EP1133580B1 - Procede pour produire une couche anticorrosion et anti-usure par metallisation a chaud - Google Patents

Procede pour produire une couche anticorrosion et anti-usure par metallisation a chaud Download PDF

Info

Publication number
EP1133580B1
EP1133580B1 EP99959337A EP99959337A EP1133580B1 EP 1133580 B1 EP1133580 B1 EP 1133580B1 EP 99959337 A EP99959337 A EP 99959337A EP 99959337 A EP99959337 A EP 99959337A EP 1133580 B1 EP1133580 B1 EP 1133580B1
Authority
EP
European Patent Office
Prior art keywords
spraying
magnetite
weight
control
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99959337A
Other languages
German (de)
English (en)
Other versions
EP1133580A1 (fr
Inventor
Erich Lugscheider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joma Chemical AS
Original Assignee
Joma Chemical AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19857737A external-priority patent/DE19857737A1/de
Application filed by Joma Chemical AS filed Critical Joma Chemical AS
Publication of EP1133580A1 publication Critical patent/EP1133580A1/fr
Application granted granted Critical
Publication of EP1133580B1 publication Critical patent/EP1133580B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Definitions

  • the invention relates to a method for producing a Corrosion and wear-resistant layer on one Substrate by spraying an iron oxide-based material.
  • Such a method is known from DE 30 48 691 A1, with which a piercing mandrel for a plug and stretching mill is coated; a protective layer is formed on the mandrel surface by spraying on a powder consisting largely of iron oxide in the molten state;
  • a piercing mandrel is said to be inexpensive to manufacture and to have excellent durability and to offer better insulation and sliding properties.
  • the compounds FeO, Fe 3 O 4 and Fe 2 O 3 or their mixtures are offered as iron oxides, which make up more than 50% by weight of the powder. Oxides of chromium, nickel, copper and manganese or metals from the group iron, chromium, nickel, cobalt, copper and manganese can also be used.
  • DE 34 35 748 A1 describes the use of a laser anemometer, whose measurement volume is relative to a hot one Gas jet is adjustable to determine particle speeds with thermal spraying.
  • the particle current density is determined by a particle counter, the number of each flying through the measuring volume Spray particles count.
  • the mean particle trajectories and the melting state are digital in a facility Data processing calculated.
  • EP 0 443 730 A shows a process for producing magnetite-coated electrodes, in which a mixture is produced by mixing FeO and Fe 2 O 3 powder and polyvinyl alcohol solution, pressed into a green body and then sintered to form magnetite , The magnetite sinter is then pulverized to a particle size of 5 to 150 ⁇ m and the magnetite powder is applied to the electrodes by means of thermal spraying, for example by means of plasma spraying, plasma jets or water plasma. The plasma jet is not checked.
  • the coating of a sliding body - for example a piston ring - is achieved by thermal spraying of a mixture of Fe 3 O 4 and Cr 2 O 3 (ratio 50:50), Fe 3 O 4 and Cr 3 C 2 (60 : 40) as well as Fe 3 O 4 and a self-flux alloy (70: 30).
  • EP 0 837 305 A describes a measuring method - with a device for measuring temperature, particle density and Particle size, current, carrier and plasma gas velocity, the amount of plasma gas - to determine the Data of the particles and the plasma jet during the Spritzens discussed.
  • this is done using a camera or image processing coupled to it.
  • US 5 180 921 A discloses a thermal Plasma coating device with sensors for monitoring the particle velocity of the sprayed particles by means of two photodetectors (two-color pyrometer), with which then the flow, the powder feed rate, the powder feed gas flow or the like. to be controlled.
  • Corrosion and wear protection layers are usually made from powder mixtures various types of surfaces to be protected in production or applied for maintenance.
  • the main ones are thermal Spray processes or vapor deposition processes such as CVD (chemical vapor deposition) or PVD (plasma vapor deposition) is used.
  • CVD chemical vapor deposition
  • PVD plasma vapor deposition
  • CVD and PVD processes can have thin layers of corrosion and wear protection Oxide or hard material base, especially applied in mass production become.
  • Electrochemical or galvanic processes are also used.
  • Thermal spraying mainly turns layers into one Layer thickness of more than 0.1 mm created.
  • thermal Sprayed corrosion and wear-resistant layers mostly around metallic or oxide layers in which to improve Hard materials are stored.
  • thermal spraying One of the biggest problems with thermal spraying is manufacturing of layers of constant properties and quality.
  • the thermal spraying processes on substrates or parts were basically able with high quality requirements in series production only limited use Find.
  • the inventor has set the goal that Creating a constant wear and corrosion resistant surface coating on the basis of oxide by means of thermal spraying.
  • Carbides, nitrides, silicides, borides and oxides have proven their worth as additives for hard materials.
  • the carbide formers such as tungsten, chromium molybdenum, niobium, tantalum, titanium, vanadium or the like are suitable.
  • the addition of the carbides should be limited to a maximum of 30% by weight, preferably 20% by weight. With borides and nitrides as additives at this level, improvements in properties are observed.
  • Oxidic additions of chromium oxide (Cr 2 O 3 ) in the order of 1 to 40% by weight - preferably 5 to 30% by weight - also show good results.
  • the powdery spray materials a grain size of 0.05 to 150 ⁇ m - preferably 0.1 to 120 ⁇ m - have.
  • a grain size of 0.05 to 150 ⁇ m - preferably 0.1 to 120 ⁇ m - have.
  • thermal spray processes such as autogenous flame spraying, high-speed flame spraying (HVOF spraying), plasma spraying under air (APS), Shroud plasma spraying (SPS), vacuum spraying (LPPS), high-performance plasma spraying (HPPS), the autogen Wire spraying or arc wire spraying can be used.
  • HVOF spraying high-speed flame spraying
  • APS plasma spraying under air
  • SPS Shroud plasma spraying
  • LPPS vacuum spraying
  • HPPS high-performance plasma spraying
  • the autogen Wire spraying or arc wire spraying can be used.
  • the online control and control takes place with a combination of different Procedures that allow the temperature of the particle or the Degree of melting, the particle size, the speed, the impact of the same on the substrate and the heating of the layer and the substrate to measure during the spraying process.
  • the measurement signals are then the Computer fed to a control system for the spraying system and the flame parameters as well as the performance adjusted to the values.
  • the inventor has thus found that it is possible to use one of those mentioned above To meet coating requirements if an iron-based oxide is used as the material, which - depending on of the corrosion or wear problem to be solved - metals, Hard materials or intermetallic compounds added.
  • the material must are produced by a certain manufacturing process; According to the invention, one is made from the powdery material mixture Spray drying produced powder grain with good flow properties proposed as well as from the powdery material mixture anti-segregation manufactured in an agglomeration process Powder grain.
  • the spraying system is equipped with an online control system Equipped to provide high quality and layers to be able to produce consistent properties by spraying.
  • an online control and control by means of a Spray jet directed ITG camera, an LDA detector with LDA laser as well as an HSP head proved to be cheap or an online control using an ITG camera directed at the spray jet and an HSP head one Measuring body.
  • the online control system is to be used for measurement conveniently the particle speed in the spray flame, for example by a laser doppler anemometer using one from a laser device emitted beam, which by means of a transmission optics in two partial beams is disassembled.
  • Another feature of the invention is through online control and controlling the particle temperature in the spray flame by means of a High speed pyrometers observed. This is done by means of Infrared thermography.
  • thermal spraying processes such as autogenous flame spraying, high-speed flame spraying (HVOF), plasma spraying under air (APS), the so-called Shroud plasma spraying (SPS), plasma spraying in a vacuum (LPPS), High-power plasma spraying (HPPS), autogenous or arc wire spraying - applicable.
  • HVOF high-speed flame spraying
  • APS plasma spraying under air
  • SPS Shroud plasma spraying
  • LPPS plasma spraying in a vacuum
  • HPPS High-power plasma spraying
  • autogenous or arc wire spraying - applicable Online control and control is carried out using a Combination of different processes that allow the temperature of the particle or the degree of melting, the particle size, the speed, the impact of the same on the substrate and the heating of the Measure layer and substrate during the spraying process.
  • the measurement signals are then the computer of the control part of the thermal Spraying system fed to the flame parameters and the performance to be able to adjust measured values.
  • LDA - Detector laser Doppler anemometer
  • FIG. 3 To measure substrate temperature T s and coating temperature T c by means of infrared thermography, according to FIG. 3 there is a substrate 30 - to be provided with a coating 32 - in the recording area of an ITG camera 18.
  • a glass fiber cable 36 extends from the latter leads to a video PC card indicated at 42 - 500 kHz.
  • a computer 46 with a monitor 48 is connected to this, to which a temperature recording device 50 is assigned.
  • HSP high-speed pyrometry
  • LDA laser Doppler anemometry
  • a particle of the spray jet 10 that flies through this stripe pattern generates a scattered light signal 68 that changes periodically over time for a receiving lens system with a photodetector 70.
  • the modulation frequency of the scattered light signal 68 is proportional to the velocity component of the particle perpendicular to the interference fringe system.
  • the frequency of the LDA scattered light signals is a measure of the local density of the particles in the plasma spray jet 10.
  • PSD particle-shape imaging
  • the image recording system consists of a CCD camera 78 with an upstream micro-channel plate (MCP) image intensifier with a minimum exposure time of 5 ns.
  • MCP micro-channel plate
  • the geometric dimensions of the 512 x 512 pixel CCD chip and the depth of field of the lens result in a measurement volume of 410 x 410 x 940 ⁇ m 3 .
  • in-flight particle diagnosis method to which reference is made to FIG. 8 - up to 200 individual particles per second can be measured simultaneously in every point of a spray jet for their surface temperature, speed and size, regardless of the spraying method.
  • a non-reproduced moving unit additionally enables a plane to be scanned perpendicular to the spray jet 10, so that the distribution of the particles in the spray jet 10 can be determined precisely.
  • the temperature is determined using two-wavelength pyrometery at 995 ⁇ 25 ⁇ m and 787 ⁇ 25 ⁇ m.
  • the particles are treated as gray emitters so that knowledge of the exact emissivity is not necessary for the temperature measurement.
  • the system comprises imaging a two-slit mask 80 with 25 ⁇ m ⁇ 50 ⁇ m — on a measuring head 82 — at a focal point at a distance of approximately 90 mm with a high depth of field.
  • This creates a measurement volume which, according to the graphic representation in FIG. 10, is characterized by two visible and one shadow region in between.
  • the measuring volume is approximately 170 x 250 x 2000 ⁇ m 3 .
  • the natural radiation of individual particles that fly through this measurement volume is recorded by two IR detectors with two different wavelengths.
  • the two partial measurement volumes result in two temperature peaks in a row.
  • the time interval between the two peaks is a measure of the speed of the particle.
  • the principle corresponds to that of the light barrier.
  • the measurable particle size depends essentially on the temperature of the particles. It is down limited to about 10 microns and up to about 300 microns and is by the absolute energy radiated by the particle determines that proportional to the square of the diameter.
  • the measurable speed range is 30m / s - 1500 m / s.
  • FIG. 9 follows on from that in FIG. 1 and illustrates this Measuring the particle temperature and speed using an HSP head 24th
  • a casting mold for aluminum casting should be provided with a layer, which prevents caking and sticking in the mold.
  • the grain structure of the round grains was determined by agglomeration Spray drying manufactured.
  • the application was carried out by plasma spraying in air (APS) with one performance of 60 KW and argon / hydrogen plasma, which with an online control unit 1 was provided; the particle velocity and particle temperature are measured there during the flight to the plasma spray to control so that the necessary degree of melting of the particle is achieved.
  • APS plasma spraying in air
  • argon / hydrogen plasma which with an online control unit 1 was provided; the particle velocity and particle temperature are measured there during the flight to the plasma spray to control so that the necessary degree of melting of the particle is achieved.
  • the mold surface to be coated was forced-cooled with CO 2 with the aim of keeping the oxidation on particle impact as low as possible.
  • the layer thus produced by thermal spraying was then ground and tested in an aluminum foundry. It was found that caking and sticking to the form is prevented as well as the complex Spraying the mold with a mold release agent can be omitted.
  • a cored wire of the following composition was used as the spray material: filling Magnetite (Fe 3 O 4 ) coat NiCr 80/20 with about 30% by weight of the cored wire.
  • the grain size of the starting material for the filling was> 1.0 ⁇ m.
  • an arc spraying system equipped with an online control and monitoring system was used for processing cored wire, and a control system was a combination of the two systems shown in FIGS. 1 and 3.
  • the forced cooling is done with CO 2 and air.
  • the 200 cm long roll was applied to a surface quality ground from Ra 0.4 ⁇ m.
  • the grain size of the wettable powder was: ⁇ 37 ⁇ m > 5 ⁇ m, the grain size of the starting material ⁇ 0.5 ⁇ m.
  • the spray powder of round grain shape was obtained by agglomeration during spray drying manufactured.
  • CO 2 was used as forced cooling for the substrate and the layer during the spraying process.
  • the Shroud used to protect against oxidation was operated with pure starch.
  • the piston rings coated with pure magnetite using this process showed a high quality in the control and showed in the endurance test in Engines good results.
  • An immersion device for a salt bath working at 500 ° C for heat treatment of smaller parts shows after about a week of operation a high level of corrosion.
  • the thermal spray process for applying the layer with a thickness of 80 ⁇ m was a high speed flame spray (HVOF) in which the Control took place online. After spraying, the layer was polished.
  • HVOF high speed flame spray
  • a hydraulic cylinder for underground mining with a length of 1000 mm and a diameter of 200 mm should be protected with a protective layer Corrosion and wear are provided. So far it was used as a protective layer an electroplated hard chrome layer was used, which has a service life due to the appearance of hairline cracks in the layer of at most two months.
  • a protective layer of the composition 70% by weight Fe 3 O 4 (magnetite), 30% by weight Cr 2 O 3 (chromium oxide) chosen, the grain size of the agglomerated spray material > 5 ⁇ m, ⁇ 37 ⁇ m scam.
  • the protective layer with a layer thickness between 1.0 and 1.5 mm was an HPPS (High Power Plasma) system with an output of 200 KW used to maintain the exact spraying parameters or the Avoiding oxidation was provided with an online control.
  • HPPS High Power Plasma
  • the protective layer thus produced was removed after a period of two months checked, and it was found that the surface of the layer was none Attacks caused by corrosion or wear.
  • the lifespan of the Shift was nine months.
  • the piston of a vacuum pump with a diameter of 20 mm and a length of 500 mm should be provided with a wear and corrosion protection layer.
  • An LPPS system with an output of 40 KW was used for coating, which was provided with an online control.
  • the coating produced in this way showed very good results in later use compared to normal pistons.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Claims (23)

  1. Procédé pour produire une couche anti-corrosion et anti-usure sur un substrat par pulvérisation d'un matériau à base d'oxyde de fer, caractérisé en ce que le matériau à base d'oxyde de fer présentant au moins 20 %-poids, de préférence plus de 30 %-poids de fer, magnétite oxydulée (Fe3O4 et/ou FeFe2O4) est appliqué au moyen de projection par flamme commandée en ligne, en particulier par projection par flamme à haute vitesse ou projection plasma, en particulier projection plasma sous pression atmosphérique ou sous vide, par projection plasma haute-performance (HPPS), par projection plasma shroud (SPS) par projection au fil par flamme commandée en ligne ou par projection au fil à l'arc électrique, ainsi que les propriétés de la couche composée du matériau peuvent ainsi être surveillées et maintenues constantes au moyen d'un système de contrôle et de commande en ligne.
  2. Procédé selon la revendication 1, caractérisé par un contrôle et une commande en ligne au moyen d'une caméra ITG (18) dirigée vers le jet de projection (10), d'un détecteur LDA (20) avec un laser LDA (22), ainsi qu'une tête HSP (24).
  3. Procédé selon la revendication 1 ou 2, caractérisé par un contrôle et une commande en ligne par la mesure de la vitesse des particules dans la flamme de projection.
  4. Procédé selon la revendication 1 ou 3, caractérisé par un contrôle et une commande en ligne au moyen de la prise de mesure de la vitesse des particules dans la flamme de projection par un anémomètre laser du type Doppler à l'aide d'un rayon (60) envoyé par un appareil à laser (62), qui est décomposé en deux rayons partiels (60a, 60b) par une optique d'émission (64).
  5. Procédé selon la revendication 1 ou 3, caractérisé par un contrôle et une commande en ligne grâce à la prise de mesure de la température des particules dans la flamme de projection au moyen d'un pyromètre grande-vitesse.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé par un contrôle et une commande en ligne où la température des particules dans la flamme de projection est mesurée au moyen de la thermographie infrarouge.
  7. Procédé selon la revendication 1, caractérisé par un contrôle et une commande en ligne où la quantité de gaz mesurée est analysée.
  8. Procédé selon la revendication 1 ou 7, caractérisé par un contrôle et une commande en ligne où une quantité de plasma mesurée est analysée.
  9. Procédé selon la revendication 1, caractérisé par un contrôle et une commande en ligne où une caractéristique courant-tension mesurée est exploitée ou où une quantité de poudre amenée à la flamme de projection est mesurée.
  10. Procédé pour produire une couche anti-corrosion et anti-usure selon l'une quelconques des revendications 1 à 9, caractérisé par un procédé de projection plasma commandé en ligne, le gaz plasma utilisé étant de l'air.
  11. Procédé pour produire une couche anti-corrosion et anti-usure selon l'une quelconques des revendications 1 à 9, caractérisé en ce que le procédé de production de couche utilisé est un procédé de projection plasma stabilisé à l'eau, commandé en ligne.
  12. Procédé pour produire une couche anti-corrosion et anti-usure selon l'une quelconques des revendications 1 à 11, caractérisé en ce qu'un matériau présentant au moins 20 %-poids, de préférence plus de 30 %-poids de fer magnétite oxydulé (Fe3O4 et/ou FeFe2O4), est utilisé.
  13. Procédé selon la revendication 12, caractérisé en ce que le matériau est composé de magnétite et d'au moins un composé intermétallique.
  14. Procédé selon la revendication 12, caractérisé par l'adjonction d'un mélange de métaux de composés intermétalliques, de carbures, de nitrures, de siliciures, de borures et/ou d'oxydes dans le matériau.
  15. Procédé selon la revendication 12, caractérisé par un matériau en magnétite et en carbures de W, Cr, Mo, Nb, Ta, Ti, V.
  16. Procédé selon la revendication 15, caractérisé par un matériau composé de magnétite avec une adjonction de jusqu'à 30 %-poids, de préférence jusqu'à 20 %-poids, de carbures de tungstène et/ou de chrome.
  17. Procédé selon la revendication 12, caractérisé par un matériau en magnétite et au moins un autre matériau métallique.
  18. Procédé selon la revendication 17, caractérisé par la magnétite et une adjonction de jusqu'à 50 %-poids, de préférence jusqu'à 40 %-poids de Cr, CrNi, ou d'un acier ferritique.
  19. Procédé selon la revendication 12, caractérisé par un mélange de magnétite et d'oxyde de chrome en tant que matériau avec une part de l'oxyde de chrome entre 1 et 40 %-poids, de préférence entre 5 et 30 %-poids.
  20. Procédé selon l'une quelconque des revendications 12 à 19, caractérisé par un calibre de grain du matériau de projection en forme de poudre allant de 0,05 à 150 µm, de préférence de 0,1 à 120 µm.
  21. Procédé selon l'une quelconque des revendications 12 à 20, caractérisé par l'utilisation d'un fil de remplissage en tant que matériau de projection filiforme, dont le remplissage est composé de magnétite et l'enveloppe d'un alliage.
  22. Procédé selon l'une quelconque des revendications 1 à 21, caractérisé par des grains de poudre fabriqués par séchage par pulvérisation à partir d'un mélange de matériau en forme de poudre qui présente de bonnes propriétés de fluidité.
  23. Procédé selon l'une quelconque des revendications 1 à 21, caractérisé par des grains de poudre anti-dissociation fabriqués au moyen d'un procédé d'agglomération à partir d'un mélange de matériaux en forme de poudre.
EP99959337A 1998-11-25 1999-11-25 Procede pour produire une couche anticorrosion et anti-usure par metallisation a chaud Expired - Lifetime EP1133580B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19854512 1998-11-25
DE19854512 1998-11-25
DE19857737A DE19857737A1 (de) 1998-11-25 1998-12-15 Werkstoff und Verfahren zum Herstellen einer korrosions- und verschleißfesten Schicht durch thermisches Spritzen
DE19857737 1998-12-15
PCT/EP1999/009140 WO2000031313A1 (fr) 1998-11-25 1999-11-25 Materiau et procede pour produire une couche anticorrosion et anti-usure par metallisation a chaud

Publications (2)

Publication Number Publication Date
EP1133580A1 EP1133580A1 (fr) 2001-09-19
EP1133580B1 true EP1133580B1 (fr) 2003-05-02

Family

ID=26050388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99959337A Expired - Lifetime EP1133580B1 (fr) 1998-11-25 1999-11-25 Procede pour produire une couche anticorrosion et anti-usure par metallisation a chaud

Country Status (6)

Country Link
EP (1) EP1133580B1 (fr)
JP (1) JP2003522289A (fr)
AT (1) ATE239105T1 (fr)
AU (1) AU1655000A (fr)
NO (1) NO20012564L (fr)
WO (1) WO2000031313A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952971B2 (en) 2000-08-23 2005-10-11 Schenck Process Gmbh Apparatus for measuring a mass flow

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE267275T1 (de) * 1999-01-19 2004-06-15 Sulzer Metco Ag Durch plasmaspritzen aufgebrachte schicht für zylinderlaufflächen von motorblöcken und verfahren zu deren herstellung
DE10025161A1 (de) * 2000-05-23 2001-11-29 Joma Chemicals As Limingen Werstoff und Verfahren zum Herstellen einer korrosions-und verschleißfesten Schicht durch thermisches Spitzen
CH694664A5 (de) * 2000-06-14 2005-05-31 Sulzer Metco Ag Durch Plasmaspritzen eines Spritzpulvers aufgebrachte eisenhaltige Schicht auf einer Zylinderlauffläche.
DE10244037A1 (de) * 2002-09-21 2004-04-08 Mtu Aero Engines Gmbh Verfahren zur Beschichtung eines Werkstücks
US11745201B2 (en) * 2012-06-11 2023-09-05 General Electric Company Spray plume position feedback for robotic motion to optimize coating quality, efficiency, and repeatability
KR20230102606A (ko) * 2021-12-30 2023-07-07 이창훈 플라즈마 서스펜션 코팅 시스템 및 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2707691A (en) * 1952-08-08 1955-05-03 Norton Co Coating metals and other materials with oxide and articles made thereby
JPS5017423B2 (fr) * 1971-12-04 1975-06-20
DE2206220A1 (de) * 1972-02-10 1973-08-23 Johannes Martinus Arnold Horst Verfahren zum herstellen von magnetitbeschichtungen
JPS4863143A (fr) * 1972-08-30 1973-09-03
JPS5913924B2 (ja) * 1979-12-25 1984-04-02 日本鋼管株式会社 穿孔圧延機用芯金
DE3435748A1 (de) * 1984-09-28 1986-04-10 Siemens AG, 1000 Berlin und 8000 München Verfahren und einrichtung zum beschichten von werkstuecken durch thermisches spritzen, insbesondere durch plasmaspritzen
US5047612A (en) * 1990-02-05 1991-09-10 General Electric Company Apparatus and method for controlling powder deposition in a plasma spray process
JPH03229888A (ja) * 1990-02-05 1991-10-11 Tokai Carbon Co Ltd マグネタイト被覆電極の製造方法
US5180921A (en) * 1991-11-18 1993-01-19 National Research Council Of Canada Method and apparatus for monitoring the temperature and velocity of plasma sprayed particles
JP3228445B2 (ja) * 1993-02-10 2001-11-12 株式会社荏原製作所 鉄鉱石を含有する溶射発熱体
JP3431715B2 (ja) * 1995-02-15 2003-07-28 トーカロ株式会社 耐久性に優れる溶射被覆電極の製造方法
JPH08269672A (ja) * 1995-03-30 1996-10-15 Toshiba Corp 溶射皮膜の評価方法および装置
DE19545005A1 (de) * 1995-12-02 1997-06-05 Abb Patent Gmbh Verfahren zur Überwachung der Beschichtung einer Platte aus einem Metall mit hoher Leitfähigkeit mit einem Material mit geringerer Leitfähigkeit und Vorrichtung zur Durchführung des Verfahrens
EP0837305A1 (fr) * 1996-10-21 1998-04-22 Sulzer Metco AG Méthode et assemblage pour contrÔler le processus de revêtement dans un dispositif de revêtement thermique
DE19820195A1 (de) * 1998-05-06 1999-11-11 Linde Ag Qualitätssicherung beim thermischen Spritzen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952971B2 (en) 2000-08-23 2005-10-11 Schenck Process Gmbh Apparatus for measuring a mass flow

Also Published As

Publication number Publication date
AU1655000A (en) 2000-06-13
EP1133580A1 (fr) 2001-09-19
NO20012564D0 (no) 2001-05-25
NO20012564L (no) 2001-05-25
ATE239105T1 (de) 2003-05-15
WO2000031313A1 (fr) 2000-06-02
JP2003522289A (ja) 2003-07-22

Similar Documents

Publication Publication Date Title
DE4321673C2 (de) Verfahren zur Herstellung eines Bauteils mittels Lichtbogenspritzens sowie Anwendungen dieses Verfahrens
DE102019212844A1 (de) Bremsscheibe und Verfahren zum Herstellen einer Bremsscheibe
Smurov et al. Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation
EP0818549B1 (fr) Matériau à base de nickel en forme de poudre ou de fil pour un revêtement ainsi que les procédés correspondants
DE19740205B4 (de) Verfahren zum Aufbringen einer Beschichtung mittels Plasmaspritzens
DE3011022C2 (de) Verfahren zum Aufbringen eines metallischen Überzugs auf eine Metalloberfäche und Vorrichtung zu seiner Durchführung
JP4646627B2 (ja) レーザー金属成形による硬い層の微細構造の制御方法
EP3620546A2 (fr) Disque de frein et procédé de fabrication d'un disque de frein
WO2001090435A1 (fr) Materiau et procede pour realiser une couche resistante a la corrosion et a l'usure par projection thermique
DE19857737A1 (de) Werkstoff und Verfahren zum Herstellen einer korrosions- und verschleißfesten Schicht durch thermisches Spritzen
DE102014211366A1 (de) Verfahren zur Erzeugung einer Oxidationsschutzschicht für einen Kolben zum Einsatz in Brennkraftmaschinen und Kolben mit einer Oxidationsschutzschicht
EP1133580B1 (fr) Procede pour produire une couche anticorrosion et anti-usure par metallisation a chaud
EP3325685B1 (fr) Procédé pour recouvrir une surface de glissement de cylindre d'un bloc-cylindres, bloc-cylindres avec une surface de glissement de cylindre recouverte et moteur
EP0438971B1 (fr) Substrat métallique revêtu
DE19841619A1 (de) Lichtbogen - drahtgespritzte Alsi - Triboschicht
EP1048920A2 (fr) Procédé de revêtement de la surface interne d'un tube de canon
DE2744189A1 (de) Verfahren zur verbesserung der verschleisseigenschaften von eisenmetallteilen
EP0915184A1 (fr) Procédé de fabrication d'une couche de céramique sur un substrat métallique
DE60304914T2 (de) Thermische Spritzeinrichtung
DE19535078B4 (de) Überwachung und Regelung von thermischen Spritzverfahren
EP3314033B1 (fr) Alliage ferreux destiné à la réalisation de couches protectrices anti-usure appliquées par voie thermique
WO2013060552A1 (fr) Procédé de projection plasma
WO2008090192A1 (fr) Cylindre de coulée pour un dispositif de coulée à deux cylindres et dispositif de coulée à deux cylindres
DE3590031T (de) Werkstoff zum Flammspritzen und sein Herstellungsverfahren
AT400726B (de) Metallischer bauteil zur verwendung in einem metallbad

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A1

Designated state(s): AT DE FR GB

17Q First examination report despatched

Effective date: 20020204

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: PROCESS FOR PRODUCING A CORROSION- AND WEAR-RESISTANT LAYER BY THERMAL SPRAYING

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59905361

Country of ref document: DE

Date of ref document: 20030605

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1133580E

Country of ref document: IE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20061124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061127

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20061219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070119

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130