EP1022351A1 - Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung - Google Patents

Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung Download PDF

Info

Publication number
EP1022351A1
EP1022351A1 EP99811122A EP99811122A EP1022351A1 EP 1022351 A1 EP1022351 A1 EP 1022351A1 EP 99811122 A EP99811122 A EP 99811122A EP 99811122 A EP99811122 A EP 99811122A EP 1022351 A1 EP1022351 A1 EP 1022351A1
Authority
EP
European Patent Office
Prior art keywords
weight
powder
layer
particle size
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99811122A
Other languages
English (en)
French (fr)
Other versions
EP1022351B1 (de
EP1022351B2 (de
Inventor
Gérard BARBEZAT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Metco AG
Original Assignee
Sulzer Metco AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25683486&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1022351(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sulzer Metco AG filed Critical Sulzer Metco AG
Priority to EP04011394A priority Critical patent/EP1507020B1/de
Publication of EP1022351A1 publication Critical patent/EP1022351A1/de
Publication of EP1022351B1 publication Critical patent/EP1022351B1/de
Application granted granted Critical
Publication of EP1022351B2 publication Critical patent/EP1022351B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/14Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
    • C23C4/16Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1431Arrangements for supplying particulate material comprising means for supplying an additional liquid
    • B05B7/1436Arrangements for supplying particulate material comprising means for supplying an additional liquid to a container where the particulate material and the additional liquid are brought together
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Definitions

  • the invention relates to an iron-containing layer for cylinder running surfaces applied by plasma spraying of engine blocks according to claim 1 and a method for manufacturing such layers according to claim 7 or 8.
  • the coating of holes with the help of the plasma spraying process has been going on for a long time known.
  • Various metallic materials can be applied.
  • the layers are passed through Diamond diamonds machined to the final dimension and provided with the desired topography. The workability of the layers and the tribological properties are determined by the microstructure and the physical properties of the corresponding layers significantly influenced.
  • the object of the present invention is the machinability and the tribological properties of plasma-sprayed ferrous layers for cylinder running surfaces of engine blocks to improve.
  • the invention is based on the surprising finding that in a particularly controlled Reaction of the powder used with oxygen during plasma spraying a microstructure can be generated, which is excellent in terms of workability and tribology Has properties. In particular, the coefficient of friction and the Tendency to scuffing ("eating", i.e. the beginning of adhesive wear) drastically reduced.
  • FIGS dependent claims 2 to 6 are shown in FIGS dependent claims 2 to 6 circumscribed.
  • the bound oxygen expediently forms FeO and Fe 3 O 4 crystals with iron.
  • the Fe 2 O 3 content is preferably less than 0.2% by weight.
  • the amount of oxides formed can be further influenced by mixing the air with nitrogen or oxygen. When the air is replaced by pure oxygen, the bound amount of oxygen in the layer is reduced by a factor of about two.
  • the speed of the gas flow in the cylinder bore or the sleeve is expediently 7 to 12 m / s during the coating.
  • the volume of FeO and Fe 3 O 4 can be influenced by selecting the particle size distribution.
  • the particle size of the powder is expediently in the range from 5 to 25 ⁇ m, 10 to 45 ⁇ m or from 15 to 60 ⁇ m. It can be determined using an optical or electronic microscope, in particular a scanning electron microscope SEM, or using the laser diffraction method MICROTRAC.
  • the best results are obtained if a powder modified by adding a tribological oxide ceramic is used.
  • the oxide ceramic expediently consists of TiO 2 or Al 2 O 3 TiO 2 and / or Al 2 O 3 ZrO 2 alloy systems.
  • the proportion of oxide ceramic in the powder used is preferably 5 to 50% by weight.
  • the choice of the optimal size of the powder particles is made taking into account the tribological Properties of the layers produced and the mechanical behavior of the System layer substrate hit.
  • the particle size of the powder was between 5 to 25 ⁇ m, and the preparation was carried out by gas atomization.
  • the gas flow velocity during coating of the can was 10 m / s, the amount of air for layer cooling and powder reaction 500 NLPM (corresponding 100 NLPM oxygen). This amount of air was fed through a plasmatron body, e.g. a plasmatron according to EP-B1-0 645 946.
  • Example 1 When using a powder of the same chemical composition as in Example 1, but with a particle size of 10 to 45 ⁇ m, and otherwise under the same boundary conditions as in Example 1, the proportion of bound oxygen in the generated Layers at 2% by weight. The rest of the results of an analysis of the so applied Layer were the same as in example 1.
  • the particle size of the powder was between 10 to 45 ⁇ m, and the preparation was carried out by gas atomization.
  • Example 4 Analogously to Example 4, 30% by weight of an alloyed ceramic powder consisting of 80% by weight Al 2 O 3 and 20% by weight ZrO 2 was added. The layers produced by means of this powder mixture are mechanically reinforced by the incorporation of the ceramic particles (particle size 5 to 22 ⁇ m). The same effect as in Example 4 was achieved.
  • Fig. 1 shows a diagram from which the reduction in the coefficient of friction depending on the particle size of the powder and the mechanical behavior, especially the adhesive strength of the layer on AlSi substrates, depending on the particle size of the powder emerges.
  • the diagram clearly shows that the coefficient of friction with increasing size of the particles of the coating powder reduced.
  • the adhesive strength of the layer on AlSi substrates decreases as the size of the coating powder particles increases.
  • the particle size to be selected can be in the range of 25-30 m, so that in most cases the adhesive strength is sufficient
  • Layer in the range of 45-50 MPa is to be expected, the coefficient of friction, in comparison with layers according to the prior art, is about 22-25% less.
  • Fig. 2 shows a diagram from which the reduction in the coefficient of friction depending on the amount of bound oxygen in the layer and the mechanical Behavior, specifically the adhesive strength of the layer on AlSi substrates, depending depends on the amount of bound oxygen in the layer. From the On the one hand, the diagram clearly shows that the coefficient of friction increases with increasing The amount of bound oxygen in the layer is reduced. On the other hand, it becomes clear that the adhesive strength of the layer on AlSi substrates decreases when the amount of bound oxygen increases in the layer.
  • a good compromise on what to strive for Amount of bound oxygen in the layer can range from 2-2.5 % By weight, so that in most cases the adhesive strength is sufficient
  • Layer in the range of 40-50 MPa can be expected the coefficient of friction, in comparison with layers according to the prior art, is about 20-25% less. If but, as already explained in connection with FIG. 1, primarily one high adhesive strength of the layer is sought and the reduction in the coefficient of friction is of minor importance, one becomes a coating with a Aim for less than 2% by weight of bound oxygen. On the other hand, if first and foremost an extremely low coefficient of friction is sought and a slightly lower adhesive strength can be accepted, one becomes Select a layer with a bound oxygen content of more than 2.5% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Durch Plasmaspritzen aufgebrachte eisenhaltige Schichten für Zylinderlaufflächen von Motorblöcken, welche einen Gehalt an gebundenem Sauerstoff 1 bis 4 Gewichts-% aufweisen, zeichnen sich bezüglich Bearbeitbarkeit und Tribologie durch hervorragende Eigenschaften aus. Insbesondere sind die Reibungskoeffizienten und die Neigung zum Scuffing drastisch verringert. Derartige Schichten werden u.a. hergestellt, indem während des Plasmaspritzens eine Luftmenge von 200 bis 1000 NLPM zugegeben wird.

Description

Die Erfindung betrifft eine durch Plasmaspritzen aufgebrachte eisenhaltige Schicht für Zylinderlaufflächen von Motorblöcken nach dem Anspruch 1 sowie ein Verfahren zur Herstellung solcher Schichten nach dem Anspruch 7 oder 8.
Als klassischer Werkstoff für die Zylinderlaufflächen von Aluminium- oder Magnesium-Motorblöcken wird immer noch Gusseisen mit Lamellen- oder Vermikulargraphit, in Form von eingepressten oder eingegossenen Büchsen, verwendet.
Durch solche Büchsen wird jedoch zum einen die Grösse und das Gewicht des Motorblocks nachteilig beeinflusst. Zum anderen entsteht eine ungünstige Verbindung zwischen den Gusseisenbüchsen und dem aus Leichtmetall bestehenden Motorblock. Als Alternative werden auch galvanische Schichten eingesetzt. Deren Aufbringen ist jedoch kostenintensiv und zudem sind sie gegenüber Schwefel- und Ameisensäure korrosionsanfällig.
Weiter ist das Beschichten von Bohrungen mit Hilfe des Plasmaspritzverfahrens seit langem bekannt. Dabei können verschiedene metallische Werkstoffe aufgebracht werden. Nach dem Beschichten mittels des Plasmaspritzverfahrens werden die Schichten durch Diamanthonen auf das Endmass bearbeitet und mit der gewünschten Topographie versehen. Die Bearbeitbarkeit der Schichten und die tribologischen Eigenschaften werden durch das Mikrogefüge und die physikalischen Eigenschaften der entsprechenden Schichten massgebend beeinflusst.
Aufgabe der vorliegenden Erfindung ist es, die Zerspanbarkeit und die tribologischen Eigenschaften von durch Plasmaspritzen aufgebrachten eisenhaltigen Schichten für Zylinderlaufflächen von Motorblöcken zu verbessern.
Diese Aufgabe wird durch die im Kennzeichen des Anspruchs 1 umschriebene Schicht bzw. durch das im Kennzeichen des Anspruchs 7 oder 8 umschriebene Verfahren gelöst.
Die Erfindung beruht auf der überraschenden Feststellung, dass bei einer besonders kontrollierten Reaktion des eingesetzten Pulvers mit Sauerstoff beim Plasmaspritzen ein Mikrogefüge erzeugt werden kann, welches bezüglich Bearbeitbarkeit und Tribologie hervorragende Eigenschaften aufweist. Insbesondere werden die Reibungskoeffizienten und die Neigung zum Scuffing ("Fressen", d. h. dem Beginn des adhäsiven Verschleisses) drastisch verringert.
Die erfindungsgemässen durch Plasmaspritzen aufgebrachten eisenhaltigen Schichten für Zylinderlaufflächen von Motorblöcken sind dadurch gekennzeichnet, dass der Gehalt an gebundenem Sauerstoff 1 bis 4 Gewichts-% beträgt. Für die Beschichtung kommen insbesondere in Frage:
  • die Zylinderbohrungen von Motorblöcken aus Aluminium- oder Magnesium- Legierungen oder aus Gusseisen; oder
  • die innere Zylinderwand von in Aluminium- oder Magnesium-Motorblöcke eingesetzten Gusseisenbüchsen.
Bevorzugte Ausführungen der durch Plasmaspritzen aufgebrachten Schichten sind in den abhängigen Ansprüchen 2 bis 6 umschrieben.
Zweckmässigerweise bildet der gebundene Sauerstoff mit Eisen FeO- und Fe3O4-Kristalle. Vorzugsweise beträgt der Gehalt an Fe2O3 weniger als 0,2 Gewichts-%. Die Menge der gebildeten Oxyde kann durch Mischen der Luft mit Stickstoff oder Sauerstoff weiter beeinflusst werden. Beim Ersetzen der Luft durch reinen Sauerstoff wird der gebundene Anteil an Sauerstoff in der Schicht um einen Faktor von etwa zwei reduziert.
Das erfindungsgemässe Verfahren zur Herstellung der erfindungsgemässen Schichten ist dadurch gekennzeichnet, dass während des Plasmaspritzens eine Luftmenge von 200 bis 1000 NLPM (Normal-Liter pro Minute, d.h. bei 1 bar [= 105 Pa] und 20°C) oder eine Gasmenge mit 40 bis 200 NLPM Sauerstoff zugegeben wird. Zweckmässigerweise beträgt die Geschwindigkeit der Gasströmung in der Zylinderbohrung oder der Büchse während des Beschichtens 7 bis 12 m/s.
Bevorzugte Verfahren werden in den Ansprüchen 9 bis 20 beansprucht.
Zweckmässigerweise wird für die Beschichtung ein gasverdüstes Pulver folgender chemischer Zusammensetzung eingesetzt:
  • C = 0,4 bis 1,5 Gewichts-%
  • Cr = 0,2 bis 2,5 Gewichts-%
  • Mn = 0,2 bis 3 Gewichts-%
  • S = 0,01 bis 0,2 Gewichts-%
  • P = 0,01 bis 0,1 Gewichts-%.
  • Fe = Differenz auf 100 Gewichts-%
  • Alternativ kann für die Beschichtung ein gasverdüstes Pulver folgender chemischer Zusammensetzung eingesetzt werden:
  • C = 0,1 bis 0,8 Gewichts-%
  • Cr = 11 bis 18 Gewichts-%
  • Mn = 0,1 bis 1,5 Gewichts-%
  • Mo = 0,1 bis 5 Gewichts-%
  • S = 0,01 bis 0,2 Gewichts-%
  • P = 0,01 bis 0,1 Gewichts-%.
  • Fe = Differenz auf 100 Gewichts-%
  • Das Volumen von FeO und Fe3O4 kann durch Auswahl der Partikelgrössenverteilung beeinflusst werden. Zweckmässigerweise liegt die Partikelgrösse des Pulvers im Bereich von 5 bis 25 µm, 10 bis 45 µm oder von 15 bis 60 µm. Sie kann mittels eines optischen oder elektronischen Mikroskops, insbesondere eines Rasterelektronenmikroskop REM, oder nach der Laserbeugungsmethode MICROTRAC bestimmt werden.
    Zweckmässigerweise wird ein durch Gasverdüsung mit Argon oder Stickstoff erhaltenes Pulver eingesetzt.
    Beste Resultate werden erhalten, wenn ein durch Zugabe einer tribologischen Oxydkeramik modifiziertes Pulver eingesetzt wird. Zweckmässigerweise besteht die Oxydkeramik aus TiO2 oder Al2O3TiO2- und/oder Al2O3ZrO2-Legierungssystemen. Der Anteil an Oxydkeramik im eingesetzten Pulver beträgt vorzugsweise 5 bis 50 Gewichts-%.
    Die Wahl der optimalen Grösse der Pulverpartikel wird unter Berücksichtigung der tribologischen Eigenschaften der erzeugten Schichten und des mechanischen Verhaltens des Systemschichtsubstrates getroffen.
    In folgenden werden Ausführungsbeispiele der erfindungsgemässen Schicht anhand von Beispielen näher erläutert. In den beiliegenden Zeichnungen zeigen:
    Fig. 1
    ein Diagramm, aus dem die Verminderung des Reibungskoeffizienten in Abhängigkeit von der Partikelgrösse des Pulvers und das mechanische Verhalten (Haftfestigkeit) der Schicht auf AlSi-Substraten in Abhängigkeit von der Partikelgrösse des Pulvers hervorgeht; und
    Fig. 2
    ein Diagramm, aus dem die Verminderung des Reibungskoeffizienten in Abhängigkeit von der Menge des gebundenen Sauerstoffs im Pulver und das mechanische Verhalten (Haftfestigkeit) der Schicht auf AlSi-Substraten in Abhängigkeit von der Menge des gebundenen Sauerstoffs im Pulver hervorgeht.
    Beispiel 1
    Ein Pulver der nachstehenden Zusammensetzung wurde mit Hilfe eines Plasmatrons unter folgenden spezifischen Bedingungen auf die Lauffläche einer Zylinderbüchse aufgebracht:
    Pulver:
    C = 1,1 Gewichts-%
    Cr = 1,5 Gewichts-%
    Mn = 1,5 Gewichts-%
    Fe = Differenz auf 100 Gewichts-%.
    Gegebenenfalls kann das Pulver auch geringe Mengen (0.01 - 0.2 Gew.-%) von S und P enthalten.
    Die Partikelgrösse des Pulvers betrug zwischen 5 bis 25 µm, und die Herstellung erfolgte durch Gasverdüsen.
    Die Geschwindigkeit der Gasströmung während des Beschichtens der Büchse betrug 10 m/s, die Luftmenge für die Schichtkühlung und Pulverreaktion 500 NLPM (entsprechend 100 NLPM Sauerstoff). Diese Luftmenge wurde durch einen Plasmatronkörper zugeführt, z.B. ein Plasmatron gemäss EP-B1-0 645 946.
    Die Ergebnisse der durchgeführten Untersuchungen zeigen, dass der Sauerstoffgehalt in der erzeugten Schicht bei 3 Gewichts-% liegt. Der Sauerstoff ist gemäss Untersuchungen mittels Röntgenfeinstrukturanalyse unter den stöchiometrischen Formeln FeO und Fe3O4 gebunden. Durch diese Untersuchungen wurde auch festgestellt, dass die Bildung von Fe203 unterhalb der Nachweisgrenze liegt.
    Die nach der anschliessenden Bearbeitung der erzeugten Schichten durch Diamanthonen durchgeführten Motorversuche haben gezeigt, dass die Reibungskoeffizienten zwischen Kolbenring und Zylinderwandung im Vergleich zu klassischen Gusseisenbüchsen mit Lamellengraphit deutlich reduziert sind.
    Beispiel 2
    Bei Verwendung eines Pulvers gleicher chemischer Zusammensetzung wie in Beispiel 1, jedoch mit einer Partikelgrösse von 10 bis 45 µm, und im übrigen unter denselben Randbedingungen wie im Beispiel 1, liegt der Anteil an gebundenem Sauerstoff in den erzeugten Schichten bei 2 Gewichts-%. Die restlichen Ergebnisse einer Analyse der so aufgebrachten Schicht waren gleich wie im Beispiel 1.
    Die durchgeführten Untersuchungen zeigen im Motortest ähnlich günstige Ergebnisse, wobei die Reduktion der Reibungskoeffizienten im Zusammenhang mit dem Anteil an gebundenem Sauerstoff steht.
    Beispiel 3
    Für Motoren, die durch Verbrennung von schwefelhaltigen Kraftstoffen oder von Methanol, bei Temperaturen unter dem Taupunkt bei den herrschenden Bedingungen, korrosionsgefährdet sind, wurde die Beschichtung unter den Bedingungen gemäss Beispiel 1 mit folgendem Pulver vorgenommen:
    Pulver:
    C = 0,4 Gewichts-%
    Cr = 13 Gewichts-%
    Mn = 1,5 Gewichts-%
    Mo = 2 Gewichts-%
    Fe = Differenz auf 100 Gewichts-%
    Gegebenenfalls kann das Pulver auch geringe Mengen (0.01 - 0.2 Gew.-%) von S und P enthalten.
    Die Partikelgrösse des Pulvers betrug zwischen 10 bis 45 µm, und die Herstellung erfolgte durch Gasverdüsen.
    Die Versuche, die mit einem mit einer derartigen Zylinderlauffläche versehenen Verbrennungsmotor durchgeführt wurden, haben im wesentlichen zu denselben Ergebnissen wie in Beispielen 1 und 2 erwähnt geführt.
    Beispiel 4
    Dem Pulver gemäss Beispiel 2 wurde eine Menge von 30 Gewichts-% eines legierten Keramikpulvers, bestehend aus 60 Gewichts-% Al2O3 und 40 Gewichts-% TiO2, zugegeben. Die mittels dieser Pulvermischung erzeugten Schichten sind durch die Einlagerung der Keramikpartikel (Partikelgrösse 5 bis 22 µm) mechanisch verstärkt.
    Beispiel 5
    Analog zu Beispiel 4 wurden 30 Gewichts-% eines legierten Keramikpulvers, bestehend aus 80 Gewichts-% Al2O3 und 20 Gewichts-% ZrO2, zugegeben. Die mittels dieser Pulvermischung erzeugten Schichten sind durch die Einlagerung der Keramikpartikel (Partikelgrösse 5 bis 22 µm) mechanisch verstärkt. Dabei wurde derselbe Effekt wie in Beispiel 4 erzielt.
    Fig. 1 zeigt ein Diagramm, aus dem die Verminderung des Reibungskoeffizienten in Abhängigkeit von der Partikelgrösse des Pulvers und das mechanische Verhalten, namentlich die Haftfestigkeit der Schicht auf AlSi-Substraten, in Abhängigkeit von der Partikelgrösse des Pulvers hervorgeht. Aus dem Diagramm ist einerseits klar ersichtlich, dass sich der Reibungskoeffizient mit zunehmender Grösse der Partikel des Beschichtungspulvers vermindert. Andererseits wird deutlich, dass die Haftfestigkeit der Schicht auf AlSi-Substraten abnimmt, wenn die Grösse der Partikel des Beschichtungspulvers zunimmt. Ein guter Kompromiss bezüglich der zu wählenden Partikelgrösse kann im Bereich von 25-30 m liegen, sodass mit einer in den meisten Fällenden ausreichenden Haftfestigkeit der Schicht im Bereich von 45-50 MPa zu rechnen ist, wobei der Reibungskoeffizient, im Vergleich mit Schichten gemäss dem Stand der Technik, um ca. 22-25% geringer ist. Wenn aber in erster Linie eine ausgesprochen hohe Haftfestigkeit der Schicht angestrebt wird und die Verminderung des Reibungskoeffizienten eher von untergeordneter Bedeutung ist, wird man ein Beschichtungspulver mit einer Partikelgrösse von weniger als 25 um wählen. Andererseits, wenn in erster Linie ein ausgesprochen geringer Reibungskoeffizient angestrebt wird und eine etwas geringere Haftfestigkeit in Kauf genommen werden kann, wird man ein Beschichtungspulver mit einer Partikelgrösse von mehr als 35 m wählen.
    Fig. 2 zeigt ein Diagramm, aus dem die Verminderung des Reibungskoeffizienten in Abhängigkeit von der Menge des gebundenen Sauerstoffs in der Schicht und das mechanische Verhalten, namentlich die Haftfestigkeit der Schicht auf AlSi-Substraten, in Abhängigkeit von der Menge des gebundenen Sauerstoffs in der Schicht hervorgeht. Aus dem Diagramm ist einerseits klar ersichtlich, dass sich der Reibungskoeffizient mit zunehmender Menge des gebundenen Sauerstoffs in der Schicht vermindert. Andererseits wird deutlich, dass die Haftfestigkeit der Schicht auf AlSi-Substraten abnimmt, wenn die Menge des gebundenen Sauerstoffs in der Schicht zunimmt. Ein guter Kompromiss bezüglich der anzustrebenden Menge an gebundenem Sauerstoff in der Schicht kann im Bereich von 2-2.5 Gew.-% liegen, sodass mit einer in den meisten Fällen ausreichenden Haftfestigkeit der Schicht im Bereich von 40-50 MPa zu rechnen ist, wobei der Reibungskoeffizient, im Vergleich mit Schichten gemäss dem Stand der Technik, um ca. 20-25% geringer ist. Wenn aber, wie bereits im Zusammenhang mit Fig. 1 erläutert, in erster Linie eine ausgesprochen hohe Haftfestigkeit der Schicht angestrebt wird und die Verminderung des Reibungskoeffizienten eher von untergeordneter Bedeutung ist, wird man eine Beschichtung mit einem Anteil an gebundenem Sauerstoff von weniger als 2 Gew.-% anstreben. Andererseits, wenn in erster Linie ein ausgesprochen geringer Reibungskoeffizient angestrebt wird und eine etwas geringere Haftfestigkeit in Kauf genommen werden kann, wird man eine Schicht mit einem Anteil an gebundenem Sauerstoff von mehr als 2.5 Gew.-% wählen.

    Claims (21)

    1. Durch Plasmaspritzen aufgebrachte eisenhaltige Schicht für Zylinderlaufflächen von Motorblöcken, dadurch gekennzeichnet, dass der Gehalt an gebundenem Sauerstoff in der Schicht 1 bis 4 Gewichts-% beträgt.
    2. Schicht nach Anspruch 1, dadurch gekennzeichnet, dass der gebundene Sauerstoff mit Eisen FeO- und Fe3O4-Kristalle bildet.
    3. Schicht nach Anspruch 2, dadurch gekennzeichnet, dass der Gehalt an Fe2O3 weniger als 0,2 Gewichts-% beträgt.
    4. Schicht nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Substrat für die aufzutragende Schicht der aus einer Aluminium- oder Magnesiumlegierung oder aus Gusseisen bestehende Motorblock selbst ist.
    5. Schicht nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Substrat für die aufzutragenden Schicht eine in einen Motorblock aus einer Aluminium- oder Magnesiumlegierung eingesetzte Büchse aus Gusseisen ist.
    6. Schicht nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Gusseisen mit Lamellen- oder Vermikulargraphit versetzt ist.
    7. Verfahren zur Herstellung von Schichten nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass während des Plasmaspritzens eine Luftmenge von 200 bis 1000 NLPM zugegeben wird.
    8. Verfahren zur Herstellung von Schichten nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass während des Plasmaspritzens eine Gasmenge mit 40 bis 200 NLPM Sauerstoff zugegeben wird.
    9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass während des Plasmaspritzens reiner Sauerstoff zugegeben wird.
    10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Geschwindigkeit der Gasströmung innerhalb der zu beschichtenden Zylinderbohrung bzw. Büchse während des Beschichtens 7 bis 12 m/s beträgt.
    11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass für die Beschichtung ein gasverdüstes Pulver folgender chemischen Zusammensetzung eingesetzt wird:
      C = 0,4 bis 1,5 Gewichts-%
      Cr = 0,2 bis 2,5 Gewichts-%
      Mn = 0,2 bis 3 Gewichts-%
      Fe = Differenz auf 100 Gewichts-%.
    12. Verfahren nach einem der Ansprüche 7-10, dadurch gekennzeichnet, dass für die Beschichtung ein gasverdüstes Pulver folgender chemischen Zusammensetzung eingesetzt wird:
      C = 0,1 bis 0,8 Gewichts-%
      Cr = 11 bis 18 Gewichts-%
      Mn = 0,1 bis 1,5 Gewichts-%
      Mo = 0,1 bis 5 Gewichts-%
      Fe = Differenz auf 100 Gewichts-%.
    13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das Pulver zusätzlich enthält:
      S = 0,01 bis 0,2 Gewichts-%
      P = 0,01 bis 0,1 Gewichts-%.
    14. Verfahren nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass das Volumen von FeO und Fe3O4 durch Auswahl der Partikelgrössenverteilung beeinflusst wird.
    15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Partikelgrösse des Pulvers im Bereich von 5 bis 25 µm liegt.
    16. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Partikelgrösse des Pulvers im Bereich von 10 bis 45 µm liegt.
    17. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Partikelgrösse des Pulvers im Bereich von 15 bis 60 µm liegt.
    18. Verfahren nach einem oder mehreren der Ansprüche 11 bis 17, dadurch gekennzeichnet, dass ein durch Gasverdüsung mit Argon oder Stickstoff erhaltenes Pulver eingesetzt wird.
    19. Verfahren nach einem oder mehreren der Ansprüche 11 bis 18, dadurch gekennzeichnet, dass ein durch Zugabe einer tribologischen Oxydkeramik modifiziertes Pulver eingesetzt wird.
    20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass eine Oxydkeramik, welche aus TiO2 oder aus Al2O3TiO2- und/oder Al2O3ZrO2-Legierungssystemen besteht, eingesetzt wird.
    21. Verfahren nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass der Anteil an Oxydkeramik im eingesetzten Pulver 5 bis 50 Gewichts-% beträgt.
    EP99811122A 1999-01-19 1999-12-08 Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung Expired - Lifetime EP1022351B2 (de)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    EP04011394A EP1507020B1 (de) 1999-01-19 1999-12-08 Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung

    Applications Claiming Priority (4)

    Application Number Priority Date Filing Date Title
    CH9199 1999-01-19
    CH9199 1999-01-19
    CH24599 1999-02-09
    CH24599 1999-02-09

    Related Child Applications (1)

    Application Number Title Priority Date Filing Date
    EP04011394A Division EP1507020B1 (de) 1999-01-19 1999-12-08 Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung

    Publications (3)

    Publication Number Publication Date
    EP1022351A1 true EP1022351A1 (de) 2000-07-26
    EP1022351B1 EP1022351B1 (de) 2004-05-19
    EP1022351B2 EP1022351B2 (de) 2009-02-25

    Family

    ID=25683486

    Family Applications (2)

    Application Number Title Priority Date Filing Date
    EP04011394A Expired - Lifetime EP1507020B1 (de) 1999-01-19 1999-12-08 Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung
    EP99811122A Expired - Lifetime EP1022351B2 (de) 1999-01-19 1999-12-08 Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung

    Family Applications Before (1)

    Application Number Title Priority Date Filing Date
    EP04011394A Expired - Lifetime EP1507020B1 (de) 1999-01-19 1999-12-08 Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung

    Country Status (9)

    Country Link
    US (2) US6548195B1 (de)
    EP (2) EP1507020B1 (de)
    JP (2) JP3967511B2 (de)
    KR (1) KR100593342B1 (de)
    AT (2) ATE267275T1 (de)
    CA (1) CA2296155C (de)
    DE (2) DE59914394D1 (de)
    ES (2) ES2221343T5 (de)
    PT (2) PT1022351E (de)

    Cited By (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1113086A1 (de) * 1999-12-27 2001-07-04 Volkswagen Aktiengesellschaft Stahlhaltiges Material für eine Plasmaabscheidung
    US6578539B2 (en) 2000-06-14 2003-06-17 Sulzer Metco Ag Surface layer forming a cylinder barrel surface, a spraying powder suitable therefor and a method of creating such a surface layer
    EP1340834A2 (de) * 2002-02-27 2003-09-03 Sulzer Metco AG Zylinderlaufflächenschicht für Verbrennungsmotoren sowie Verfahren zu deren Herstellung
    EP1757710A1 (de) 2005-08-23 2007-02-28 Sulzer Metco Coatings GmbH Werkstück mit einer thermisch gespritzten Oberflächenschicht
    DE102005040015B3 (de) * 2005-08-23 2007-04-12 Brückner Maschinenbau GmbH Walze sowie Verfahren zu deren Herstellung
    WO2008031468A2 (de) * 2006-09-11 2008-03-20 Federal-Mogul Burscheid Gmbh Nasse zylinderlaufbuchse mit kavitationsresistenter oberfläche
    WO2011147526A1 (de) * 2010-05-22 2011-12-01 Daimler Ag Drahtförmiger spritzwerkstoff, damit erzeugbare funktionsschicht und verfahren zum beschichten eines substrats mit einem spritzwerkstoff
    JP2012522896A (ja) * 2009-04-07 2012-09-27 フェデラル−モーグル ブルシェイド ゲーエムベーハー 調整可能な特性を有する摺動素子
    FR2974610A1 (fr) * 2011-04-26 2012-11-02 Peugeot Citroen Automobiles Sa Procede de realisation des surfaces de chambres a combustion d'un bloc moteur en alliage d'aluminium
    DE102012112394A1 (de) * 2012-12-17 2014-06-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Herstellen eines beschichteten Magnesiumbauteils
    EP2829713A1 (de) 2013-07-26 2015-01-28 Sulzer Metco AG Werkstück mit einer Ausnehmung zur Aufnahme eines Kolbens

    Families Citing this family (24)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6756083B2 (en) * 2001-05-18 2004-06-29 Höganäs Ab Method of coating substrate with thermal sprayed metal powder
    JP3910145B2 (ja) 2003-01-06 2007-04-25 日本発条株式会社 溶射被膜およびその製造方法
    DE10324279B4 (de) * 2003-05-28 2006-04-06 Daimlerchrysler Ag Verwendung von FeC-Legierung zur Erneuerung der Oberfläche von Zylinderlaufbuchsen
    CA2514493C (en) * 2004-09-17 2013-01-29 Sulzer Metco Ag A spray powder
    GB2421207A (en) * 2004-12-16 2006-06-21 Cosworth Technology Ltd Casting with a halogen containing compound provided on the mould surface
    JP4818659B2 (ja) * 2005-08-08 2011-11-16 いすゞ自動車株式会社 内燃機関の燃焼室用摺動部材及びその製造方法
    KR100878878B1 (ko) * 2007-06-14 2009-01-15 주식회사뉴테크 용사기술을 이용한 엔진블록 라이너외벽 코팅 방법
    JP5111965B2 (ja) 2007-07-24 2013-01-09 株式会社日立製作所 記憶制御装置及びその制御方法
    JP5257756B2 (ja) * 2007-12-05 2013-08-07 日産自動車株式会社 鉄系溶射被膜、その形成方法及び摺動部材
    JP5651922B2 (ja) * 2009-03-04 2015-01-14 日産自動車株式会社 シリンダブロック及び溶射皮膜形成方法
    JP5455149B2 (ja) * 2009-05-28 2014-03-26 日産自動車株式会社 鉄系溶射被膜
    CN101818318A (zh) * 2010-05-05 2010-09-01 北京科技大学 一种大气等离子体喷涂法制备细晶钨、钼涂层的方法
    US20120258254A1 (en) * 2011-04-06 2012-10-11 Basf Corporation Methods For Providing High-Surface Area Coatings To Mitigate Hydrocarbon Deposits On Engine And Powertrain Components
    EP2650398B8 (de) * 2012-04-11 2015-05-13 Oerlikon Metco AG, Wohlen Spritzpulver mit einer superferritischen Eisenbasisverbindung, sowie ein Substrat, insbesondere Bremsscheibe mit einer thermischen Spritzschicht
    DE102012009496B4 (de) 2012-05-14 2017-05-11 Stahlwerk Ergste Westig Gmbh Chromstahl
    CN105026601A (zh) * 2012-12-12 2015-11-04 Abb涡轮系统有限公司 耐磨层和制造耐磨层的方法
    KR101922159B1 (ko) * 2014-11-04 2018-11-27 현대중공업 주식회사 피스톤 스커트부 코팅재 조성물 및 이를 이용한 피스톤 스커트부의 코팅방법
    US9945318B2 (en) 2015-12-04 2018-04-17 Hyundai Motor Company Cylinder block
    CN105543759A (zh) * 2015-12-18 2016-05-04 合肥中澜新材料科技有限公司 一种高硬度耐腐蚀发动机汽缸内壁耐磨涂层及其制备方法
    JP6861217B2 (ja) 2016-02-12 2021-04-21 エリコン サーフェイス ソリューションズ アーゲー,プフェフィコーンOerlikon Surface Solutions AG,Pfaffikon トライボロジーシステムとこれを有する内燃エンジン
    MX2018014565A (es) * 2016-05-27 2019-05-20 Oerlikon Metco Ag Wohlen Metodo de revestimiento, revestimiento termico y cilindro teniendo revestimiento termico.
    CN107214341B (zh) * 2017-05-24 2019-05-24 大连理工大学 一种钢-耐磨铜合金层状轴瓦材料、其制备装置及制备方法
    JP7083295B2 (ja) * 2018-08-22 2022-06-10 トヨタ自動車東日本株式会社 摺動部材及びその製造方法
    JP7159111B2 (ja) * 2019-05-28 2022-10-24 日本ピストンリング株式会社 摺動部材と潤滑油との組み合わせ

    Citations (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR735928A (fr) * 1931-05-29 1932-11-17 Procédé de fabrication de pièces de machines en métaux légers à surface protégée contre l'usure
    DE940082C (de) * 1950-11-17 1956-03-08 Goetzewerke Verfahren zur Herstellung von Zylinderlaufbuechsen
    JPS5864371A (ja) * 1981-10-12 1983-04-16 Honda Motor Co Ltd プラズマ溶射皮膜形成方法
    DE19508687A1 (de) * 1994-04-08 1995-10-12 Ford Werke Ag Beschichtungsverfahren für Motorzylinder von Kraftfahrzeugen
    EP0715916A2 (de) * 1994-12-09 1996-06-12 Ford Motor Company Limited Pulver aus Eisen- oder Kupferbasis
    US5592927A (en) * 1995-10-06 1997-01-14 Ford Motor Company Method of depositing and using a composite coating on light metal substrates
    WO1997013884A1 (en) * 1995-10-06 1997-04-17 Ford Motor Company Limited Method of depositing composite metal coatings
    US5622753A (en) * 1996-04-08 1997-04-22 Ford Motor Company Method of preparing and coating aluminum bore surfaces
    EP0816527A1 (de) * 1996-06-21 1998-01-07 Ford Motor Company Limited Verfahren zum Aufbringen einer thermisch aufgespritzten Beschichtung auf Metallsubstrate

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB558182A (en) * 1942-03-09 1943-12-24 British Piston Ring Company Lt Improvements in and in the manufacture of metal inserts
    GB1390662A (en) * 1972-05-05 1975-04-16 Ass Eng Ltd Sintered ferrous machinery components and process for their manufacture
    JPS5432421B2 (de) * 1973-01-09 1979-10-15
    US4060653A (en) * 1974-02-22 1977-11-29 Kennecott Copper Corporation Composite wire
    JPS57101662A (en) * 1980-12-16 1982-06-24 Riken Corp Sliding component part
    JPH0222444A (ja) * 1988-07-08 1990-01-25 Sanyo Special Steel Co Ltd 耐銹耐摩耗用鋼
    US5358547A (en) * 1993-02-18 1994-10-25 Holko Kenneth H Cobalt-phosphorous-base wear resistant coating for metallic surfaces
    JPH07243528A (ja) * 1994-03-02 1995-09-19 Teikoku Piston Ring Co Ltd 摺動部材の組合せ
    US5554278A (en) * 1994-06-03 1996-09-10 Henderson; Bruce L. Quick change oil recycler
    EP0688885B1 (de) * 1994-06-24 1999-12-29 Praxair S.T. Technology, Inc. Verfahren zur Herstellung eines Überzuges auf der Basis von MCrAlY mit feinverteilten Oxiden
    US5723187A (en) * 1996-06-21 1998-03-03 Ford Global Technologies, Inc. Method of bonding thermally sprayed coating to non-roughened aluminum surfaces
    EP1133580B1 (de) * 1998-11-25 2003-05-02 Joma Chemical AS Verfahren zum herstellen einer korrosions- und verschleissfesten schicht durch thermisches spritzen

    Patent Citations (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR735928A (fr) * 1931-05-29 1932-11-17 Procédé de fabrication de pièces de machines en métaux légers à surface protégée contre l'usure
    DE940082C (de) * 1950-11-17 1956-03-08 Goetzewerke Verfahren zur Herstellung von Zylinderlaufbuechsen
    JPS5864371A (ja) * 1981-10-12 1983-04-16 Honda Motor Co Ltd プラズマ溶射皮膜形成方法
    DE19508687A1 (de) * 1994-04-08 1995-10-12 Ford Werke Ag Beschichtungsverfahren für Motorzylinder von Kraftfahrzeugen
    EP0715916A2 (de) * 1994-12-09 1996-06-12 Ford Motor Company Limited Pulver aus Eisen- oder Kupferbasis
    US5592927A (en) * 1995-10-06 1997-01-14 Ford Motor Company Method of depositing and using a composite coating on light metal substrates
    WO1997013884A1 (en) * 1995-10-06 1997-04-17 Ford Motor Company Limited Method of depositing composite metal coatings
    US5622753A (en) * 1996-04-08 1997-04-22 Ford Motor Company Method of preparing and coating aluminum bore surfaces
    EP0816527A1 (de) * 1996-06-21 1998-01-07 Ford Motor Company Limited Verfahren zum Aufbringen einer thermisch aufgespritzten Beschichtung auf Metallsubstrate

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    PATENT ABSTRACTS OF JAPAN vol. 7, no. 155 (C - 175) 7 July 1983 (1983-07-07) *

    Cited By (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1113086A1 (de) * 1999-12-27 2001-07-04 Volkswagen Aktiengesellschaft Stahlhaltiges Material für eine Plasmaabscheidung
    US6578539B2 (en) 2000-06-14 2003-06-17 Sulzer Metco Ag Surface layer forming a cylinder barrel surface, a spraying powder suitable therefor and a method of creating such a surface layer
    EP1340834A2 (de) * 2002-02-27 2003-09-03 Sulzer Metco AG Zylinderlaufflächenschicht für Verbrennungsmotoren sowie Verfahren zu deren Herstellung
    US6701882B2 (en) 2002-02-27 2004-03-09 Sulzer Metco Ag Surface layer for the working surface of the cylinders of a combustion engine and process of applying the surface layer
    EP1340834A3 (de) * 2002-02-27 2004-03-31 Sulzer Metco AG Zylinderlaufflächenschicht für Verbrennungsmotoren sowie Verfahren zu deren Herstellung
    EP1757710A1 (de) 2005-08-23 2007-02-28 Sulzer Metco Coatings GmbH Werkstück mit einer thermisch gespritzten Oberflächenschicht
    DE102005040015B3 (de) * 2005-08-23 2007-04-12 Brückner Maschinenbau GmbH Walze sowie Verfahren zu deren Herstellung
    WO2008031468A3 (de) * 2006-09-11 2008-07-10 Federal Mogul Burscheid Gmbh Nasse zylinderlaufbuchse mit kavitationsresistenter oberfläche
    WO2008031468A2 (de) * 2006-09-11 2008-03-20 Federal-Mogul Burscheid Gmbh Nasse zylinderlaufbuchse mit kavitationsresistenter oberfläche
    JP2012522896A (ja) * 2009-04-07 2012-09-27 フェデラル−モーグル ブルシェイド ゲーエムベーハー 調整可能な特性を有する摺動素子
    WO2011147526A1 (de) * 2010-05-22 2011-12-01 Daimler Ag Drahtförmiger spritzwerkstoff, damit erzeugbare funktionsschicht und verfahren zum beschichten eines substrats mit einem spritzwerkstoff
    US9487660B2 (en) 2010-05-22 2016-11-08 Daimler Ag Wire-like spray material, functional layer which can be produced therewith and process for coating a substrate with a spray material
    FR2974610A1 (fr) * 2011-04-26 2012-11-02 Peugeot Citroen Automobiles Sa Procede de realisation des surfaces de chambres a combustion d'un bloc moteur en alliage d'aluminium
    DE102012112394A1 (de) * 2012-12-17 2014-06-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Herstellen eines beschichteten Magnesiumbauteils
    EP2829713A1 (de) 2013-07-26 2015-01-28 Sulzer Metco AG Werkstück mit einer Ausnehmung zur Aufnahme eines Kolbens
    US9556819B2 (en) 2013-07-26 2017-01-31 Oerlikon Metco Ag, Wohlen Workpiece having a cut-out for receiving a piston

    Also Published As

    Publication number Publication date
    CA2296155E (en) 2000-07-19
    US6572931B2 (en) 2003-06-03
    PT1507020E (pt) 2007-07-13
    ES2221343T5 (es) 2009-06-12
    ATE267275T1 (de) 2004-06-15
    ES2288232T3 (es) 2008-01-01
    JP3967511B2 (ja) 2007-08-29
    EP1022351B1 (de) 2004-05-19
    JP2000212717A (ja) 2000-08-02
    KR20000071238A (ko) 2000-11-25
    US6548195B1 (en) 2003-04-15
    DE59914394D1 (de) 2007-08-09
    US20020051851A1 (en) 2002-05-02
    CA2296155A1 (en) 2000-07-19
    EP1507020B1 (de) 2007-06-27
    EP1507020A2 (de) 2005-02-16
    KR100593342B1 (ko) 2006-06-26
    EP1507020A3 (de) 2005-04-20
    PT1022351E (pt) 2004-10-29
    ATE365814T1 (de) 2007-07-15
    JP2007191795A (ja) 2007-08-02
    JP4644687B2 (ja) 2011-03-02
    CA2296155C (en) 2004-09-14
    DE59909522D1 (de) 2004-06-24
    EP1022351B2 (de) 2009-02-25
    ES2221343T3 (es) 2004-12-16

    Similar Documents

    Publication Publication Date Title
    EP1022351B2 (de) Durch Plasmaspritzen aufgebrachte Schicht für Zylinderlaufflächen von Motorblöcken und Verfahren zu deren Herstellung
    EP1340834B1 (de) Zylinderlaufflächenschicht für Verbrennungsmotoren sowie Verfahren zu deren Herstellung
    DE19637737C2 (de) Verfahren zur Abscheidung einer Eisenoxid-haltigen Beschichtung auf ein Leichtmetallsubstrat
    DE2632739C3 (de) Verfahren zum thermischen Aufspritzen eines selbsthaftenden Nickel-Aluminium- oder-Nickel-Titan-Überzugs auf ein Metallsubstrat
    DE2425358C3 (de) Verfahren zum Auftragen einer Verstärkungsauflage auf Kupferbasis auf einen Kolben aus einer Aluminiumlegierung
    DE10308563B3 (de) Zylinderlaufbuchse mit Verschleißschutzbeschichtung, ihre Herstellung und ihre Verwendung
    EP0858518B1 (de) Verfahren zum herstellen einer gleitfläche auf einer leichtmetallegierung
    EP0858519B1 (de) Verfahren zum herstellen einer gleitfläche auf einem metallischen werkstück
    DE10046956A1 (de) Thermisch aufgetragene Beschichtung für Kolbenringe aus mechanisch legierten Pulvern
    EP0896073B1 (de) Beschichtung einer Zylinderlauffläche einer Hubkolbenmaschine
    EP0899354A1 (de) Beschichtung aus einer übereutektischen Aluminium/Silizium Legierung bzw. einem Aluminium/Silizium Verbundwerkstoff
    WO2017012769A1 (de) Verfahren zur beschichtung einer zylinderlaufbahn eines zylinderkurbelgehäuses, zylinderkurbelgehäuse mit einer beschichteten zylinderlaufbahn sowie motor
    EP0534905A2 (de) Werkzeuge für die Zerspannung von Werkstoffen
    EP1896626B1 (de) Verfahren zum beschichten einer zylinderlaufbuchse
    EP2330228A1 (de) Spritzwerkstoff, eine thermische Spritzschicht, sowie Zylinder mit einer thermischen Spritzschicht
    DE112014004365B4 (de) Verfahren zum bilden einer eisen-spritzbeschichtung und beschichtetes element
    EP1174524A2 (de) Oberflächenschicht zur Bildung einer Lauffläche auf einer Zylinderwandung dazu geeignetes Spritzpulver sowie Verfahren zur Erzeugung derartiger Oberflächenschichten
    DE3808285A1 (de) Verfahren zur herstellung harter und verschleissfester oberflaechenschichten
    EP0931172A1 (de) Verschleissfeste beschichtete bauteile für verbrennungskraftmaschinen, insbesondere kolbenringe, und verfahren zu deren herstellung
    DE19601793B4 (de) Verfahren zum Beschichten von Oberflächen
    DE102015013706A1 (de) Funktionsschicht
    DE102004040460B4 (de) Thermisches Spritzverfahren und thermisch gespritzte Werkstoffschicht sowie beschichtetes Pleuellager
    EP0902099A1 (de) Verschleiss- und korrosionsbeständige Oberfläche
    DE102014013538A1 (de) Verfahren zum Beschichten der Laufbahn eines Zylinderkurbelgehäuses, bei dem ein Spritzwerkstoff aufgeschmolzen und mittels eines thermischen Spritzverfahrens als Schicht auf der Laufbahn abgeschieden wird sowie Spritzwerkstoff und thermisch gespritzte Schicht
    DD224057A1 (de) Beschichtungspulver auf der basis von titancarbid

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20000816

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    17Q First examination report despatched

    Effective date: 20030731

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040519

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040519

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040519

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SULZER MANAGEMENT AG PATENTABTEILUNG/0067

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040519

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59909522

    Country of ref document: DE

    Date of ref document: 20040624

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040819

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040819

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20040813

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041208

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2221343

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041231

    ET Fr: translation filed
    PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE2

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE2

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE2

    PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE4

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE2

    PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE4

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE2

    PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE4

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    26 Opposition filed

    Opponent name: FORD-WERKE AKTIENGESELLSCHAFT

    Effective date: 20050218

    Opponent name: DAIMLERCHRYSLER AG

    Effective date: 20050216

    R26 Opposition filed (corrected)

    Opponent name: FORD-WERKE AKTIENGESELLSCHAFT

    Effective date: 20050218

    Opponent name: DAIMLERCHRYSLER AG

    Effective date: 20050216

    R26 Opposition filed (corrected)

    Opponent name: FORD-WERKE AKTIENGESELLSCHAFT

    Effective date: 20050218

    Opponent name: DAIMLERCHRYSLER AG

    Effective date: 20050216

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: FORD-WERKE AKTIENGESELLSCHAFT

    Opponent name: DAIMLERCHRYSLER AG

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: FORD-WERKE AKTIENGESELLSCHAFT

    Opponent name: DAIMLERCHRYSLER AG

    PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

    Free format text: ORIGINAL CODE: EPIDOSCOBS2

    PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

    Free format text: ORIGINAL CODE: EPIDOSCOBS2

    PLBB Reply of patent proprietor to notice(s) of opposition received

    Free format text: ORIGINAL CODE: EPIDOSNOBS3

    APBP Date of receipt of notice of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA2O

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    APBU Appeal procedure closed

    Free format text: ORIGINAL CODE: EPIDOSNNOA9O

    PUAH Patent maintained in amended form

    Free format text: ORIGINAL CODE: 0009272

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT MAINTAINED AS AMENDED

    27A Patent maintained in amended form

    Effective date: 20090225

    AK Designated contracting states

    Kind code of ref document: B2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: AEN

    Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: RPEO

    NLR2 Nl: decision of opposition

    Effective date: 20090225

    NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: DC2A

    Date of ref document: 20090427

    Kind code of ref document: T5

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: INTELLECTUAL PROPERTY SERVICES GMBH, CH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: SIVANTOS PTE. LTD., SG

    Free format text: FORMER OWNER: SULZER METCO AG, CH

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20181227

    Year of fee payment: 20

    Ref country code: PT

    Payment date: 20181129

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20181227

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20181231

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20181221

    Year of fee payment: 20

    Ref country code: BE

    Payment date: 20181221

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20190131

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20190228

    Year of fee payment: 20

    Ref country code: NL

    Payment date: 20181221

    Year of fee payment: 20

    Ref country code: IT

    Payment date: 20181220

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20181228

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59909522

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20191207

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20191207

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 267275

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20191208

    REG Reference to a national code

    Ref country code: BE

    Ref legal event code: MK

    Effective date: 20191208

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20191219

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20191207

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20220128

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20191209