EP1133580B1 - Verfahren zum herstellen einer korrosions- und verschleissfesten schicht durch thermisches spritzen - Google Patents
Verfahren zum herstellen einer korrosions- und verschleissfesten schicht durch thermisches spritzen Download PDFInfo
- Publication number
- EP1133580B1 EP1133580B1 EP99959337A EP99959337A EP1133580B1 EP 1133580 B1 EP1133580 B1 EP 1133580B1 EP 99959337 A EP99959337 A EP 99959337A EP 99959337 A EP99959337 A EP 99959337A EP 1133580 B1 EP1133580 B1 EP 1133580B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spraying
- magnetite
- weight
- control
- flame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
- C23C4/11—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
Definitions
- the invention relates to a method for producing a Corrosion and wear-resistant layer on one Substrate by spraying an iron oxide-based material.
- Such a method is known from DE 30 48 691 A1, with which a piercing mandrel for a plug and stretching mill is coated; a protective layer is formed on the mandrel surface by spraying on a powder consisting largely of iron oxide in the molten state;
- a piercing mandrel is said to be inexpensive to manufacture and to have excellent durability and to offer better insulation and sliding properties.
- the compounds FeO, Fe 3 O 4 and Fe 2 O 3 or their mixtures are offered as iron oxides, which make up more than 50% by weight of the powder. Oxides of chromium, nickel, copper and manganese or metals from the group iron, chromium, nickel, cobalt, copper and manganese can also be used.
- DE 34 35 748 A1 describes the use of a laser anemometer, whose measurement volume is relative to a hot one Gas jet is adjustable to determine particle speeds with thermal spraying.
- the particle current density is determined by a particle counter, the number of each flying through the measuring volume Spray particles count.
- the mean particle trajectories and the melting state are digital in a facility Data processing calculated.
- EP 0 443 730 A shows a process for producing magnetite-coated electrodes, in which a mixture is produced by mixing FeO and Fe 2 O 3 powder and polyvinyl alcohol solution, pressed into a green body and then sintered to form magnetite , The magnetite sinter is then pulverized to a particle size of 5 to 150 ⁇ m and the magnetite powder is applied to the electrodes by means of thermal spraying, for example by means of plasma spraying, plasma jets or water plasma. The plasma jet is not checked.
- the coating of a sliding body - for example a piston ring - is achieved by thermal spraying of a mixture of Fe 3 O 4 and Cr 2 O 3 (ratio 50:50), Fe 3 O 4 and Cr 3 C 2 (60 : 40) as well as Fe 3 O 4 and a self-flux alloy (70: 30).
- EP 0 837 305 A describes a measuring method - with a device for measuring temperature, particle density and Particle size, current, carrier and plasma gas velocity, the amount of plasma gas - to determine the Data of the particles and the plasma jet during the Spritzens discussed.
- this is done using a camera or image processing coupled to it.
- US 5 180 921 A discloses a thermal Plasma coating device with sensors for monitoring the particle velocity of the sprayed particles by means of two photodetectors (two-color pyrometer), with which then the flow, the powder feed rate, the powder feed gas flow or the like. to be controlled.
- Corrosion and wear protection layers are usually made from powder mixtures various types of surfaces to be protected in production or applied for maintenance.
- the main ones are thermal Spray processes or vapor deposition processes such as CVD (chemical vapor deposition) or PVD (plasma vapor deposition) is used.
- CVD chemical vapor deposition
- PVD plasma vapor deposition
- CVD and PVD processes can have thin layers of corrosion and wear protection Oxide or hard material base, especially applied in mass production become.
- Electrochemical or galvanic processes are also used.
- Thermal spraying mainly turns layers into one Layer thickness of more than 0.1 mm created.
- thermal Sprayed corrosion and wear-resistant layers mostly around metallic or oxide layers in which to improve Hard materials are stored.
- thermal spraying One of the biggest problems with thermal spraying is manufacturing of layers of constant properties and quality.
- the thermal spraying processes on substrates or parts were basically able with high quality requirements in series production only limited use Find.
- the inventor has set the goal that Creating a constant wear and corrosion resistant surface coating on the basis of oxide by means of thermal spraying.
- Carbides, nitrides, silicides, borides and oxides have proven their worth as additives for hard materials.
- the carbide formers such as tungsten, chromium molybdenum, niobium, tantalum, titanium, vanadium or the like are suitable.
- the addition of the carbides should be limited to a maximum of 30% by weight, preferably 20% by weight. With borides and nitrides as additives at this level, improvements in properties are observed.
- Oxidic additions of chromium oxide (Cr 2 O 3 ) in the order of 1 to 40% by weight - preferably 5 to 30% by weight - also show good results.
- the powdery spray materials a grain size of 0.05 to 150 ⁇ m - preferably 0.1 to 120 ⁇ m - have.
- a grain size of 0.05 to 150 ⁇ m - preferably 0.1 to 120 ⁇ m - have.
- thermal spray processes such as autogenous flame spraying, high-speed flame spraying (HVOF spraying), plasma spraying under air (APS), Shroud plasma spraying (SPS), vacuum spraying (LPPS), high-performance plasma spraying (HPPS), the autogen Wire spraying or arc wire spraying can be used.
- HVOF spraying high-speed flame spraying
- APS plasma spraying under air
- SPS Shroud plasma spraying
- LPPS vacuum spraying
- HPPS high-performance plasma spraying
- the autogen Wire spraying or arc wire spraying can be used.
- the online control and control takes place with a combination of different Procedures that allow the temperature of the particle or the Degree of melting, the particle size, the speed, the impact of the same on the substrate and the heating of the layer and the substrate to measure during the spraying process.
- the measurement signals are then the Computer fed to a control system for the spraying system and the flame parameters as well as the performance adjusted to the values.
- the inventor has thus found that it is possible to use one of those mentioned above To meet coating requirements if an iron-based oxide is used as the material, which - depending on of the corrosion or wear problem to be solved - metals, Hard materials or intermetallic compounds added.
- the material must are produced by a certain manufacturing process; According to the invention, one is made from the powdery material mixture Spray drying produced powder grain with good flow properties proposed as well as from the powdery material mixture anti-segregation manufactured in an agglomeration process Powder grain.
- the spraying system is equipped with an online control system Equipped to provide high quality and layers to be able to produce consistent properties by spraying.
- an online control and control by means of a Spray jet directed ITG camera, an LDA detector with LDA laser as well as an HSP head proved to be cheap or an online control using an ITG camera directed at the spray jet and an HSP head one Measuring body.
- the online control system is to be used for measurement conveniently the particle speed in the spray flame, for example by a laser doppler anemometer using one from a laser device emitted beam, which by means of a transmission optics in two partial beams is disassembled.
- Another feature of the invention is through online control and controlling the particle temperature in the spray flame by means of a High speed pyrometers observed. This is done by means of Infrared thermography.
- thermal spraying processes such as autogenous flame spraying, high-speed flame spraying (HVOF), plasma spraying under air (APS), the so-called Shroud plasma spraying (SPS), plasma spraying in a vacuum (LPPS), High-power plasma spraying (HPPS), autogenous or arc wire spraying - applicable.
- HVOF high-speed flame spraying
- APS plasma spraying under air
- SPS Shroud plasma spraying
- LPPS plasma spraying in a vacuum
- HPPS High-power plasma spraying
- autogenous or arc wire spraying - applicable Online control and control is carried out using a Combination of different processes that allow the temperature of the particle or the degree of melting, the particle size, the speed, the impact of the same on the substrate and the heating of the Measure layer and substrate during the spraying process.
- the measurement signals are then the computer of the control part of the thermal Spraying system fed to the flame parameters and the performance to be able to adjust measured values.
- LDA - Detector laser Doppler anemometer
- FIG. 3 To measure substrate temperature T s and coating temperature T c by means of infrared thermography, according to FIG. 3 there is a substrate 30 - to be provided with a coating 32 - in the recording area of an ITG camera 18.
- a glass fiber cable 36 extends from the latter leads to a video PC card indicated at 42 - 500 kHz.
- a computer 46 with a monitor 48 is connected to this, to which a temperature recording device 50 is assigned.
- HSP high-speed pyrometry
- LDA laser Doppler anemometry
- a particle of the spray jet 10 that flies through this stripe pattern generates a scattered light signal 68 that changes periodically over time for a receiving lens system with a photodetector 70.
- the modulation frequency of the scattered light signal 68 is proportional to the velocity component of the particle perpendicular to the interference fringe system.
- the frequency of the LDA scattered light signals is a measure of the local density of the particles in the plasma spray jet 10.
- PSD particle-shape imaging
- the image recording system consists of a CCD camera 78 with an upstream micro-channel plate (MCP) image intensifier with a minimum exposure time of 5 ns.
- MCP micro-channel plate
- the geometric dimensions of the 512 x 512 pixel CCD chip and the depth of field of the lens result in a measurement volume of 410 x 410 x 940 ⁇ m 3 .
- in-flight particle diagnosis method to which reference is made to FIG. 8 - up to 200 individual particles per second can be measured simultaneously in every point of a spray jet for their surface temperature, speed and size, regardless of the spraying method.
- a non-reproduced moving unit additionally enables a plane to be scanned perpendicular to the spray jet 10, so that the distribution of the particles in the spray jet 10 can be determined precisely.
- the temperature is determined using two-wavelength pyrometery at 995 ⁇ 25 ⁇ m and 787 ⁇ 25 ⁇ m.
- the particles are treated as gray emitters so that knowledge of the exact emissivity is not necessary for the temperature measurement.
- the system comprises imaging a two-slit mask 80 with 25 ⁇ m ⁇ 50 ⁇ m — on a measuring head 82 — at a focal point at a distance of approximately 90 mm with a high depth of field.
- This creates a measurement volume which, according to the graphic representation in FIG. 10, is characterized by two visible and one shadow region in between.
- the measuring volume is approximately 170 x 250 x 2000 ⁇ m 3 .
- the natural radiation of individual particles that fly through this measurement volume is recorded by two IR detectors with two different wavelengths.
- the two partial measurement volumes result in two temperature peaks in a row.
- the time interval between the two peaks is a measure of the speed of the particle.
- the principle corresponds to that of the light barrier.
- the measurable particle size depends essentially on the temperature of the particles. It is down limited to about 10 microns and up to about 300 microns and is by the absolute energy radiated by the particle determines that proportional to the square of the diameter.
- the measurable speed range is 30m / s - 1500 m / s.
- FIG. 9 follows on from that in FIG. 1 and illustrates this Measuring the particle temperature and speed using an HSP head 24th
- a casting mold for aluminum casting should be provided with a layer, which prevents caking and sticking in the mold.
- the grain structure of the round grains was determined by agglomeration Spray drying manufactured.
- the application was carried out by plasma spraying in air (APS) with one performance of 60 KW and argon / hydrogen plasma, which with an online control unit 1 was provided; the particle velocity and particle temperature are measured there during the flight to the plasma spray to control so that the necessary degree of melting of the particle is achieved.
- APS plasma spraying in air
- argon / hydrogen plasma which with an online control unit 1 was provided; the particle velocity and particle temperature are measured there during the flight to the plasma spray to control so that the necessary degree of melting of the particle is achieved.
- the mold surface to be coated was forced-cooled with CO 2 with the aim of keeping the oxidation on particle impact as low as possible.
- the layer thus produced by thermal spraying was then ground and tested in an aluminum foundry. It was found that caking and sticking to the form is prevented as well as the complex Spraying the mold with a mold release agent can be omitted.
- a cored wire of the following composition was used as the spray material: filling Magnetite (Fe 3 O 4 ) coat NiCr 80/20 with about 30% by weight of the cored wire.
- the grain size of the starting material for the filling was> 1.0 ⁇ m.
- an arc spraying system equipped with an online control and monitoring system was used for processing cored wire, and a control system was a combination of the two systems shown in FIGS. 1 and 3.
- the forced cooling is done with CO 2 and air.
- the 200 cm long roll was applied to a surface quality ground from Ra 0.4 ⁇ m.
- the grain size of the wettable powder was: ⁇ 37 ⁇ m > 5 ⁇ m, the grain size of the starting material ⁇ 0.5 ⁇ m.
- the spray powder of round grain shape was obtained by agglomeration during spray drying manufactured.
- CO 2 was used as forced cooling for the substrate and the layer during the spraying process.
- the Shroud used to protect against oxidation was operated with pure starch.
- the piston rings coated with pure magnetite using this process showed a high quality in the control and showed in the endurance test in Engines good results.
- An immersion device for a salt bath working at 500 ° C for heat treatment of smaller parts shows after about a week of operation a high level of corrosion.
- the thermal spray process for applying the layer with a thickness of 80 ⁇ m was a high speed flame spray (HVOF) in which the Control took place online. After spraying, the layer was polished.
- HVOF high speed flame spray
- a hydraulic cylinder for underground mining with a length of 1000 mm and a diameter of 200 mm should be protected with a protective layer Corrosion and wear are provided. So far it was used as a protective layer an electroplated hard chrome layer was used, which has a service life due to the appearance of hairline cracks in the layer of at most two months.
- a protective layer of the composition 70% by weight Fe 3 O 4 (magnetite), 30% by weight Cr 2 O 3 (chromium oxide) chosen, the grain size of the agglomerated spray material > 5 ⁇ m, ⁇ 37 ⁇ m scam.
- the protective layer with a layer thickness between 1.0 and 1.5 mm was an HPPS (High Power Plasma) system with an output of 200 KW used to maintain the exact spraying parameters or the Avoiding oxidation was provided with an online control.
- HPPS High Power Plasma
- the protective layer thus produced was removed after a period of two months checked, and it was found that the surface of the layer was none Attacks caused by corrosion or wear.
- the lifespan of the Shift was nine months.
- the piston of a vacuum pump with a diameter of 20 mm and a length of 500 mm should be provided with a wear and corrosion protection layer.
- An LPPS system with an output of 40 KW was used for coating, which was provided with an online control.
- the coating produced in this way showed very good results in later use compared to normal pistons.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating By Spraying Or Casting (AREA)
Description
- Fig. 1:
- ein Online-Steuer- und Kontroll-System für eine Plasmaanlage;
- Fig. 2:
- eine Anlage zur Infrarot-Thermographie (ITG) und zur Hochgeschwindigkeits-Pyrometrie (HSP = High Speed Pyrometry) beim thermischen Spritzen;
- Fig. 3:
- ein Schema zur Infrarot-Thermographie (ITG);
- Fig. 4, 5:
- jeweils eine Anlage zur Hochgeschwindigkeits-Pyrometrie (HSP);
- Fig. 6:
- eine Ausgestaltung eines Laser-Doppler-Anemometer (LDA);
- Fig. 7:
- eine Skizze zur Partikelform-Messung im Fluge (PSI = Particle Shape Imaging);
- Fig. 8:
- eine Partikeltemperatur-Messung im Fluge (PTM = Particle Temperature Measurement);
- Fig. 9:
- eine Skizze zur Messung von Partikeltemperatur und -geschwindigkeit.
95,5 Gew.-% | Magnetit (Fe3O4) |
4,5 Gew.-% | Eisenoxid (Fe2O3) |
- Korngröße
- > 5 µm
< 45 µm
Füllung | Magnetit (Fe3O4) |
Mantel | NiCr 80/20 mit etwa 30 Gew.-% des Fülldrahtes. |
< 37 µm
> 5 µm,
die Korngröße des Ausgangsmaterial
< 0,5 µm.
- Partikelgeschwindigkeit;
- Partikeltemperatur;
- Substrattemperatur;
- Aufschmelzen des Partikels.
75 Gew.-% | Magnetit, |
25 Gew.-% | Chromkarbid. |
70 Gew.-% | Fe3O4 (Magnetit), |
30 Gew.-% | Cr2O3 (Chromoxid) |
> 5 µm,
< 37 µm
betrug.
80 Gew.-% | Fe3O4 |
20 Gew.-% | Ni3Al |
Korngröße
> 5 µm
< 45 µm
verwendet.
Claims (23)
- Verfahren zum Herstellen einer korrosions- und verschleißfesten Schicht auf einem Substrat durch Aufsprühen eines Werkstoffes auf Eisenoxidbasis, dadurch gekennzeichnet, dass der zumindest 20 Gew.-%, vorzugsweise mehr als 30 Gew.-%, Magneteisenstein (Fe3O4 und/oder FeFe2O4) aufweisende Werkstoff auf Eisenoxidbasis durch online gesteuertes Flammspritzen, insbesondere Hochgeschwindigkeits-Flammspritzen, oder Plasmaspritzen, insbesondere Plasmaspritzen in der Luft oder im Vakuum, Hochleistungs-Plasmaspritzen (HPPS), Shroud-Plasmaspritzen (SPS), durch online gesteuertes Drahtflammspritzen oder Lichtbogendrahtspritzen aufgebracht sowie dabei die Eigenschaften der Schicht aus dem Werkstoff durch ein Online-Kontroll- und Steuersystem überwacht und konstant gehalten werden.
- Verfahren nach Anspruch 1, gekennzeichnet durch eine Online-Kontrolle und Steuerung mittels einer auf den Spritzstrahl (10) gerichteten ITG-Kamera (18), eines LDA-Detektors (20) mit LDA-Laser (22) sowie eines HSP-Kopfes (24).
- Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch eine Online-Kontrolle und Steuerung durch das Messen der Partikelgeschwindigkeit in der Spritzflamme.
- Verfahren nach Anspruch 1 oder 3, gekennzeichnet durch eine Online-Kontrolle und Steuerung mittels des Messens der Partikelgeschwindigkeit in der Spritzflamme durch ein Laser-Doppler-Anemometer anhand eines von einem Lasergerät (62) ausgeschickten Strahles (60), der durch eine Sendeoptik (64) in zwei Teilstrahlen (60a, 60b) zerlegt wird.
- Verfahren nach Anspruch 1 oder 3, gekennzeichnet durch eine Online-Kontrolle und Steuerung durch das Messen der Partikeltemperatur in der Spritzflamme mittels eines Hochgeschwindigkeits-Pyrometers.
- Verfahren nach einem der Ansprüche 1 oder 5, gekennzeichnet durch eine Online-Kontrolle und Steuerung, bei der die Partikeltemperatur in der Spritzflamme mittels Infrarot-Thermographie gemessen wird.
- Verfahren nach Anspruch 1, gekennzeichnet durch eine Online-Kontrolle und Steuerung, bei der die gemessene Gasmenge analysiert wird.
- Verfahren nach Anspruch 1 oder 7, gekennzeichnet durch eine Online-Kontrolle und Steuerung, bei der eine gemessene Plasmagasmenge analysiert wird.
- Verfahren nach Anspruch 1, gekennzeichnet durch eine Online-Kontrolle und Steuerung, bei der eine gemessene Strom-Spannungscharakteristik ausgewertet oder bei der eine der Spritzflamme zugeführte Pulvermenge gemessen wird.
- Verfahren zum Herstellen einer korrosions- und verschleißfesten Schicht nach einem der Ansprüche 1 bis 9, gekennzeichnet durch ein online gesteuertes Plasmaspritzverfahren, bei dem als Plasmagas Luft verwendet wird.
- Verfahren zum Herstellen einer korrosions- und verschleißfesten Schicht nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass als Beschichtungsverfahren ein online gesteuertes wasserstabilisiertes Plasmaspritzverfahren angewendet wird.
- Verfahren zum Herstellen einer korrosions- und verschleißfesten Schicht nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass ein Werkstoff mit zumindest 20 Gew.-%, vorzugsweise mehr als 30 Gew.-%, Magneteisenstein (Fe3O4 und/oder FeFe2O4) eingesetzt wird.
- Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass der Werkstoff aus Magnetit und wenigstens einer intermetallischen Verbindung besteht.
- Verfahren nach Anspruch 12, gekennzeichnet durch den Zusatz einer Mischung aus Metallen, intermetallischen Verbindungen, Karbiden, Nitriden, Siliziden, Boriden und/oder Oxiden im Werkstoff.
- Verfahren nach Anspruch 12, gekennzeichnet durch einen Werkstoff aus Magnetit und Karbiden von W, Cr, Mo, Nb, Ta, Ti, V.
- Verfahren nach Anspruch 15, gekennzeichnet durch einen Werkstoff, der aus Magnetit mit einem Zusatz von bis zu 30 Gew.-%, vorzugsweise bis zu 20 Gew.-%, Wolfram- und/oder Chromkarbiden besteht.
- Verfahren nach Anspruch 12, gekennzeichnet durch einen Werkstoff aus Magnetit und wenigstens einem weiteren metallischen Werkstoff.
- Verfahren nach Anspruch 17, gekennzeichnet durch Magnetit und einen Zusatz von bis zu 50 Gew.-%, vorzugsweise bis zu 40 Gew.-% Cr, CrNi, oder einen ferritischen Stahl.
- Verfahren nach Anspruch 12, gekennzeichnet durch eine Mischung von Magnetit und Chromoxid als Werkstoff mit einem Anteil des Chromoxids zwischen 1 und 40 Gew.-%, vorzugsweise zwischen 5 und 30 Gew.-%.
- Verfahren nach einem der Ansprüche 12 bis 19, gekennzeichnet durch eine Korngröße des pulverförmigen Spritzwerkstoffs von 0,05 bis 150 µm, vorzugsweise 0,1 bis 120 µm.
- Verfahren nach einem der Ansprüche 12 bis 20, gekennzeichnet durch den Einsatz eines Fülldrahtes als drahtförmigen Spritzwerkstoff, dessen Füllung aus Magnetit und dessen Mantel aus einer Legierung besteht.
- Verfahren nach einem der Ansprüche 1 bis 21, gekennzeichnet durch ein aus pulverförmigen Werkstoffgemisch durch Sprühtrocknen hergestelltes Pulverkorn mit guten Fließeigenschaften.
- Verfahren nach einem der Ansprüche 1 bis 21, gekennzeichnet durch ein aus pulverförmigen Werkstoffgemisch mittels eines Agglomerationsverfahrens hergestelltes entmischungssicheres Pulverkorn.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19854512 | 1998-11-25 | ||
DE19854512 | 1998-11-25 | ||
DE19857737 | 1998-12-15 | ||
DE19857737A DE19857737A1 (de) | 1998-11-25 | 1998-12-15 | Werkstoff und Verfahren zum Herstellen einer korrosions- und verschleißfesten Schicht durch thermisches Spritzen |
PCT/EP1999/009140 WO2000031313A1 (de) | 1998-11-25 | 1999-11-25 | Werkstoff und verfahren zum herstellen einer korrosions- und verschleissfesten schicht durch thermisches spritzen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1133580A1 EP1133580A1 (de) | 2001-09-19 |
EP1133580B1 true EP1133580B1 (de) | 2003-05-02 |
Family
ID=26050388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99959337A Expired - Lifetime EP1133580B1 (de) | 1998-11-25 | 1999-11-25 | Verfahren zum herstellen einer korrosions- und verschleissfesten schicht durch thermisches spritzen |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1133580B1 (de) |
JP (1) | JP2003522289A (de) |
AT (1) | ATE239105T1 (de) |
AU (1) | AU1655000A (de) |
NO (1) | NO20012564D0 (de) |
WO (1) | WO2000031313A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6952971B2 (en) | 2000-08-23 | 2005-10-11 | Schenck Process Gmbh | Apparatus for measuring a mass flow |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE267275T1 (de) * | 1999-01-19 | 2004-06-15 | Sulzer Metco Ag | Durch plasmaspritzen aufgebrachte schicht für zylinderlaufflächen von motorblöcken und verfahren zu deren herstellung |
DE10025161A1 (de) * | 2000-05-23 | 2001-11-29 | Joma Chemicals As Limingen | Werstoff und Verfahren zum Herstellen einer korrosions-und verschleißfesten Schicht durch thermisches Spitzen |
CH694664A5 (de) * | 2000-06-14 | 2005-05-31 | Sulzer Metco Ag | Durch Plasmaspritzen eines Spritzpulvers aufgebrachte eisenhaltige Schicht auf einer Zylinderlauffläche. |
DE10244037A1 (de) * | 2002-09-21 | 2004-04-08 | Mtu Aero Engines Gmbh | Verfahren zur Beschichtung eines Werkstücks |
US11745201B2 (en) | 2012-06-11 | 2023-09-05 | General Electric Company | Spray plume position feedback for robotic motion to optimize coating quality, efficiency, and repeatability |
KR20230102606A (ko) * | 2021-12-30 | 2023-07-07 | 이창훈 | 플라즈마 서스펜션 코팅 시스템 및 방법 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2707691A (en) * | 1952-08-08 | 1955-05-03 | Norton Co | Coating metals and other materials with oxide and articles made thereby |
JPS5017423B2 (de) * | 1971-12-04 | 1975-06-20 | ||
DE2206220A1 (de) * | 1972-02-10 | 1973-08-23 | Johannes Martinus Arnold Horst | Verfahren zum herstellen von magnetitbeschichtungen |
JPS4863143A (de) * | 1972-08-30 | 1973-09-03 | ||
JPS5913924B2 (ja) * | 1979-12-25 | 1984-04-02 | 日本鋼管株式会社 | 穿孔圧延機用芯金 |
DE3435748A1 (de) * | 1984-09-28 | 1986-04-10 | Siemens AG, 1000 Berlin und 8000 München | Verfahren und einrichtung zum beschichten von werkstuecken durch thermisches spritzen, insbesondere durch plasmaspritzen |
US5047612A (en) * | 1990-02-05 | 1991-09-10 | General Electric Company | Apparatus and method for controlling powder deposition in a plasma spray process |
JPH03229888A (ja) * | 1990-02-05 | 1991-10-11 | Tokai Carbon Co Ltd | マグネタイト被覆電極の製造方法 |
US5180921A (en) * | 1991-11-18 | 1993-01-19 | National Research Council Of Canada | Method and apparatus for monitoring the temperature and velocity of plasma sprayed particles |
JP3228445B2 (ja) * | 1993-02-10 | 2001-11-12 | 株式会社荏原製作所 | 鉄鉱石を含有する溶射発熱体 |
JP3431715B2 (ja) * | 1995-02-15 | 2003-07-28 | トーカロ株式会社 | 耐久性に優れる溶射被覆電極の製造方法 |
JPH08269672A (ja) * | 1995-03-30 | 1996-10-15 | Toshiba Corp | 溶射皮膜の評価方法および装置 |
DE19545005A1 (de) * | 1995-12-02 | 1997-06-05 | Abb Patent Gmbh | Verfahren zur Überwachung der Beschichtung einer Platte aus einem Metall mit hoher Leitfähigkeit mit einem Material mit geringerer Leitfähigkeit und Vorrichtung zur Durchführung des Verfahrens |
EP0837305A1 (de) * | 1996-10-21 | 1998-04-22 | Sulzer Metco AG | Einrichtung sowie Verfahren zur Überwachung des Beschichtungsprozesses einer thermischen Beschichtungsvorrichtung |
DE19820195A1 (de) * | 1998-05-06 | 1999-11-11 | Linde Ag | Qualitätssicherung beim thermischen Spritzen |
-
1999
- 1999-11-25 EP EP99959337A patent/EP1133580B1/de not_active Expired - Lifetime
- 1999-11-25 JP JP2000584120A patent/JP2003522289A/ja not_active Withdrawn
- 1999-11-25 AU AU16550/00A patent/AU1655000A/en not_active Abandoned
- 1999-11-25 WO PCT/EP1999/009140 patent/WO2000031313A1/de active IP Right Grant
- 1999-11-25 AT AT99959337T patent/ATE239105T1/de not_active IP Right Cessation
-
2001
- 2001-05-25 NO NO20012564A patent/NO20012564D0/no not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6952971B2 (en) | 2000-08-23 | 2005-10-11 | Schenck Process Gmbh | Apparatus for measuring a mass flow |
Also Published As
Publication number | Publication date |
---|---|
EP1133580A1 (de) | 2001-09-19 |
WO2000031313A1 (de) | 2000-06-02 |
NO20012564L (no) | 2001-05-25 |
JP2003522289A (ja) | 2003-07-22 |
ATE239105T1 (de) | 2003-05-15 |
AU1655000A (en) | 2000-06-13 |
NO20012564D0 (no) | 2001-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4321673C2 (de) | Verfahren zur Herstellung eines Bauteils mittels Lichtbogenspritzens sowie Anwendungen dieses Verfahrens | |
DE102019212844A1 (de) | Bremsscheibe und Verfahren zum Herstellen einer Bremsscheibe | |
Smurov et al. | Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation | |
EP0818549B1 (de) | Werkstoff in Pulver- oder Drahtform auf Nickelbasis für eine Beschichtung sowie Verfahren dazu | |
Marple et al. | Thermal spraying of nanostructured cermet coatings | |
DE19740205B4 (de) | Verfahren zum Aufbringen einer Beschichtung mittels Plasmaspritzens | |
DE3011022C2 (de) | Verfahren zum Aufbringen eines metallischen Überzugs auf eine Metalloberfäche und Vorrichtung zu seiner Durchführung | |
EP3620546A2 (de) | Bremsscheibe und verfahren zum herstellen einer bremsscheibe | |
EP3325685B1 (de) | Verfahren zur beschichtung einer zylinderlaufbahn eines zylinderkurbelgehäuses, zylinderkurbelgehäuse mit einer beschichteten zylinderlaufbahn sowie motor | |
WO2001090435A1 (de) | Werkstoff und verfahren zum herstellen einer korrosions- und verschleissfesten schicht durch thermisches spritzen | |
DE19857737A1 (de) | Werkstoff und Verfahren zum Herstellen einer korrosions- und verschleißfesten Schicht durch thermisches Spritzen | |
DE102014211366A1 (de) | Verfahren zur Erzeugung einer Oxidationsschutzschicht für einen Kolben zum Einsatz in Brennkraftmaschinen und Kolben mit einer Oxidationsschutzschicht | |
EP1133580B1 (de) | Verfahren zum herstellen einer korrosions- und verschleissfesten schicht durch thermisches spritzen | |
EP0438971B1 (de) | Beschichtetes metallisches Substrat | |
DE19841619A1 (de) | Lichtbogen - drahtgespritzte Alsi - Triboschicht | |
DE69709956T2 (de) | Verwendung einer ni-basislegierung für kompositrohre für verbrennungsanlage | |
DE2744189A1 (de) | Verfahren zur verbesserung der verschleisseigenschaften von eisenmetallteilen | |
EP0915184A1 (de) | Verfahren zur Herstellung einer keramischen Schicht auf einem metallischen Grundwerkstoff | |
DE19535078B4 (de) | Überwachung und Regelung von thermischen Spritzverfahren | |
EP3314033B1 (de) | Eisenbasierte legierung zur herstellung thermisch aufgebrachter verschleissschutzschichten | |
WO2013060552A1 (de) | Plasmaspritzverfahren | |
WO2008090192A1 (de) | Giesswalze für eine zweiwalzengiessvorrichtung und zweiwalzengiessvorrichtung | |
DE60307531T2 (de) | Thermische Spritzeinrichtung | |
DE60304916T2 (de) | Thermische Spritzeinrichtung | |
DE3590031T (de) | Werkstoff zum Flammspritzen und sein Herstellungsverfahren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010622 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Kind code of ref document: A1 Designated state(s): AT DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20020204 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RTI1 | Title (correction) |
Free format text: PROCESS FOR PRODUCING A CORROSION- AND WEAR-RESISTANT LAYER BY THERMAL SPRAYING |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59905361 Country of ref document: DE Date of ref document: 20030605 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D Ref document number: 1133580E Country of ref document: IE |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040203 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20061124 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20061127 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20061219 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070119 Year of fee payment: 8 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20071125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080603 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20080930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071130 |