EP1507020B1 - Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung - Google Patents

Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung Download PDF

Info

Publication number
EP1507020B1
EP1507020B1 EP04011394A EP04011394A EP1507020B1 EP 1507020 B1 EP1507020 B1 EP 1507020B1 EP 04011394 A EP04011394 A EP 04011394A EP 04011394 A EP04011394 A EP 04011394A EP 1507020 B1 EP1507020 B1 EP 1507020B1
Authority
EP
European Patent Office
Prior art keywords
powder
weight
coating
gewichts
weight percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04011394A
Other languages
English (en)
French (fr)
Other versions
EP1507020A3 (de
EP1507020A2 (de
Inventor
Gérard BARBEZAT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Metco AG
Original Assignee
Sulzer Metco AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25683486&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1507020(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sulzer Metco AG filed Critical Sulzer Metco AG
Publication of EP1507020A2 publication Critical patent/EP1507020A2/de
Publication of EP1507020A3 publication Critical patent/EP1507020A3/de
Application granted granted Critical
Publication of EP1507020B1 publication Critical patent/EP1507020B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/14Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
    • C23C4/16Wires; Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1431Arrangements for supplying particulate material comprising means for supplying an additional liquid
    • B05B7/1436Arrangements for supplying particulate material comprising means for supplying an additional liquid to a container where the particulate material and the additional liquid are brought together
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Definitions

  • the invention relates to a powder according to claim 1, an applied by plasma spraying iron-containing layer for cylinder surfaces of engine blocks according to claim 4, and a method for producing such layers according to claim 10 or 11.
  • the coating of bores by means of the plasma spraying process has long been known. Different metallic materials can be applied.
  • the layers are finished by diamond honing to the final size and provided with the desired topography.
  • the workability of the layers and the tribological properties are decisively influenced by the microstructure and the physical properties of the corresponding layers.
  • the object of the present invention is to improve the machinability and the tribological properties of plasma-deposited iron-containing layers for cylinder liners of engine blocks.
  • the invention is based on the surprising finding that in a particularly controlled reaction of the powder used with oxygen in plasma spraying, a microstructure can be produced which has excellent properties in terms of machinability and tribology.
  • machinability e.g. the machinability
  • tribology e.g. the friction coefficients and the tendency to scuffing ("scuffing", i.e. the onset of adhesive wear) are drastically reduced.
  • the bound oxygen with iron forms FeO and Fe 3 O 4 crystals.
  • the content of Fe 2 O 3 is less than 0.2% by weight.
  • the amount of oxides formed can be further influenced by mixing the air with nitrogen or oxygen. Replacing the air with pure oxygen reduces the bound level of oxygen in the layer by a factor of about two.
  • a gas amount of 40 to 200 NLPM of oxygen is added.
  • the velocity of the gas flow in the cylinder bore or sleeve during coating is 7 to 12 m / s.
  • the volume of FeO and Fe 3 O 4 can be influenced by selecting the particle size distribution.
  • the particle size of the powder is in the range of 5 to 25 microns, 10 to 45 microns or 15 to 60 microns. It can be determined by means of an optical or electronic microscope, in particular a scanning electron microscope SEM, or by the MICROTRAC laser diffraction method.
  • the oxide ceramic consists of TiO 2 or Al 2 O 3 TiO 2 and / or Al 2 O 3 ZrO 2 alloy systems.
  • the proportion of oxide ceramics in the powder used is preferably 5 to 50% by weight.
  • the choice of the optimum size of the powder particles is made taking into account the tribological properties of the layers produced and the mechanical behavior of the system layer substrate.
  • the particle size of the powder was between 5 to 25 microns, and the preparation was carried out by gas atomization.
  • the velocity of the gas flow during coating of the can was 10 m / s, the amount of air for the layer cooling and powder reaction 500 NLPM (corresponding to 100 NLPM oxygen). This amount of air was supplied through a PlasmatronMech, eg a Plasmatron according to EP-B1-0 645 946 ,
  • the results of the investigations carried out show that the oxygen content in the produced layer is 3% by weight.
  • the oxygen is bound according to investigations by means of X-ray fine structure analysis under the stoichiometric formulas FeO and Fe 3 O 4 . These studies also determined that the formation of Fe 2 O 3 is below the detection limit.
  • Example 1 When using a powder of the same chemical composition as in Example 1, but with a particle size of 10 to 45 microns, and otherwise under the same boundary conditions as in Example 1, the proportion of bound oxygen in the layers produced at 2% by weight. The residual results of analysis of the layer thus applied were the same as in Example 1.
  • the particle size of the powder was between 10 to 45 microns, and the preparation was carried out by gas atomization.
  • Example 2 To the powder according to Example 2, an amount of 30% by weight of an alloyed ceramic powder consisting of 60% by weight of Al 2 O 3 and 40% by weight of TiO 2 was added.
  • the layers produced by means of this powder mixture are mechanically reinforced by the incorporation of the ceramic particles (particle size 5 to 22 ⁇ m).
  • Example 4 Analogously to Example 4, 30% by weight of an alloyed ceramic powder consisting of 80% by weight Al 2 O 3 and 20% by weight ZrO 2 were added. The layers produced by means of this powder mixture are mechanically reinforced by the incorporation of the ceramic particles (particle size 5 to 22 ⁇ m). The same effect as in Example 4 was achieved.
  • Fig. 1 shows a diagram showing the reduction of the friction coefficient as a function of the particle size of the powder and the mechanical behavior, namely the adhesion of the layer on AlSi substrates, depending on the particle size of the powder.
  • the coefficient of friction decreases with increasing size of the particles of the coating powder.
  • the adhesion of the layer to AlSi substrates decreases as the size of the particles of the coating powder increases.
  • a good compromise with regard to the particle size to be chosen can be in the range of 25-30 m, so that a bonding strength of the layer in the range of 45-50 MPa which is sufficient in most precipitates is to be expected, the coefficient of friction, in comparison with layers according to the State of the art, by about 22-25% less. If, however, a very high adhesive strength of the layer is sought in the first place and the reduction of the coefficient of friction is rather of secondary importance, one will select a coating powder with a particle size of less than 25 ⁇ m. On the other hand, if a very low coefficient of friction is sought in the first place and a slightly lower adhesive strength can be accepted, one will choose a coating powder with a particle size of more than 35 m.
  • Figure 2 is a graph showing the reduction of the coefficient of friction as a function of the amount of bound oxygen in the layer and the mechanical behavior, namely the adhesion of the layer to AlSi substrates, as a function of the amount of bound oxygen in the layer evident. From the On the one hand, the diagram clearly shows that the friction coefficient decreases with increasing amount of bound oxygen in the layer. On the other hand, it becomes clear that the adhesion of the layer to AlSi substrates decreases as the amount of bound oxygen in the layer increases.
  • a good compromise with respect to the desired amount of bound oxygen in the layer can be in the range of 2-2.5% by weight, so that in most cases sufficient adhesive strength of the layer in the range of 40-50 MPa is to be expected Coefficient of friction, compared with layers according to the prior art, is about 20-25% less. However, if, as already explained in connection with FIG. 1, primarily a very high adhesive strength of the layer is sought and the reduction of the coefficient of friction is rather of secondary importance, a coating with a proportion of bound oxygen of less than 2 wt aim for%. On the other hand, if a very low coefficient of friction is desired in the first place and a slightly lower adhesive strength can be accepted, one will choose a layer with a bound oxygen content of more than 2.5% by weight.

Description

  • Die Erfindung betrifft ein Pulver nach Anspruch 1, eine durch Plasmaspritzen aufgebrachte eisenhaltige Schicht für Zylinderlaufflächen von Motorblöcken nach dem Anspruch 4, sowie ein Verfahren zur Herstellung solcher Schichten nach dem Anspruch 10 oder 11.
  • Als klassischer Werkstoff für die Zylinderlaufflächen von Aluminium- oder Magnesium-Motorblöcken wird immer noch Gusseisen mit Lamellen- oder Vermikulargraphit, in Form von eingepressten oder eingegossenen Büchsen, verwendet.
  • Durch solche Büchsen wird jedoch zum einen die Grösse und das Gewicht des Motorblocks nachteilig beeinflusst. Zum anderen entsteht eine ungünstige Verbindung zwischen den Gusseisenbüchsen und dem aus Leichtmetall bestehenden Motorblock. Als Alternative werden auch galvanische Schichten eingesetzt. Deren Aufbringen ist jedoch kostenintensiv und zudem sind sie gegenüber Schwefel- und Ameisensäure korrosionsanfällig.
  • Weiter ist das Beschichten von Bohrungen mit Hilfe des Plasmaspritzverfahrens seit langem bekannt. Dabei können verschiedene metallische Werkstoffe aufgebracht werden. Nach dem Beschichten mittels des Plasmaspritzverfahrens werden die Schichten durch Diamanthonen auf das Endmass bearbeitet und mit der gewünschten Topographie versehen. Die Bearbeitbarkeit der Schichten und die tribologischen Eigenschaften werden durch das Mikrogefüge und die physikalischen Eigenschaften der entsprechenden Schichten massgebend beeinflusst.
  • Aufgabe der vorliegenden Erfindung ist es, die Zerspanbarkeit und die tribologischen Eigenschaften von durch Plasmaspritzen aufgebrachten eisenhaltigen Schichten für Zylinderlaufflächen von Motorblöcken zu verbessern.
  • Diese Aufgabe wird durch das erfindungsgemässe Pulver, die erfindungsgemässe Schicht und das erfindungsgemässe Verfahren gelöst.
  • Die Erfindung beruht auf der überraschenden Feststellung, dass bei einer besonders kontrollierten Reaktion des eingesetzten Pulvers mit Sauerstoff beim Plasmaspritzen ein Mikrogefüge erzeugt werden kann, welches bezüglich Bearbeitbarkeit und Tribologie hervorragende Eigenschaften aufweist. Insbesondere werden die Reibungskoeffizienten und die Neigung zum Scuffing ("Fressen", d. h. dem Beginn des adhäsiven Verschleisses) drastisch verringert.
  • Die durch Plasmaspritzen aufgebrachten eisenhaltigen Schichten für Zylinderlaufflächen von Motorblöcken sind dadurch gekennzeichnet, dass der Gehalt an gebundenem Sauerstoff 1 bis 4 Gewichts-% beträgt. Für die Beschichtung kommen insbesondere in Frage:
    • die Zylinderbohrungen von Motorblöcken aus Aluminium- oder Magnesium- Legierungen oder aus Gusseisen; oder
    • die innere Zylinderwand von in Aluminium- oder Magnesium-Motorblöcke eingesetzten Gusseisenbüchsen.
  • Zweckmässigerweise bildet der gebundene Sauerstoff mit Eisen FeO- und Fe3O4-Kristalle. Vorzugsweise beträgt der Gehalt an Fe2O3 weniger als 0,2 Gewichts-%. Die Menge der gebildeten Oxyde kann durch Mischen der Luft mit Stickstoff oder Sauerstoff weiter beeinflusst werden. Beim Ersetzen der Luft durch reinen Sauerstoff wird der gebundene Anteil an Sauerstoff in der Schicht um einen Faktor von etwa zwei reduziert.
  • Das erfindungsgemässe Verfahren zur Herstellung der erfindungsgemässen Schichten ist dadurch gekennzeichnet, dass während des Plasmaspritzens eine Luftmenge von 200 bis 1000 NLPM (Normal-Liter pro Minute, d.h. bei 1 bar [= 105 Pa] und 20°C) oder eine Gasmenge mit 40 bis 200 NLPM Sauerstoff zugegeben wird. Zweckmässigerweise beträgt die Geschwindigkeit der Gasströmung in der Zylinderbohrung oder der Büchse während des Beschichtens 7 bis 12 m/s.
  • Ein erfindungsgemässes Pulver zum Beschichten eines Substrats, insbesondere zum Beschichten von Zylinderbohrungen von Motorblöcken aus Aluminium- oder Magnesium-Legierungen oder aus Gusseisen, oder zum Beschichten von Gusseisenbüchsen, umfasst die folgende Zusammensetzung:
    • C = 0.4 bis 1.5 Gewichts-%
    • Cr = 0.2 bis 2.5 Gewichts-%
    • Mn = 0.2 bis 3 Gewichts-%
    • Fe = Differenz auf 100 Gewichts-%
  • Ein erfindungsgemässes Pulver zum Beschichten eines Substrats, insbesondere zum Beschichten von Zylinderbohrungen von Motorblöcken aus Aluminium- oder Magnesium-Legierungen oder aus Gusseisen, oder zum Beschichten von Gusseisenbüchsen, kann auch die die folgende Zusammensetzung umfassen:
    • C = 0.1 bis 0.8 Gewichts-%
    • Cr = 11 bis 18 Gewichts-%
    • Mn = 0.1 bis 1.5 Gewichts-%
    • Mo = 0.1 bis 5 Gewichts-%
    • Fe = Differenz auf 100 Gewichts-%
  • Zweckmässigerweise wird für die Beschichtung ein gasverdüstes Pulver folgender chemischer Zusammensetzung eingesetzt:
    • C = 0,4 bis 1,5 Gewichts-%
    • Cr = 0,2 bis 2,5 Gewichts-%
    • Mn = 0,2 bis 3 Gewichts-%
    • S = 0,01 bis 0,2 Gewichts-%
    • P = 0,01 bis 0,1 Gewichts-%.
    • Fe = Differenz auf 100 Gewichts-%
  • Alternativ kann für die Beschichtung ein gasverdüstes Pulver folgender chemischer Zusammensetzung eingesetzt werden:
    • C = 0,1 bis 0,8 Gewichts-%
    • Cr = 11 bis 18 Gewichts-%
    • Mn = 0,1 bis 1,5 Gewichts-%
    • Mo = 0,1 bis 5 Gewichts-%
    • S = 0,01 bis 0,2 Gewichts-%
    • P = 0,01 bis 0,1 Gewichts-%.
    • Fe = Differenz auf 100 Gewichts-%
  • Das Volumen von FeO und Fe3O4 kann durch Auswahl der Partikelgrössenverteilung beeinflusst werden. Zweckmässigerweise liegt die Partikelgrösse des Pulvers im Bereich von 5 bis 25 µm, 10 bis 45 µm oder von 15 bis 60 µm. Sie kann mittels eines optischen oder elektronischen Mikroskops, insbesondere eines Rasterelektronenmikroskop REM, oder nach der Laserbeugungsmethode MICROTRAC bestimmt werden.
  • Zweckmässigerweise wird ein durch Gasverdüsung mit Argon oder Stickstoff erhaltenes Pulver eingesetzt.
  • Beste Resultate werden erhalten, wenn ein durch Zugabe einer tribologischen Oxydkeramik modifiziertes Pulver eingesetzt wird. Zweckmässigerweise besteht die Oxydkeramik aus TiO2 oder Al2O3TiO2- und/oder Al2O3ZrO2-Legierungssystemen. Der Anteil an Oxydkeramik im eingesetzten Pulver beträgt vorzugsweise 5 bis 50 Gewichts-%.
  • Die Wahl der optimalen Grösse der Pulverpartikel wird unter Berücksichtigung der tribologischen Eigenschaften der erzeugten Schichten und des mechanischen Verhaltens des Systemschichtsubstrates getroffen.
  • In folgenden werden Ausführungsbeispiele der erfindungsgemässen Schicht anhand von Beispielen näher erläutert. In den beiliegenden Zeichnungen zeigen:
  • Fig. 1
    ein Diagramm, aus dem die Verminderung des Reibungskoeffizienten in Abhängigkeit von der Partikelgrösse des Pulvers und das mechanische Verhalten (Haftfestigkeit) der Schicht auf AlSi-Substraten in Abhängigkeit von der Partikelgrösse des Pulvers hervorgeht; und
    Fig. 2
    ein Diagramm, aus dem die Verminderung des Reibungskoeffizienten in Abhängigkeit von der Menge des gebundenen Sauerstoffs im Pulver und das mechanische Verhalten (Haftfestigkeit) der Schicht auf AlSi-Substraten in Abhängigkeit von der Menge des gebundenen Sauerstoffs im Pulver hervorgeht.
    Beispiel 1
  • Ein Pulver der nachstehenden Zusammensetzung wurde mit Hilfe eines Plasmatrons unter folgenden spezifischen Bedingungen auf die Lauffläche einer Zylinderbüchse aufgebracht:
  • Pulver:
    C = 1,1 Gewichts-%
    Cr = 1,5 Gewichts-%
    Mn = 1,5 Gewichts-%
    Fe = Differenz auf 100 Gewichts-%.
    Gegebenenfalls kann das Pulver auch geringe Mengen (0.01 - 0.2 Gew.-%) von S und P enthalten.
  • Die Partikelgrösse des Pulvers betrug zwischen 5 bis 25 µm, und die Herstellung erfolgte durch Gasverdüsen.
  • Die Geschwindigkeit der Gasströmung während des Beschichtens der Büchse betrug 10 m/s, die Luftmenge für die Schichtkühlung und Pulverreaktion 500 NLPM (entsprechend 100 NLPM Sauerstoff). Diese Luftmenge wurde durch einen Plasmatronkörper zugeführt, z.B. ein Plasmatron gemäss EP-B1-0 645 946 .
  • Die Ergebnisse der durchgeführten Untersuchungen zeigen, dass der Sauerstoffgehalt in der erzeugten Schicht bei 3 Gewichts-% liegt. Der Sauerstoff ist gemäss Untersuchungen mittels Röntgenfeinstrukturanalyse unter den stöchiometrischen Formeln FeO und Fe3O4 gebunden. Durch diese Untersuchungen wurde auch festgestellt, dass die Bildung von Fe2O3 unterhalb der Nachweisgrenze liegt.
  • Die nach der anschliessenden Bearbeitung der erzeugten Schichten durch Diamanthonen durchgeführten Motorversuche haben gezeigt, dass die Reibungskoeffizienten zwischen Kolbenring und Zylinderwandung im Vergleich zu klassischen Gusseisenbüchsen mit Lamellengraphit deutlich reduziert sind.
  • Beispiel 2
  • Bei Verwendung eines Pulvers gleicher chemischer Zusammensetzung wie in Beispiel 1, jedoch mit einer Partikelgrösse von 10 bis 45 µm, und im übrigen unter denselben Randbedingungen wie im Beispiel 1, liegt der Anteil an gebundenem Sauerstoff in den erzeugten Schichten bei 2 Gewichts-%. Die restlichen Ergebnisse einer Analyse der so aufgebrachten Schicht waren gleich wie im Beispiel 1.
  • Die durchgeführten Untersuchungen zeigen im Motortest ähnlich günstige Ergebnisse, wobei die Reduktion der Reibungskoeffizienten im Zusammenhang mit dem Anteil an gebundenem Sauerstoff steht.
  • Beispiel 3
  • Für Motoren, die durch Verbrennung von schwefelhaltigen Kraftstoffen oder von Methanol, bei Temperaturen unter dem Taupunkt bei den herrschenden Bedingungen, korrosionsgefährdet sind, wurde die Beschichtung unter den Bedingungen gemäss Beispiel 1 mit folgendem Pulver vorgenommen:
  • Pulver:
    C = 0,4 Gewichts-%
    Cr = 13 Gewichts-%
    Mn = 1,5 Gewichts-%
    Mo = 2 Gewichts-%
    Fe = Differenz auf 100 Gewichts-%
    Gegebenenfalls kann das Pulver auch geringe Mengen (0.01 - 0.2 Gew.-%) von S und P enthalten.
  • Die Partikelgrösse des Pulvers betrug zwischen 10 bis 45 µm, und die Herstellung erfolgte durch Gasverdüsen.
  • Die Versuche, die mit einem mit einer derartigen Zylinderlauffläche versehenen Verbrennungsmotor durchgeführt wurden, haben im wesentlichen zu denselben Ergebnissen wie in Beispielen 1 und 2 erwähnt geführt.
  • Beispiel 4
  • Dem Pulver gemäss Beispiel 2 wurde eine Menge von 30 Gewichts-% eines legierten Keramikpulvers, bestehend aus 60 Gewichts-% Al2O3 und 40 Gewichts-% TiO2, zugegeben. Die mittels dieser Pulvermischung erzeugten Schichten sind durch die Einlagerung der Keramikpartikel (Partikelgrösse 5 bis 22 µm) mechanisch verstärkt.
  • Beispiel 5
  • Analog zu Beispiel 4 wurden 30 Gewichts-% eines legierten Keramikpulvers, bestehend aus 80 Gewichts-% Al2O3 und 20 Gewichts-% ZrO2 zugegeben. Die mittels dieser Pulvermischung erzeugten Schichten sind durch die Einlagerung der Keramikpartikel (Partikelgrösse 5 bis 22 µm) mechanisch verstärkt. Dabei wurde derselbe Effekt wie in Beispiel 4 erzielt.
  • Fig. 1 zeigt ein Diagramm, aus dem die Verminderung des Reibungskoeffizienten in Abhängigkeit von der Partikelgrösse des Pulvers und das mechanische Verhalten, namentlich die Haftfestigkeit der Schicht auf AlSi-Substraten, in Abhängigkeit von der Partikelgrösse des Pulvers hervorgeht. Aus dem Diagramm ist einerseits klar ersichtlich, dass sich der Reibungskoeffizient mit zunehmender Grösse der Partikel des Beschichtungspulvers vermindert. Andererseits wird deutlich, dass die Haftfestigkeit der Schicht auf AlSi-Substraten abnimmt, wenn die Grösse der Partikel des Beschichtungspulvers zunimmt. Ein guter Kompromiss bezüglich der zu wählenden Partikelgrösse kann im Bereich von 25-30 m liegen, sodass mit einer in den meisten Fällenden ausreichenden Haftfestigkeit der Schicht im Bereich von 45-50 MPa zu rechnen ist, wobei der Reibungskoeffizient, im Vergleich mit Schichten gemäss dem Stand der Technik, um ca. 22-25% geringer ist. Wenn aber in erster Linie eine ausgesprochen hohe Haftfestigkeit der Schicht angestrebt wird und die Verminderung des Reibungskoeffizienten eher von untergeordneter Bedeutung ist, wird man ein Beschichtungspulver mit einer Partikelgrösse von weniger als 25 um wählen. Andererseits, wenn in erster Linie ein ausgesprochen geringer Reibungskoeffizient angestrebt wird und eine etwas geringere Haftfestigkeit in Kauf genommen werden kann, wird man ein Beschichtungspulver mit einer Partikelgrösse von mehr als 35 m wählen.
  • Fig. 2 zeigt ein Diagramm, aus dem die Verminderung des Reibungskoeffizienten in Abhängigkeit von der Menge des gebundenen Sauerstoffs in der Schicht und das mechanische Verhalten, namentlich die Haftfestigkeit der Schicht auf AlSi-Substraten, in Abhängigkeit von der Menge des gebundenen Sauerstoffs in der Schicht hervorgeht. Aus dem Diagramm ist einerseits klar ersichtlich, dass sich der Reibungskoeffizient mit zunehmender Menge des gebundenen Sauerstoffs in der Schicht vermindert. Andererseits wird deutlich, dass die Haftfestigkeit der Schicht auf AlSi-Substraten abnimmt, wenn die Menge des gebundenen Sauerstoffs in der Schicht zunimmt. Ein guter Kompromiss bezüglich der anzustrebenden Menge an gebundenem Sauerstoff in der Schicht kann im Bereich von 2-2.5 Gew.-% liegen, sodass mit einer in den meisten Fällen ausreichenden Haftfestigkeit der Schicht im Bereich von 40-50 MPa zu rechnen ist, wobei der Reibungskoeffizient, im Vergleich mit Schichten gemäss dem Stand der Technik, um ca. 20-25% geringer ist. Wenn aber, wie bereits im Zusammenhang mit Fig. 1 erläutert, in erster Linie eine ausgesprochen hohe Haftfestigkeit der Schicht angestrebt wird und die Verminderung des Reibungskoeffizienten eher von untergeordneter Bedeutung ist, wird man eine Beschichtung mit einem Anteil an gebundenem Sauerstoff von weniger als 2 Gew.-% anstreben. Andererseits, wenn in erster Linie ein ausgesprochen geringer Reibungskoeffizient angestrebt wird und eine etwas geringere Haftfestigkeit in Kauf genommen werden kann, wird man eine Schicht mit einem Anteil an gebundenem Sauerstoff von mehr als 2.5 Gew.-% wählen.

Claims (4)

  1. Pulver zum Beschichten eines Substrats, insbesondere zum Beschichten von Zylinderbohrungen von Motorblöcken aus Aluminium- oder Magnesium-Legierungen oder aus Gusseisen, oder zum Beschichten von Gusseisenbüchsen, welches Pulver die folgende Zusammensetzung aufweist:
    C = 0.4 bis 1.5 Gewichts-%
    Cr = 0.2 bis 2.5 Gewichts-%
    Mn = 0.2 bis 3 Gewichts-%
    gegebenenfalls geringe Mengen von S und P
    Fe = Differenz auf 100 Gewichts-%.
  2. Pulver zum Beschichten eines Substrats, insbesondere zum Beschichten von Zylinderbohrungen von Motorblöcken aus Aluminium- oder Magnesium-Legierungen oder aus Gusseisen, oder zum Beschichten von Gusseisenbüchsen, welches Pulver die folgende Zusammensetzung aufweist:
    C = 0.1 bis 0.8 Gewichts-%
    Cr = 11 bis 18 Gewichts-%
    Mn = 0.1 bis 1.5 Gewichts-%
    gegebenenfalls geringe Mengen von S und P
    Mo = 0.1 bis 5 Gewichts-%
    Fe = Differenz auf 100 Gewichts-%.
  3. Pulver nach Anspruch 1 oder 2, wobei der Gehalt an Schwefel und Phosphor:
    S = 0.01 bis 0.2 Gewichts-%
    P = 0.01 bis 0.1 Gewichts-% beträgt.
  4. Verwendung eines Pulvers nach einem der vorangehenden Ansprüche zum Beschichten eines Substrats, insbesondere zum Beschichten von Zylinderbohrungen von Motorblöcken aus Aluminium- oder Magnesium-Legierungen oder aus Gusseisen, oder zum Beschichten von Gusseisenbüchsen.
EP04011394A 1999-01-19 1999-12-08 Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung Expired - Lifetime EP1507020B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CH9199 1999-01-19
CH9199 1999-01-19
CH24599 1999-02-09
CH24599 1999-02-09
EP99811122A EP1022351B2 (de) 1999-01-19 1999-12-08 Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP99811122A Division EP1022351B2 (de) 1999-01-19 1999-12-08 Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung

Publications (3)

Publication Number Publication Date
EP1507020A2 EP1507020A2 (de) 2005-02-16
EP1507020A3 EP1507020A3 (de) 2005-04-20
EP1507020B1 true EP1507020B1 (de) 2007-06-27

Family

ID=25683486

Family Applications (2)

Application Number Title Priority Date Filing Date
EP99811122A Expired - Lifetime EP1022351B2 (de) 1999-01-19 1999-12-08 Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung
EP04011394A Expired - Lifetime EP1507020B1 (de) 1999-01-19 1999-12-08 Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP99811122A Expired - Lifetime EP1022351B2 (de) 1999-01-19 1999-12-08 Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung

Country Status (9)

Country Link
US (2) US6548195B1 (de)
EP (2) EP1022351B2 (de)
JP (2) JP3967511B2 (de)
KR (1) KR100593342B1 (de)
AT (2) ATE267275T1 (de)
CA (1) CA2296155C (de)
DE (2) DE59914394D1 (de)
ES (2) ES2221343T5 (de)
PT (2) PT1022351E (de)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19963223A1 (de) * 1999-12-27 2001-06-28 Volkswagen Ag Stahlhaltiges Material für eine Plasmaabscheidung
CH694664A5 (de) 2000-06-14 2005-05-31 Sulzer Metco Ag Durch Plasmaspritzen eines Spritzpulvers aufgebrachte eisenhaltige Schicht auf einer Zylinderlauffläche.
US6756083B2 (en) * 2001-05-18 2004-06-29 Höganäs Ab Method of coating substrate with thermal sprayed metal powder
CH695339A5 (de) * 2002-02-27 2006-04-13 Sulzer Metco Ag Zylinderlaufflächenschicht für Verbrennungsmotoren sowie Verfahren zu deren Herstellung.
JP3910145B2 (ja) 2003-01-06 2007-04-25 日本発条株式会社 溶射被膜およびその製造方法
DE10324279B4 (de) * 2003-05-28 2006-04-06 Daimlerchrysler Ag Verwendung von FeC-Legierung zur Erneuerung der Oberfläche von Zylinderlaufbuchsen
CA2514493C (en) * 2004-09-17 2013-01-29 Sulzer Metco Ag A spray powder
GB2421207A (en) * 2004-12-16 2006-06-21 Cosworth Technology Ltd Casting with a halogen containing compound provided on the mould surface
JP4818659B2 (ja) * 2005-08-08 2011-11-16 いすゞ自動車株式会社 内燃機関の燃焼室用摺動部材及びその製造方法
EP1757710A1 (de) 2005-08-23 2007-02-28 Sulzer Metco Coatings GmbH Werkstück mit einer thermisch gespritzten Oberflächenschicht
DE102005040015B3 (de) * 2005-08-23 2007-04-12 Brückner Maschinenbau GmbH Walze sowie Verfahren zu deren Herstellung
DE102006042549C5 (de) * 2006-09-11 2017-08-17 Federal-Mogul Burscheid Gmbh Nasse Zylinderlaufbuchse mit kavitationsresistenter Oberfläche
KR100878878B1 (ko) * 2007-06-14 2009-01-15 주식회사뉴테크 용사기술을 이용한 엔진블록 라이너외벽 코팅 방법
JP5111965B2 (ja) 2007-07-24 2013-01-09 株式会社日立製作所 記憶制御装置及びその制御方法
JP5257756B2 (ja) * 2007-12-05 2013-08-07 日産自動車株式会社 鉄系溶射被膜、その形成方法及び摺動部材
JP5651922B2 (ja) * 2009-03-04 2015-01-14 日産自動車株式会社 シリンダブロック及び溶射皮膜形成方法
DE102009016650B3 (de) * 2009-04-07 2010-07-29 Federal-Mogul Burscheid Gmbh Gleitelement mit einstellbaren Eigenschaften
JP5455149B2 (ja) * 2009-05-28 2014-03-26 日産自動車株式会社 鉄系溶射被膜
CN101818318A (zh) * 2010-05-05 2010-09-01 北京科技大学 一种大气等离子体喷涂法制备细晶钨、钼涂层的方法
DE102010021300B4 (de) * 2010-05-22 2012-03-22 Daimler Ag Drahtförmiger Spritzwerkstoff, damit erzeugbare Funktionsschicht und Verfahren zum Beschichten eines Substrats mit einem Spritzwerkstoff
US20120258254A1 (en) * 2011-04-06 2012-10-11 Basf Corporation Methods For Providing High-Surface Area Coatings To Mitigate Hydrocarbon Deposits On Engine And Powertrain Components
FR2974610B1 (fr) * 2011-04-26 2013-05-17 Peugeot Citroen Automobiles Sa Procede de realisation des surfaces de chambres a combustion d'un bloc moteur en alliage d'aluminium
EP2650398B8 (de) * 2012-04-11 2015-05-13 Oerlikon Metco AG, Wohlen Spritzpulver mit einer superferritischen Eisenbasisverbindung, sowie ein Substrat, insbesondere Bremsscheibe mit einer thermischen Spritzschicht
DE102012009496B4 (de) 2012-05-14 2017-05-11 Stahlwerk Ergste Westig Gmbh Chromstahl
DE112013005937B4 (de) * 2012-12-12 2022-06-09 Abb Schweiz Ag Verschleissbeständige Schicht und Verfahren zur Herstellung einer verschleissbeständigen Schicht
DE102012112394A1 (de) * 2012-12-17 2014-06-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Herstellen eines beschichteten Magnesiumbauteils
EP2829713B1 (de) * 2013-07-26 2018-11-07 Sulzer Metco AG Werkstück mit einer Ausnehmung zur Aufnahme eines Kolbens
KR101922159B1 (ko) * 2014-11-04 2018-11-27 현대중공업 주식회사 피스톤 스커트부 코팅재 조성물 및 이를 이용한 피스톤 스커트부의 코팅방법
US9945318B2 (en) 2015-12-04 2018-04-17 Hyundai Motor Company Cylinder block
CN105543759A (zh) * 2015-12-18 2016-05-04 合肥中澜新材料科技有限公司 一种高硬度耐腐蚀发动机汽缸内壁耐磨涂层及其制备方法
EP3414356B1 (de) 2016-02-12 2021-04-21 Oerlikon Surface Solutions AG, Pfäffikon Tribologisches system eines verbrennungsmotors mit beschichtung
CN109475885B (zh) * 2016-05-27 2022-03-08 欧瑞康美科股份公司,沃伦 覆层方法、热覆层以及具有热覆层的缸
CN107214341B (zh) * 2017-05-24 2019-05-24 大连理工大学 一种钢-耐磨铜合金层状轴瓦材料、其制备装置及制备方法
JP7083295B2 (ja) * 2018-08-22 2022-06-10 トヨタ自動車東日本株式会社 摺動部材及びその製造方法
JP7159111B2 (ja) * 2019-05-28 2022-10-24 日本ピストンリング株式会社 摺動部材と潤滑油との組み合わせ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR735928A (fr) * 1931-05-29 1932-11-17 Procédé de fabrication de pièces de machines en métaux légers à surface protégée contre l'usure
GB558182A (en) * 1942-03-09 1943-12-24 British Piston Ring Company Lt Improvements in and in the manufacture of metal inserts
DE940082C (de) * 1950-11-17 1956-03-08 Goetzewerke Verfahren zur Herstellung von Zylinderlaufbuechsen
GB1390662A (en) * 1972-05-05 1975-04-16 Ass Eng Ltd Sintered ferrous machinery components and process for their manufacture
JPS5432421B2 (de) * 1973-01-09 1979-10-15
US4060653A (en) * 1974-02-22 1977-11-29 Kennecott Copper Corporation Composite wire
JPS57101662A (en) * 1980-12-16 1982-06-24 Riken Corp Sliding component part
JPS6031901B2 (ja) * 1981-10-12 1985-07-25 本田技研工業株式会社 プラズマ溶射皮膜形成方法
JPH0222444A (ja) * 1988-07-08 1990-01-25 Sanyo Special Steel Co Ltd 耐銹耐摩耗用鋼
US5358547A (en) * 1993-02-18 1994-10-25 Holko Kenneth H Cobalt-phosphorous-base wear resistant coating for metallic surfaces
JPH07243528A (ja) * 1994-03-02 1995-09-19 Teikoku Piston Ring Co Ltd 摺動部材の組合せ
US5466906A (en) 1994-04-08 1995-11-14 Ford Motor Company Process for coating automotive engine cylinders
US5554278A (en) * 1994-06-03 1996-09-10 Henderson; Bruce L. Quick change oil recycler
DE69514156T2 (de) * 1994-06-24 2000-06-29 Praxair Technology Inc Verfahren zur Herstellung eines Überzuges auf der Basis von MCrAlY mit feinverteilten Oxiden
US5663124A (en) * 1994-12-09 1997-09-02 Ford Global Technologies, Inc. Low alloy steel powder for plasma deposition having solid lubricant properties
US5766693A (en) 1995-10-06 1998-06-16 Ford Global Technologies, Inc. Method of depositing composite metal coatings containing low friction oxides
US5592927A (en) * 1995-10-06 1997-01-14 Ford Motor Company Method of depositing and using a composite coating on light metal substrates
US5622753A (en) * 1996-04-08 1997-04-22 Ford Motor Company Method of preparing and coating aluminum bore surfaces
US5958521A (en) * 1996-06-21 1999-09-28 Ford Global Technologies, Inc. Method of depositing a thermally sprayed coating that is graded between being machinable and being wear resistant
US5723187A (en) * 1996-06-21 1998-03-03 Ford Global Technologies, Inc. Method of bonding thermally sprayed coating to non-roughened aluminum surfaces
WO2000031313A1 (de) * 1998-11-25 2000-06-02 Joma Chemical As Werkstoff und verfahren zum herstellen einer korrosions- und verschleissfesten schicht durch thermisches spritzen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20020051851A1 (en) 2002-05-02
CA2296155A1 (en) 2000-07-19
ATE267275T1 (de) 2004-06-15
ES2221343T3 (es) 2004-12-16
JP3967511B2 (ja) 2007-08-29
EP1022351B2 (de) 2009-02-25
KR100593342B1 (ko) 2006-06-26
CA2296155C (en) 2004-09-14
ES2221343T5 (es) 2009-06-12
EP1507020A3 (de) 2005-04-20
CA2296155E (en) 2000-07-19
US6572931B2 (en) 2003-06-03
EP1022351B1 (de) 2004-05-19
EP1022351A1 (de) 2000-07-26
JP2007191795A (ja) 2007-08-02
PT1507020E (pt) 2007-07-13
JP2000212717A (ja) 2000-08-02
JP4644687B2 (ja) 2011-03-02
EP1507020A2 (de) 2005-02-16
DE59909522D1 (de) 2004-06-24
PT1022351E (pt) 2004-10-29
ES2288232T3 (es) 2008-01-01
ATE365814T1 (de) 2007-07-15
KR20000071238A (ko) 2000-11-25
US6548195B1 (en) 2003-04-15
DE59914394D1 (de) 2007-08-09

Similar Documents

Publication Publication Date Title
EP1507020B1 (de) Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung
DE19637737C2 (de) Verfahren zur Abscheidung einer Eisenoxid-haltigen Beschichtung auf ein Leichtmetallsubstrat
DE10046956C2 (de) Thermisch aufgetragene Beschichtung für Kolbenringe aus mechanisch legierten Pulvern
EP0899354B1 (de) Beschichtung aus einer übereutektischen Aluminium/Silizium Legierung bzw. einem Aluminium/Silizium Verbundwerkstoff
EP1340834B1 (de) Zylinderlaufflächenschicht für Verbrennungsmotoren sowie Verfahren zu deren Herstellung
DE19733205B4 (de) Beschichtung für eine Zylinderlauffläche einer Hubkolbenmaschine aus einer übereutektischen Aluminium/Siliziumlegierung, Spritzpulver zu deren Herstellung und deren Verwendung
WO2011147526A1 (de) Drahtförmiger spritzwerkstoff, damit erzeugbare funktionsschicht und verfahren zum beschichten eines substrats mit einem spritzwerkstoff
DE102015213896A1 (de) Verfahren zur Beschichtung eines metallischen Werkzeugs und Bauteil
EP0534905A2 (de) Werkzeuge für die Zerspannung von Werkstoffen
EP1896626B1 (de) Verfahren zum beschichten einer zylinderlaufbuchse
WO2013104784A2 (de) Kolbenring
EP2330228A1 (de) Spritzwerkstoff, eine thermische Spritzschicht, sowie Zylinder mit einer thermischen Spritzschicht
EP1204619B1 (de) Keramischer werkstoff, verfahren, verwendung und schicht
DE19640789C2 (de) Verschleißfeste beschichtete Bauteile für Verbrennungskraftmaschinen, insbesondere Kolbenringe und Verfahren zu deren Herstellung
DE19601793B4 (de) Verfahren zum Beschichten von Oberflächen
DE19711756A1 (de) Verfahren zum Beschichten von Oberflächen
DE10002570B4 (de) Thermisches Spritzmaterial, Struktur und Verfahren zu ihrer Herstellung
DE102015013706A1 (de) Funktionsschicht
DE102004040460A1 (de) Thermisches Spritzverfahren und thermisch gespritzte Werkstoffe
DE102014013538A1 (de) Verfahren zum Beschichten der Laufbahn eines Zylinderkurbelgehäuses, bei dem ein Spritzwerkstoff aufgeschmolzen und mittels eines thermischen Spritzverfahrens als Schicht auf der Laufbahn abgeschieden wird sowie Spritzwerkstoff und thermisch gespritzte Schicht
DE10308561B4 (de) Verschleißschutzbeschichtung, ihre Verwendung auf einem Kolben oder Kolbenring und ihr Herstellungsverfahren
DE102008034548B3 (de) Drahtförmiger Spritzwerkstoff und Verfahren zum Beschichten eines Substrats
DD224057A1 (de) Beschichtungspulver auf der basis von titancarbid
DE102008034550B3 (de) Drahtförmiger Spritzwerkstoff und Verfahren zum Beschichten eines Substrats
DE102004047196B4 (de) Verfahren zur Herstellung einer mehrlagigen Schutzschicht auf einem Metallgegenstand durch Metallspritzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040524

AC Divisional application: reference to earlier application

Ref document number: 1022351

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1022351

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070628

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070627

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SULZER MANAGEMENT AG PATENTABTEILUNG/0067

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 59914394

Country of ref document: DE

Date of ref document: 20070809

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2288232

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070928

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070627

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071208

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: INTELLECTUAL PROPERTY SERVICES GMBH, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20181129

Year of fee payment: 20

Ref country code: AT

Payment date: 20181227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181221

Year of fee payment: 20

Ref country code: FR

Payment date: 20181231

Year of fee payment: 20

Ref country code: CH

Payment date: 20181227

Year of fee payment: 20

Ref country code: BE

Payment date: 20181221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190228

Year of fee payment: 20

Ref country code: IT

Payment date: 20181220

Year of fee payment: 20

Ref country code: ES

Payment date: 20190131

Year of fee payment: 20

Ref country code: NL

Payment date: 20181221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20181228

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59914394

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20191207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191207

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 365814

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191208

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20191208

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191219

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191207

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191209