EP0899354B1 - Revêtement d'un alliage al-si hyper-eutectique respectivement un al-si composite - Google Patents

Revêtement d'un alliage al-si hyper-eutectique respectivement un al-si composite Download PDF

Info

Publication number
EP0899354B1
EP0899354B1 EP98113379A EP98113379A EP0899354B1 EP 0899354 B1 EP0899354 B1 EP 0899354B1 EP 98113379 A EP98113379 A EP 98113379A EP 98113379 A EP98113379 A EP 98113379A EP 0899354 B1 EP0899354 B1 EP 0899354B1
Authority
EP
European Patent Office
Prior art keywords
silicon
particles
alloy
maximum
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98113379A
Other languages
German (de)
English (en)
Other versions
EP0899354A1 (fr
Inventor
Harald Pfeffinger
Michael Voit
Tilman Dr. Haug
Patrick Izguierdo
Herbert Gasthuber
Oliver Storz
Axel Heuberger
Franz Dr. Rückert
Peter Stocker
Helmut Pröfrock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP0899354A1 publication Critical patent/EP0899354A1/fr
Application granted granted Critical
Publication of EP0899354B1 publication Critical patent/EP0899354B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/148Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12097Nonparticulate component encloses particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12104Particles discontinuous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12139Nonmetal particles in particulate component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe

Definitions

  • the invention relates to a coating of an aluminum / silicon composite material for producing wear-resistant, low-friction layers and to processes for producing the coating, both of which are used in industry.
  • sockets of gray cast iron or hypereutectic aluminum-silicon can not be waived.
  • the semi-finished bush is first inserted into the mold before pouring and then covered with liquid aluminum.
  • the typical wind force of such cans is 2 to 3 mm.
  • the inside of the liner is coarse and fine twisted, honed and exposed.
  • the alloys used include copper, so that in particular intermetallic phases such as How Al 2 Cu are formed, which are required for the short-chipping processing of the layer surface. The use of these copper-containing alloys proves to be particularly problematic in connection with certain fuels.
  • this bushing solution is associated with constructive, manufacturing and not least economic disadvantages such as limited adhesion of the AlSi10 melt on the bush surface, elaborate handling and high price.
  • the socket wall thickness affects the minimum cylinder spacing.
  • the web width should be as low as possible, especially for future engines of small design, because it also determines the minimum external dimensions of the engine.
  • Thermal spraying offers further possibilities of applying wear-resistant coatings to the cylinder wall of the crankcases.
  • the basic principle of thermal spraying is that a fusible or teilschmelzbarer material is melted in a high-speed hot gas jet into small spray droplets and accelerated in the direction of the surface to be coated (DIN 32530). Upon impact, the spray droplets solidify on the relatively cold metal surface and form a layer layer by layer.
  • the advantage of this coating technology compared to electro-deposition, chemical or physical vapor deposition is the high application rate, which makes it possible to economically coat a cylinder bore in a few minutes.
  • the methods of thermal spraying differ according to the mode of production and the properties of the high-speed hot gas jet.
  • High-speed flame spraying produces an acetylene-oxygen flame in which the spray particles are accelerated to supersonic speed and deformed on impact with the surface to be coated.
  • the HVOF process has already been used for coating cylinder bores with an aluminum-bronze alloy (US Pat. No. 5,080,056) or an iron-aluminum composite (EP 0 607 779 A1), but produces excess heat, which is often only possible through additional, expensive cooling of the crankcase can be removed (US 5,271,967).
  • gases such as argon, helium, nitrogen and / or hydrogen are transferred by an electric arc in a plasma state in which the powdery (EP 0 585 203 A1 and US 4,661,682) or wire-shaped (US Pat. No. 5,442,153) sprayed material is introduced laterally to be moderately accelerated and smelted compared to the HVOF.
  • the spray particles are heated to a higher temperature than the HVOF, so that they are in a molten state upon impact with the substrate, which provides for an intimate, cohesive connection of the layer to the substrate.
  • Powder plasma spraying has already been used to coat cylinder bores with an iron-based layer (US 3,991,240).
  • the object of the invention is to develop a thermally sprayed, wear-resistant layer, in particular for engine construction in terms of wear resistance and lubricating oil consumption, while the risk of wear for the counter-component is reduced.
  • the object is achieved with a coating having the features of claim 1 and with respect to the method with a method having the method steps of claim 4.
  • a coating having the features of claim 1 and with respect to the method with a method having the method steps of claim 4.
  • a heterogeneous layer structure of aluminum mixed crystal, embedded silicon particles or silicon primary precipitates is formed during the layered layer formation of the coating.
  • the matrix may further comprise a hypereutectic aluminum / silicon alloy.
  • the layer surface of a coating according to the invention can be processed in an economically short-chipping manner, which can presumably be attributed to the oxides which are finely distributed on the layer surface and preferably also within the coating.
  • the coating has improved wear resistance.
  • For producing the short-chipping and substantially copper-free aluminum / silicon layers by means of atmospheric thermal spraying is due to the good melting of the spray particles, the formation of finely divided oxides, their good adhesion to the substrate and the moderate heat transfer into the component atmospheric plasma spraying prefers.
  • this method offers the possibility to perform custom coatings, so that can be dispensed with the surface finishing of the layer on the pre-turning.
  • a coating is expedient which ensures good, in particular short-chipping, workability of its surface.
  • this wear-resistant, short-span machinable coating can be used to coat crankcases, is in addition to the reduction of combustion residues by reducing lubricating oil consumption interest to use this for all different fuels worldwide, so the coating, especially when used for the cylinder surfaces of internal combustion engines is copper-free ,
  • a cylinder surface can be coated in a die-cast engine block made of light metal such as aluminum or magnesium by means of a thermal spraying process, which on the previous usual but Complex liner solution can be dispensed with.
  • the thickness of the actual, tribological running layer on the tribologically non-executable, but good to be cast and machined crankcase can be significantly reduced. It is, for example, with 0.1 to 0.2 mm less than 1/10 of the usual sleeve wall thickness today and therefore offers the opportunity to build much more compact engines.
  • plasma spraying is used to produce the coating.
  • this non-equilibrium method it is also possible to form microstructures which otherwise can not be represented metallurgically. Because of the high energy density and the large Parametervieliere the method z. B. almost defined oxides are formed in the layer structure, on the one hand carry a short-chipping processing of the layer surface and on the other hand, a significant contribution to the wear resistance of the layers.
  • agglomerated spray powders it is also possible to add any desired foreign materials to the layer, including those which are distinct from the aluminum alloy different melting points such as hard metal or ceramic particles but also dry lubricants.
  • the coating according to the invention can be integrated without changing the manufacturing equipment installed today in the series, which eliminates the costly production and handling of the cylinder liners and considerable amounts of material can be saved.
  • the coating can be carried out at high application rates in particularly short cycle times, wherein the coating is very accurately applied to the cylinder wall of the crankcase and a fine surface quality is set.
  • spray powders of copper-free aluminum / silicon alloys or aluminum / silicon composites were developed.
  • two essentially copper-free aluminum / silicon alloy systems were selected as the wettable powder, an alloy A (see FIG. 1) for interaction, in particular with iron-coated pistons, and an alloy B (see FIG. 2) preferably being used for uncoated pistons.
  • FIG. 1 shows a cross-section of the spherical spray particles made from the alloy A, from which the aluminum mixed-crystal structure and the Si primary vacancies can be clearly seen.
  • the cut was etched to attack the aluminum mixed crystal and thus to clarify the microstructure.
  • the microstructure consists of primary aluminum mixed-crystal dendrites in which the dendrite arms are enveloped by eutectic silicon.
  • the size of the dendrite arms varies greatly, so that they can be resolved only conditionally.
  • the variations in the fineness of the present structure comes, on the one hand, from the fluctuations in temperature and speed of individual melt droplets and, on the other hand, from the different nucleation during the solidification of different melt droplets.
  • Such a fine structure characterizes thermally sprayed layers with respect to microstructures, which are obtained via powder-metallic routes, and is responsible for the good wear resistance of these layers.
  • FIG. 2 shows a scanning electron micrograph of a plasma-sprayed layer, which was produced with the spray powder of alloy A.
  • the layer made with the spray powder of Alloy A was honed and exposed mechanically. In the production of layers, narrow dimensional tolerances were observed, so that it was possible to dispense with rough and fine turning.
  • intermetallic phases and pores are also recognizable, which hold back small amounts of oil during operation and which determine the formation of a thin film of oil on the surface of the cylinder surface.
  • the agglomerated composite powders consist of fine silicon particles and fine, metallic particles of an aluminum-silicon alloy, which are bonded to each other by means of inorganic or organic binders, wherein the proportion of silicon particles 5 to 50% and the proportion of alloy particles is 50 to 95%.
  • the silicon particles have a mean particle size of 0.1 to 10.0 microns, preferably about 5 microns.
  • the metallic particles have an average particle size of 0.1 to 50.0 microns, preferably about 5 microns and consist of either alternatively employable hypoeutectic alloys C or D, or from both alternatively employable hypereutectic alloys E or F.
  • a cylinder running surface of a cylinder bore assumes that the casting of the Leichmetallblocks done in the usual way in die-casting, but without the inserted into the mold cylinder liners.
  • the interior of the cylinder bore of the crankcase is then coarsely pre-turned in one operation to ensure the required shape and position tolerances. Subsequently, the aluminum-silicon layer is applied.
  • the coating operation may be carried out either in the form of inserting and axially moving into the bore a suitable commercially available internal burner rotating about the center axis of the cylinder bore or a non-rotating burner in the cylinder bore of the rotating crankcase and along the central axis of the cylinder bore is guided to spray the layer on the cylinder wall at almost röch angle.
  • a suitable commercially available internal burner rotating about the center axis of the cylinder bore or a non-rotating burner in the cylinder bore of the rotating crankcase and along the central axis of the cylinder bore is guided to spray the layer on the cylinder wall at almost röch angle.
  • the latter is procedurally simpler and safer, because the supply of the necessary media such as electrical energy, cooling water, primary and secondary gas and spray powder by a rotating unit is problematic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Claims (12)

  1. Revêtement en matériau composite d'aluminium-silicium, caractérisé en ce que la structure hétérogène du revêtement est formée par une solution solide d'aluminium, des particules de silicium enrobées ou des phases précipitées primaires de silicium ou des particules de silicium enrobées et des phases précipitées primaires de silicium, des phases intermétalliques, telles que Mg2Si, et des oxydes, en ce que les particules de silicium enrobées ou les phases précipitées primaires de silicium ont une granulométrie moyenne inférieure à 10 µm, en ce que les oxydes ont une granulométrie moyenne inférieure à 5 µm et en ce que le revêtement est sensiblement exempt de cuivre ; c'est-à-dire que la teneur en cuivre est inférieure à 1 pour cent en poids (% en poids), de préférence inférieure à 0,1 % en poids et en particulier de préférence inférieure à 0,01 % en poids.
  2. Revêtement selon la revendication 1, caractérisé en ce qu'il contient soit des particules de silicium enrobées, soit des particules de silicium enrobées et des phases précipitées primaires de silicium.
  3. Revêtement selon la revendication 1, caractérisé en ce qu'il contient en outre un alliage aluminium-silicium hypereutectique et en ce qu'il contient des phases précipitées primaires de silicium.
  4. Procédé de fabrication d'un revêtement selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le revêtement est déposé par un procédé de projection thermique, en particulier un procédé de projection par jet de plasma atmosphérique, et en ce que la formation des oxydes est définie par le réglage des paramètres de projection appropriés.
  5. Procédé selon la revendication 4, caractérisé en ce que pour le matériau initial à projeter on utilise un alliage A de la composition suivante, les chiffres indiqués représentant la teneur exprimée en pourcentage en poids :
    silicium 23,0 à 40,0 %, de préférence environ 25 %
    magnésium 0,8 à 2,0 %, de préférence environ 1,2 %
    zirconium 0,6 % maximum
    fer 0,25 % maximum
    manganèse, nickel, cuivre et zinc : chacun 0,01 % maximum
    aluminium pour le reste.
  6. Procédé selon la revendication 4, caractérisé en ce que pour le matériau initial à projeter on utilise un alliage B de la composition suivante, les chiffres indiqués représentant la teneur exprimée en pourcentage en poids :
    silicium 23,0 à 40,0 %, de préférence environ 25 %
    nickel 1,0 à 5,0 %, de préférence environ 4 %
    fer 1,0 à 1,4 %, de préférence environ 1,2 %
    magnésium 0,8 à 2,0 %, de préférence environ 1,2 %
    zirconium 0,6 % maximum
    manganèse, cuivre et zinc ; chacun 0,01 % maximum
    aluminium pour le reste.
  7. Procédé selon la revendication 4, caractérisé en ce que pour le matériau initial à projeter on utilise une poudre composite agglomérée, qui est formée par de fines particules de silicium et de fines particules métalliques qui sont liées entre elles par des liants anorganiques ou organiques, la teneur en particules de silicium étant de 5 à 50 % et la teneur en particules d'alliage de 50 à 95 %, les particules de silicium ayant une granulométrie moyenne de 0,1 à 10,0 µm, de préférence environ 5 µm, les particules métalliques ayant une granulométrie moyenne de 0,1 à 50,0 µm, de préférence environ 5 µm, et en ce qu'on utilise un alliage C de la composition suivante, les chiffres indiqués représentant la teneur exprimée en pourcentage en poids :
    silicium 0 à 11,8 %, de préférence environ 9 %
    magnésium 0,8 à 2,0 %, de préférence environ 1,2 %
    zirconium 0,6 % maximum
    fer 0,25 % maximum
    manganèse, nickel, cuivre et zinc : chacun 0,01 % maximum
    aluminium pour le reste.
  8. Procédé selon la revendication 4, caractérisé en ce que pour le matériau initial à projeter on utilise une poudre composite agglomérée, qui est formée par de fines particules de silicium et de fines particules métalliques qui sont liées entre elles par des liants anorganiques ou organiques, la teneur en particules de silicium étant de 5 à 50 % et la teneur en particules d'alliage de 50 à 95 %, les particules de silicium ayant une granulométrie moyenne de 0,1 à 10,0 µm, de préférence environ 5 µm, les particules métalliques ayant une granulométrie moyenne de 0,1 à 50,0 µm, de préférence environ 5 µm, et en ce qu'on utilise un alliage D de la composition suivante, les chiffres indiqués représentant la teneur exprimée en pourcentage en poids :
    silicium 0 à 11,8 %, de préférence environ 9 %
    nickel 1,0 à 5,0 %, de préférence environ 4 %
    fer 1,0 à 1,4 %, de préférence environ 1,2 %
    magnésium 0,8 à 2,0 %, de préférence environ 1,2 %
    zirconium 0,6 % maximum
    manganèse, cuivre et zinc : chacun 0,01 % maximum
    aluminium pour le reste.
  9. Procédé selon la revendication 4, caractérisé en ce que pour le matériau initial à projeter on utilise une poudre composite agglomérée, qui est formée par de fines particules de silicium et de fines particules métalliques qui sont liées entre elles par des liants anorganiques ou organiques, la teneur en particules de silicium étant de 5 à 50 % et la teneur en particules d'alliage de 50 à 95 %, les particules de silicium ayant une granulométrie moyenne de 0,1 à 10,0 µm, de préférence environ 5 µm, les particules métalliques ayant une granulométrie moyenne de 0,1 à 50,0 µm, de préférence environ 5 µm, et en ce qu'on utilise un alliage E de la composition suivante, les chiffres indiqués représentant la teneur exprimée en pourcentage en poids :
    silicium 11,8 à 40 %, de préférence environ 17 %
    magnésium 0,8 à 2,0 %, de préférence environ 1,2 %
    zirconium 0,6 % maximum
    fer 0,25 % maximum
    manganèse, nickel, cuivre et zinc : chacun 0,01 % maximum
    aluminium pour le reste.
  10. Procédé selon la revendication 4, caractérisé en ce que pour le matériau initial à projeter on utilise une poudre composite agglomérée, qui est formée par de fines particules de silicium et de fines particules métalliques qui sont liées entre elles par des liants anorganiques ou organiques, la teneur en particules de silicium étant de 5 à 50 % et la teneur en particules d'alliage de 50 à 95 %, les particules de silicium ayant une granulométrie moyenne de 0,1 à 10,0 µm, de préférence environ 5 µm, les particules métalliques ayant une granulométrie moyenne de 0,1 à 50,0 µm, de préférence environ 5 µm, et en ce qu'on utilise un alliage F de la composition suivante, les chiffres indiqués représentant la teneur exprimée en pourcentage en poids :
    silicium 11,8 à 40 %, de préférence environ 17 %
    nickel 1,0 à 5,0 %, de préférence environ 4 %
    fer 1,0 à 1,4 %, de préférence environ 1,2 %
    magnésium 0,8 à 2,0 %, de préférence environ 1,2 %
    zirconium 0,6 % maximum
    manganèse, cuivre et zinc : chacun 0,01 % maximum
    aluminium pour le reste.
  11. Utilisation d'un revêtement selon au moins une des revendications 1, 2 ou 3, destiné au revêtement d'une chemise de cylindre pour moteurs à piston alterné comprenant de préférence des carters de vilebrequin en fonte grise, à base de fer, d'aluminium ou de magnésium.
  12. Utilisation d'un procédé selon au moins une des revendications 4 à 10 pour la fabrication d'un revêtement pour une chemise de cylindre pour moteurs à piston alterné comprenant de préférence des carters de vilebrequin en fonte grise, à base de fer, d'aluminium ou de magnésium.
EP98113379A 1997-08-01 1998-07-17 Revêtement d'un alliage al-si hyper-eutectique respectivement un al-si composite Expired - Lifetime EP0899354B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19733204 1997-08-01
DE19733204A DE19733204B4 (de) 1997-08-01 1997-08-01 Beschichtung aus einer übereutektischen Aluminium/Silizium Legierung, Spritzpulver zu deren Herstellung sowie deren Verwendung

Publications (2)

Publication Number Publication Date
EP0899354A1 EP0899354A1 (fr) 1999-03-03
EP0899354B1 true EP0899354B1 (fr) 2003-09-10

Family

ID=7837619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98113379A Expired - Lifetime EP0899354B1 (fr) 1997-08-01 1998-07-17 Revêtement d'un alliage al-si hyper-eutectique respectivement un al-si composite

Country Status (5)

Country Link
US (1) US6221504B1 (fr)
EP (1) EP0899354B1 (fr)
JP (1) JP3049605B2 (fr)
KR (1) KR100304479B1 (fr)
DE (2) DE19733204B4 (fr)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532252C2 (de) * 1995-09-01 1999-12-02 Erbsloeh Ag Verfahren zur Herstellung von Laufbuchsen
US6013895A (en) 1997-09-30 2000-01-11 Eastman Machine Company System and method for perforating sheet material
US6416877B1 (en) * 1998-03-14 2002-07-09 Dana Corporation Forming a plain bearing lining
DE19814570C2 (de) * 1998-04-01 2000-06-21 Daimler Chrysler Ag Zylinderlaufbuchse
DE19924494C2 (de) 1998-09-03 2001-06-21 Daimler Chrysler Ag Verfahren zur Oberflächenbearbeitung einer tribologischen Schicht
DE19841619C2 (de) * 1998-09-11 2002-11-28 Daimler Chrysler Ag Werkstoffdraht zur Erzeugung verschleißfester Beschichtungen aus übereutektischen Al/Si-Legierungen durch thermisches Spritzen und seine Verwendung
DE19907105A1 (de) * 1999-02-19 2000-08-31 Volkswagen Ag Verfahren und Vorrichtung zum Herstellen von verschleißfesten, tribologischen Zylinderlaufflächen
US6254699B1 (en) * 1999-03-16 2001-07-03 Praxair S.T. Technology, Inc. Wear-resistant quasicrystalline coating
US6257018B1 (en) 1999-06-28 2001-07-10 Praxair Technology, Inc. PFC recovery using condensation
DE19936393A1 (de) * 1999-08-03 2001-02-08 Volkswagen Ag Verfahren und Vorrichtung zum Auf- bzw. Einbringen eines Werkstoffes auf bzw. in eine Oberfläche
DE19937934A1 (de) * 1999-08-11 2001-02-15 Bayerische Motoren Werke Ag Zylinderkurbelgehäuse, Verfahren zur Herstellung der Zylinderlaufbuchsen dafür und Verfahren zur Herstellung des Zylinderkurbelgehäuses mit diesen Zylinderlaufbuchsen
DE10019793C1 (de) * 2000-04-20 2001-08-30 Federal Mogul Friedberg Gmbh Zylinderlaufbuchse für Verbrennungskraftmaschinen und Herstellungsverfahren
DE10036262B4 (de) * 2000-07-26 2004-09-16 Daimlerchrysler Ag Verfahren zur Herstellung einer Oberflächenschicht und Oberflächenschicht
US7338699B2 (en) * 2002-10-31 2008-03-04 Tosoh Corporation Island projection-modified part, method for producing the same, and apparatus comprising the same
EP1462194B1 (fr) * 2003-03-13 2005-09-28 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Procédé de fabrication de pièces métalliques
DE10324279B4 (de) 2003-05-28 2006-04-06 Daimlerchrysler Ag Verwendung von FeC-Legierung zur Erneuerung der Oberfläche von Zylinderlaufbuchsen
US6923935B1 (en) 2003-05-02 2005-08-02 Brunswick Corporation Hypoeutectic aluminum-silicon alloy having reduced microporosity
US7666353B2 (en) * 2003-05-02 2010-02-23 Brunswick Corp Aluminum-silicon alloy having reduced microporosity
US20050129868A1 (en) * 2003-12-11 2005-06-16 Siemens Westinghouse Power Corporation Repair of zirconia-based thermal barrier coatings
US20100089315A1 (en) * 2008-09-22 2010-04-15 Applied Materials, Inc. Shutter disk for physical vapor deposition chamber
KR101453446B1 (ko) * 2008-12-24 2014-10-23 재단법인 포항산업과학연구원 안정성이 우수한 소결 마찰재 및 그 제조방법
CN101935789B (zh) * 2009-11-19 2012-03-07 江苏麟龙新材料股份有限公司 含Al-Zn-Si-Mg-RE-Ti-Ni的热浸镀铸铝合金及其制备方法
CN102312139B (zh) * 2009-11-19 2012-11-14 江苏麟龙新材料股份有限公司 含Al-Zn-Si-RE-Mg的热浸镀铸铝合金及其制备方法
CN101928902B (zh) * 2009-12-28 2012-02-29 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-镁-锰-铬的热浸镀合金及其制备方法
CN101736236B (zh) * 2009-12-28 2011-07-27 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-镁-锰-锆的热浸镀合金及其制备方法
CN101736273B (zh) * 2009-12-28 2011-09-21 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-铁-铜-锆的热浸镀合金及其制备方法
CN101736257B (zh) * 2009-12-28 2011-11-23 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-铁-铜-锰-锆的热浸镀合金及其制备方法
CN101736266B (zh) * 2009-12-28 2011-07-27 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-镁-铁-锰-锆的热浸镀合金及其制备方法
CN101736248B (zh) * 2009-12-28 2011-04-20 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-镁-铁-铜-锰-铬-锆的热浸镀合金及其制备方法
CN101736217B (zh) * 2009-12-28 2011-07-27 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-镁-铁的热浸镀合金及其制备方法
CN101928905B (zh) * 2009-12-28 2012-06-06 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-锰-铬-锆的热浸镀合金及其制备方法
CN101736275B (zh) * 2009-12-28 2011-06-01 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-铁-锰-锆的热浸镀合金及其制备方法
CN101736270B (zh) * 2009-12-28 2011-04-20 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-铜-锰-锆的热浸镀合金及其制备方法
CN101736242B (zh) * 2009-12-28 2011-06-29 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-铁-锰的热浸镀合金及其制备方法
CN101736240B (zh) * 2009-12-28 2011-06-29 江苏麟龙新材料股份有限公司 含铝-硅-锌-稀土-铜-锆的热浸镀合金及其制备方法
EP2479296B1 (fr) * 2011-01-21 2017-06-21 Hydro Aluminium Rolled Products GmbH Procédé de fabrication d'un alliage d'aluminium sans particule primaire Si
WO2013143665A1 (fr) * 2012-03-26 2013-10-03 Erbslöh Aluminium Gmbh Poudre de soudure
US20140255613A1 (en) * 2013-03-05 2014-09-11 Pratt & Whitney Canada Corp. Low energy plasma coating
JP6367567B2 (ja) * 2014-01-31 2018-08-01 吉川工業株式会社 耐食性溶射皮膜、その形成方法およびその形成用溶射装置
JP6168034B2 (ja) * 2014-11-21 2017-07-26 トヨタ自動車株式会社 溶射皮膜、これを有したエンジン、および溶射皮膜の成膜方法
KR20170127903A (ko) * 2016-05-13 2017-11-22 현대자동차주식회사 인서트 주조용 실린더 라이너 및 그 제조 방법

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991240A (en) 1975-02-18 1976-11-09 Metco, Inc. Composite iron molybdenum boron flame spray powder
JPS56166368A (en) * 1980-05-22 1981-12-21 Toyota Motor Corp Sliding member
JPS6031901B2 (ja) * 1981-10-12 1985-07-25 本田技研工業株式会社 プラズマ溶射皮膜形成方法
JPS59219468A (ja) * 1983-05-25 1984-12-10 Teikoku Piston Ring Co Ltd アルミニウム製摺動部材及びその製造方法
DE3430383A1 (de) 1984-08-17 1986-02-27 Plasmainvent AG, Zug Plasmaspritzbrenner fuer innenbeschichtungen
US4707379A (en) * 1985-12-24 1987-11-17 Ceskoslovenska Akademie Ved Protective layer for carbonaceous materials and method of applying the same
US4969428A (en) * 1989-04-14 1990-11-13 Brunswick Corporation Hypereutectic aluminum silicon alloy
US5022455A (en) 1989-07-31 1991-06-11 Sumitomo Electric Industries, Ltd. Method of producing aluminum base alloy containing silicon
DE3941381A1 (de) * 1989-12-15 1991-06-20 Audi Ag Zylinderblock fuer eine brennkraftmaschine
US5296667A (en) 1990-08-31 1994-03-22 Flame-Spray Industries, Inc. High velocity electric-arc spray apparatus and method of forming materials
US5080056A (en) 1991-05-17 1992-01-14 General Motors Corporation Thermally sprayed aluminum-bronze coatings on aluminum engine bores
JP2703840B2 (ja) * 1991-07-22 1998-01-26 東洋アルミニウム 株式会社 高強度の過共晶A1―Si系粉末冶金合金
US5303682A (en) * 1991-10-17 1994-04-19 Brunswick Corporation Cylinder bore liner and method of making the same
JPH05305492A (ja) * 1992-04-24 1993-11-19 Showa Alum Corp 溶射法によるろう材被覆アルミニウム材の製造方法
US5271967A (en) 1992-08-21 1993-12-21 General Motors Corporation Method and apparatus for application of thermal spray coatings to engine blocks
DE4228064A1 (de) 1992-08-24 1994-03-03 Plasma Technik Ag Plasmaspritzgerät
US5334235A (en) 1993-01-22 1994-08-02 The Perkin-Elmer Corporation Thermal spray method for coating cylinder bores for internal combustion engines
JP2895346B2 (ja) * 1993-05-24 1999-05-24 新日本製鐵株式会社 加工部耐食性に優れた溶融アルミめっき鋼板
DE4328619C2 (de) 1993-08-26 1995-08-10 Peak Werkstoff Gmbh Partiell verstärktes Al-Gußbauteil und Verfahren zu dessen Herstellung
US5466906A (en) 1994-04-08 1995-11-14 Ford Motor Company Process for coating automotive engine cylinders
DE4434576A1 (de) * 1994-08-09 1996-02-15 Ks Aluminium Technologie Ag Verbundgußzylinder oder -zylinderblock
DE4438550C2 (de) 1994-10-28 2001-03-01 Daimler Chrysler Ag Verfahren zur Herstellung einer in ein Kurbelgehäuse einer Hubkolbenmaschine eingegossenen Zylinderlaufbüchse aus einer übereutektischen Aluminium-Silizium-Legierung
JPH08225915A (ja) 1995-02-15 1996-09-03 Kobe Steel Ltd 低熱膨張性Al−Si系合金予備成形体及びその加工体
US5766693A (en) * 1995-10-06 1998-06-16 Ford Global Technologies, Inc. Method of depositing composite metal coatings containing low friction oxides
DE19539640C1 (de) * 1995-10-25 1997-03-27 Daimler Benz Ag Zylinderlaufbuchse mit Schutzschicht
DE19601793B4 (de) * 1996-01-19 2004-11-18 Audi Ag Verfahren zum Beschichten von Oberflächen
DE19711756A1 (de) * 1997-03-21 1998-09-24 Audi Ag Verfahren zum Beschichten von Oberflächen
DE19733205B4 (de) * 1997-08-01 2005-06-09 Daimlerchrysler Ag Beschichtung für eine Zylinderlauffläche einer Hubkolbenmaschine aus einer übereutektischen Aluminium/Siliziumlegierung, Spritzpulver zu deren Herstellung und deren Verwendung

Also Published As

Publication number Publication date
DE59809547D1 (de) 2003-10-16
DE19733204A1 (de) 1999-02-04
JP3049605B2 (ja) 2000-06-05
US6221504B1 (en) 2001-04-24
KR19990023259A (ko) 1999-03-25
DE19733204B4 (de) 2005-06-09
EP0899354A1 (fr) 1999-03-03
JPH11152557A (ja) 1999-06-08
KR100304479B1 (ko) 2001-11-22

Similar Documents

Publication Publication Date Title
EP0899354B1 (fr) Revêtement d'un alliage al-si hyper-eutectique respectivement un al-si composite
EP0896073B1 (fr) Revêtement pour partie d'usure d'un cylindre d'un moteur à pistons
EP0858518B1 (fr) Procede de production d'une surface de frottement sur un alliage des metaux legers
DE102006042549B4 (de) Nasse Zylinderlaufbuchse mit kavitationsresistenter Oberfläche
DE10019793C1 (de) Zylinderlaufbuchse für Verbrennungskraftmaschinen und Herstellungsverfahren
EP2488676B1 (fr) Moteur à combustion interne muni d'un carter de vilebrequin ainsi que procédé de fabrication d'un carter de vilebrequin
EP0858519B1 (fr) Procede de production d'une surface de frottement sur une piece metallique
EP1896626B1 (fr) Procede pour munir une chemise de cylindre d'un revetement
DE102004055228B4 (de) Thermisch gespritzte Lagerschalen für Pleuel
EP0770698B2 (fr) Procédé de fabrication d'un surface de glisse sur une pièce métallique
WO2005038073A2 (fr) Chemise de cylindre pourvue d'un revetement exterieur comprenant deux couches, et procede pour couler ou integrer une chemise de cylindre pour former un corps composite
DE102008053642A1 (de) Thermisch gespritzte Zylinderlaufbuchse für Verbrennungsmotoren und Verfahren zu dessen Herstellung
DE102018202540A1 (de) Motorblock eines Verbrennungsmotors mit optimierten Wärmeleiteigenschaften
EP2140042B1 (fr) Génération d'une partie structure composite à fibres d'un composant par traitement de refusion par laser
DE19640789A1 (de) Verschleißfeste beschichtete Bauteile für Verbrennungskraftmaschinen, insbesondere Kolbenringe und Verfahren zu deren Herstellung
DE19601793B4 (de) Verfahren zum Beschichten von Oberflächen
DE19708402C1 (de) Verschleißfeste Schicht für Leichtmetall-Bauteile einer Verbrennungskraftmaschine sowie Verfahren zu deren Herstellung
DE19711756A1 (de) Verfahren zum Beschichten von Oberflächen
WO2021098994A1 (fr) Procédé de fabrication d'une couche antifriction d'un palier lisse au moyen d'un alliage et/ou d'un matériau
EP2110465B1 (fr) Procédé destiné à la fabrication d'un composant métallique ainsi que composant fabriqué de cette manière
DE102008053641B3 (de) Thermisch gespritzte Zylinderlaufbahnbeschichtung, Verfahren zu deren Herstellung sowie deren Verwendung in Verbrennungsmotoren
DE102006010190A1 (de) Thermisch gespritzte Aluminium/Stahl-Zylinderlaufbuchse
DE10347512C5 (de) Zylinderlaufbuchse mit thermisch gespritzter Rauschicht für Verbrennungskraftmaschinen, ihre Anbindung an einen Verbundkörper und so hergestellter Verbundkörper
DE10308561B4 (de) Verschleißschutzbeschichtung, ihre Verwendung auf einem Kolben oder Kolbenring und ihr Herstellungsverfahren
KR100394449B1 (ko) 경금속합금상에슬라이드면을형성하는방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

AKX Designation fees paid

Free format text: DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20011019

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030910

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59809547

Country of ref document: DE

Date of ref document: 20031016

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031221

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040211

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050704

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050712

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050714

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060717

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731