EP0899354B1 - Beschichtung aus einer übereutektischen Aluminium/Silizium Legierung bzw. einem Aluminium/Silizium Verbundwerkstoff - Google Patents

Beschichtung aus einer übereutektischen Aluminium/Silizium Legierung bzw. einem Aluminium/Silizium Verbundwerkstoff Download PDF

Info

Publication number
EP0899354B1
EP0899354B1 EP98113379A EP98113379A EP0899354B1 EP 0899354 B1 EP0899354 B1 EP 0899354B1 EP 98113379 A EP98113379 A EP 98113379A EP 98113379 A EP98113379 A EP 98113379A EP 0899354 B1 EP0899354 B1 EP 0899354B1
Authority
EP
European Patent Office
Prior art keywords
silicon
particles
alloy
maximum
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98113379A
Other languages
English (en)
French (fr)
Other versions
EP0899354A1 (de
Inventor
Harald Pfeffinger
Michael Voit
Tilman Dr. Haug
Patrick Izguierdo
Herbert Gasthuber
Oliver Storz
Axel Heuberger
Franz Dr. Rückert
Peter Stocker
Helmut Pröfrock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP0899354A1 publication Critical patent/EP0899354A1/de
Application granted granted Critical
Publication of EP0899354B1 publication Critical patent/EP0899354B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/148Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12097Nonparticulate component encloses particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12104Particles discontinuous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12139Nonmetal particles in particulate component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe

Definitions

  • the invention relates to a coating of an aluminum / silicon composite material for producing wear-resistant, low-friction layers and to processes for producing the coating, both of which are used in industry.
  • sockets of gray cast iron or hypereutectic aluminum-silicon can not be waived.
  • the semi-finished bush is first inserted into the mold before pouring and then covered with liquid aluminum.
  • the typical wind force of such cans is 2 to 3 mm.
  • the inside of the liner is coarse and fine twisted, honed and exposed.
  • the alloys used include copper, so that in particular intermetallic phases such as How Al 2 Cu are formed, which are required for the short-chipping processing of the layer surface. The use of these copper-containing alloys proves to be particularly problematic in connection with certain fuels.
  • this bushing solution is associated with constructive, manufacturing and not least economic disadvantages such as limited adhesion of the AlSi10 melt on the bush surface, elaborate handling and high price.
  • the socket wall thickness affects the minimum cylinder spacing.
  • the web width should be as low as possible, especially for future engines of small design, because it also determines the minimum external dimensions of the engine.
  • Thermal spraying offers further possibilities of applying wear-resistant coatings to the cylinder wall of the crankcases.
  • the basic principle of thermal spraying is that a fusible or teilschmelzbarer material is melted in a high-speed hot gas jet into small spray droplets and accelerated in the direction of the surface to be coated (DIN 32530). Upon impact, the spray droplets solidify on the relatively cold metal surface and form a layer layer by layer.
  • the advantage of this coating technology compared to electro-deposition, chemical or physical vapor deposition is the high application rate, which makes it possible to economically coat a cylinder bore in a few minutes.
  • the methods of thermal spraying differ according to the mode of production and the properties of the high-speed hot gas jet.
  • High-speed flame spraying produces an acetylene-oxygen flame in which the spray particles are accelerated to supersonic speed and deformed on impact with the surface to be coated.
  • the HVOF process has already been used for coating cylinder bores with an aluminum-bronze alloy (US Pat. No. 5,080,056) or an iron-aluminum composite (EP 0 607 779 A1), but produces excess heat, which is often only possible through additional, expensive cooling of the crankcase can be removed (US 5,271,967).
  • gases such as argon, helium, nitrogen and / or hydrogen are transferred by an electric arc in a plasma state in which the powdery (EP 0 585 203 A1 and US 4,661,682) or wire-shaped (US Pat. No. 5,442,153) sprayed material is introduced laterally to be moderately accelerated and smelted compared to the HVOF.
  • the spray particles are heated to a higher temperature than the HVOF, so that they are in a molten state upon impact with the substrate, which provides for an intimate, cohesive connection of the layer to the substrate.
  • Powder plasma spraying has already been used to coat cylinder bores with an iron-based layer (US 3,991,240).
  • the object of the invention is to develop a thermally sprayed, wear-resistant layer, in particular for engine construction in terms of wear resistance and lubricating oil consumption, while the risk of wear for the counter-component is reduced.
  • the object is achieved with a coating having the features of claim 1 and with respect to the method with a method having the method steps of claim 4.
  • a coating having the features of claim 1 and with respect to the method with a method having the method steps of claim 4.
  • a heterogeneous layer structure of aluminum mixed crystal, embedded silicon particles or silicon primary precipitates is formed during the layered layer formation of the coating.
  • the matrix may further comprise a hypereutectic aluminum / silicon alloy.
  • the layer surface of a coating according to the invention can be processed in an economically short-chipping manner, which can presumably be attributed to the oxides which are finely distributed on the layer surface and preferably also within the coating.
  • the coating has improved wear resistance.
  • For producing the short-chipping and substantially copper-free aluminum / silicon layers by means of atmospheric thermal spraying is due to the good melting of the spray particles, the formation of finely divided oxides, their good adhesion to the substrate and the moderate heat transfer into the component atmospheric plasma spraying prefers.
  • this method offers the possibility to perform custom coatings, so that can be dispensed with the surface finishing of the layer on the pre-turning.
  • a coating is expedient which ensures good, in particular short-chipping, workability of its surface.
  • this wear-resistant, short-span machinable coating can be used to coat crankcases, is in addition to the reduction of combustion residues by reducing lubricating oil consumption interest to use this for all different fuels worldwide, so the coating, especially when used for the cylinder surfaces of internal combustion engines is copper-free ,
  • a cylinder surface can be coated in a die-cast engine block made of light metal such as aluminum or magnesium by means of a thermal spraying process, which on the previous usual but Complex liner solution can be dispensed with.
  • the thickness of the actual, tribological running layer on the tribologically non-executable, but good to be cast and machined crankcase can be significantly reduced. It is, for example, with 0.1 to 0.2 mm less than 1/10 of the usual sleeve wall thickness today and therefore offers the opportunity to build much more compact engines.
  • plasma spraying is used to produce the coating.
  • this non-equilibrium method it is also possible to form microstructures which otherwise can not be represented metallurgically. Because of the high energy density and the large Parametervieliere the method z. B. almost defined oxides are formed in the layer structure, on the one hand carry a short-chipping processing of the layer surface and on the other hand, a significant contribution to the wear resistance of the layers.
  • agglomerated spray powders it is also possible to add any desired foreign materials to the layer, including those which are distinct from the aluminum alloy different melting points such as hard metal or ceramic particles but also dry lubricants.
  • the coating according to the invention can be integrated without changing the manufacturing equipment installed today in the series, which eliminates the costly production and handling of the cylinder liners and considerable amounts of material can be saved.
  • the coating can be carried out at high application rates in particularly short cycle times, wherein the coating is very accurately applied to the cylinder wall of the crankcase and a fine surface quality is set.
  • spray powders of copper-free aluminum / silicon alloys or aluminum / silicon composites were developed.
  • two essentially copper-free aluminum / silicon alloy systems were selected as the wettable powder, an alloy A (see FIG. 1) for interaction, in particular with iron-coated pistons, and an alloy B (see FIG. 2) preferably being used for uncoated pistons.
  • FIG. 1 shows a cross-section of the spherical spray particles made from the alloy A, from which the aluminum mixed-crystal structure and the Si primary vacancies can be clearly seen.
  • the cut was etched to attack the aluminum mixed crystal and thus to clarify the microstructure.
  • the microstructure consists of primary aluminum mixed-crystal dendrites in which the dendrite arms are enveloped by eutectic silicon.
  • the size of the dendrite arms varies greatly, so that they can be resolved only conditionally.
  • the variations in the fineness of the present structure comes, on the one hand, from the fluctuations in temperature and speed of individual melt droplets and, on the other hand, from the different nucleation during the solidification of different melt droplets.
  • Such a fine structure characterizes thermally sprayed layers with respect to microstructures, which are obtained via powder-metallic routes, and is responsible for the good wear resistance of these layers.
  • FIG. 2 shows a scanning electron micrograph of a plasma-sprayed layer, which was produced with the spray powder of alloy A.
  • the layer made with the spray powder of Alloy A was honed and exposed mechanically. In the production of layers, narrow dimensional tolerances were observed, so that it was possible to dispense with rough and fine turning.
  • intermetallic phases and pores are also recognizable, which hold back small amounts of oil during operation and which determine the formation of a thin film of oil on the surface of the cylinder surface.
  • the agglomerated composite powders consist of fine silicon particles and fine, metallic particles of an aluminum-silicon alloy, which are bonded to each other by means of inorganic or organic binders, wherein the proportion of silicon particles 5 to 50% and the proportion of alloy particles is 50 to 95%.
  • the silicon particles have a mean particle size of 0.1 to 10.0 microns, preferably about 5 microns.
  • the metallic particles have an average particle size of 0.1 to 50.0 microns, preferably about 5 microns and consist of either alternatively employable hypoeutectic alloys C or D, or from both alternatively employable hypereutectic alloys E or F.
  • a cylinder running surface of a cylinder bore assumes that the casting of the Leichmetallblocks done in the usual way in die-casting, but without the inserted into the mold cylinder liners.
  • the interior of the cylinder bore of the crankcase is then coarsely pre-turned in one operation to ensure the required shape and position tolerances. Subsequently, the aluminum-silicon layer is applied.
  • the coating operation may be carried out either in the form of inserting and axially moving into the bore a suitable commercially available internal burner rotating about the center axis of the cylinder bore or a non-rotating burner in the cylinder bore of the rotating crankcase and along the central axis of the cylinder bore is guided to spray the layer on the cylinder wall at almost röch angle.
  • a suitable commercially available internal burner rotating about the center axis of the cylinder bore or a non-rotating burner in the cylinder bore of the rotating crankcase and along the central axis of the cylinder bore is guided to spray the layer on the cylinder wall at almost röch angle.
  • the latter is procedurally simpler and safer, because the supply of the necessary media such as electrical energy, cooling water, primary and secondary gas and spray powder by a rotating unit is problematic.

Description

  • Die Erfindung betrifft eine Beschichtung aus einem Aluminium/Silizium Verbundwerkstoff zur Herstellung von verschleißfesten, reibarmen Schichten sowie Verfahren zur Herstellung der Beschichtung, wie beides in der Industrie verwendet wird.
  • Im Automobilbau werden zur Zeit nach und nach die meisten der heute noch dominierenden Graugußkurbelgehäuse von Hubkolbenmaschinen - ihr Anteil lag 1994 in Deutschland noch bei beherrschenden 96%, europaweit bei 82%- durch solche aus Leichtmetallen verdrängt, um das Kraftfahrzeuggesamtgewicht zu verringern und damit die Kraftstoff ausnützung zu verbessern. Zur Herstellung von Kurbelgehäusen aus Leichtmetall wird sich aus wirtschaftlichen und technischen Gründen zunächst das Druckgießen von niedrig legiertem Aluminium wie AlSi10 qualifizieren. Solche Legierungen zeigen im Gegensatz zum im Motorenbau etablierten aber erheblich aufwendigeren atmosphärischen Guß von übereutektischen Aluminium-Silizium-Legierungen wie Alusil (Al-Sil7) ein unbefriedigendes Reibungs- und Verschleißverhalten im Kontakt mit Aluminium-Kolben und Kolbenringen und sind daher als Reibpartner ungeeignet.
  • Daher kann für künftige Motoren auf das Eingießen von tribologisch geeigneten Buchsen aus Grauguß oder übereutektischem Aluminium-Silizium nicht verzichtet werden. Zur Herstellung dieser Buchsen werden z. B. nach DE 44 38 550 A1 Rohlinge im bekannten Ospray-Verfahren hergestellt und nachträglich mechanisch kompaktiert. Die halbfertige Buchse wird vor dem Gießen erst in die Gießform eingelegt und dann mit flüssigem Aluminium umgossen. Die typische Windstärke solcher Büchsen liegt bei 2 bis 3 mm. Anschließend wird das Innere der Laufbüchse grob- und feingedreht, gehont und freigelegt. Die verwendeten Legierungen beinhalten Kupfer, damit insbesondere intermetallische Phasen wie wie Al2Cu gebildet werden, die für die kurzspanende Bearbeitung der Schichtoberfläche erforderlich sind. Der Einsatz dieser Kupfer-haltigen Legierungen erweist sich in Verbindung mit bestimmten Kraftstoffen besonders problematisch.
  • Die nach der DE 43 28 619 C2 und EP 0 411 577 B1 sprühkompaktierten Blöcke werden zwar mit Kupfer-freien Aluminium/Silizium Legierungen hergestellt, fanden jedoch bis heute keinen Einsatz als Zylinderlaufbuchse, denn die Oberfläche der Zylinderlaufbuchsen lassen sich nicht kurzspanend bearbeiten und stellen damit eine wirtschaftlich nicht vertretbare Alternative dar.
  • Darüberhinaus ist diese Buchsenlösung mit konstruktiven, fertigungstechnischen und nicht zuletzt wirtschaftlichen Nachteilen wie begrenzte Haftung der AlSi10-Schmelze an der Buchsenoberfläche, aufwendige Handhabung und hoher Preis gebunden. Dazu beeinflußt die Buchsenwandstärke den minimalen Zylinderabstand. Die Stegbreite soll, insbesondere bei zukünftigen Motoren kleiner Bauart, so gering wie möglich sein, weil sie die Mindestaußenabmessungen des Motors mitbestimmt.
  • Das thermische Spritzen bietet weitere Möglichkeiten, verschleißfeste Beschichtungen auf die Zylinderlaufwand der Kurbelgehäusen aufzubringen. Das Grundprinzip des thermischen Spritzens besteht darin, daß ein schmelzbarer bzw. teilschmelzbarer Werkstoff in einem Hochgeschwindigkeit-Heißgasstrahl zu kleinen Spritztröpfchen aufgeschmolzen und in Richtung der zu beschichtetende Fläche beschleunigt wird (DIN 32530). Beim Aufprallen erstarren die Spritztröpfchen auf der relativ kalt gebliebenen Metalloberfläche und bilden Lage für Lage eine Schicht. Vorteil dieser Beschichtungstechnik gegenüber der E-lektroabscheidung, chemischen oder physikalischen Gasphasenabscheidung ist die hohe Auftragsrate, die es ermöglichen, eine Zylinderbohrung in wenigen Minuten wirtschaftlich zu beschichten. Die Verfahren des thermischen Spritzens unterscheiden sich nach der Erzeugungsart und den Eigenschaften des Hochgeschwindigkeit-Heißgasstrahles.
  • Beim Hochgeschwindigkeit-Flammspritzen (HVOF) wird eine Acetylen-Sauerstoff-Flamme erzeugt, in der die Spritzteilchen auf Überschallgeschwindigkeit beschleunigt und beim Aufprall an der zu beschichtenden Oberfläche deformiert werden. Das HVOF-Verfahren wurde zur Beschichtung von Zylinderbohrungen mit einer Aluminium-Bronze-Legierung (US 5,080,056) oder einem Eisen-Aluminium-Verbundwerkstoff (EP 0 607 779 A1) bereits verwendet, produziert jedoch überschüssige Wärme, die häufig nur durch zusätzliche, aufwendige Kühlung des Kurbelgehäuses abgeführt werden kann (US 5,271,967). Beim Plasmaspritzen werden Gase wie Argon, Helium, Stickstoff und/oder Wasserstoff durch einen elektrischen Lichtbogen in einem Plasmazustand überführt, in dem das pulverförmige (EP 0 585 203 A1 und US 4,661,682) oder drahtförmige (US 5,442,153) Spritzgut seitlich eingebracht wird, um dort umgelenkt, im Vergleich zum HVOF mäßig beschleunigt und aufgeschmlozen zu werden. Hier werden die Spritzteilchen auf eine höhere Temperatur als beim HVOF erhitzt, so daß sie sich beim Aufprallen auf das Substrat in einem geschmolzenen Zustand befinden, der für eine innige, stoffschlüssige Verbindung der Schicht zum Substrat sorgt. Das Pulver-Plasmaspritzen wurde zur Beschichtung von Zylinderbohrungen mit einer Schicht auf Eisen-Basis bereits angewandt (US 3,991,240). Das Draht-Plasmaspritzen wurde zur Beschichtung von Zylinderbohrungen mit einem AISI 1045-Stahl verwendet (DE 195 08 687). Die Anstrengungen für den Ersatz der Zylinderlaufbuchsen aus Grauguß durch solche aus übereutektischem Aluminium/Silizium deuten jedoch darauf hin, daß eine Zylinderlauffläche auf Eisen-Basis den technischen und tribologischen Anforderungen an modernen Hubkolbenmaschinen nicht genügen kann.
  • Die Aufgabe der Erfindung ist es, eine thermisch gespritzte, verschleißbeständige Schicht insbesondere für den Motorbau im Hinblick auf Verschleißbeständigkeit und Schmierölverbrauch zu entwickeln, wobei gleichwohl die Verschleißgefahr für die Gegenkomponente verringert wird.
  • Die Aufgabe wird bei einer Beschichtung mit den Merkmalen des Anspruchs 1 und bzgl. des Verfahrens mit einem Verfahren mit den Verfahrensschritten des Anspruchs 4 gelöst. Durch die Verwendung von speziellen im wesentlichen Kupfer-freien Aluminium/Silizium-Spritzpulvern für die Aufbringung der erfindungsgemäßen Beschichtung mittels atmosphärischem, thermischem Spritzverfahren entsteht während der lagenartigen Schichtbildung der Beschichtung ein heterogenes Schichtgefüge aus Aluminium-Mischkristall, eingebetteten Silizium-Partikeln oder Silizium-Primärausscheidungen, die auch nebeneinander vorliegen können, intermetallischen Phasen wie Mg2Si und extrem fein verteilten Oxiden, wobei die Bildung und die Verteilung der Oxide ausschließlich auf die Nichtgleichgewichtseigenschaften der atmosphärischen, thermischen Spritzverfahren zurückzuführen ist. Die Matrix kann ferner eine übereutektische Aluminium/Silizium-Legierung aufweisen. Überraschenderweise läßt sich die Schichtoberfläche einer erfindungsgemäßen Beschichtung trotz der Abwesenheit von Kupfer wirtschaftlich kurzspanend bearbeiten, was vermutlich auf die auf der Schichtoberfläche und vorzugsweise auch innerhalb der Beschichtung fein verteilten Oxide zurückführen läßt. Außerdem weist die Beschichtung eine verbesserte Verschleißfestigkeit auf.
    Zur Herstellung der kurzspanend bearbeitbaren und im wesentlichen Kupfer-freien Aluminium/Silizium-Schichten mittels atmosphärischem thermischem Spritzen wird aufgrund der guten Aufschmelzung der Spritzpartikel, der Bildung von fein verteilten Oxiden, deren guter Haftung auf dem Substrat und der mäßigen Wärmeübertragung ins Bauteil das atmosphärische Plasmaspritzen bevorzugt. Darüber hinaus bietet dieses Verfahren die Möglichkeit, Maßbeschichtungen durchzuführen, so daß bei der Oberflächenbearbeitung der Schicht auf das Vordrehen verzichtet werden kann.
    Aus wirtschaftlichen und technischen Gründen ist eine Beschichtung zweckmäßig, die eine gute, insbesondere kurzspanende Bearbeitbarkeit ihrer Oberfläche gewährleistet. Damit diese verschleißbeständige, kurzspanend bearbeitbare Beschichtung zur Beschichtung von Kurbelgehäusen verwendet werden kann, steht neben der Verringerung von Verbrennungsrückständen durch Senkung Schmierölverbrauchs das Interesse, diese für alle unterschiedlichen Kraftstoffe weltweit einsetzen zu können, weshalb die Beschichtung, insbesondere bei der Verwendung für die Zylinderlaufflächen von Brennkraftmaschinen Kupfer-frei ist.
  • Ferner ist es auch von Vorteil, daß mit der erfindungsgemäßen (verschleißfesten Aluminium-Silizium-) Beschichtung nach einem Druckgußvorgang bspw. eine Zylinderlauffläche in einem druckgußgegossenen Motorblock aus Leichtmetall wie Aluminium oder Magnesium mittels eines thermischen Spritzverfahrens beschichtet werden kann, wodurch auf die bisherige übliche aber aufwendige Laufbuchsenlösung verzichtet werden kann. Auch kann die Dicke der eigentlichen, tribologischen Laufschicht auf dem tribologisch nicht lauffähigen, aber gut zu gießenden und zu bearbeitenden Kurbelgehäuse erheblich reduziert werden. Sie beträgt bspw. mit 0,1 bis 0,2 mm weniger als 1/10 der heute üblichen Büchsenwandstärke und bietet daher die Möglichkeit, deutlich kompaktere Motoren zu bauen.
  • Zweckmäßigerweise wird zur Herstellung der Beschichtung das Plasmaspritzen verwendet. Mit diesem Nichtgleichgewichtsverfahren lassen sich auch Gefügestrukturen bilden, die sonst metallurgisch nicht darstellbar sind. Wegen der hohen Energiedichte und der großen Parametervielzahl des Verfahrens können z. B. nahezu definiert Oxide in dem Schichtgefüge gebildet werden, die zum einen eine kurzspanende Bearbeitung der Schichtoberfläche und zum anderen einen wesentlichen Beitrag zur Verschleißbeständigkeit der Schichten tragen. Durch die Verwendung von agglomerierten Spritzpulvern lassen sich zudem beliebige Fremdmaterialien der Schicht beifügen, auch solche mit sich deutlich von der Aluminium-Legierung unterscheidenden Schmelzpunkten wie Hartmetall- oder Keramikpartikel aber auch Trockenschmierstoffen.
  • Günstigerweise kann die erfindungsgemäßen Beschichtung ohne Veränderung der heute installierten Fertigungseinrichtungen in die Serie zu integriert werden, wodurch die kostenspielige Fertigung und Handhabung der Zylinderlaufbuchsen entfallen und erhebliche Mengen an Material eingespart werden können. Mit dem erfindungsgemäßen Verfahren kann die Beschichtung bei hohen Auftragsraten in besonders kurzen Taktzeiten erfolgen, wobei die Beschichtung sehr formgenau auf die Zylinderlaufwand des Kurbelgehäuses aufgebracht und eine feine Oberflächengüte dabei eingestellt wird. Durch diese Maßnahmen entfallen aufwendige Nachbearbeitungsschritte wie bspw. Vordrehen, und möglicherweise sogar auch Feindrehen entfallen, wodurch die Fertigungskosten deutlich reduziert sind.
  • Weitere sinnvolle Ausgestaltungen der Erfindung sind den Unteransprüchen entnehmbar. Im übrigen wird die Erfindung anhand von (Legierungs-) Beispielen und anhand von in den Figuren dargestellten Ausführungsbeispielen nähers erläutert. Dabei zeigt
  • Fig. 1
    ein Schliffaufnahme der sphärischen Spritzpartikel aus der Legierung A und
    Fig. 2
    Rasterelektronenmikroskopaufnahme einer plasmagespritzten Schicht
  • Um die in den Figuren dargestellten Beschichtungen herzustellen, wurden Spritzpulver aus kupferfreien Aluminium/Silizium-Legierungen bzw. Aluminium/Silizium-Verbundwerkstoffen entwikkelt. Neben der Optimierung der Zusammensetzung wurde bei den Spritzpulvern Wert auf die Form der einzelnen Spritzpulverpartikel, die Pulverkornverteilung und das Fließverhalten der Spritzpulver gelegt.
  • Als Spritzpulver wurden beispielhaft zwei im wesentlichen kupferfreie Aluminium/Silizium-Legierungssysteme gewählt, wobei eine Legierung A (siehe Figur 1) für das Zusammenwirken insbesondere mit Eisen-beschichteten Kolben und eine Legierung B (siehe Figur 2) vorzugsweise für unbeschichtete Kolben eingesetzt wird.
  • Beispiele für mögliche Legierungen werden in den nachfolgenden Beispielen angegeben, wobei die Zahlenangaben den Gehalt in Gewichtsprozent bedeuten:
  • Beispiel 1 Legierung A:
    • Silizium 23,0 bis 40,0%, vorzugsweise etwa 25%
    • Magnesium 0,8 bis 2,0%, vorzugsweise etwa 1,2%
    • Zirkon maximal 0,6%
    • Eisen maximal 0,25%
    • Mangan, Nickel, Kupfer und Zink maximal jeweils 0,01%
    • Rest Aluminium.
    Beispiel 2
  • Die Legierung B unterscheidet sich von der Legierung A lediglich durch den etwas höheren Gehalt an Eisen und Nickel:
    • Silizium 23,0 bis 40,0%, vorzugsweise etwa 25%
    • Nickel 1,0 bis 5,0%, vorzugsweise etwa 4%
    • Eisen 1,0 bis 1,4%, vorzugsweise etwa 1,2%
    • Magnesium 0,8 bis 2,0%, vorzugsweise etwa 1,2%
    • Zirkon maximal 0,6%
    • Mangan, Nickel, Kupfer und Zink maximal jeweils 0,01%
    • Rest Aluminium.
    Beispiel 3 Legierung C:
    • Silizium 0 bis 11,8%, vorzugsweise etwa 9%
    • Magnesium 0,8 bis 2,0%, vorzugsweise etwa 1,2%
    • Zirkon maximal 0,6%
    • Eisen maximal 0,25%
    • Mangan, Nickel, Kupfer und Zink maximal jeweils 0,01%
    • Rest Aluminium.
    Beispiel 4 Legierung D:
    • Silizium 0 bis 11,8%, vorzugsweise etwa 9%
    • Nickel 1,0 bis 5,0%, vorzugsweise etwa 4%
    • Eisen 1,0 bis 1,4%, vorzugsweise etwa 1,2%
    • Magnesium 0,8 bis 2,0%, vorzugsweise etwa 1,2%
    • Zirkon maximal 0,6%
    • Mangan, Nickel und Zink maximal jeweils 0,01%
    • Rest Aluminium.
    Beispiel 5 Legierung E:
    • Silizium 11,8 bis 40%, vorzugsweise etwa 17%
    • Magnesium 0,8 bis 2,0%, vorzugsweise etwa 1,2%
    • Zirkon maximal 0,6%
    • Eisen maximal 0,25%
    • Mangan, Nickel, Kupfer und Zink maximal jeweils 0,01%
    • Rest Aluminium.
    Beispiel 6 Legierung F:
    • Silizium 11,8 bis 40%, vorzugsweise etwa 17%
    • Nickel 1,0 bis 5,0%, vorzugsweise etwa 4%
    • Eisen 1,0 bis 1,4%, vorzugsweise etwa 1,2%
    • Magnesium 0,8 bis 2,0%, vorzugsweise etwa 1,2%
    • Zirkon maximal 0,6%
    • Mangan, Nickel, Kupfer und Zink maximal jeweils 0,01%
    • Rest Aluminium.
  • In Figur 1 ist eine Schliffaufnahme der sphärischen Spritzpartikel aus der Legierung A dargestellt, aus der die Aluminium-Mischkristallstruktur und die Si-Primärauscheidungen deutlich ersichtlich sind. Der Schliff wurde geätzt, um den Aluminium-Mischkristall anzugreifen und somit die Gefügestruktur zu verdeutlichen. Neben den Silizium-Primärausscheidungen besteht das Gefüge aus primären Aluminiummischkristalldendriten, bei denen die Dendritenarme von eutektischem Silizium umhüllt sind. Die Größe der Dendritenarme schwankt sehr, so daß sie nur bedingt aufgelöst werden können. Die Schwankungen in der Feinheit der vorliegendes Gefüge kommt zum einen von den Schwankungen in Temperatur und Geschwindigkeit einzelner Schmelztropfen und zum anderen von der unterschiedlichen Keimbildung bei der Erstarrung verschiedener Schmelztropfen. Ein solches feines Gefüge kennzeichnet thermisch gespritzte Schichten gegenüber Gefügestrukturen, die eine über pulvermetallische Routen erlangt werden und ist für die gute Verschleißbeständigkeit dieser Schichten verantwortlich.
  • In Figur 2 ist eine Rasterelektronenmikroskopaufnahme einer plasmagespritzten Schicht abgebildet, die mit dem Spritzpulver der Legierung A hergestellt wurde. Die mit dem Spritzpulver der Legierung A hergestellte Schicht wurde gehont und mechanisch freigelegt. Bei der Schichtherstellung wurden enge Maßtoleranzen eingehalten, so daß auf dem Vor- und Feindrehen verzichtet werden konnte. Neben der homogenen Verteilung der Silizium-Primärausscheidungen sind ebenfalls intermetallische Phasen und Poren zu erkennen, die im Betrieb geringe Mengen an Öl zurückhalten und die die Bildung eines dünnen Ölfilms an der Oberfläche der Zylinderlauffläche mitbestimmen.
  • Um den Anteil an groben Si-Partikel in der Schicht zu erhöhen, wurden Aluminium/Slizium-Verbundpulver entwickelt. Die agglomerierten Verbundpulver bestehen aus feinen Silizium-Partikeln und feinen, metallischen Partikeln einer Aluminium-Silizium-Legierung, die miteinander anhand von anorganischen oder organischen Bindern gebunden sind, wobei der Anteil an Silizium-Partikeln 5 bis 50% und der Anteil an Legierungspartikeln 50 bis 95% beträgt. Die Silizium-Partikel haben eine mittlere Korngröße von 0,1 bis 10,0 µm, vorzugsweise etwa 5µm. Die metallischen Partikel haben eine mittlere Partikelgröße von 0,1 bis 50,0 µm, vorzugsweise etwa 5µm und bestehen aus beiden alternativ einsetztbaren untereutektischen Legierungen C oder D, oder aus beiden alternativ einsetztbaren übereutektischen Legierungen E oder F. Durch die Verwendung von übereutektischen Legierungspartikeln wird der Anteil an Aluminium-Mischkristall im Schichtgefüge beibehalten, während die Bildung des Aluminium-Mischkristalls im Schichtgefüge durch die Verwendung von untereutektischen Aluminium/Silizium-Partikeln unterdrückt wird.
  • Die erfindungsgemäße Beschichtung bspw. einer Zylinderlauffläche einer Zylinderbohrung setzt voraus, daß das Gießen des Leichmetallblocks auf die übliche Weise im Druckgußverfahren erfolgt, aber ohne die in die Gußform eingelegten Zylinderlaufbuchsen. Das Innere der Zylinderlaufbohrung des Kurbelgehäuses wird dann in einem Arbeitsgang grob vorgedreht, um die erforderlichen Form- und Lagetoleranzen zu gewährleisten. Anschließend wird die Aluminium-Silizium Schicht aufgebracht. Der Beschichtungsvorgang kann entweder in der Form durchgeführt werden, daß in die Bohrung ein geeigneter, kommerziell erhältlicher, um der Mittelachse der Zylinderbohrung rotierender Innenbrenner eingeführt und axial bewegt wird, oder ein nichtdrehender Brenner in der Zylinderbohrung des rotierenden Kurbelgehäuses eingeführt und entlang der Mittelachse der Zylinderbohrung geführt wird, um die Schicht im nahezu r0echten Winkel auf die Zylinderlaufwand aufzuspritzen. Letzteres ist verfahrenstechnisch einfacher und sicherer, denn die Zuführung der notwendigen Medien wie elektrischer Energie, Kühlwasser, Primär- und Sekundärgas und Spritzpulver durch ein rotierendes Aggregat ist problematisch.

Claims (12)

  1. Beschichtung aus einem Aluminium/Silizium-Verbundwerkstoff,
    dadurch gekennzeichnet,
    daß das heterogene Schichtgefüge der Beschichtung aus einem Aluminium-Mischkristall, eingebetteten Silizium-Partikeln oder Silizium-Primärausscheidungen oder sowohl eingebetteten Silizium-Partikeln als auch Silizium-Primärausscheidungen, intermetallischen Phasen wie Mg2Si und Oxiden besteht, daß die mittlere Größe der eingebetteten Silizium-Partikeln bzw. Silizium-Primärausscheidungen kleiner als 10 µm ist, daß die mittlere Größe der Oxide kleiner als 5 µm ist und daß die Beschichtung im wesentlichen frei von Kupfer ist; d.h. der Anteil an Kupfer ist kleiner als 1 Gewichtsprozent (Gew.-%), bevorzugt kleiner als 0,1 Gew.-% und besonders bevorzugt kleiner als 0,01 Gew.-%.
  2. Beschichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    daß entweder eingebettete Silizium-Partikeln oder sowohl eingebettete Silizium-Partikel als auch Silizium-Primärausscheidungen vorliegen.
  3. Beschichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    daß sie ferner eine übereutektische Aluminium/Silizium-Legierung aufweist und dass Silizium-Primärausscheidungen vorliegen.
  4. Verfahren zur Herstellung einer Beschichtung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß die Beschichtung im thermischen, insbesondere im atmosphärischen Plasmaspritzverfahren hergestellt wird, und daß durch die Einstellung der geeigneten Spritzparameter Oxide gebildet werden.
  5. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet,
    daß für eine Legierung A ein Ausgangsspritzwerkstoff der nachfolgenden Zusammensetzung verwendet wird, wobei die Zahlenangaben den Gehalt in Gewichtsprozent bedeuten:
    Silizium 23,0 bis 40,0%, vorzugsweise etwa 25%
    Magnesium 0,8 bis 2;0%, vorzugsweise etwa 1,2%
    Zirkon maximal 0,6%
    Eisen maximal 0,25%
    Mangan, Nickel, Kupfer und Zink maximal jeweils 0,01%
    Rest Aluminium.
  6. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet,
    daß für eine Legierung B ein Ausgangsspritzwerkstoff der nachfolgenden Zusammensetzung verwendet wird, wobei die Zahlenangaben den Gehalt in Gewichtsprozent bedeuten:
    Silizium 23,0 bis 40,0%, vorzugsweise etwa 25%
    Nickel 1,0 bis 5,0%, vorzugsweise etwa 4%
    Eisen 1,0 bis 1,4%, vorzugsweise etwa 1,2%
    Magnesium 0,8 bis 2;0%, vorzugsweise etwa 1,2%
    Zirkon maximal 0,6%
    Mangan, Kupfer und Zink maximal jeweils 0,01%
    Rest Aluminium.
  7. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet,
    daß als Ausgangsspritzwerkstoff ein agglomeriertes Verbundpulver eingesetzt wird, der aus feinen Silizium-Partikeln und feinen, metallischen Partikeln, die miteinander anhand von anorganischen oder organischen Bindern gebunden sind, besteht, wobei der Anteil an Silizium-Partikeln 5 bis 50% und der Anteil an Legierungspartikeln 50 bis 95% beträgt, die Silizium-Partikel eine mittlere Korngröße von 0,1 bis 10,0 µm, vorzugsweise etwa 5µm haben, die metallischen Partikel eine mittlere Korngröße von 0,1 bis 50,0 µm, vorzugsweise etwa 5µm haben und daß für eine Legierung C der nachfolgenden Zusammensetzung verwendet wird, wobei die Zahlenangaben den Gehalt in Gewichtsprozent bedeuten:
    Silizium 0 bis 11,8%, vorzugsweise etwa 9%
    Magnesium 0,8 bis 2;0%, vorzugsweise etwa 1,2%
    Zirkon maximal 0,6%
    Eisen maximal 0,25%
    Mangan, Nickel, Kupfer und Zink maximal jeweils 0,01%
    Rest Aluminium.
  8. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet,
    daß als Ausgangsspritzwerkstoff ein agglomeriertes Verbundpulver eingesetzt wird, der aus feinen Silizium-Partikeln und feinen, metallischen Partikeln, die miteinander anhand von anorganischen oder organischen Bindern gebunden sind, besteht, wobei der Anteil an Silizium-Partikeln 5 bis 50% und der Anteil an Legierungspartikeln 50 bis 95% beträgt, die Silizium-Partikel eine mittlere Korngröße von 0,1 bis 10,0 µm, vorzugsweise etwa 5µm haben, die metallischen Partikel eine mittlere Korngröße von 0,1 bis 50,0 µm, vorzugsweise etwa 5µm haben und daß für eine Legierung D der nachfolgenden Zusammensetzung verwendet wird, wobei die Zahlenangaben den Gehalt in Gewichtsprozent bedeuten:
    Silizium 0 bis 11,8%, vorzugsweise etwa 9%
    Nickel 1,0 bis 5,0%, vorzugsweise etwa 4%
    Eisen 1,0 bis 1,4%, vorzugsweise etwa 1,2%
    Magnesium 0,8 bis 2;0%, vorzugsweise etwa 1,2%
    Zirkon maximal 0,6%
    Mangan, Kupfer und Zink maximal jeweils 0,01%
    Rest Aluminium.
  9. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet,
    daß als Ausgangsspritzwerkstoff ein agglomeriertes Verbundpulver eingesetzt wird, das aus feinen Silizium-Partikeln und feinen, metallischen Partikeln, die miteinander anhand von anorganischen oder organischen Bindern gebunden sind, bestehen, wobei der Anteil an Silizium-Partikeln 5 bis 50% und der Anteil an Legierungspartikeln 50 bis 95% beträgt, wobei die Silizium-Partikel eine mittlere Korngröße von 0,1 bis 10,0 µm, vorzugsweise etwa 5µm haben und wobei die metallischen Partikel eine mittlere Partikelgröße von 0,1 bis 50,0 um, vorzugsweise etwa 5µm haben und daß für eine Legierung E die nachfolgende Zusammensetzung verwendet wird, wobei die Zahlenangaben den Gehalt in Gewichtsprozent bedeuten:
    Silizium 11,8 bis 40%, vorzugsweise etwa 17%
    Magnesium 0,8 bis 2;0%, vorzugsweise etwa 1,2%
    Zirkon maximal 0,6%
    Eisen maximal 0,25%
    Mangan, Nickel, Kupfer und Zink maximal jeweils 0,01%
    Rest Aluminium.
  10. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet,
    daß als Ausgangsspritzwerkstoff ein agglomeriertes Verbundpulver eingesetzt wird, das aus feinen Silizium-Partikeln und feinen, metallischen Partikeln, die miteinander anhand von anorganischen oder organischen Bindern gebunden sind, bestehen, wobei der Anteil an Silizium-Partikeln 5 bis 50% und der Anteil an Legierungspartikeln 50 bis 95% beträgt, wobei die Silizium-Partikel eine mittlere Korngröße von 0,1 bis 10,0 µm, vorzugsweise etwa 5µm haben und wobei die metallischen Partikel eine mittlere Partikelgröße von 0,1 bis 50,0 µm, vorzugsweise etwa 5µm haben und daß für eine Legierung F die nachfolgende Zusammensetzung verwendet wird, wobei die Zahlenangaben den Gehalt in Gewichtsprozent bedeuten:
    Silizium 11,8 bis 40%, vorzugsweise etwa 17%
    Nickel 1,0 bis 5,0%, vorzugsweise etwa 4%
    Eisen 1,0 bis 1,4%, vorzugsweise etwa 1,2%
    Magnesium 0,8 bis 2;0%, vorzugsweise etwa 1,2%
    Zirkon maximal 0,6%
    Mangan, Kupfer und Zink maximal jeweils 0,01%
    Rest Aluminium.
  11. Verwendung einer Beschichtung nach mindestens einem der Ansprüche 1, 2 oder 3 zur Beschichtung einer Zylinderlauffläche von Hubkolbenmaschinen mit vorzugsweise Kurbelgehäusen auf Grauguß, Eisen-, Aluminium- oder Magnesium-Basis.
  12. Verwendung eines Verfahrens nach mindestens einem der Ansprüche 4 bis 10 zur Herstellung einer Beschichtung für eine Zylinderlaufwand von Hubkolbenmaschinen mit vorzugsweise Kurbelgehäusen auf Grauguß, Eisen-, Aluminium- oder Magnesium-Basis.
EP98113379A 1997-08-01 1998-07-17 Beschichtung aus einer übereutektischen Aluminium/Silizium Legierung bzw. einem Aluminium/Silizium Verbundwerkstoff Expired - Lifetime EP0899354B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19733204 1997-08-01
DE19733204A DE19733204B4 (de) 1997-08-01 1997-08-01 Beschichtung aus einer übereutektischen Aluminium/Silizium Legierung, Spritzpulver zu deren Herstellung sowie deren Verwendung

Publications (2)

Publication Number Publication Date
EP0899354A1 EP0899354A1 (de) 1999-03-03
EP0899354B1 true EP0899354B1 (de) 2003-09-10

Family

ID=7837619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98113379A Expired - Lifetime EP0899354B1 (de) 1997-08-01 1998-07-17 Beschichtung aus einer übereutektischen Aluminium/Silizium Legierung bzw. einem Aluminium/Silizium Verbundwerkstoff

Country Status (5)

Country Link
US (1) US6221504B1 (de)
EP (1) EP0899354B1 (de)
JP (1) JP3049605B2 (de)
KR (1) KR100304479B1 (de)
DE (2) DE19733204B4 (de)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532252C2 (de) * 1995-09-01 1999-12-02 Erbsloeh Ag Verfahren zur Herstellung von Laufbuchsen
US6013895A (en) 1997-09-30 2000-01-11 Eastman Machine Company System and method for perforating sheet material
JP4648541B2 (ja) * 1998-03-14 2011-03-09 ダナ・コーポレイション すべり軸受のライニングの形成方法
DE19814570C2 (de) * 1998-04-01 2000-06-21 Daimler Chrysler Ag Zylinderlaufbuchse
DE19924494C2 (de) 1998-09-03 2001-06-21 Daimler Chrysler Ag Verfahren zur Oberflächenbearbeitung einer tribologischen Schicht
DE19841619C2 (de) * 1998-09-11 2002-11-28 Daimler Chrysler Ag Werkstoffdraht zur Erzeugung verschleißfester Beschichtungen aus übereutektischen Al/Si-Legierungen durch thermisches Spritzen und seine Verwendung
DE19907105A1 (de) * 1999-02-19 2000-08-31 Volkswagen Ag Verfahren und Vorrichtung zum Herstellen von verschleißfesten, tribologischen Zylinderlaufflächen
US6254699B1 (en) * 1999-03-16 2001-07-03 Praxair S.T. Technology, Inc. Wear-resistant quasicrystalline coating
US6257018B1 (en) 1999-06-28 2001-07-10 Praxair Technology, Inc. PFC recovery using condensation
DE19936393A1 (de) * 1999-08-03 2001-02-08 Volkswagen Ag Verfahren und Vorrichtung zum Auf- bzw. Einbringen eines Werkstoffes auf bzw. in eine Oberfläche
DE19937934A1 (de) * 1999-08-11 2001-02-15 Bayerische Motoren Werke Ag Zylinderkurbelgehäuse, Verfahren zur Herstellung der Zylinderlaufbuchsen dafür und Verfahren zur Herstellung des Zylinderkurbelgehäuses mit diesen Zylinderlaufbuchsen
DE10019793C1 (de) * 2000-04-20 2001-08-30 Federal Mogul Friedberg Gmbh Zylinderlaufbuchse für Verbrennungskraftmaschinen und Herstellungsverfahren
DE10036262B4 (de) * 2000-07-26 2004-09-16 Daimlerchrysler Ag Verfahren zur Herstellung einer Oberflächenschicht und Oberflächenschicht
KR100847082B1 (ko) * 2002-10-31 2008-07-18 토소가부시키가이샤 도상돌기 수식부품 및 그 제조방법과 이를 이용한 장치
EP1462194B1 (de) * 2003-03-13 2005-09-28 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Verfahren zur Herstellung von metallischen Bauteilen
DE10324279B4 (de) * 2003-05-28 2006-04-06 Daimlerchrysler Ag Verwendung von FeC-Legierung zur Erneuerung der Oberfläche von Zylinderlaufbuchsen
US7666353B2 (en) * 2003-05-02 2010-02-23 Brunswick Corp Aluminum-silicon alloy having reduced microporosity
US6923935B1 (en) 2003-05-02 2005-08-02 Brunswick Corporation Hypoeutectic aluminum-silicon alloy having reduced microporosity
US20050129868A1 (en) * 2003-12-11 2005-06-16 Siemens Westinghouse Power Corporation Repair of zirconia-based thermal barrier coatings
US20100089315A1 (en) * 2008-09-22 2010-04-15 Applied Materials, Inc. Shutter disk for physical vapor deposition chamber
KR101453446B1 (ko) * 2008-12-24 2014-10-23 재단법인 포항산업과학연구원 안정성이 우수한 소결 마찰재 및 그 제조방법
CN101935789B (zh) * 2009-11-19 2012-03-07 江苏麟龙新材料股份有限公司 含Al-Zn-Si-Mg-RE-Ti-Ni的热浸镀铸铝合金及其制备方法
CN102337436B (zh) * 2009-11-19 2012-11-14 江苏麟龙新材料股份有限公司 含Al-Zn-Si-RE-Ti-Ni的热浸镀铸铝合金及其制备方法
CN101736217B (zh) * 2009-12-28 2011-07-27 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-镁-铁的热浸镀合金及其制备方法
CN101736240B (zh) * 2009-12-28 2011-06-29 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-铜-锆的热浸镀合金及其制备方法
CN101736266B (zh) * 2009-12-28 2011-07-27 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-镁-铁-锰-锆的热浸镀合金及其制备方法
CN101736242B (zh) * 2009-12-28 2011-06-29 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-铁-锰的热浸镀合金及其制备方法
CN101736248B (zh) * 2009-12-28 2011-04-20 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-镁-铁-铜-锰-铬-锆的热浸镀合金及其制备方法
CN101736257B (zh) * 2009-12-28 2011-11-23 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-铁-铜-锰-锆的热浸镀合金及其制备方法
CN101736275B (zh) * 2009-12-28 2011-06-01 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-铁-锰-锆的热浸镀合金及其制备方法
CN101928905B (zh) * 2009-12-28 2012-06-06 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-锰-铬-锆的热浸镀合金及其制备方法
CN101736270B (zh) * 2009-12-28 2011-04-20 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-铜-锰-锆的热浸镀合金及其制备方法
CN101736273B (zh) * 2009-12-28 2011-09-21 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-铁-铜-锆的热浸镀合金及其制备方法
CN101736236B (zh) * 2009-12-28 2011-07-27 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-镁-锰-锆的热浸镀合金及其制备方法
CN101928902B (zh) * 2009-12-28 2012-02-29 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-镁-锰-铬的热浸镀合金及其制备方法
EP2479296B1 (de) * 2011-01-21 2017-06-21 Hydro Aluminium Rolled Products GmbH Verfahren zur Herstellung von einer Si-Primärpartikel freien Aluminiumlegierung
DK2830822T3 (en) * 2012-03-26 2016-08-22 Erbslöh Aluminium Gmbh SOLDERING POWDER
US20140255613A1 (en) * 2013-03-05 2014-09-11 Pratt & Whitney Canada Corp. Low energy plasma coating
JP6367567B2 (ja) * 2014-01-31 2018-08-01 吉川工業株式会社 耐食性溶射皮膜、その形成方法およびその形成用溶射装置
JP6168034B2 (ja) * 2014-11-21 2017-07-26 トヨタ自動車株式会社 溶射皮膜、これを有したエンジン、および溶射皮膜の成膜方法
KR20170127903A (ko) * 2016-05-13 2017-11-22 현대자동차주식회사 인서트 주조용 실린더 라이너 및 그 제조 방법

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991240A (en) 1975-02-18 1976-11-09 Metco, Inc. Composite iron molybdenum boron flame spray powder
JPS56166368A (en) * 1980-05-22 1981-12-21 Toyota Motor Corp Sliding member
JPS6031901B2 (ja) * 1981-10-12 1985-07-25 本田技研工業株式会社 プラズマ溶射皮膜形成方法
JPS59219468A (ja) * 1983-05-25 1984-12-10 Teikoku Piston Ring Co Ltd アルミニウム製摺動部材及びその製造方法
DE3430383A1 (de) 1984-08-17 1986-02-27 Plasmainvent AG, Zug Plasmaspritzbrenner fuer innenbeschichtungen
US4707379A (en) * 1985-12-24 1987-11-17 Ceskoslovenska Akademie Ved Protective layer for carbonaceous materials and method of applying the same
US4969428A (en) * 1989-04-14 1990-11-13 Brunswick Corporation Hypereutectic aluminum silicon alloy
US5022455A (en) 1989-07-31 1991-06-11 Sumitomo Electric Industries, Ltd. Method of producing aluminum base alloy containing silicon
DE3941381A1 (de) * 1989-12-15 1991-06-20 Audi Ag Zylinderblock fuer eine brennkraftmaschine
US5296667A (en) 1990-08-31 1994-03-22 Flame-Spray Industries, Inc. High velocity electric-arc spray apparatus and method of forming materials
US5080056A (en) 1991-05-17 1992-01-14 General Motors Corporation Thermally sprayed aluminum-bronze coatings on aluminum engine bores
JP2703840B2 (ja) * 1991-07-22 1998-01-26 東洋アルミニウム 株式会社 高強度の過共晶A1―Si系粉末冶金合金
US5303682A (en) * 1991-10-17 1994-04-19 Brunswick Corporation Cylinder bore liner and method of making the same
JPH05305492A (ja) * 1992-04-24 1993-11-19 Showa Alum Corp 溶射法によるろう材被覆アルミニウム材の製造方法
US5271967A (en) 1992-08-21 1993-12-21 General Motors Corporation Method and apparatus for application of thermal spray coatings to engine blocks
DE4228064A1 (de) 1992-08-24 1994-03-03 Plasma Technik Ag Plasmaspritzgerät
US5334235A (en) 1993-01-22 1994-08-02 The Perkin-Elmer Corporation Thermal spray method for coating cylinder bores for internal combustion engines
JP2895346B2 (ja) * 1993-05-24 1999-05-24 新日本製鐵株式会社 加工部耐食性に優れた溶融アルミめっき鋼板
DE4328619C2 (de) 1993-08-26 1995-08-10 Peak Werkstoff Gmbh Partiell verstärktes Al-Gußbauteil und Verfahren zu dessen Herstellung
US5466906A (en) 1994-04-08 1995-11-14 Ford Motor Company Process for coating automotive engine cylinders
DE4434576A1 (de) * 1994-08-09 1996-02-15 Ks Aluminium Technologie Ag Verbundgußzylinder oder -zylinderblock
DE4438550C2 (de) 1994-10-28 2001-03-01 Daimler Chrysler Ag Verfahren zur Herstellung einer in ein Kurbelgehäuse einer Hubkolbenmaschine eingegossenen Zylinderlaufbüchse aus einer übereutektischen Aluminium-Silizium-Legierung
JPH08225915A (ja) 1995-02-15 1996-09-03 Kobe Steel Ltd 低熱膨張性Al−Si系合金予備成形体及びその加工体
US5766693A (en) * 1995-10-06 1998-06-16 Ford Global Technologies, Inc. Method of depositing composite metal coatings containing low friction oxides
DE19539640C1 (de) * 1995-10-25 1997-03-27 Daimler Benz Ag Zylinderlaufbuchse mit Schutzschicht
DE19601793B4 (de) * 1996-01-19 2004-11-18 Audi Ag Verfahren zum Beschichten von Oberflächen
DE19711756A1 (de) * 1997-03-21 1998-09-24 Audi Ag Verfahren zum Beschichten von Oberflächen
DE19733205B4 (de) * 1997-08-01 2005-06-09 Daimlerchrysler Ag Beschichtung für eine Zylinderlauffläche einer Hubkolbenmaschine aus einer übereutektischen Aluminium/Siliziumlegierung, Spritzpulver zu deren Herstellung und deren Verwendung

Also Published As

Publication number Publication date
DE59809547D1 (de) 2003-10-16
KR100304479B1 (ko) 2001-11-22
KR19990023259A (ko) 1999-03-25
EP0899354A1 (de) 1999-03-03
JPH11152557A (ja) 1999-06-08
US6221504B1 (en) 2001-04-24
JP3049605B2 (ja) 2000-06-05
DE19733204B4 (de) 2005-06-09
DE19733204A1 (de) 1999-02-04

Similar Documents

Publication Publication Date Title
EP0899354B1 (de) Beschichtung aus einer übereutektischen Aluminium/Silizium Legierung bzw. einem Aluminium/Silizium Verbundwerkstoff
EP0896073B1 (de) Beschichtung einer Zylinderlauffläche einer Hubkolbenmaschine
EP0858518B1 (de) Verfahren zum herstellen einer gleitfläche auf einer leichtmetallegierung
DE102006042549B4 (de) Nasse Zylinderlaufbuchse mit kavitationsresistenter Oberfläche
DE10019793C1 (de) Zylinderlaufbuchse für Verbrennungskraftmaschinen und Herstellungsverfahren
EP2488676B1 (de) Verbrennungsmotor mit einem kurbelgehäuse sowie verfahren zur herstellung eines kurbelgehäuses
DE10324279B4 (de) Verwendung von FeC-Legierung zur Erneuerung der Oberfläche von Zylinderlaufbuchsen
EP1896626B1 (de) Verfahren zum beschichten einer zylinderlaufbuchse
DE102004055228B4 (de) Thermisch gespritzte Lagerschalen für Pleuel
EP0770698B2 (de) Verfahren zum Herstellen einer Gleitfläche auf einem metallischen Werkstück
WO2005038073A2 (de) Zylinderlaufbuchse mit einer zwei schichten umfassenden aussenbeschichtung und verfahren zu deren ein- oder umgiessen zu einem verbundkörper
DE102008053642A1 (de) Thermisch gespritzte Zylinderlaufbuchse für Verbrennungsmotoren und Verfahren zu dessen Herstellung
DE102018202540A1 (de) Motorblock eines Verbrennungsmotors mit optimierten Wärmeleiteigenschaften
EP2140042B1 (de) Erzeugung eines partiellen faserverbundgefüges in einem bauteil über eine laserumschmelzbehandlung
DE19640789A1 (de) Verschleißfeste beschichtete Bauteile für Verbrennungskraftmaschinen, insbesondere Kolbenringe und Verfahren zu deren Herstellung
DE19601793B4 (de) Verfahren zum Beschichten von Oberflächen
DE19708402C1 (de) Verschleißfeste Schicht für Leichtmetall-Bauteile einer Verbrennungskraftmaschine sowie Verfahren zu deren Herstellung
DE19711756A1 (de) Verfahren zum Beschichten von Oberflächen
WO2021098994A1 (de) Herstellungsverfahren einer gleitschicht eines gleitlagers unter verwendung einer legierung und/oder eines materials
EP2110465B1 (de) Verfahren zur Herstellung eines metallischen Bauteils sowie derartig hergestelltes Bauteil
DE102008053641B3 (de) Thermisch gespritzte Zylinderlaufbahnbeschichtung, Verfahren zu deren Herstellung sowie deren Verwendung in Verbrennungsmotoren
DE102006010190A1 (de) Thermisch gespritzte Aluminium/Stahl-Zylinderlaufbuchse
DE10347512C5 (de) Zylinderlaufbuchse mit thermisch gespritzter Rauschicht für Verbrennungskraftmaschinen, ihre Anbindung an einen Verbundkörper und so hergestellter Verbundkörper
KR100394449B1 (ko) 경금속합금상에슬라이드면을형성하는방법
DE102012006967A1 (de) Aluminium-Druckgusslegierung für Motorbauteile und Herstellungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

AKX Designation fees paid

Free format text: DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20011019

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030910

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59809547

Country of ref document: DE

Date of ref document: 20031016

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031221

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040211

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050704

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050712

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050714

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060717

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731