-08 | Mitsubishi Chemical Corporation | Procede de preparation d'aldehydes |
JPH10279587A (ja) | 1997-03-31 | 1998-10-20 | Mitsubishi Chem Corp | ビスホスファイト化合物及びそれを用いるヒドロホルミル化方法 |
EP0922691B1 (en) | 1997-12-03 | 2004-04-28 | Shell Internationale Research Maatschappij B.V. | Hydroformylation process |
ZA9810973B (en) | 1997-12-03 | 1999-06-01 | Shell Int Research | Hydroformylation process |
JPH11189563A (ja) * | 1997-12-25 | 1999-07-13 | Kuraray Co Ltd | ヒドロホルミル化生成物の保存方法 |
US5952530A (en) | 1998-02-02 | 1999-09-14 | Union Carbide Chemicals & Plastics Technology Corporation | Separation processes |
DE19810794A1 (de) | 1998-03-12 | 1999-09-16 | Basf Ag | Katalysator, umfassend einen Komplex eines Metalls der VIII. Nebengruppe auf Basis eines Phosphonitliganden und Verfahren zur Hydroformylierung |
DE19842368A1 (de) | 1998-09-16 | 2000-03-23 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von höheren Oxoalkoholen aus Olefingemischen durch zweistufige Hydroformylierung |
DE19842371A1 (de) | 1998-09-16 | 2000-03-23 | Oxeno Oelfinchemie Gmbh | Verfahren zur Herstellung von höheren Oxo-Alkoholen aus Olefingemischen |
DE19842370A1 (de) | 1998-09-16 | 2000-03-23 | Oxeno Oelfinchemie Gmbh | Verfahren zur selektiven Hydrierung von Hydroformylierungsgemischen |
DE19842369A1 (de) | 1998-09-16 | 2000-03-23 | Oxeno Oelfinchemie Gmbh | Verfahren zur Hydrierung von Hydroformylierungsgemischen |
DE19911920A1 (de) | 1999-03-17 | 2000-09-21 | Basf Ag | Phosphabenzolverbindungen und ihre Verwendung in der Hydroformylierung |
DE19925384A1 (de) | 1999-06-02 | 2000-12-07 | Oxeno Olefinchemie Gmbh | Verfahren zur katalytischen Durchführung von Mehrphasenreaktionen, insbesondere Hydroformylierungen |
US6307107B1 (en) | 1999-09-20 | 2001-10-23 | E.I. Du Pont De Nemours And Company | Hydroformylation of acyclic monoethylenically unsaturated compounds to corresponding terminal aldehydes |
DE19954721A1 (de) | 1999-11-12 | 2001-05-17 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von Aldehyden aus Olefinen durch Hydroformylierung |
DE19954510A1 (de) | 1999-11-12 | 2001-05-17 | Oxeno Olefinchemie Gmbh | Verfahren zur katalytischen Herstellung von Aldehyden aus Olefinen unter Einsatz von Ligandenmischungen |
EP1103303A1 (en) | 1999-11-23 | 2001-05-30 | Dsm N.V. | Process to separate a rhodium/phosphite ligand complex and free phosphite ligand complex from a hydroformylation mixture |
DE19957528A1 (de) | 1999-11-30 | 2001-05-31 | Oxeno Olefinchemie Gmbh | Verfahren zur Hydroformylierung von Olefinen |
DE10009207A1 (de) | 2000-02-26 | 2001-08-30 | Oxeno Olefinchemie Gmbh | Verbessertes Verfahren zur Hydroformylierung von Olefinen durch Reduzierung der Ameisensäurekonzentration |
EP1186343A4 (en) | 2000-03-14 | 2004-11-17 | Kyowa Chem Ind Co Ltd | ADSORBENT FOR AROMATIC HYDROXO COMPOUNDS AND THEIR USE |
US6307109B1 (en) | 2000-03-15 | 2001-10-23 | Union Carbide Chemicals & Plastics Technology Corporation | Separation processes |
DE10031493A1 (de) | 2000-06-28 | 2002-01-10 | Oxeno Olefinchemie Gmbh | Neue Bisphosphitverbindungen und deren Metallkomplexe |
DE10034360A1 (de) | 2000-07-14 | 2002-01-24 | Oxeno Olefinchemie Gmbh | Mehrstufiges Verfahren zur Herstellung von Oxo-Aldehyden und/oder Alkoholen |
DE10048301A1 (de) | 2000-09-29 | 2002-04-11 | Oxeno Olefinchemie Gmbh | Stabilisierung von Rhodiumkatalysatoren für die Hydroformylierung von Olefinen |
DE10053272A1 (de) | 2000-10-27 | 2002-05-08 | Oxeno Olefinchemie Gmbh | Neue Bisphosphitverbindungen und deren Metallkomplexe |
DE10058383A1 (de) | 2000-11-24 | 2002-05-29 | Oxeno Olefinchemie Gmbh | Neue Phosphininverbindungen und deren Metallkomplexe |
DE10062448A1 (de) | 2000-12-14 | 2002-06-20 | Oxeno Olefinchemie Gmbh | Verfahren zur Hydrierung von Hydroformylierungsgemischen |
DE10100708A1 (de) | 2001-01-10 | 2002-07-11 | Oxeno Olefinchemie Gmbh | Neue N-Phenylpyrrolbisphosphanverbindungen und deren Metallkomplexe |
EP1231194B1 (de) | 2001-02-10 | 2003-11-12 | Oxeno Olefinchemie GmbH | Herstellung von 1-Olefinen |
DE10114868C1 (de) | 2001-03-26 | 2002-10-31 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von Diphosphinen und deren Verwendung |
DE10135906A1 (de) | 2001-07-24 | 2003-02-06 | Oxeno Olefinchemie Gmbh | Verfahren zur Hydroformylierung von höheren Olefinen mit Kobaltverbindungen als Katalysator |
DE10140086A1 (de) | 2001-08-16 | 2003-02-27 | Oxeno Olefinchemie Gmbh | Neue Phosphitverbindungen und neue Phosphitmetallkomplexe |
DE10140083A1 (de) | 2001-08-16 | 2003-02-27 | Oxeno Olefinchemie Gmbh | Neue Phosphitverbindungen und deren Metallkomplexe |
DE50211172D1 (de) | 2001-09-26 | 2007-12-20 | Oxeno Olefinchemie Gmbh | Phthalsäurealkylestergemische mit kontrollierter viskosität |
DE10149348A1 (de) | 2001-10-06 | 2003-04-10 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von 1-Olefin mit Palladiumcarbenverbindungen |
EP1485341A2 (de) | 2002-03-15 | 2004-12-15 | Oxeno Olefinchemie GmbH | Verfahren zur hydroformylierung von olefinen |
CA2481037A1 (en) | 2002-04-04 | 2003-10-16 | Degussa Ag | Bisphosphines as bidentate ligands |
DE10220801A1 (de) | 2002-05-10 | 2003-11-20 | Oxeno Olefinchemie Gmbh | Verfahren zur Rhodium-katalysierten Hydroformylierung von Olefinen unter Reduzierung der Rhodiumverluste |
DE10220799A1 (de) | 2002-05-10 | 2003-12-11 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von C13-Alkoholgemischen |
DE10223593A1 (de) | 2002-05-27 | 2003-12-11 | Degussa | Hydroxydiphosphine und deren Verwendung in der Katalyse |
DE10225565A1 (de) | 2002-06-10 | 2003-12-18 | Oxeno Olefinchemie Gmbh | Katalysator und Verfahren zur Hydrierung von aromatischen Verbindungen |
US7193116B2 (en) * | 2002-08-31 | 2007-03-20 | Oxeno Olefinchemie Gmbh | Method for producing aldehydes by means of hydroformylation of olefinically unsaturated compounds, said hydroformylation being catalyzed by unmodified metal complexes in the presence of cyclic carbonic acid esters |
EP1532094A1 (de) | 2002-08-31 | 2005-05-25 | Oxeno Olefinchemie GmbH | Verfahren zur hydroformylierung von olefinisch ungesättigten verbindungen, insbesondere olefinen in gegenwart cyclischer kohlensäureester |
DE10257499A1 (de) | 2002-12-10 | 2004-07-01 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von 1-Olefinen durch katalytische Spaltung von 1-Alkoxyalkanen |
DE10349399A1 (de) | 2003-10-21 | 2005-06-02 | Degussa Ag | Verfahren zur Reduktion von Binaphthylderivaten |
DE102004021128A1 (de) | 2004-04-29 | 2005-11-24 | Oxeno Olefinchemie Gmbh | Vorrichtung und Verfahren für die kontinuierliche Umsetzung einer Flüssigkeit mit einem Gas an einem festen Katalysator |
DE102004059292A1 (de) | 2004-12-09 | 2006-06-14 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von Alkoholen aus Olefinen durch Hydroformylierung und Hydrierung |
DE102004059293A1 (de) | 2004-12-09 | 2006-06-14 | Oxeno Olefinchemie Gmbh | Verfahren zur Hydroformylierung von Olefinen |
DE102004063673A1 (de) | 2004-12-31 | 2006-07-13 | Oxeno Olefinchemie Gmbh | Verfahren zur kontinuierlichen katalytischen Hydrierung von hydrierbaren Verbindungen an festen, im Festbett angeordneten Katalysatoren mit einem wasserstoffhaltigen Gas |
-
2003
- 2003-08-07 EP EP03790872A patent/EP1532094A1/de not_active Withdrawn
- 2003-08-07 CN CNB038201941A patent/CN1315767C/zh not_active Expired - Fee Related
- 2003-08-07 AU AU2003253389A patent/AU2003253389A1/en not_active Abandoned
- 2003-08-07 JP JP2004532060A patent/JP4523411B2/ja not_active Expired - Fee Related
- 2003-08-07 PL PL373843A patent/PL206145B1/pl not_active IP Right Cessation
- 2003-08-07 KR KR1020057003260A patent/KR20050059116A/ko not_active Application Discontinuation
- 2003-08-07 RU RU2005109389/04A patent/RU2337090C2/ru not_active IP Right Cessation
- 2003-08-07 CA CA002496838A patent/CA2496838A1/en not_active Abandoned
- 2003-08-07 BR BR0313866-6A patent/BR0313866A/pt not_active IP Right Cessation
- 2003-08-07 US US10/525,376 patent/US7317130B2/en not_active Expired - Fee Related
- 2003-08-07 MX MXPA05002283A patent/MXPA05002283A/es active IP Right Grant
- 2003-08-07 WO PCT/EP2003/008736 patent/WO2004020380A1/de active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2004020380A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20060241324A1 (en) | 2006-10-26 |
RU2337090C2 (ru) | 2008-10-27 |
JP4523411B2 (ja) | 2010-08-11 |
AU2003253389A1 (en) | 2004-03-19 |
US7317130B2 (en) | 2008-01-08 |
MXPA05002283A (es) | 2005-06-08 |
CA2496838A1 (en) | 2004-03-11 |
KR20050059116A (ko) | 2005-06-17 |
JP2005536560A (ja) | 2005-12-02 |
PL206145B1 (pl) | 2010-07-30 |
CN1315767C (zh) | 2007-05-16 |
PL373843A1 (en) | 2005-09-19 |
WO2004020380A1 (de) | 2004-03-11 |
RU2005109389A (ru) | 2005-08-27 |
CN1678557A (zh) | 2005-10-05 |
BR0313866A (pt) | 2005-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004020380A1 (de) | Verfahren zur hydroformylierung von olefinisch ungesättigten verbindungen, insbesondere olefinen in gegenwart cyclischer kohlensäureester | |
EP1532095B1 (de) | Verfahren zur herstellung von aldehyden durch hydroformylierung von olefinisch ungesättigten verbindungen, katalysiert durch unmodifizierte metallkomplexe in gegenwart von cyclischen kohlensäureestern | |
EP1172349B1 (de) | Mehrstufiges Verfahren zur Herstellung von Oxo-Aldehyden und/oder Alkoholen | |
EP1503977B1 (de) | Verfahren zur rhodium-katalysierten hydroformylierung von olefinen unter reduzierung der rhodiumverluste | |
EP2091958B1 (de) | Bisphosphitliganden für die übergangsmetallkatalysierte hydroformylierung | |
EP1209164B1 (de) | Neue Phosphininverbindung und deren Metallkomplexe | |
EP1423398B1 (de) | Neue phosphitverbindungen und neue phosphitmetallkomplexe | |
EP1924357B1 (de) | Carbonylierungsverfahren unter zusatz von sterisch gehinderten sekundären aminen | |
EP1201675B1 (de) | Bisphosphitverbindungen und deren Metallkomplexe | |
EP2567949B1 (de) | Verfahren zur Abtrennung von 1-Buten aus C4-haltigen Kohlenwasserstoffströmen durch Hydroformylierung | |
DE19954721A1 (de) | Verfahren zur Herstellung von Aldehyden aus Olefinen durch Hydroformylierung | |
DE10313319A1 (de) | Verfahren zur Hydroformylierung | |
EP1163051B1 (de) | Katalysator, umfassend einen rhodium-komplex auf der basis eines phosphinamiditliganden; seine verwendung zur hydroformylierung | |
DE10333519A1 (de) | Zweistufiges Hydroformylierungsverfahren | |
DE10327434A1 (de) | Verfahren zur Hydroformylierung von olefinisch ungesättigten Verbindungen, insbesondere Olefinen in Gegenwart cyclischer Kohlensäureester | |
DE10206697A1 (de) | Hydroformylierungsverfahren | |
EP1089818B1 (de) | Katalysator, umfassend einen komplex eines metalls der viii. nebengruppe auf basis eines phosphinitliganden, verfahren zur hydroformylierung | |
DE10205361A1 (de) | Phosphorchelatverbindungen | |
DE102005019237B4 (de) | Verfahren zur Hydroformylierung von substituierten Allylbenzolen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050127 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WIESE, KLAUS-DIETHER Inventor name: HESS, DIETER Inventor name: BORGMANN, CORNELIA Inventor name: FRIDAG, DIRK Inventor name: MOELLER, OLIVER |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EVONIK OXENO GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20101022 |