EP1133580B1 - Process for producing a corrosion- and wear-resistant layer by thermal spraying - Google Patents

Process for producing a corrosion- and wear-resistant layer by thermal spraying Download PDF

Info

Publication number
EP1133580B1
EP1133580B1 EP99959337A EP99959337A EP1133580B1 EP 1133580 B1 EP1133580 B1 EP 1133580B1 EP 99959337 A EP99959337 A EP 99959337A EP 99959337 A EP99959337 A EP 99959337A EP 1133580 B1 EP1133580 B1 EP 1133580B1
Authority
EP
European Patent Office
Prior art keywords
spraying
magnetite
weight
control
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99959337A
Other languages
German (de)
French (fr)
Other versions
EP1133580A1 (en
Inventor
Erich Lugscheider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joma Chemical AS
Original Assignee
Joma Chemical AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19857737A external-priority patent/DE19857737A1/en
Application filed by Joma Chemical AS filed Critical Joma Chemical AS
Publication of EP1133580A1 publication Critical patent/EP1133580A1/en
Application granted granted Critical
Publication of EP1133580B1 publication Critical patent/EP1133580B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Definitions

  • the invention relates to a method for producing a Corrosion and wear-resistant layer on one Substrate by spraying an iron oxide-based material.
  • Such a method is known from DE 30 48 691 A1, with which a piercing mandrel for a plug and stretching mill is coated; a protective layer is formed on the mandrel surface by spraying on a powder consisting largely of iron oxide in the molten state;
  • a piercing mandrel is said to be inexpensive to manufacture and to have excellent durability and to offer better insulation and sliding properties.
  • the compounds FeO, Fe 3 O 4 and Fe 2 O 3 or their mixtures are offered as iron oxides, which make up more than 50% by weight of the powder. Oxides of chromium, nickel, copper and manganese or metals from the group iron, chromium, nickel, cobalt, copper and manganese can also be used.
  • DE 34 35 748 A1 describes the use of a laser anemometer, whose measurement volume is relative to a hot one Gas jet is adjustable to determine particle speeds with thermal spraying.
  • the particle current density is determined by a particle counter, the number of each flying through the measuring volume Spray particles count.
  • the mean particle trajectories and the melting state are digital in a facility Data processing calculated.
  • EP 0 443 730 A shows a process for producing magnetite-coated electrodes, in which a mixture is produced by mixing FeO and Fe 2 O 3 powder and polyvinyl alcohol solution, pressed into a green body and then sintered to form magnetite , The magnetite sinter is then pulverized to a particle size of 5 to 150 ⁇ m and the magnetite powder is applied to the electrodes by means of thermal spraying, for example by means of plasma spraying, plasma jets or water plasma. The plasma jet is not checked.
  • the coating of a sliding body - for example a piston ring - is achieved by thermal spraying of a mixture of Fe 3 O 4 and Cr 2 O 3 (ratio 50:50), Fe 3 O 4 and Cr 3 C 2 (60 : 40) as well as Fe 3 O 4 and a self-flux alloy (70: 30).
  • EP 0 837 305 A describes a measuring method - with a device for measuring temperature, particle density and Particle size, current, carrier and plasma gas velocity, the amount of plasma gas - to determine the Data of the particles and the plasma jet during the Spritzens discussed.
  • this is done using a camera or image processing coupled to it.
  • US 5 180 921 A discloses a thermal Plasma coating device with sensors for monitoring the particle velocity of the sprayed particles by means of two photodetectors (two-color pyrometer), with which then the flow, the powder feed rate, the powder feed gas flow or the like. to be controlled.
  • Corrosion and wear protection layers are usually made from powder mixtures various types of surfaces to be protected in production or applied for maintenance.
  • the main ones are thermal Spray processes or vapor deposition processes such as CVD (chemical vapor deposition) or PVD (plasma vapor deposition) is used.
  • CVD chemical vapor deposition
  • PVD plasma vapor deposition
  • CVD and PVD processes can have thin layers of corrosion and wear protection Oxide or hard material base, especially applied in mass production become.
  • Electrochemical or galvanic processes are also used.
  • Thermal spraying mainly turns layers into one Layer thickness of more than 0.1 mm created.
  • thermal Sprayed corrosion and wear-resistant layers mostly around metallic or oxide layers in which to improve Hard materials are stored.
  • thermal spraying One of the biggest problems with thermal spraying is manufacturing of layers of constant properties and quality.
  • the thermal spraying processes on substrates or parts were basically able with high quality requirements in series production only limited use Find.
  • the inventor has set the goal that Creating a constant wear and corrosion resistant surface coating on the basis of oxide by means of thermal spraying.
  • Carbides, nitrides, silicides, borides and oxides have proven their worth as additives for hard materials.
  • the carbide formers such as tungsten, chromium molybdenum, niobium, tantalum, titanium, vanadium or the like are suitable.
  • the addition of the carbides should be limited to a maximum of 30% by weight, preferably 20% by weight. With borides and nitrides as additives at this level, improvements in properties are observed.
  • Oxidic additions of chromium oxide (Cr 2 O 3 ) in the order of 1 to 40% by weight - preferably 5 to 30% by weight - also show good results.
  • the powdery spray materials a grain size of 0.05 to 150 ⁇ m - preferably 0.1 to 120 ⁇ m - have.
  • a grain size of 0.05 to 150 ⁇ m - preferably 0.1 to 120 ⁇ m - have.
  • thermal spray processes such as autogenous flame spraying, high-speed flame spraying (HVOF spraying), plasma spraying under air (APS), Shroud plasma spraying (SPS), vacuum spraying (LPPS), high-performance plasma spraying (HPPS), the autogen Wire spraying or arc wire spraying can be used.
  • HVOF spraying high-speed flame spraying
  • APS plasma spraying under air
  • SPS Shroud plasma spraying
  • LPPS vacuum spraying
  • HPPS high-performance plasma spraying
  • the autogen Wire spraying or arc wire spraying can be used.
  • the online control and control takes place with a combination of different Procedures that allow the temperature of the particle or the Degree of melting, the particle size, the speed, the impact of the same on the substrate and the heating of the layer and the substrate to measure during the spraying process.
  • the measurement signals are then the Computer fed to a control system for the spraying system and the flame parameters as well as the performance adjusted to the values.
  • the inventor has thus found that it is possible to use one of those mentioned above To meet coating requirements if an iron-based oxide is used as the material, which - depending on of the corrosion or wear problem to be solved - metals, Hard materials or intermetallic compounds added.
  • the material must are produced by a certain manufacturing process; According to the invention, one is made from the powdery material mixture Spray drying produced powder grain with good flow properties proposed as well as from the powdery material mixture anti-segregation manufactured in an agglomeration process Powder grain.
  • the spraying system is equipped with an online control system Equipped to provide high quality and layers to be able to produce consistent properties by spraying.
  • an online control and control by means of a Spray jet directed ITG camera, an LDA detector with LDA laser as well as an HSP head proved to be cheap or an online control using an ITG camera directed at the spray jet and an HSP head one Measuring body.
  • the online control system is to be used for measurement conveniently the particle speed in the spray flame, for example by a laser doppler anemometer using one from a laser device emitted beam, which by means of a transmission optics in two partial beams is disassembled.
  • Another feature of the invention is through online control and controlling the particle temperature in the spray flame by means of a High speed pyrometers observed. This is done by means of Infrared thermography.
  • thermal spraying processes such as autogenous flame spraying, high-speed flame spraying (HVOF), plasma spraying under air (APS), the so-called Shroud plasma spraying (SPS), plasma spraying in a vacuum (LPPS), High-power plasma spraying (HPPS), autogenous or arc wire spraying - applicable.
  • HVOF high-speed flame spraying
  • APS plasma spraying under air
  • SPS Shroud plasma spraying
  • LPPS plasma spraying in a vacuum
  • HPPS High-power plasma spraying
  • autogenous or arc wire spraying - applicable Online control and control is carried out using a Combination of different processes that allow the temperature of the particle or the degree of melting, the particle size, the speed, the impact of the same on the substrate and the heating of the Measure layer and substrate during the spraying process.
  • the measurement signals are then the computer of the control part of the thermal Spraying system fed to the flame parameters and the performance to be able to adjust measured values.
  • LDA - Detector laser Doppler anemometer
  • FIG. 3 To measure substrate temperature T s and coating temperature T c by means of infrared thermography, according to FIG. 3 there is a substrate 30 - to be provided with a coating 32 - in the recording area of an ITG camera 18.
  • a glass fiber cable 36 extends from the latter leads to a video PC card indicated at 42 - 500 kHz.
  • a computer 46 with a monitor 48 is connected to this, to which a temperature recording device 50 is assigned.
  • HSP high-speed pyrometry
  • LDA laser Doppler anemometry
  • a particle of the spray jet 10 that flies through this stripe pattern generates a scattered light signal 68 that changes periodically over time for a receiving lens system with a photodetector 70.
  • the modulation frequency of the scattered light signal 68 is proportional to the velocity component of the particle perpendicular to the interference fringe system.
  • the frequency of the LDA scattered light signals is a measure of the local density of the particles in the plasma spray jet 10.
  • PSD particle-shape imaging
  • the image recording system consists of a CCD camera 78 with an upstream micro-channel plate (MCP) image intensifier with a minimum exposure time of 5 ns.
  • MCP micro-channel plate
  • the geometric dimensions of the 512 x 512 pixel CCD chip and the depth of field of the lens result in a measurement volume of 410 x 410 x 940 ⁇ m 3 .
  • in-flight particle diagnosis method to which reference is made to FIG. 8 - up to 200 individual particles per second can be measured simultaneously in every point of a spray jet for their surface temperature, speed and size, regardless of the spraying method.
  • a non-reproduced moving unit additionally enables a plane to be scanned perpendicular to the spray jet 10, so that the distribution of the particles in the spray jet 10 can be determined precisely.
  • the temperature is determined using two-wavelength pyrometery at 995 ⁇ 25 ⁇ m and 787 ⁇ 25 ⁇ m.
  • the particles are treated as gray emitters so that knowledge of the exact emissivity is not necessary for the temperature measurement.
  • the system comprises imaging a two-slit mask 80 with 25 ⁇ m ⁇ 50 ⁇ m — on a measuring head 82 — at a focal point at a distance of approximately 90 mm with a high depth of field.
  • This creates a measurement volume which, according to the graphic representation in FIG. 10, is characterized by two visible and one shadow region in between.
  • the measuring volume is approximately 170 x 250 x 2000 ⁇ m 3 .
  • the natural radiation of individual particles that fly through this measurement volume is recorded by two IR detectors with two different wavelengths.
  • the two partial measurement volumes result in two temperature peaks in a row.
  • the time interval between the two peaks is a measure of the speed of the particle.
  • the principle corresponds to that of the light barrier.
  • the measurable particle size depends essentially on the temperature of the particles. It is down limited to about 10 microns and up to about 300 microns and is by the absolute energy radiated by the particle determines that proportional to the square of the diameter.
  • the measurable speed range is 30m / s - 1500 m / s.
  • FIG. 9 follows on from that in FIG. 1 and illustrates this Measuring the particle temperature and speed using an HSP head 24th
  • a casting mold for aluminum casting should be provided with a layer, which prevents caking and sticking in the mold.
  • the grain structure of the round grains was determined by agglomeration Spray drying manufactured.
  • the application was carried out by plasma spraying in air (APS) with one performance of 60 KW and argon / hydrogen plasma, which with an online control unit 1 was provided; the particle velocity and particle temperature are measured there during the flight to the plasma spray to control so that the necessary degree of melting of the particle is achieved.
  • APS plasma spraying in air
  • argon / hydrogen plasma which with an online control unit 1 was provided; the particle velocity and particle temperature are measured there during the flight to the plasma spray to control so that the necessary degree of melting of the particle is achieved.
  • the mold surface to be coated was forced-cooled with CO 2 with the aim of keeping the oxidation on particle impact as low as possible.
  • the layer thus produced by thermal spraying was then ground and tested in an aluminum foundry. It was found that caking and sticking to the form is prevented as well as the complex Spraying the mold with a mold release agent can be omitted.
  • a cored wire of the following composition was used as the spray material: filling Magnetite (Fe 3 O 4 ) coat NiCr 80/20 with about 30% by weight of the cored wire.
  • the grain size of the starting material for the filling was> 1.0 ⁇ m.
  • an arc spraying system equipped with an online control and monitoring system was used for processing cored wire, and a control system was a combination of the two systems shown in FIGS. 1 and 3.
  • the forced cooling is done with CO 2 and air.
  • the 200 cm long roll was applied to a surface quality ground from Ra 0.4 ⁇ m.
  • the grain size of the wettable powder was: ⁇ 37 ⁇ m > 5 ⁇ m, the grain size of the starting material ⁇ 0.5 ⁇ m.
  • the spray powder of round grain shape was obtained by agglomeration during spray drying manufactured.
  • CO 2 was used as forced cooling for the substrate and the layer during the spraying process.
  • the Shroud used to protect against oxidation was operated with pure starch.
  • the piston rings coated with pure magnetite using this process showed a high quality in the control and showed in the endurance test in Engines good results.
  • An immersion device for a salt bath working at 500 ° C for heat treatment of smaller parts shows after about a week of operation a high level of corrosion.
  • the thermal spray process for applying the layer with a thickness of 80 ⁇ m was a high speed flame spray (HVOF) in which the Control took place online. After spraying, the layer was polished.
  • HVOF high speed flame spray
  • a hydraulic cylinder for underground mining with a length of 1000 mm and a diameter of 200 mm should be protected with a protective layer Corrosion and wear are provided. So far it was used as a protective layer an electroplated hard chrome layer was used, which has a service life due to the appearance of hairline cracks in the layer of at most two months.
  • a protective layer of the composition 70% by weight Fe 3 O 4 (magnetite), 30% by weight Cr 2 O 3 (chromium oxide) chosen, the grain size of the agglomerated spray material > 5 ⁇ m, ⁇ 37 ⁇ m scam.
  • the protective layer with a layer thickness between 1.0 and 1.5 mm was an HPPS (High Power Plasma) system with an output of 200 KW used to maintain the exact spraying parameters or the Avoiding oxidation was provided with an online control.
  • HPPS High Power Plasma
  • the protective layer thus produced was removed after a period of two months checked, and it was found that the surface of the layer was none Attacks caused by corrosion or wear.
  • the lifespan of the Shift was nine months.
  • the piston of a vacuum pump with a diameter of 20 mm and a length of 500 mm should be provided with a wear and corrosion protection layer.
  • An LPPS system with an output of 40 KW was used for coating, which was provided with an online control.
  • the coating produced in this way showed very good results in later use compared to normal pistons.

Abstract

The invention relates to a material for producing a corrosion- and wear-resistant layer on a substrate by thermal spraying. Said material consists of at least 20 wt.-% - preferably more than 30 wt.-% - magnetite (Fe3O4 and/or FeFe2O4). Preferably, the inventive material consists of pure magnetite or of magnetite and at least one other metallic material or at least one intermetallic compound.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen einer korrosions- und verschleissfesten Schicht auf einem Substrat durch Aufsprühen eines Werkstoffes auf Eisenoxidbasis.The invention relates to a method for producing a Corrosion and wear-resistant layer on one Substrate by spraying an iron oxide-based material.

Durch die DE 30 48 691 A1 ist ein derartiges Verfahren bekannt geworden, mit dem ein Lochdorn für ein Stopfen- und Streckwalzwerk beschichtet wird; auf der Dornoberfläche wird durch Aufsprühen eines weitgehend aus Eisenoxid bestehenden Pulvers in geschmolzenem Zustand eine Schutzschicht gebildet; ein solcher Lochdorn soll preiswert herstellbar und von ausgezeichneter Haltbarkeit sein sowie bessere Isolierungs- und Gleiteigenschaften anbieten. Dazu werden als Eisenoxide die Verbindungen FeO, Fe3O4 und Fe2O3 beziehungsweise deren Gemische angeboten, die mehr als 50 Gew.-% des Pulvers ausmachen. Zudem können Oxide von Chrom, Nickel, Kupfer und Mangan bzw. Metalle aus der Gruppe Eisen, Chrom, Nickel, Kobalt, Kupfer und Mangan eingesetzt werden.Such a method is known from DE 30 48 691 A1, with which a piercing mandrel for a plug and stretching mill is coated; a protective layer is formed on the mandrel surface by spraying on a powder consisting largely of iron oxide in the molten state; Such a piercing mandrel is said to be inexpensive to manufacture and to have excellent durability and to offer better insulation and sliding properties. For this purpose, the compounds FeO, Fe 3 O 4 and Fe 2 O 3 or their mixtures are offered as iron oxides, which make up more than 50% by weight of the powder. Oxides of chromium, nickel, copper and manganese or metals from the group iron, chromium, nickel, cobalt, copper and manganese can also be used.

Die DE 34 35 748 A1 schildert den Einsatz eines Laser-Anemometer, dessen Messvolumen relativ zu einem heißen Gasstrahl verstellbar ist, zur Ermittlung der Partikelgeschwindigkeiten beim thermischen Spritzen. Die Partikelstromdichte wird durch einen Partikelzähler ermittelt, der die Anzahl der jeweils durch das Messvolumen fliegenden Spritzpartikel zählt. Die mittleren Partikelflugbahnen und der Schmelzzustand werden in einer Einrichtung zur digitalen Datenverarbeitung errechnet. DE 34 35 748 A1 describes the use of a laser anemometer, whose measurement volume is relative to a hot one Gas jet is adjustable to determine particle speeds with thermal spraying. The particle current density is determined by a particle counter, the the number of each flying through the measuring volume Spray particles count. The mean particle trajectories and the melting state are digital in a facility Data processing calculated.

Der EP 0 443 730 A ist ein Verfahren zum Herstellen von Magnetit beschichteter Elektroden zu entnehmen, bei dem durch Mischen von FeO- und Fe2O3-Pulver sowie Polyvinylalkohol-Lösung eine Mischung hergestellt, zu einem Grünkörper gepresst und dann zu Magnetit gesintert wird. Anschließend wird der Magnetitsinter auf eine Teilchengröße von 5 bis 150 µm pulverisiert und das Magnetitpulver mittels thermischen Spritzens -- etwa mittels Plasmaspritzens, Plasmajets oder Wasserplasma -- auf die Elektroden aufgebracht. Eine Kontrolle des Plasmastrahles findet nicht statt.EP 0 443 730 A shows a process for producing magnetite-coated electrodes, in which a mixture is produced by mixing FeO and Fe 2 O 3 powder and polyvinyl alcohol solution, pressed into a green body and then sintered to form magnetite , The magnetite sinter is then pulverized to a particle size of 5 to 150 μm and the magnetite powder is applied to the electrodes by means of thermal spraying, for example by means of plasma spraying, plasma jets or water plasma. The plasma jet is not checked.

Die Beschichtung eines Gleitkörpers -- z.B. eines Kolbenringes -- wird nach DE 23 35 995 durch thermisches Spritzen einer Mischung von Fe3O4 und Cr2O3 (Verhältnis 50 : 50), Fe3O4 und Cr3C2 (60 : 40) sowie Fe3O4 und einer Selbst-Flusslegierung (70 : 30) aufgebracht.According to DE 23 35 995, the coating of a sliding body - for example a piston ring - is achieved by thermal spraying of a mixture of Fe 3 O 4 and Cr 2 O 3 (ratio 50:50), Fe 3 O 4 and Cr 3 C 2 (60 : 40) as well as Fe 3 O 4 and a self-flux alloy (70: 30).

In EP 0 837 305 A wird ein Messverfahren -- mit einer Einrichtung zum Messen der Temperatur, der Partikeldichte und Partikelgröße, der Stromstärke, der Träger- und Plasmagasgeschwindigkeit, der Plasmagasmenge -- zum Bestimmen der Daten der Partikel und des Plasmastrahles während des Spritzens erörtert. Bei einer anderen thermischen Einrichtung nach JP 08 269 672 A wird diese mittels einer Kamera bzw. einer damit gekoppelten Bildverarbeitung gesteuert.EP 0 837 305 A describes a measuring method - with a device for measuring temperature, particle density and Particle size, current, carrier and plasma gas velocity, the amount of plasma gas - to determine the Data of the particles and the plasma jet during the Spritzens discussed. With another thermal device According to JP 08 269 672 A, this is done using a camera or image processing coupled to it.

Schließlich offenbart die US 5 180 921 A eine thermische Plasmabeschichtungseinrichtung mit Sensoren zum Überwachen der Partikelgeschwindigkeit der gespritzten Teilchen mittels zweier Photodetektoren (Zweifarbpyrometer), womit dann der Strom, die Pulverzuführrate, der Pulverfördergasstrom od.dgl. gesteuert werden. Finally, US 5 180 921 A discloses a thermal Plasma coating device with sensors for monitoring the particle velocity of the sprayed particles by means of two photodetectors (two-color pyrometer), with which then the flow, the powder feed rate, the powder feed gas flow or the like. to be controlled.

Korrosions- und Verschleißschutzschichten werden üblicherweise aus Pulvergemischen verschiedener Art auf zu schützende Oberflächen in der Fabrikation oder zum Unterhalt aufgebracht. Dazu werden in der Hauptsache thermische Spritzverfahren oder Aufdampfverfahren wie CVD (chemical vapor deposition) oder PVD (plasma vapor deposition) eingesetzt. Mit den CVD- und PVD-Verfahren können dünne Korrosions- und Verschleißschutzschichten auf Oxid- oder Hartstoffbasis, besonders in der Massenproduktion, aufgebracht werden. Zudem werden elektrochemische oder galvanische Verfahren eingesetzt.Corrosion and wear protection layers are usually made from powder mixtures various types of surfaces to be protected in production or applied for maintenance. The main ones are thermal Spray processes or vapor deposition processes such as CVD (chemical vapor deposition) or PVD (plasma vapor deposition) is used. With the CVD and PVD processes can have thin layers of corrosion and wear protection Oxide or hard material base, especially applied in mass production become. Electrochemical or galvanic processes are also used.

Mittels des thermischen Spritzens werden in der Hauptsache Schichten einer Schichtdicke von mehr als 0,1 mm geschaffen. Bei den durch thermisches Spritzen hergestellten korrosions- und verschleißfesten Schichten handelt es sich zumeist um metallische oder oxidische Schichten, in die zur Verbesserung Hartstoffe eingelagert werden.Thermal spraying mainly turns layers into one Layer thickness of more than 0.1 mm created. In the case of thermal Sprayed corrosion and wear-resistant layers mostly around metallic or oxide layers in which to improve Hard materials are stored.

Eines der größten Probleme bei den thermischen Spritzverfahren ist das Herstellen von Schichten konstanter Eigenschaften und Qualität. Aus diesem Grunde konnten die thermischen Spritzverfahren an Substraten oder Teilen mit hohen Qualitätsansprüchen in der Serienproduktion nur begrenzt Anwendung finden.One of the biggest problems with thermal spraying is manufacturing of layers of constant properties and quality. For this The thermal spraying processes on substrates or parts were basically able with high quality requirements in series production only limited use Find.

Versuche mit Auswahl des Werkstoffes bezüglich seiner chemischen Zusammensetzung oder seiner Form -- etwa zum einen des Drahtdurchmessers eines Fülldrahtes oder zum anderen der Korngrößenverteilung und der Kornform des Spritzpulvers -- führten zu keiner ausreichenden Qualitätssteigerung. Auch Änderungen an den Spritzanlagen verhalfen nicht zu einer besseren Qualität.Experiments with selection of the material regarding its chemical composition or its shape - for example the wire diameter of a cored wire or on the other hand the grain size distribution and the grain shape of wettable powder - did not lead to a sufficient increase in quality. Changes to the spraying systems also did not help to improve it Quality.

Es fanden Versuche statt, Verschleiß- und Korrosionsschutz durch thermisch aufgespritzte Schichten aus Eisenoxid bzw. Magnetit zu schaffen. Bei allen Versuchen dieser Art zeigte sich, dass die Qualität der jeweiligen Schicht in Hinblick auf den Schichtaufbau nur unter großem Aufwand einigermaßen gesichert zu werden vermochte.Attempts were made to protect against wear and corrosion by thermal means to create sprayed-on layers of iron oxide or magnetite. At all Experiments of this kind showed that the quality of the respective layer in With regard to the layer structure, only with great effort could be secured.

In Kenntnis dieser Gegebenheiten hat sich der Erfinder das Ziel gesetzt, das Herstellen einer konstanten verschleiß- und korrosionsfesten Oberflächenbeschichtung auf Oxidbasis auf dem Wege des thermischen Spritzens zu verbessern.Knowing these facts, the inventor has set the goal that Creating a constant wear and corrosion resistant surface coating on the basis of oxide by means of thermal spraying.

Zur Lösung dieser Aufgabe führen die Lehren der unabhängigen Patentansprüche; die Unteransprüche geben günstige Weiterbildungen an. The teachings of the independent claims lead to the solution of this problem; the subclaims indicate favorable further training.

Bei den Hartstoffen haben sich die Karbide, Nitride, Silizide, Boride und Oxide als Zusätze bewährt. Bei den Karbiden eignen sich die Karbidbildner wie Wolfram, Chrom Molybdän, Niob, Tantal, Titan, Vanadium od.dgl.. Der Zusatz der Karbide sollte auf höchstens 30 Gew.-% -- vorzugsweise 20 Gew.-% -- begrenzt werden. Bei den Boriden und Nitriden als Zusätze in dieser Höhe werden Verbesserungen der Eigenschaften festgestellt. Oxidische Zusätze von Chromoxid (Cr2O3) in einer Größenordnung von 1 bis 40 Gew.-% -- vorzugsweise 5 bis 30 Gew.-% -- zeigen ebenfalls gute Resultate.Carbides, nitrides, silicides, borides and oxides have proven their worth as additives for hard materials. In the carbides, the carbide formers such as tungsten, chromium molybdenum, niobium, tantalum, titanium, vanadium or the like are suitable. The addition of the carbides should be limited to a maximum of 30% by weight, preferably 20% by weight. With borides and nitrides as additives at this level, improvements in properties are observed. Oxidic additions of chromium oxide (Cr 2 O 3 ) in the order of 1 to 40% by weight - preferably 5 to 30% by weight - also show good results.

Um eine hohe Qualität zu erreichen, müssen die pulverförmigen Spritzwerkstoffe eine Korngröße von 0,05 bis 150 µm -- vorzugsweise 0,1 bis 120 µm -- besitzen. Bei den Gemischen von verschiedenen pulverförmigen Werkstoffen empfiehlt es sich, zur Vermeidung einer Entmischung und zur Verbesserung des Fließverhaltens diese zu agglomerieren oder sprühzutrocknen.To achieve high quality, the powdery spray materials a grain size of 0.05 to 150 µm - preferably 0.1 to 120 µm - have. When mixing different powdery materials it is recommended to avoid segregation and to improve the flow behavior to agglomerate or spray-dry them.

Beim Einsatz drahtförmiger Spritzwerkstoffe mit hohem Magnetitanteil kann im Rahmen der Erfindung aus einem metallischen Mantel und Magnetitpulver ein Fülldraht hergestellt werden.When using wire-shaped spray materials with a high magnetite content in the context of the invention from a metallic shell and magnetite powder a cored wire can be produced.

Zum Aufbringen der Verschleiß- und/oder Korrosionsschicht sind erfindungsgemäß alle thermischen Spritzverfahren wie das autogene Flammspritzen, das Hochgeschwindigkeits-Flammspritzen (HVOF Spritzen), das Plasmaspritzen unter Luft (APS), das Shroud-Plasmaspritzen (SPS), das Vakkumspritzen (LPPS), das Hochleistungs-Plasmaspritzen (HPPS), das autogene Drahtspritzen oder Lichtbogen-Drahtspritzen einsetzbar.To apply the wear and / or corrosion layer are according to the invention all thermal spray processes such as autogenous flame spraying, high-speed flame spraying (HVOF spraying), plasma spraying under air (APS), Shroud plasma spraying (SPS), vacuum spraying (LPPS), high-performance plasma spraying (HPPS), the autogen Wire spraying or arc wire spraying can be used.

Die Online-Kontrolle und Steuerung erfolgt mit einer Kombination von verschiedenen Verfahren, die es erlauben, die Temperatur des Partikels bzw. den Aufschmelzgrad, die Partikelgröße, die Geschwindigkeit, das Auftreffen desselben auf das Substrat sowie die Erwärmung der Schicht und des Substrats während des Spritzvorgangs zu messen. Die Messsignale werden dann dem Computer einer Steueranlage für die Spritzanlage zugeleitet und die Flammenparameter sowie die Leistung den Werten angepasst. The online control and control takes place with a combination of different Procedures that allow the temperature of the particle or the Degree of melting, the particle size, the speed, the impact of the same on the substrate and the heating of the layer and the substrate to measure during the spraying process. The measurement signals are then the Computer fed to a control system for the spraying system and the flame parameters as well as the performance adjusted to the values.

Vom Erfinder wurde also festgestellt, dass es möglich ist, eine den oben erwähnten Anforderungen gerecht werdende Beschichtung zu schaffen, wenn als Werkstoff ein Oxid auf Eisenbasis verwendet wird, dem man -- in Abhängigkeit von dem zu lösenden Korrosions- oder Verschleißproblem -- Metalle, Hartstoffe oder intermetallische Verbindungen zusetzt. Der Werkstoff muss nach einem bestimmten Herstellungsverfahren erzeugt werden; erfindungsgemäß wird ein aus dem pulverförmigen Werkstoffgemisch durch Sprühtrocknen hergestelltes Pulverkorn mit guten Fließeigenschaften vorgeschlagen sowie ein aus dem pulverförmigen Werkstoffgemisch mittels eines Agglomerationsverfahrens hergestelltes entmischungssicheres Pulverkorn.The inventor has thus found that it is possible to use one of those mentioned above To meet coating requirements if an iron-based oxide is used as the material, which - depending on of the corrosion or wear problem to be solved - metals, Hard materials or intermetallic compounds added. The material must are produced by a certain manufacturing process; According to the invention, one is made from the powdery material mixture Spray drying produced powder grain with good flow properties proposed as well as from the powdery material mixture anti-segregation manufactured in an agglomeration process Powder grain.

Die Spritzanlage wird mit einem Online-Kontroll- bzw. Steuersystem zur Überwachung ausgerüstet, um Schichten mit einer hohen Qualität und gleichbleibenden Eigenschaften durch Aufspritzen herstellen zu können.The spraying system is equipped with an online control system Equipped to provide high quality and layers to be able to produce consistent properties by spraying.

Dazu hat sich eine Online-Kontrolle und Steuerung mittels einer auf den Spritzstrahl gerichteten ITG-Kamera, einen LDA-Detektor mit LDA-Laser sowie einen HSP-Kopf als günstig erwiesen oder eine Online-Kontrolle mittels einer auf den Spritzstrahl gerichteten ITG-Kamera und einen HSP-Kopf eines Messkörpers.For this purpose, an online control and control by means of a Spray jet directed ITG camera, an LDA detector with LDA laser as well as an HSP head proved to be cheap or an online control using an ITG camera directed at the spray jet and an HSP head one Measuring body.

Gemessen werden soll durch die Online-Kontrolle und Steuerung günstigerweise die Partikelgeschwindigkeit in der Spritzflamme, etwa durch ein Laser-Doppler-Anemometer anhand eines von einem Lasergerät ausgeschickten Strahles, der durch eine Sendeoptik in zwei Teilstrahlen zerlegt wird.The online control system is to be used for measurement conveniently the particle speed in the spray flame, for example by a laser doppler anemometer using one from a laser device emitted beam, which by means of a transmission optics in two partial beams is disassembled.

Nach einem anderen Merkmal der Erfindung wird durch die Online-Kontrolle und Steuerung die Partikeltemperatur in der Spritzflamme mittels eines Hochgeschwindigkeits-Pyrometers beobachtet. Dies erfolgt etwa mittels Infrarot-Thermographie.Another feature of the invention is through online control and controlling the particle temperature in the spray flame by means of a High speed pyrometers observed. This is done by means of Infrared thermography.

Auch hat es sich als. günstig erwiesen, durch die Online-Kontrolle und Steuerung die Gasmenge zu messen, etwa eine Plasmagasmenge. It also turned out to be. proven conveniently through online control and Control measure the amount of gas, such as a quantity of plasma gas.

Dank der Online-Kontrolle und Steuerung ist man auch in der Lage, eine gemessene Strom-Spannungscharakteristik auszuwerten oder eine der Spritzflamme zugeführte Pulvermenge zu messen. Thanks to the online control and control, you are also able to evaluate the measured current-voltage characteristic or one of the Measure the amount of powder fed into the spray flame.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt jeweils schematisch in

Fig. 1:
ein Online-Steuer- und Kontroll-System für eine Plasmaanlage;
Fig. 2:
eine Anlage zur Infrarot-Thermographie (ITG) und zur Hochgeschwindigkeits-Pyrometrie (HSP = High Speed Pyrometry) beim thermischen Spritzen;
Fig. 3:
ein Schema zur Infrarot-Thermographie (ITG);
Fig. 4, 5:
jeweils eine Anlage zur Hochgeschwindigkeits-Pyrometrie (HSP);
Fig. 6:
eine Ausgestaltung eines Laser-Doppler-Anemometer (LDA);
Fig. 7:
eine Skizze zur Partikelform-Messung im Fluge (PSI = Particle Shape Imaging);
Fig. 8:
eine Partikeltemperatur-Messung im Fluge (PTM = Particle Temperature Measurement);
Fig. 9:
eine Skizze zur Messung von Partikeltemperatur und -geschwindigkeit.
Further advantages, features and details of the invention result from the following description of preferred exemplary embodiments and from the drawing; each shows schematically in
Fig. 1:
an online control and monitoring system for a plasma system;
Fig. 2:
a system for infrared thermography (ITG) and for high-speed pyrometry (HSP = High Speed Pyrometry) in thermal spraying;
Fig. 3:
a scheme for infrared thermography (ITG);
4, 5:
one system for high-speed pyrometry (HSP);
Fig. 6:
an embodiment of a laser Doppler anemometer (LDA);
Fig. 7:
a sketch for particle shape measurement in flight (PSI = Particle Shape Imaging);
Fig. 8:
a particle temperature measurement in flight (PTM = Particle Temperature Measurement);
Fig. 9:
a sketch for measuring particle temperature and speed.

Zum Aufbringen von Verschleiss- und/oder Korrosionsschichten sind alle thermischen Spritzverfahren -- wie das autogene Flammspritzen, das Hochgeschwindigkeits-Flammspritzen (HVOF), das Plasmaspritzen unter Luft (APS), das sog. Shroud-Plasmaspritzen (SPS), Plasmaspritzen im Vakuum (LPPS), High-Power-Plasmaspritzen (HPPS), autogenes oder Lichtbogen-Drahtspritzen -- einsetzbar. Die Online-Kontrolle und Steuerung erfolgt mittels einer Kombination aus verschiedenen Verfahren, die es erlauben, die Temperatur des Partikels bzw. den Aufschmelzgrad, die Partikelgröße, die Geschwindigkeit, den Aufprall dessselben auf dem Substrat sowie die Erwärmung der Schicht und des Substrats während des Spritzvorgangs zu messen. Die Messsignale werden dann dem Computer des Steuerungsteils der thermischen Spritzanlage zugeleitet, um die Flammenparameter und die Leistung den gemessenen Werten anpassen zu können.All are required for the application of wear and / or corrosion layers thermal spraying processes - such as autogenous flame spraying, high-speed flame spraying (HVOF), plasma spraying under air (APS), the so-called Shroud plasma spraying (SPS), plasma spraying in a vacuum (LPPS), High-power plasma spraying (HPPS), autogenous or arc wire spraying - applicable. Online control and control is carried out using a Combination of different processes that allow the temperature of the particle or the degree of melting, the particle size, the speed, the impact of the same on the substrate and the heating of the Measure layer and substrate during the spraying process. The measurement signals are then the computer of the control part of the thermal Spraying system fed to the flame parameters and the performance to be able to adjust measured values.

Ein in Fig. 1 dargestelltes Online-Steuer- und Kontrollsystem für die Flamme bzw. den Spritzstrahl 10 einer bei 12 angedeuteten Spritzpistole od.dgl. Spritzvorrichtung 12 mit deren Brennerdüse 14 vorgeordneter Pulverzuführung 16 -- weist über den Spritzstrahl 10 eine ITG-Kamera 18 -- also eine Infrarot-Thermographie-Kamera -- sowie ein Laser-Doppler-Anemometer (LDA - Detektor) 20 für einen unterhalb des Spritzstrahls 10 erkennbaren LDA-Laser 22 auf; neben diesem ist ein HSP-Kopf 24 -- HSP = high speed pyrometry -- zu erkennen, der mit einem spulenähnlichen Messkörper 26 verbunden ist.An online control and monitoring system for the flame shown in FIG. 1 or the spray jet 10 of a spray gun or the like indicated at 12. Spraying device 12 with its burner nozzle 14 upstream powder feed 16 - has an ITG camera 18 - that is, an infrared thermography camera - via the spray jet 10 - and a laser Doppler anemometer (LDA - Detector) 20 for an LDA laser that can be seen below the spray jet 10 22 on; next to this is an HSP head 24 - HSP = high speed pyrometry - too recognize that is connected to a coil-like measuring body 26.

Zum Messen von Substrattemperatur Ts und Beschichtungstemperatur Tc mittels der Infrarot-Thermographie liegt nach Fig. 3 ein -- mit einer Beschichtung 32 zu versehendes -- Substrat 30 im Aufnahmebereich einer ITG-Kamera 18. Von dieser geht ein Glasfaserkabel 36 aus, das zu einer bei 42 angedeuteten Video-PC-Karte -- 500 KHz -- führt. An diese ist ein Rechner 46 mit Monitor 48 angeschlossen, dem hier ein Temperaturaufnahmegerät 50 zugeordnet ist.To measure substrate temperature T s and coating temperature T c by means of infrared thermography, according to FIG. 3 there is a substrate 30 - to be provided with a coating 32 - in the recording area of an ITG camera 18. A glass fiber cable 36 extends from the latter leads to a video PC card indicated at 42 - 500 kHz. A computer 46 with a monitor 48 is connected to this, to which a temperature recording device 50 is assigned.

In Fig. 4 ist zum Messen der Kühlrate bzw. der Beschichtungstemperatur Tc mittels Hochgeschwindigkeits-Pyrometrie (HSP) der Beschichtung 32 des Substrates 30 der HSP-Kopf 24 zugeschaltet, der über einen AD-Konverter 52 an einen -- Speicherelement 44 und Monitor 48 aufweisenden -- Rechner 46 angeschlossen ist. Ein Hochgeschwindigkeitspyrometer mit HSP-Kopf 24, AD-Konverter 52 sowie mit einem Rechner 46, der ein Benutzermenue 54, ein Kontrollmenue 56 und Graphiksoftware 58 enthält, kann man Fig. 5 entnehmen. 4 is for measuring the cooling rate or the coating temperature Tc by means of high-speed pyrometry (HSP) of the coating 32 of the Substrate 30 of the HSP head 24 switched on via an AD converter 52 to a computer 46 having a storage element 44 and a monitor 48 connected. A high-speed pyrometer with HSP head 24, AD converter 52 and with a computer 46, the user menu 54, a Control menu 56 and graphics software 58 contains, can be seen in Fig. 5.

Mit dem Verfahren der sog. Laser-Doppler-Anemometrie (LDA) kann bei geringem Zeit- und Arbeitsaufwand eine Optimierung der Spritzparameter erreicht werden. Bei der bevorzugten Zweistrahltechnik wird der Strahl 60 eines bei 62 angedeuteten Argon-Ionenlasers (λ = 514,5 nm, P = 150 mW) durch eine Sendeoptik 64 in zwei Teilstrahlen 60a, 60b gleicher Intensität zerlegt. Beide Teilstrahlen 60a, 60b werden in ein ortsfestes Meßvolumen 66 fokussiert. Sie schneiden sich dort unter einem definierten Winkel so, dass ein streifenförmig intensitätsmoduliertes Interferenzmuster entsteht. Ein Partikel des Spritzstrahls 10, das dieses Streifenmuster durchfliegt, erzeugt ein zeitlich periodisch veränderliches Streulichtsignal 68 für eine Empfangsoptik mit Photodetektor 70. Die Modulationsfrequenz des Streulichtsignals 68 ist proportional zur Geschwindigkeitskomponente des Teilchens senkrecht zum Interferenzstreifensystem. Die Häufigkeit der LDA-Streulichtsignale ist ein Maß für die lokale Dichte der Partikel im Plasmaspritzstrahl 10. Durch Abscannen des Strahls ist eine ortsaufgelöste Messung relevanter Partikelparameter möglich. Hieraus können Ergebnisse wie Geschwindigkeitsverteilung, Trajektorien und Verweilzeiten der Partikel gewonnen werden.The process of so-called laser Doppler anemometry (LDA) can be used to optimize the spray parameters with little time and effort. In the preferred two-beam technique, the beam 60 of an argon ion laser (λ = 514.5 nm, P = 150 mW) indicated at 62 is broken down into two partial beams 60 a , 60 b of the same intensity by means of a transmission optics 64. Both partial beams 60 a , 60 b are focused in a fixed measuring volume 66. There they intersect at a defined angle so that a stripe-shaped intensity-modulated interference pattern is created. A particle of the spray jet 10 that flies through this stripe pattern generates a scattered light signal 68 that changes periodically over time for a receiving lens system with a photodetector 70. The modulation frequency of the scattered light signal 68 is proportional to the velocity component of the particle perpendicular to the interference fringe system. The frequency of the LDA scattered light signals is a measure of the local density of the particles in the plasma spray jet 10. By scanning the beam, a spatially resolved measurement of relevant particle parameters is possible. Results such as speed distribution, trajectories and dwell times of the particles can be obtained from this.

Da eine individuelle Bestimmung von Größe und Form eines Spritzpartikels mit LDA nicht durchführbar ist, wird gemäß Fig. 7 das Particle-Shape-Imaging (PSI) eingesetzt, ein bildgebendes Verfahren zur ortsaufgelösten Bestimmung von Größe und Form einzelner Pulverpartikel in Plasmaspritzstrahlen 10. Das Messprinzip beruht auf einer telemikroskopischen Abbildung der Schatten der Partikel, die Messmethode weist als Vorteile eine hohe Lichtstärke im Vergleich zu Streulichtverfahren und gleichzeitig eine Reduktion auf die gewünschte Bildinformation auf. Ähnlich wie bei der Laser-Doppler-Anemometrie wird der Strahl 60 eines Nd-YAG Dauerstrichlasers 60a (λ = 532nm, P = 100 mW) an einem Strahlteiler 72 mit Spiegeln 74 in zwei gleichintensive Teilstrahlen 60a, 60b aufgespalten, die mittels der Spiegel 74 in der Gegenstandsebene E des Fernmikroskopieobjektivs eines Fernmikroskops 76 gekreuzt werden. Dessen Verwendung erlaubt die Einhaltung eines Sicherheitsabstands von 600 mm zum Messobjekt. Bei einem Abbildungsmaßstab 1 : 10 wird noch eine optische Auflösung von 2,7 µm erreicht. Das Bildaufnahmesystem besteht aus einer CCD-Kamera 78 mit einem vorgeschalteten Micro-Channel-Plate (MCP)-Bildverstärker einer minimalen Belichtungszeit von 5 ns. Since an individual determination of the size and shape of a spray particle with LDA cannot be carried out, particle-shape imaging (PSI) is used according to FIG. 7, an imaging method for the spatially resolved determination of size and shape of individual powder particles in plasma spray jets 10. The measuring principle is based on a telemicroscopic image of the shadow of the particles, the measuring method has the advantages of a high light intensity compared to scattered light methods and at the same time a reduction to the desired image information. Similar to laser Doppler anemometry, the beam 60 of an Nd-YAG continuous wave laser 60 a (λ = 532nm, P = 100 mW) is split on a beam splitter 72 with mirrors 74 into two equally intense partial beams 60 a , 60 b , which are by means of the mirror 74 can be crossed in the object plane E of the long-range microscope objective of a long-range microscope 76. Its use allows a safety distance of 600 mm to be observed. With a 1:10 scale, an optical resolution of 2.7 µm is still achieved. The image recording system consists of a CCD camera 78 with an upstream micro-channel plate (MCP) image intensifier with a minimum exposure time of 5 ns.

Die geometrische Abmessung des 512 x 512 Pixel CCD-Chips und der Tiefenschärfebereich des Objektivs ergeben ein Messvolumen von 410 x 410 x 940 µm3.The geometric dimensions of the 512 x 512 pixel CCD chip and the depth of field of the lens result in a measurement volume of 410 x 410 x 940 µm 3 .

Für den Fall, dass sich ein Partikel im Messvolumen exakt in der Gegenstandsebene E befindet, werden von beiden Strahlen 64, 64a Teilschatten generiert, die sich bei der Abbildung auf den CCD-Chip vollständig decken und damit einen Vollschatten bilden. Proportional zum Abstand der Partikel von der Gegenstandsebene E wandern die Teilschatten in der Bildebene auseinander und der Vollschattenbereich nimmt ab. Mit diesem Effekt kann die Lage eines Teilchens relativ zur Gegenstandsebene E bestimmt werden. Fläche und Kontur des Schattenbildes geben Aufschluss über Größe und Form des Teilchens. Das ebenfalls abgebildete LDA-Interferenzstreifenmuster liefert dabei den Größenmaßstab. Mit der minimalen Belichtungszeit der MCP-CCD-Kamera von 5 ns ergibt sich ein Wert von 500m/s als maximale Partikelgeschwindigkeit, bei der die Bewegungsunschärfe das optische Auflösungsvermögen nicht übersteigt.In the event that a particle in the measurement volume is exactly in the object plane E , partial rays are generated from both beams 64, 64 a , which completely overlap when they are imaged on the CCD chip and thus form a full shadow. Proportional to the distance of the particles from the object plane E, the partial shadows move apart in the image plane and the full shadow area decreases. With this effect, the position of a particle relative to the object plane E can be determined. The area and contour of the silhouette provide information about the size and shape of the particle. The LDA interference fringe pattern, also shown, provides the size scale. With the minimum exposure time of the MCP-CCD camera of 5 ns, a value of 500m / s results as the maximum particle speed at which the motion blur does not exceed the optical resolution.

Beim Verfahren der sog. In-flight-Partikeldiagnose-- wozu auf Fig. 8 verwiesen sei -- kann man unabhängig vom Spritzverfahren je Sekunde bis zu 200 einzelne Partikel in jedem Punkt eines Spritzstrahls simultan auf ihre Oberflächentemperatur, Geschwindigkeit und Größe hin vermessen. Eine nicht widergegebene Verfahreinheit ermöglicht zusätzlich das Abrastern einer Ebene senkrecht zum Spritzstrahl 10, so dass die Verteilung der Partikel im Spritzstrahl 10 genau ermittelt werden kann. Die Temperaturbestimmung erfolgt mittels Zweiwellenlängenpyrometerie bei 995 ± 25 µm und 787 ± 25 µm. Die Partikel werden dabei als graue Strahler behandelt, so dass die Kenntnis des exakten Emissionsgrads für die Temperaturmessung nicht notwendig ist. Das System umfasst das Abbilden einer Zweischlitzmaske 80 mit 25 µm x 50 µm -- an einem Messkopf 82 -- in einem Brennpunkt in etwa 90 mm Abstand mit hoher Tiefenschärfe. So entsteht ein Messvolumen, das entsprechend der graphischen Darstellung über Fig. 10 durch zwei sichtbare und einen dazwischenliegenden Schattenbereich charakterisiert wird. Das Messvolumen beträgt etwa 170 x 250 x 2000 µm3. Die Eigenstrahlung einzelner Partikel, die dieses Messvolumen durchfliegen, wird über zwei IR-Detektoren mit zwei unterschiedlichen Wellenlängen aufgenommen. Durch die zwei Teilmessvolumina entstehen zwei Temperaturspitzen in Folge. Der zeitliche Abstand der beiden Peaks ist ein Maß für die Geschwindigkeit des Partikels. Das Prinzip entspricht dem der Lichtschranke.In the so-called in-flight particle diagnosis method - to which reference is made to FIG. 8 - up to 200 individual particles per second can be measured simultaneously in every point of a spray jet for their surface temperature, speed and size, regardless of the spraying method. A non-reproduced moving unit additionally enables a plane to be scanned perpendicular to the spray jet 10, so that the distribution of the particles in the spray jet 10 can be determined precisely. The temperature is determined using two-wavelength pyrometery at 995 ± 25 µm and 787 ± 25 µm. The particles are treated as gray emitters so that knowledge of the exact emissivity is not necessary for the temperature measurement. The system comprises imaging a two-slit mask 80 with 25 μm × 50 μm — on a measuring head 82 — at a focal point at a distance of approximately 90 mm with a high depth of field. This creates a measurement volume which, according to the graphic representation in FIG. 10, is characterized by two visible and one shadow region in between. The measuring volume is approximately 170 x 250 x 2000 µm 3 . The natural radiation of individual particles that fly through this measurement volume is recorded by two IR detectors with two different wavelengths. The two partial measurement volumes result in two temperature peaks in a row. The time interval between the two peaks is a measure of the speed of the particle. The principle corresponds to that of the light barrier.

Diese Vorgehensweise ermöglicht die Bestimmung von Partikeloberflächentemperaturen zwischen 1.350°C und 4000°C. Die messbare Partikelgröße hängt im wesentlichen von der Temperatur der Partikel ab. Sie ist nach unten auf etwa 10 µm sowie nach oben auf etwa 300 µm begrenzt und wird durch die vom Partikel abgestrahlte absolute Energie bestimmt, die proportional zum Quadrat des Durchmessers ist. Der messbare Geschwindigkeitsbereich beträgt 30m/s - 1500 m/s.This procedure enables the determination of particle surface temperatures between 1,350 ° C and 4000 ° C. The measurable particle size depends essentially on the temperature of the particles. It is down limited to about 10 microns and up to about 300 microns and is by the absolute energy radiated by the particle determines that proportional to the square of the diameter. The measurable speed range is 30m / s - 1500 m / s.

Die Darstellung der Fig. 9 schließt an jene in Fig. 1 an und verdeutlicht das Messen der Partikeltemperatur und der Geschwindigkeit mittels eines HSP-Kopfes 24.The illustration in FIG. 9 follows on from that in FIG. 1 and illustrates this Measuring the particle temperature and speed using an HSP head 24th

Die Vorgehensweise wird durch einige Anwendungsbeispiele weitergehend erörtert:The procedure is further extended by some application examples discussed:

BEISPIEL 1EXAMPLE 1

Eine Gussform für Aluminiumguss soll mit einer Schicht versehen werden, durch die ein Anbacken und Haften in der Form vermieden wird.A casting mold for aluminum casting should be provided with a layer, which prevents caking and sticking in the mold.

Für die Versuche wurde eine 0,2 bis 0,5 mm dicke Beschichtung einer Werkstoffzusammensetzung von 95,5 Gew.-% Magnetit (Fe3O4) 4,5 Gew.-% Eisenoxid (Fe2O3) ausgewählt; diese soll bei Aluminium und dessen Legierungen das Haften und Anbacken verhindern. Weitere Eigenschaften des Spritzpulvers waren

Korngröße
> 5 µm
< 45 µm
bei einer Korngröße des Ausgangsmaterials > 1,5 µm.For the tests, a 0.2 to 0.5 mm thick coating of a material composition of 95.5% by weight Magnetite (Fe 3 O 4 ) 4.5% by weight Iron oxide (Fe 2 O 3 ) selected; this should prevent sticking and caking of aluminum and its alloys. Other properties of the wettable powder were
grain size
> 5 µm
<45 µm
with a grain size of the starting material> 1.5 µm.

Der Kornaufbau der runden Körner wurde durch Agglomeration mittels Sprühtrocknens hergestellt.The grain structure of the round grains was determined by agglomeration Spray drying manufactured.

Das Auftragen erfolgte durch Plasmaspritzen unter Luft (APS) mit einer Leistung von 60 KW und Argon/Wasserstoff-Plasma, welches mit einer Online-Steuereinheit nach Fig. 1 versehen war; die Partikelgeschwindigkeit und Partikeltemperatur werden dort während des Fluges gemessen, um den Plasmaspritzstrahl so zu steuern, dass der notwendige Aufschmelzgrad des Partikels erreicht wird.The application was carried out by plasma spraying in air (APS) with one performance of 60 KW and argon / hydrogen plasma, which with an online control unit 1 was provided; the particle velocity and particle temperature are measured there during the flight to the plasma spray to control so that the necessary degree of melting of the particle is achieved.

Die zu beschichtende Formfläche wurde mit CO2 zwangsgekühlt mit dem Ziel, die Oxidation beim Partikelaufprall so gering wie möglich zu halten.The mold surface to be coated was forced-cooled with CO 2 with the aim of keeping the oxidation on particle impact as low as possible.

Die so durch thermisches Spritzen hergestellte Schicht wurde anschließend geschliffen und in einer Aluminiumgießerei getestet. Dabei wurde festgestellt, dass ein Anbacken und Haften an der Form unterbunden ist sowie das aufwendige Besprühen der Form mit einem Formtrennmittel unterbleiben kann.The layer thus produced by thermal spraying was then ground and tested in an aluminum foundry. It was found that caking and sticking to the form is prevented as well as the complex Spraying the mold with a mold release agent can be omitted.

Beispiel 2Example 2

Auf die Transportrolle einer Papierherstellungsmaschine soll eine etwa zwischen 1,0 bis 2,0 mm dicke Schutzschicht gegen Verschleiss und Korrosion in wässerigen Lösungen aufgebracht werden. Diese Schutzschicht muss wegen des Arbeitens in wässriger Lösung eine hohe Dichte (mind. 99 % der theoretischen Dichte) aufweisen. Als Spritzwerkstoff wurde ein Fülldraht folgender Zusammensetzung eingesetzt: Füllung Magnetit (Fe3O4) Mantel NiCr 80/20 mit etwa
30 Gew.-% des Fülldrahtes.
An approximately 1.0 to 2.0 mm thick protective layer against wear and corrosion in aqueous solutions should be applied to the transport roller of a paper manufacturing machine. This protective layer must have a high density (at least 99% of the theoretical density) due to working in aqueous solution. A cored wire of the following composition was used as the spray material: filling Magnetite (Fe 3 O 4 ) coat NiCr 80/20 with about
30% by weight of the cored wire.

Die Korngröße des Ausgangswerkstoffes für die Füllung betrug > 1,0 µm. The grain size of the starting material for the filling was> 1.0 µm.

Zum Aufspritzen der Schutzschicht wurde eine mit einem Online-Steuer- und Kontroll-System ausgerüstete Lichtbogenspritzanlage zum Verarbeiten von Fülldraht eingesetzt, als Steuersystem eine Kombination der zwei in Fig. 1 und 3 dargestellten Systeme. Die Zwangskühlung erfolge mit CO2 und Luft.To spray the protective layer, an arc spraying system equipped with an online control and monitoring system was used for processing cored wire, and a control system was a combination of the two systems shown in FIGS. 1 and 3. The forced cooling is done with CO 2 and air.

Nach dem Beschichten wurde die 200 cm lange Rolle auf eine Oberflächengüte von Ra 0,4 µm geschliffen. Bei der Kontrolle der Oberfläche mit einer Binokularlupe einer Vergrößerung von x = 20 konnten keine Fehler in der Schicht festgestellt werden.After coating, the 200 cm long roll was applied to a surface quality ground from Ra 0.4 µm. When checking the surface with a Binocular loupe with a magnification of x = 20 could not find any errors in the Layer can be determined.

Nach einem Testlauf von sechs Monaten wurde die in der Papiermaschine eingesetzte Transportrolle zusammen mit einer verchromten Rolle ausgebaut, und die Oberflächen wurden untersucht. Bei dieser Untersuchung wurde festgestellt, dass an der für den Test durch Plasmaspritzen beschichteten Transportrolle keine Fehler oder Angriffe durch Korrosion oder Verschleiss gefunden werden konnten. Die verchromte Vergleichsrolle zeigte den für diese Laufzeit bekannten Angriff.After a test run of six months, it was in the paper machine used transport roller removed together with a chrome-plated roller, and the surfaces were examined. During this investigation found that on the coated for the test by plasma spraying Transport roller no errors or attacks due to corrosion or wear could be found. The chrome-plated comparison roller showed that for this Known attack duration.

Beispiel 3Example 3

Für die Kolbenringe von Verbrennungsmotoren werden bei der Entwicklung ständig Verbesserungen in den Beschichtungen verlangt. Nach mehreren Überlegungen sollten nun Versuche mit einer reinen Magnetit-Beschichtung durchgeführt werden. Das Problem einer solchen Beschichtung aus reinem Magnetit (Fe3O4) besteht in der unerwünschten Möglichkeit, dass das Magnetit beim Spritzvorgang zu Fe2O3 aufoxidiert werden könnte, was zu einem Verlust der angestrebten guten Eigenschaften führen würde.For the piston rings of internal combustion engines, improvements in the coatings are constantly required during development. After several considerations, tests with a pure magnetite coating should now be carried out. The problem with such a coating of pure magnetite (Fe 3 O 4 ) is the undesirable possibility that the magnetite could be oxidized to Fe 2 O 3 during the spraying process, which would lead to a loss of the desired good properties.

Als Spritzwerkstoff wurde reines Magnetit verwendet. Die Korngröße des Spritzpulvers war:
      <   37 µm
      >   5 µm,
   die Korngröße des Ausgangsmaterial
      <   0,5 µm.
Pure magnetite was used as the spray material. The grain size of the wettable powder was:
<37 µm
> 5 µm,
the grain size of the starting material
<0.5 µm.

Das Spritzpulver runder Kornform wurde durch Agglomeration beim Sprühtrocknen hergestellt.The spray powder of round grain shape was obtained by agglomeration during spray drying manufactured.

Zum Aufbringen der Beschichtung wurde eine mit einem Gas-Shroud und einer Online-Steuereinheit ausgestattete Plasma-Anlage für das Plasmaspritzen unter Luft (APS) mit einer Leistung von 80 KW eingesetzt. Die konstant zu haltenden Parameter zur Steuerung der Plasmaanlage waren:

  • Partikelgeschwindigkeit;
  • Partikeltemperatur;
  • Substrattemperatur;
  • Aufschmelzen des Partikels.
A plasma system equipped with a gas shroud and an online control unit for plasma spraying under air (APS) with an output of 80 KW was used to apply the coating. The parameters to be kept constant for controlling the plasma system were:
  • Particle velocity;
  • Particle temperature;
  • Substrate temperature;
  • Melt the particle.

Als Zwangskühlung für das Substrat und die Schicht während des Spritzvorgangs wurde CO2 verwendet. Der zum Schutz gegen die Oxidation angewendete Shroud wurde mit Reinstargon betrieben.CO 2 was used as forced cooling for the substrate and the layer during the spraying process. The Shroud used to protect against oxidation was operated with pure starch.

Die nach diesem Verfahren mit reinem Magnetit beschichteten Kolbenringe zeigten bei der Kontrolle eine hohe Qualität und wiesen beim Dauerlauftest in Motoren gute Resultate auf.The piston rings coated with pure magnetite using this process showed a high quality in the control and showed in the endurance test in Engines good results.

Beispiel 4Example 4

Eine Taucheinrichtung für ein bei 500°C arbeitendes Salzbad zum Wärmebehandeln von kleineren Teilen weist nach ungefähr einer Woche Betriebszeit eine hohe Korrosion auf.An immersion device for a salt bath working at 500 ° C for heat treatment of smaller parts shows after about a week of operation a high level of corrosion.

Es sollte nun versucht werden, durch das Auftragen einer Magnetit/Karbid-Schutzschicht den Verschleiss und die Korrosion zu vermeiden. Als Werkstoff wurde ein Gemisch eingesetzt aus: 75 Gew.-% Magnetit, 25 Gew.-% Chromkarbid. An attempt should now be made to avoid wear and corrosion by applying a protective magnetite / carbide layer. A mixture of: 75% by weight magnetite, 25% by weight Chromium carbide.

Das thermische Spritzverfahren zum Aufbringen der Schicht einer Dicke von 80 µm war ein Hochgeschwindigkeits-Flammspritzen (HVOF), bei welchem die Steuerung online erfolgte. Nach dem Aufspritzen wurde die Schicht poliert.The thermal spray process for applying the layer with a thickness of 80 µm was a high speed flame spray (HVOF) in which the Control took place online. After spraying, the layer was polished.

Die Standzeit der so aufgebrachten Schicht betrug unter den gleichen Konditionen zwei Wochen.The service life of the layer applied in this way was under the same conditions two weeks.

Beispiel 5Example 5

Ein Hydraulikzylinder für den untertägigen Bergbau einer Länge von 1000 mm und eines Durchmessers von 200 mm sollte mit einer Schutzschicht gegen Korrosion und Verschleiß versehen werden. Bislang war als Schutzschicht eine galvanisch aufgebrachte Hartchromschicht verwendet worden, die allerdings durch Auftreten von Haarrissen in der Schicht eine Standzeit von höchstens zwei Monaten aufwies.A hydraulic cylinder for underground mining with a length of 1000 mm and a diameter of 200 mm should be protected with a protective layer Corrosion and wear are provided. So far it was used as a protective layer an electroplated hard chrome layer was used, which has a service life due to the appearance of hairline cracks in the layer of at most two months.

Nun wurde eine Schutzschicht der Zusammensetzung 70 Gew.-% Fe3O4 (Magnetit), 30 Gew.-% Cr2O3 (Chromoxid) gewählt, wobei die Korngröße des agglomerierten Spritzwerkstoffes
      >   5 µm,
      <   37 µm
betrug.
Now a protective layer of the composition 70% by weight Fe 3 O 4 (magnetite), 30% by weight Cr 2 O 3 (chromium oxide) chosen, the grain size of the agglomerated spray material
> 5 µm,
<37 µm
scam.

Zum Aufbringen der Schutzschicht einer Schichtdicke zwischen 1,0 bis 1,5 mm wurde eine HPPS (High Power Plasma)-Anlage mit einer Leistung von 200 KW verwendet, die zum Einhalten der genauen Spritzparameter bzw. der Vermeidung von Oxidation mit einer Online-Steuerung versehen war. For applying the protective layer with a layer thickness between 1.0 and 1.5 mm was an HPPS (High Power Plasma) system with an output of 200 KW used to maintain the exact spraying parameters or the Avoiding oxidation was provided with an online control.

Die so hergestellte Schutzschicht wurde nach einer Zeit von zwei Monaten kontrolliert, und es wurde festgestellt, dass die Oberfläche der Schicht keine Angriffe durch Korrosion oder Verschleiss aufwies. Die Lebensdauer der Schicht betrug neun Monate.The protective layer thus produced was removed after a period of two months checked, and it was found that the surface of the layer was none Attacks caused by corrosion or wear. The lifespan of the Shift was nine months.

Beispiel 6Example 6

Der Kolben einer Vakuumpumpe mit einem Durchmesser von 20 mm und einer Länge von 500 mm sollte mit einer Verschleiß- und Korrosionsschutzschicht versehen werden. Als Werkstoff wurde ein agglomeriertes Spritzpulver mit der Zusammensetzung: 80 Gew.-% Fe3O4 20 Gew.-% Ni3Al und einer
   Korngröße
      >   5 µm
      <   45 µm
verwendet.
The piston of a vacuum pump with a diameter of 20 mm and a length of 500 mm should be provided with a wear and corrosion protection layer. An agglomerated wettable powder with the composition: 80% by weight Fe 3 O 4 20% by weight Ni 3 Al and one
grain size
> 5 µm
<45 µm
used.

Zum Beschichten wurde eine LPPS-Anlage mit einer Leistung von 40 KW eingesetzt, die mit einer Online-Steuerung versehen war.An LPPS system with an output of 40 KW was used for coating, which was provided with an online control.

Beim späteren Einsatz zeigte die so hergestellte Beschichtung sehr gute Resultate im Vergleich zu üblichen normalen Kolben.The coating produced in this way showed very good results in later use compared to normal pistons.

Claims (23)

  1. Method of producing a corrosion-resistant and wear-resistant layer on a substrate by spraying on an iron oxide-based material, characterised in that the iron oxide-based material comprising at least 20 % by weight, preferably more than 30 % by weight magnetite (Fe3O4 and/or FeFe2O4) is applied by on-line controlled flame spraying, in particular high-speed flame spraying, or plasma spraying, in particular plasma spraying in air or in vacuo, high-power plasma spraying (HPPS) or shroud plasma spraying (SPS), or by on-line controlled wire flame spraying or electric-arc wire spraying and the properties of the layer consisting of the material are monitored and kept constant by an on-line monitoring and control system.
  2. Method according to claim 1, characterised by on-line monitoring and control by means of an ITG camera directed on to the spraying jet (10), an LDA detector (20) with LDA lasers (22) and an HSP head (24).
  3. Method according to claim 1 or claim 2, characterised by on-line monitoring and control by measuring the particle speed in the spraying flame.
  4. Method according to claim 1 or claim 3, characterised by on-line monitoring and control by means of measuring the particle speed in the spraying flame by means of a laser Doppler anemometer by way of a beam (60) emitted by a laser instrument (62) and divided into two partial beams (60a, 60b) by means of a transmitting optical unit (64).
  5. Method according to claim 1 or claim 3, characterised by on-line monitoring and control by measuring the particle temperature in the spraying flame by means of a high-speed pyrometer.
  6. Method according to either of claims 1 or 5, characterised by on-line monitoring and control in which the particle temperature in the spraying flame is measured by means of infrared thermography.
  7. Method according to claim 1, characterised by on-line monitoring and control in which the quantity of gas measured is analysed.
  8. Method according to claim 1 or claim 7, characterised by on-line monitoring and control in which a quantity of plasma gas measured is analysed.
  9. Method according to claim 1, characterised by on-line monitoring and control in which a current-voltage curve measured is evaluated or in which a quantity of powder supplied to the spraying flame is measured.
  10. Method of producing a corrosion-resistant and wear-resistant layer according to one of claims 1 to 9, characterised by on-line controlled plasma spraying in which air is used as the plasma gas.
  11. Method of producing a corrosion-resistant and wear-resistant layer according to one of claims 1 to 9, characterised in that on-line controlled water-stabilised plasma spraying is used as the coating method.
  12. Method of producing a corrosion-resistant and wear-resistant layer according to one of claims 1 to 11, characterised in that a material comprising at least 20 % by weight, preferably more than 30 % by weight magnetite (Fe3O4 and/or FeFe2O4) is used.
  13. Method according to claim 12, characterised in that the material consists of magnetite and at least one intermetallic compound.
  14. Method according to claim 12, characterised by the addition of a mixture of metals, intermetallic compounds, carbides, nitrides, silicides, borides and/or oxides to the material.
  15. Method according to claim 12, characterised by a material consisting of magnetite and carbides of W, Cr, Mo, Nb, Ta, Ti and V.
  16. Method according to claim 15, characterised by a material consisting of magnetite with the addition of up to 30 % by weight, preferably up to 20 % by weight tungsten carbides and/or chromium carbides.
  17. Method according to claim 12, characterised by a material consisting of magnetite and at least one further metallic material.
  18. Method according to claim 17, characterised by magnetite and the addition of up to 50 % by weight, preferably up to 40 % by weight Cr, CrNi or a ferritic steel.
  19. Method according to claim 12, characterised by a mixture of magnetite and chromium oxide as the material, with a chromium oxide content of between 1 and 40 % by weight, preferably between 5 and 30 % by weight.
  20. Method according to one of claims 12 to 19, characterised by a particle size of the pulverulent spraying material of 0.05 to 150 µm, preferably 0.1 to 120 µm.
  21. Method according to one of claims 12 to 20, characterised by the use of a filler wire as a wire-shaped spraying material, its filling consisting of magnetite and its covering consisting of an alloy.
  22. Method according to one of claims 1 to 21, characterised by a powder grain with good flow properties produced from a pulverulent material mixture by spray drying.
  23. Method according to one of claims 1 to 21, characterised by a separation-resistant powder grain produced from a pulverulent material mixture by means of an agglomerating process.
EP99959337A 1998-11-25 1999-11-25 Process for producing a corrosion- and wear-resistant layer by thermal spraying Expired - Lifetime EP1133580B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19854512 1998-11-25
DE19854512 1998-11-25
DE19857737A DE19857737A1 (en) 1998-11-25 1998-12-15 Material and method for producing a corrosion and wear-resistant layer by thermal spraying
DE19857737 1998-12-15
PCT/EP1999/009140 WO2000031313A1 (en) 1998-11-25 1999-11-25 Material for producing a corrosion- and wear-resistant layer by thermal spraying

Publications (2)

Publication Number Publication Date
EP1133580A1 EP1133580A1 (en) 2001-09-19
EP1133580B1 true EP1133580B1 (en) 2003-05-02

Family

ID=26050388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99959337A Expired - Lifetime EP1133580B1 (en) 1998-11-25 1999-11-25 Process for producing a corrosion- and wear-resistant layer by thermal spraying

Country Status (6)

Country Link
EP (1) EP1133580B1 (en)
JP (1) JP2003522289A (en)
AT (1) ATE239105T1 (en)
AU (1) AU1655000A (en)
NO (1) NO20012564D0 (en)
WO (1) WO2000031313A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952971B2 (en) 2000-08-23 2005-10-11 Schenck Process Gmbh Apparatus for measuring a mass flow

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE365814T1 (en) * 1999-01-19 2007-07-15 Sulzer Metco Ag LAYER APPLIED BY PLASMA SPRAYING FOR CYLINDER RUNNING SURFACES OF ENGINE BLOCKS AND METHOD FOR THE PRODUCTION THEREOF
DE10025161A1 (en) * 2000-05-23 2001-11-29 Joma Chemicals As Limingen Material and method for producing a corrosion- and wear-resistant layer by thermal peaking
CH694664A5 (en) * 2000-06-14 2005-05-31 Sulzer Metco Ag By plasma spraying a powder spray applied iron-containing layer on a cylinder surface.
DE10244037A1 (en) * 2002-09-21 2004-04-08 Mtu Aero Engines Gmbh Process for coating a workpiece
US11745201B2 (en) * 2012-06-11 2023-09-05 General Electric Company Spray plume position feedback for robotic motion to optimize coating quality, efficiency, and repeatability
KR20230102606A (en) * 2021-12-30 2023-07-07 이창훈 Plasma-based suspension coating system and metheod

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2707691A (en) * 1952-08-08 1955-05-03 Norton Co Coating metals and other materials with oxide and articles made thereby
JPS5017423B2 (en) * 1971-12-04 1975-06-20
DE2206220A1 (en) * 1972-02-10 1973-08-23 Johannes Martinus Arnold Horst Magnetite coated articles - by plasma or flame spraying magnetite onto heated surface of article
JPS4863143A (en) * 1972-08-30 1973-09-03
JPS5913924B2 (en) * 1979-12-25 1984-04-02 日本鋼管株式会社 Core metal for piercing rolling mill
DE3435748A1 (en) * 1984-09-28 1986-04-10 Siemens AG, 1000 Berlin und 8000 München Method and device for coating workpieces by means of thermal spraying, in particular by plasma spraying
JPH03229888A (en) * 1990-02-05 1991-10-11 Tokai Carbon Co Ltd Production of electrode coated with magnetite
US5047612A (en) * 1990-02-05 1991-09-10 General Electric Company Apparatus and method for controlling powder deposition in a plasma spray process
US5180921A (en) * 1991-11-18 1993-01-19 National Research Council Of Canada Method and apparatus for monitoring the temperature and velocity of plasma sprayed particles
JP3228445B2 (en) * 1993-02-10 2001-11-12 株式会社荏原製作所 Thermal spray heating element containing iron ore
JP3431715B2 (en) * 1995-02-15 2003-07-28 トーカロ株式会社 Manufacturing method of spray-coated electrode with excellent durability
JPH08269672A (en) * 1995-03-30 1996-10-15 Toshiba Corp Method for evaluating thermally sprayed film and device therefor
DE19545005A1 (en) * 1995-12-02 1997-06-05 Abb Patent Gmbh Monitoring coating of a disk of high conductivity with material of low conductivity
EP0837305A1 (en) * 1996-10-21 1998-04-22 Sulzer Metco AG Method and assembly for controlling the coating process in thermal coating apparatus
DE19820195A1 (en) * 1998-05-06 1999-11-11 Linde Ag Quality assurance in thermal spraying

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952971B2 (en) 2000-08-23 2005-10-11 Schenck Process Gmbh Apparatus for measuring a mass flow

Also Published As

Publication number Publication date
ATE239105T1 (en) 2003-05-15
NO20012564L (en) 2001-05-25
WO2000031313A1 (en) 2000-06-02
EP1133580A1 (en) 2001-09-19
JP2003522289A (en) 2003-07-22
AU1655000A (en) 2000-06-13
NO20012564D0 (en) 2001-05-25

Similar Documents

Publication Publication Date Title
DE2355532C2 (en) Process for powder build-up welding of metals and alloys
DE4321673C2 (en) Process for producing a component by means of arc spraying, and applications of this process
Smurov et al. Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation
EP0818549B1 (en) Nickel-based material in powder- or wireform for coating as well as the processes thereof
Marple et al. Thermal spraying of nanostructured cermet coatings
Prasad et al. Powder incorporation and spatter formation in high deposition rate blown powder directed energy deposition
DE19740205B4 (en) Process for applying a coating by means of plasma spraying
DE3011022C2 (en) Method for applying a metallic coating to a metal surface and apparatus for its implementation
JP4646627B2 (en) Control method of hard layer microstructure by laser metal forming
EP3620546A2 (en) Brake disc and method for producing same
WO2001090435A1 (en) Material and method for producing a corrosion and abrasion-resistant layer by thermal spraying
DE19857737A1 (en) Material and method for producing a corrosion and wear-resistant layer by thermal spraying
DE102014211366A1 (en) Method for producing an oxidation protection layer for a piston for use in internal combustion engines and pistons with an oxidation protection layer
EP1133580B1 (en) Process for producing a corrosion- and wear-resistant layer by thermal spraying
EP3325685B1 (en) Method for coating a cylinder barrel of a cylinder crankcase, cylinder crankcase with a coated cylinder barrel and engine
DE19841619A1 (en) Arc - wire sprayed Alsi tribo layer
EP1048920A2 (en) Method for coating the interior surface of a gun barrel
DE2744189A1 (en) METHOD FOR IMPROVING THE WEAR PROPERTIES OF IRON METAL PARTS
EP0915184A1 (en) Process for producing a ceramic layer on a metallic substrate
DE60304914T2 (en) Thermal spray device
EP3314033B1 (en) Iron-based alloy for the manufacture of thermally sprayed wear resistant coatings
EP2771496A1 (en) Plasma spray method
WO2008090192A1 (en) Casting roller for a two-roller casting device, and two-roller casting device
DE60307531T2 (en) Thermal spray device
DE19535078A1 (en) Supervision and control of thermal spraying processes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A1

Designated state(s): AT DE FR GB

17Q First examination report despatched

Effective date: 20020204

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: PROCESS FOR PRODUCING A CORROSION- AND WEAR-RESISTANT LAYER BY THERMAL SPRAYING

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59905361

Country of ref document: DE

Date of ref document: 20030605

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1133580E

Country of ref document: IE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20061124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061127

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20061219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070119

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130