EP1497598B1 - Procede d'evaluation d'une variable de fonctionnement non mesuree dans une installation frigorifique - Google Patents

Procede d'evaluation d'une variable de fonctionnement non mesuree dans une installation frigorifique Download PDF

Info

Publication number
EP1497598B1
EP1497598B1 EP03746813A EP03746813A EP1497598B1 EP 1497598 B1 EP1497598 B1 EP 1497598B1 EP 03746813 A EP03746813 A EP 03746813A EP 03746813 A EP03746813 A EP 03746813A EP 1497598 B1 EP1497598 B1 EP 1497598B1
Authority
EP
European Patent Office
Prior art keywords
value
air
medium flow
sum
derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03746813A
Other languages
German (de)
English (en)
Other versions
EP1497598A1 (fr
Inventor
Claus Thybo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danfoss AS
Original Assignee
Danfoss AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss AS filed Critical Danfoss AS
Publication of EP1497598A1 publication Critical patent/EP1497598A1/fr
Application granted granted Critical
Publication of EP1497598B1 publication Critical patent/EP1497598B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/008Alarm devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • F25B2700/135Mass flow of refrigerants through the evaporator
    • F25B2700/1352Mass flow of refrigerants through the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/04Calculation of parameters

Definitions

  • the invention relates to a method for evaluating an unmeasured operating variable in a refrigeration system, which can be derived from at least one signal which is sampled at predetermined times. Such a method is known from US-A-6,128,910.
  • the signals change only relatively slowly in a refrigeration system. It is therefore difficult to detect a trend when the signals move in an area that might indicate an error. Because the signals are determined by sensors that evaluate the relevant physical quantities at predetermined times, or a permanently detected signal is sampled only at predetermined times, it often happens that the signal waveform represents a "high-frequency" waveform, ie, the average of the signal is indeed the course of the determined physical size again. However, the size is shown with sometimes considerable fluctuations up and down, which further complicates the evaluation. This is especially true when the signal has come about through a difference, for example, to determine a temperature difference across a heat exchanger.
  • the term "high-frequency" is of course meant relatively here. The frequency is high, measured by the rate of change of physical quantities, such as temperature, in a refrigeration system.
  • the invention has for its object to be able to detect a fault early.
  • the default value is zero.
  • the deviation from the value zero can be detected relatively easily.
  • the determination of the error indicator is simplified.
  • the error indicator of the last time is used to form the sum.
  • the error indicator is thus updated from sample time to sample time. This allows fast reaction times and allows the error indicator to be formed continuously, so to speak.
  • the estimated value is determined experimentally in a fault-free operation of the refrigeration system. If the refrigeration system runs without errors for a predetermined period of time, for example 100 minutes, then it can be assumed that a mean value determined in this case is representative of a fault-free operation. In the further operation of the refrigeration system can then use this estimate to form the error indicator.
  • a residue is used, which is formed by a difference between the estimated value or a second quantity derived therefrom and a signal-dependent variable.
  • the estimated value or the second quantity derived therefrom, in the derivation of which also signal-dependent components can flow, is then, so to speak, an output value with which the signal-dependent variable is compared.
  • the difference is the residual.
  • the residual will fluctuate around zero, i. on average, the residual has the value zero.
  • the signal-dependent variable will differ in the long run from the estimated value, generally in one direction. Accordingly, the residual will assume a nonzero value, which will then show up in the error indicator.
  • the first derived quantity is formed from the difference of the residual and a predetermined reliability value, the difference being multiplied by a proportionality constant becomes.
  • the reliability value is subtracted from the residual at each sampling time or at each time of the evaluation. In this case, the situation will often arise in error-free operation that the derived size has a value less than zero.
  • the error indicator will increase, indicating an error. If one uses the absolute value of the residual, then one gets an increase of the error indicator also with a Residuum, which is too small in the long run.
  • the size of a first medium flow of a heat or cold transport medium is used as the operating variable.
  • the air mass flow is an important factor for the operation of the refrigeration system. For example, in sales freezers it serves to transport the actual "cold" to the products to be cooled. Counter refrigerators are used in a supermarket to hold chilled or frozen products for sale. To keep these products at the desired low temperature, air flow is continuously or intermittently passed through a storage room in which the products are arranged. The cooled air then partially sinks into the storage room. A disturbance of the air flow can lead to considerable problems. In the worst case, not enough cold is transported to the products, so that their temperature increases. If you detect an error at this point, it is too late.
  • the second derivative quantity is the change in enthalpy of the first media stream across the heat exchanger.
  • the enthalpy of the first media stream allows a statement about the heat content of the first media stream. Determining the change in enthalpy determines the change in heat content through the heat exchanger. Since this heat content is completely dissipated to the second media stream, e.g. the refrigerant is to be discharged, it can be the necessary information about the operating size of the first media stream, e.g. of the airstream, win.
  • the signal-dependent variable is preferably the change in the enthalpy of the second medium flow via the heat exchanger. As stated above, it is assumed that the heat that is removed from the first media stream in the heat exchanger, completely merges with the second media stream. If one then determines the change in the enthalpy of the second medium flow, then one obtains the information about the change in the enthalpy of the first medium flow.
  • a mass flow and a specific enthalpy difference of the second medium flow are determined via the heat exchanger.
  • the enthalpy is a product of the mass flow and the specific enthalpy difference.
  • the specific enthalpy difference results from the specific enthalpy of the second medium flow, eg of the refrigerant, before and after the heat exchanger.
  • the specific enthalpy of a refrigerant is a substance and state property and varies from refrigerant to refrigerant. However, the refrigerant manufacturers usually provide so-called log p, h diagrams for each refrigerant.
  • the specific enthalpy of the refrigerant can be determined. It requires the temperature and the pressure at the expansion valve inlet. These quantities can be measured by means of a temperature sensor or a pressure sensor.
  • the specific enthalpy at the evaporator outlet is determined by means of two measured values: first, the temperature at the evaporator outlet and, second, either the pressure at the evaporator outlet or the boiling temperature.
  • the temperature at the evaporator outlet can be measured with a temperature sensor and you can measure the pressure at the evaporator outlet with a pressure sensor.
  • the refrigerant manufacturers also provide equation of state for the refrigerant.
  • the second medium flow is determined from a pressure difference across and the degree of opening of an expansion valve.
  • the flow is in many cases proportional to the opening degree of the expansion valve.
  • the opening degree corresponds to the opening duration.
  • these values are available because there are pressure sensors available to measure the pressure in the condenser or condenser and the pressure in the evaporator.
  • the hypothermia is negligible in many cases and therefore does not need to be measured separately.
  • the mass flow rate of the refrigerant through the valve can then be calculated by means of a valve characteristic, the pressure difference and the opening degree or the opening duration.
  • the operating data are, for example, the speed and / or the drive power of the compressor.
  • Fig. 1 shows schematically a refrigeration system 1 in the form of a sales freezer, as used for example in supermarkets for the sale of chilled or frozen food.
  • the refrigeration system 1 has a storage space 2, in which the food is stored.
  • An air duct 3 is guided around the storage space 2, ie it is located on both sides and below the storage space 2.
  • An air flow 4, which is shown by arrows, passes after passing through the air duct 3 in a cooling zone 5 above the storage space 2. Die Air is then returned to the entrance of the air duct 3, where a mixing zone 6 is located. In the mixing zone, the air flow 4 with ambient air mixed. In this case, for example, the cooled air is replaced, which has entered the storage room 2 or otherwise disappeared into the environment.
  • a fan assembly 7 is arranged, which may be formed by one or more fans.
  • the fan assembly 7 ensures that the air flow 4 can be moved in the air duct 3.
  • the fan assembly 7 drives the air flow 4 so that the mass of air per time, which is moved through the air duct 3, is constant, as long as the fan assembly 7 is running and the system is working properly.
  • an evaporator 8 of a refrigerant circuit is arranged in the air duct 3.
  • the evaporator 8 is supplied through an expansion valve 9 refrigerant from a condenser or condenser 10.
  • the condenser 10 is supplied by a compressor or compressor 11 whose input is in turn connected to the evaporator 8, so that the refrigerant is circulated in a conventional manner.
  • the condenser 10 is provided with a fan 12, by means of which air from the environment can be blown through the condenser 10 to dissipate heat there.
  • the operation of such a refrigerant circuit is known per se.
  • the system circulates a refrigerant.
  • the refrigerant leaves the compressor 11 as a gas under high pressure and high temperature.
  • the refrigerant is liquefied, where it Gives off heat.
  • the refrigerant passes through the expansion valve 9, where it is released.
  • the refrigerant is biphasic, ie, liquid and gaseous.
  • the two-phase refrigerant is supplied to the evaporator 8.
  • the liquid phase evaporates there with the absorption of heat, the heat being removed from the air stream 4.
  • the refrigerant After the remaining refrigerant has evaporated, the refrigerant is still slightly heated and comes out of the evaporator 8 as superheated gas. Thereafter, it is fed back to the compressor 11 and compressed there.
  • Disturbances can result, for example, from the fact that the fan assembly 7 has a defect and no longer promotes sufficient air. For example, one fan unit with multiple fans may fail. Although the remaining blower can still promote a certain amount of air through the air duct 3, so that the temperature in the storage chamber 2 does not rise above an allowable value. As a result, however, the refrigeration system is heavily loaded, which can result in late damage. For example, elements of the refrigeration system, such as fans, are put into operation more often. Another error case, for example, the icing of the evaporator by moisture from the ambient air, which is reflected on the evaporator.
  • the monitoring can be done quite clocked, ie at successive times, for example, have a time interval of the order of a minute.
  • the determination of the mass per time of the air stream 4 with normal measuring devices is relatively expensive. It is therefore used an indirect measurement by determining the heat content of the refrigerant, which has taken up the refrigerant in the evaporator 8.
  • Ref the refrigerant mass per time flowing through the evaporator.
  • h Ref, out is the specific enthalpy of the refrigerant at the evaporator outlet and h Ref, in is the specific enthalpy at the expansion valve inlet.
  • the specific enthalpy of a refrigerant is a substance and state property, which varies from refrigerant to refrigerant, but can be determined for each refrigerant. The refrigerant manufacturers therefore provide so-called log p, h diagrams for each refrigerant.
  • the specific enthalpy difference can be determined via the evaporator 8.
  • T ref, in the temperature of the refrigerant at the expansion valve inlet
  • P con the pressure at the expansion valve inlet
  • T ref, out the temperature at the evaporator outlet
  • P ref, out the pressure at the outlet
  • T ref, in the boiling temperature
  • the mass flow rate of the refrigerant ( Ref ) can be determined either with a flow meter.
  • the mass flow Ref when the pressure difference across the valve and subcooling at the inlet of the expansion valve 10 (T Vin ) is known. This is the case with most systems because pressure sensors are available to measure the pressure in condenser 10. Hypothermia is constant and predictable in many cases and therefore does not need to be measured.
  • the mass flow Ref through the expansion valve 9 can then be calculated by means of a valve characteristic, the pressure difference, the subcooling and the opening degree or the opening duration.
  • Air m • Air ( H Air . in - H Air . out ) in which Air is the mass flow rate of air, h Air, in the specific enthalpy of the air before the evaporator and h Air, referred to the specific enthalpy of air after the evaporator.
  • p W is the partial pressure of the water vapor in the air and p Amb is the pressure of the air.
  • p Amb can either be measured or simply use a standard atmospheric pressure for this size. The deviation of the actual pressure from the standard atmospheric pressure does not play a significant role in the calculation of the amount of heat released by the air per time.
  • RH is the relative humidity and pw, sat is the partial pressure of the water vapor in saturated air. p W, Sat depends solely on the air temperature and can be found in thermodynamic reference works.
  • the relative humidity RH can be measured or one uses typical values in the calculation.
  • This actual value for the air mass flow Air can then be compared with a setpoint and in case of significant differences between the actual value and the setpoint, the operator of the refrigeration system can be made aware by an error message that the system is not running optimally.
  • This setpoint can be determined as an average value over a period of time during which the system is running under stable and faultless operating conditions. Such a period may be, for example, 100 minutes.
  • Air is an estimated value for air mass flow in flawless operating conditions. Instead of an estimate, one can also use a value which is determined as an average over a certain period of time from equation (9) under fault-free operating conditions.
  • s i is taken from equation (12) and forms the sum of this value with the error indicator S i from an earlier point in time. If this sum is greater than zero, the error indicator is set to this new value. If this sum is equal to or less than zero, the error indicator is set to zero.
  • k 1 is a proportionality constant.
  • ⁇ 0 can be set to the value zero in the simplest case.
  • ⁇ 1 is on estimated value, which can be determined, for example, by generating an error and determining the average value of the residual r for this error.
  • the value ⁇ 1 is a criterion for how often you have to accept a false alarm.
  • the two ⁇ values are therefore also referred to as reliability values.
  • the error indicator S i will become larger because the periodically determined values of the residual r i become greater than zero on average.
  • the fault indicator reaches a predetermined magnitude, an alarm is triggered indicating that air circulation is restricted. Increasing ⁇ 1 gives you fewer false positives, but it also risks discovering a bug later.
  • Figs. 5 and 6 show the development of the residual r and the development of the error indicator S i in the case where the evaporator 8 is gradually frozen.
  • the residual r and in Fig. 6 the error indicator S i is plotted upward, while the time t is applied to the right in minutes.
  • the method can also be used to start a defrost process.
  • the defrost operation is started when the error indicator S i reaches a predetermined size.
  • An advantage of this method is early detection of errors, although not more sensors are used than are present in a typical system.
  • the faults are detected before they cause higher temperatures in the refrigeration system.
  • errors are detected before the system no longer runs optimally, taking the energy consumed as a measure.
  • the method of detecting changes in the first media stream may also be used on installations that operate with indirect cooling.
  • one has a primary media stream in which refrigerant circulates and a secondary media stream where a refrigerant, eg brine, circulates.
  • a refrigerant eg brine
  • the first medium flow cools the second medium flow.
  • the second media stream then cools, for example, the air in a heat exchanger.
  • the constant c can be found in reference works, while the two temperatures can be measured, eg with temperature sensors.
  • the mass flow KT can be determined by a mass flow meter. Of course, other options are also conceivable.
  • Q KT then replaces Q Ref in the further calculations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Claims (13)

  1. Procédé pour exploiter dans une installation frigorifique une grandeur de fonctionnement non mesurée qui peut être déduite d'au moins un signal relevé à des instants prédéfinis, caractérisé en ce que pour procéder à l'exploitation on forme un indicateur d'erreur par les étapes suivantes,
    a) on attribue à un premier instant à l'indicateur d'erreur une valeur de référence,
    b) on réalise une somme à partir de l'indicateur d'erreur d'un instant prédéterminé antérieur et d'une première grandeur, déduite d'une valeur d'estimation pour la grandeur de fonctionnement en tenant compte d'au moins une grandeur dépendante du signal, et
    c) on attribue à l'indicateur d'erreur la valeur de la somme, si la somme est supérieure à la valeur de référence, et la valeur de référence, si la somme est inférieure ou égale à la valeur de référence.
  2. Procédé selon la revendication 1, caractérisé en ce que la valeur de référence est zéro.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que, pour former la somme, on utilise l'indicateur d'erreur du dernier instant.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'on détermine la valeur d'estimation de façon expérimentale en faisant fonctionner l'installation frigorifique sans erreur.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que, pour former la première grandeur déduite, on utilise un résidu formé par une différence entre la valeur d'estimation, ou une deuxième grandeur qui en est déduite, et la grandeur dépendante du signal.
  6. Procédé selon la revendication 5, caractérisé en ce que la première grandeur déduite est formée à partir de la différence du résidu et d'une valeur prédéfinie de fiabilité, la différence étant multipliée par une constante de proportionnalité.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la grandeur de fonctionnement utilisée est la grandeur d'un premier courant de fluide d'un fluide caloporteur ou réfrigérant, en particulier d'un débit massique de l'air.
  8. Procédé selon la revendication 7, caractérisé en ce qu'on calcule la grandeur du premier courant de fluide à partir d'un transfert thermique entre le premier courant de fluide et un deuxième courant de fluide d'un agent caloporteur ou réfrigérant dans un échangeur thermique.
  9. Procédé selon les revendications 5 et 8, caractérisé en ce que la deuxième grandeur déduite est la modification de l'enthalpie du premier courant de fluide à travers l'échangeur thermique.
  10. Procédé selon la revendication 9, caractérisé en ce que la grandeur dépendante du signal est la modification de l'enthalpie du deuxième courant de fluide à travers l'échangeur thermique.
  11. Procédé selon la revendication 10, caractérisé en ce que, pour établir l'enthalpie du deuxième courant de fluide, on détermine un débit massique et une différence spécifique d'enthalpie du deuxième courant de fluide à travers l'échangeur thermique.
  12. Procédé selon la revendication 11, caractérisé en ce qu'on détermine le deuxième courant de fluide à partir d'une différence de pression à travers une soupape de détente et du degré d'ouverture d'une soupape de détente.
  13. Procédé selon la revendication 11, caractérisé en ce qu'on détermine le deuxième courant de fluide à partir de données de fonctionnement et d'une différence des pressions absolues à travers un compresseur conjointement avec la température à l'entrée du compresseur.
EP03746813A 2002-04-22 2003-04-12 Procede d'evaluation d'une variable de fonctionnement non mesuree dans une installation frigorifique Expired - Lifetime EP1497598B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10217974A DE10217974B4 (de) 2002-04-22 2002-04-22 Verfahren zum Auswerten einer nicht gemessenen Betriebsgröße in einer Kälteanlage
DE10217974 2002-04-22
PCT/DK2003/000252 WO2003089855A1 (fr) 2002-04-22 2003-04-12 Procede d'evaluation d'une variable de fonctionnement non mesuree dans une installation frigorifique

Publications (2)

Publication Number Publication Date
EP1497598A1 EP1497598A1 (fr) 2005-01-19
EP1497598B1 true EP1497598B1 (fr) 2006-10-18

Family

ID=29224661

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03746813A Expired - Lifetime EP1497598B1 (fr) 2002-04-22 2003-04-12 Procede d'evaluation d'une variable de fonctionnement non mesuree dans une installation frigorifique

Country Status (8)

Country Link
US (1) US7650758B2 (fr)
EP (1) EP1497598B1 (fr)
JP (1) JP3976735B2 (fr)
AT (1) ATE343109T1 (fr)
AU (1) AU2003226944A1 (fr)
DE (1) DE10217974B4 (fr)
DK (1) DK1497598T3 (fr)
WO (1) WO2003089855A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10217975B4 (de) * 2002-04-22 2004-08-19 Danfoss A/S Verfahren zum Entdecken von Änderungen in einem ersten Medienstrom eines Wärme- oder Kältetransportmediums in einer Kälteanlage
WO2004005812A1 (fr) * 2002-07-08 2004-01-15 Danfoss A/S Procede et dispositif de detection d'un flash-gas
EP1565720B1 (fr) * 2002-10-15 2015-11-18 Danfoss A/S Procede pour detecter un defaut d'un echangeur thermique
US7905100B2 (en) * 2004-12-16 2011-03-15 Danfoss A/S Method for controlling temperature in a refrigeration system
US8239168B2 (en) * 2009-06-18 2012-08-07 Johnson Controls Technology Company Systems and methods for fault detection of air handling units
JP5058324B2 (ja) * 2010-10-14 2012-10-24 三菱電機株式会社 冷凍サイクル装置
SE538676C2 (en) * 2014-05-29 2016-10-18 Picadeli Ab A refrigerated food bar arrangement and a cooling system for cooling of a food bar
EP3963529A4 (fr) * 2019-04-30 2022-12-21 Pfizer Inc. Suivi et gestion en temps réel de flux de travaux standard

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2295992A (en) * 1941-01-09 1942-09-15 Chrysler Corp Flash gas control for refrigerating systems
US3171462A (en) * 1962-10-10 1965-03-02 Jr Thodore J Reinhart Toroidal pneumatic tire
US3707851A (en) * 1970-10-28 1973-01-02 Mach Ice Co Refrigeration system efficiency monitor
US3918300A (en) * 1974-01-03 1975-11-11 Aaron Weisstuch Heat transfer measuring device
DE2451361A1 (de) 1974-10-29 1976-05-06 Jakob Verfahren zum regeln einer kompressorkuehlanlage
US4136528A (en) * 1977-01-13 1979-01-30 Mcquay-Perfex Inc. Refrigeration system subcooling control
US4193781A (en) * 1978-04-28 1980-03-18 Mcquay-Perfex Inc. Head pressure control for heat reclaim refrigeration systems
CA1146650A (fr) * 1979-10-01 1983-05-17 Lee E. Sumner, Jr. Systeme de commande a detecteur-indicateur de defaut, assiste par microprocesseur
JPS5919273B2 (ja) * 1979-12-05 1984-05-04 株式会社日立製作所 復水器性能監視方法
SE8006391L (sv) * 1980-09-12 1982-03-13 Jacob Weitman Sett att reglera en vermevexlare
US4325223A (en) * 1981-03-16 1982-04-20 Cantley Robert J Energy management system for refrigeration systems
JPS591970A (ja) * 1982-06-25 1984-01-07 株式会社日立製作所 冷媒流量制御装置
US4510576A (en) * 1982-07-26 1985-04-09 Honeywell Inc. Specific coefficient of performance measuring device
US4479727A (en) * 1982-09-01 1984-10-30 Carrier Corporation Apparatus and method for evaluating the performance of a heat exchanger
SE439063B (sv) * 1983-06-02 1985-05-28 Henrik Sven Enstrom Forfarande och anordning for provning och prestandaovervakning vid vermepumpar och kylanleggningar
US4614087A (en) * 1983-08-09 1986-09-30 Nihon Radiator Co., Ltd. Apparatus for alarming abnormal coolant in space cooling cycle
US4766553A (en) * 1984-03-23 1988-08-23 Azmi Kaya Heat exchanger performance monitor
KR890001890B1 (ko) 1984-03-23 1989-05-30 더 뱁콕 앤드 윌콕스 컴퍼니 열교환기 성능 감지기
US4621502A (en) * 1985-01-11 1986-11-11 Tyler Refrigeration Corporation Electronic temperature control for refrigeration system
CH670311A5 (fr) * 1985-06-17 1989-05-31 Bbc Brown Boveri & Cie
SE454020B (sv) * 1986-02-21 1988-03-21 Etm Metteknik Ab Sett for bestemning av en kylprocess genom antagande om vissa parametrar, framfor allt kompressorverkningsgraden
JPS6371625A (ja) 1986-09-16 1988-04-01 Mitsubishi Heavy Ind Ltd 伝熱管の熱吸収量計測装置
US4768346A (en) * 1987-08-26 1988-09-06 Honeywell Inc. Determining the coefficient of performance of a refrigeration system
US4885914A (en) * 1987-10-05 1989-12-12 Honeywell Inc. Coefficient of performance deviation meter for vapor compression type refrigeration systems
JPH01174870A (ja) 1987-12-28 1989-07-11 Toshiba Corp 冷凍機診断装置
GB9008788D0 (en) * 1990-04-19 1990-06-13 Whitbread & Co Plc Diagnostic equipment
EP0470676A3 (en) 1990-08-09 1992-09-16 Riccius + Stroschen Gmbh Procedure to determine the state of clogging of heat conducting tubes
US5079930A (en) * 1990-12-03 1992-01-14 Atron, Inc. Apparatus and method for monitoring refrigeration system
DE4119020A1 (de) 1991-06-09 1992-12-10 Braun Ag Haartrockner
DE4207144A1 (de) 1992-03-06 1993-09-09 Bayer Ag Verfahren zur regelung von waermeuebertragern
JPH05264136A (ja) 1992-03-24 1993-10-12 Mitsubishi Electric Corp 空気調和機の熱交換器汚れ検出装置
US5289692A (en) * 1993-01-19 1994-03-01 Parker-Hannifin Corporation Apparatus and method for mass flow control of a working fluid
US5341649A (en) * 1993-03-05 1994-08-30 Future Controls, Inc. Heat transfer system method and apparatus
JPH07234043A (ja) * 1994-02-22 1995-09-05 Hitachi Building Syst Eng & Service Co Ltd 空調設備における室内側熱交換器の能力把握方法
US5623426A (en) * 1994-02-23 1997-04-22 Sanyo Electric Co., Ltd. Failure diagnosing system for absorption chillers
US5457965A (en) * 1994-04-11 1995-10-17 Ford Motor Company Low refrigerant charge detection system
US5596507A (en) * 1994-08-15 1997-01-21 Jones; Jeffrey K. Method and apparatus for predictive maintenance of HVACR systems
US5623834A (en) * 1995-05-03 1997-04-29 Copeland Corporation Diagnostics for a heating and cooling system
US5615733A (en) * 1996-05-01 1997-04-01 Helio-Compatic Corporation On-line monitoring system of a simulated heat-exchanger
US6128910A (en) * 1997-02-06 2000-10-10 Federal Air Conditioning Technologies, Inc. Diagnostic unit for an air conditioning system
US6355761B1 (en) * 1999-05-12 2002-03-12 Basf Coatings Ag Coating composition
US6089033A (en) * 1999-02-26 2000-07-18 Dube; Serge High-speed evaporator defrost system
US6321564B1 (en) * 1999-03-15 2001-11-27 Denso Corporation Refrigerant cycle system with expansion energy recovery
US6225907B1 (en) * 1999-05-14 2001-05-01 International Comfort Products Corporation (Usa) Environmental control system incipient failure indicator apparatus
US6223544B1 (en) * 1999-08-05 2001-05-01 Johnson Controls Technology Co. Integrated control and fault detection of HVAC equipment
US6330802B1 (en) * 2000-02-22 2001-12-18 Behr Climate Systems, Inc. Refrigerant loss detection
JP2001255046A (ja) 2000-03-13 2001-09-21 Sanyo Electric Co Ltd 冷凍装置
US6272868B1 (en) * 2000-03-15 2001-08-14 Carrier Corporation Method and apparatus for indicating condenser coil performance on air-cooled chillers
GB0014972D0 (en) 2000-06-19 2000-08-09 Borealis Tech Oy Degassing apparatus
CA2344908C (fr) 2000-07-20 2010-06-15 Siemens Building Technologies, Inc. Methodologie de detection d'anomalie et de diagnostic par modeles pour les sous-systemes cvac
US7139564B2 (en) * 2000-08-08 2006-11-21 Hebert Thomas H Wireless communication device for field personnel
US6460358B1 (en) * 2000-11-13 2002-10-08 Thomas H. Hebert Flash gas and superheat eliminator for evaporators and method therefor
JP3951711B2 (ja) * 2001-04-03 2007-08-01 株式会社デンソー 蒸気圧縮式冷凍サイクル
ATE406547T1 (de) 2001-05-03 2008-09-15 Matts Lindgren Verfahren und anordnung zur steuerung der temperatur des abgehenden stroms von einem wärmetauscher und messung von erzeugter hitze
US6701725B2 (en) 2001-05-11 2004-03-09 Field Diagnostic Services, Inc. Estimating operating parameters of vapor compression cycle equipment
US6658373B2 (en) * 2001-05-11 2003-12-02 Field Diagnostic Services, Inc. Apparatus and method for detecting faults and providing diagnostics in vapor compression cycle equipment
US6590362B2 (en) * 2001-07-27 2003-07-08 Texas A&M University System Method and system for early detection of incipient faults in electric motors
DE10217975B4 (de) * 2002-04-22 2004-08-19 Danfoss A/S Verfahren zum Entdecken von Änderungen in einem ersten Medienstrom eines Wärme- oder Kältetransportmediums in einer Kälteanlage
US6973793B2 (en) * 2002-07-08 2005-12-13 Field Diagnostic Services, Inc. Estimating evaporator airflow in vapor compression cycle cooling equipment
WO2004005812A1 (fr) * 2002-07-08 2004-01-15 Danfoss A/S Procede et dispositif de detection d'un flash-gas
EP1565720B1 (fr) * 2002-10-15 2015-11-18 Danfoss A/S Procede pour detecter un defaut d'un echangeur thermique

Also Published As

Publication number Publication date
US7650758B2 (en) 2010-01-26
DE10217974B4 (de) 2004-09-16
ATE343109T1 (de) 2006-11-15
DK1497598T3 (da) 2007-02-26
JP3976735B2 (ja) 2007-09-19
AU2003226944A1 (en) 2003-11-03
JP2005527769A (ja) 2005-09-15
EP1497598A1 (fr) 2005-01-19
WO2003089855A1 (fr) 2003-10-30
DE10217974A1 (de) 2003-11-13
US20050166608A1 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
EP1497597B1 (fr) Procede permettant la detection de modifications dans un premier flux d'un milieu de transport de chaleur ou de froid dans un systeme de refrigeration
DE102016123330B4 (de) Laservorrichtung mit Funktion zur Verhinderung einer Kondensation
DE19719398A1 (de) Verfahren zur Steuerung eines Gefriertrocknungsprozesses
EP1497598B1 (fr) Procede d'evaluation d'une variable de fonctionnement non mesuree dans une installation frigorifique
DE60124617T2 (de) Verkaufskühlmöbel
EP1613906A1 (fr) Appareil frigorifique et procede de fonctionnement dudit appareil
DE4330925C2 (de) Kühlgerät für einen Schaltschrank oder ein Elektronikgehäuse mit Vereisungsschutzeinrichtung
EP3314181A1 (fr) Appareil de froid muni d'une surveillance de lhumidité de l'air
DE60309181T2 (de) Verfahren und vorrichtung für das entdecken von flash gas
AT522875B1 (de) Verfahren zur Regelung eines Expansionsventils
EP1350068B1 (fr) Procede pour reguler un appareil de refroidissement
DE2536398A1 (de) Kuehlanlage
EP1916490A1 (fr) Procédé de commande de dégivrage
DE4105880A1 (de) Verfahren und vorrichtung zur leistungsoptimierung und abtausteuerung von kaeltemittelverdampfern
DE102022109395A1 (de) Kühlvorrichtung für ein Objekt und Verfahren zum Betreiben einer Kühlvorrichtung für ein Objekt
EP1261830B1 (fr) Procede pour identifier des defauts dans un systeme de refrigeration
DE3934801A1 (de) Verfahren und einrichtung zur regelung eines ventils fuer einen kaeltemittelverdampfer
DE102016222948A1 (de) Kältegerät mit luftfeuchtigkeitsoptimiertem Lagerfach
EP4212786A1 (fr) Procédé de dégivrage d'une grille d'entrée d'air d'un évaporateur d'une pompe à chaleur à air, dispositif pour la mise en oeuvre du procédé et produit programme informatique
DD226355A1 (de) Verfahren und einrichtung zum einleiten der abtauung von reifansatz an verdampfern von kaelteanlagen
DE202022002793U1 (de) Kühlvorrichtung für ein Objekt
EP3894766A1 (fr) Appareil frigorifique et procédé pour initialiser une opération de dégivrage dans un appareil frigorifique
DE10015159C2 (de) Steuervorrichtung und Steuerverfahren für eine Kälteanlage
DE102022125945A1 (de) Verfahren zur Regelung des Füllstandes eines Ölabscheiders für einen Kältekreislauf
EP4248151A1 (fr) Procédé de détection de fuites dans un circuit frigorifique d'une machine de réfrigération par compression et système de détection de fuite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: THYBO, CLAUS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070129

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070129

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070319

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070719

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: DANFOSS A/S

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070419

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20130410

Year of fee payment: 11

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20140430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220303

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220310

Year of fee payment: 20

Ref country code: FR

Payment date: 20220321

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230411