EP1497597B1 - Procede permettant la detection de modifications dans un premier flux d'un milieu de transport de chaleur ou de froid dans un systeme de refrigeration - Google Patents

Procede permettant la detection de modifications dans un premier flux d'un milieu de transport de chaleur ou de froid dans un systeme de refrigeration Download PDF

Info

Publication number
EP1497597B1
EP1497597B1 EP03746812A EP03746812A EP1497597B1 EP 1497597 B1 EP1497597 B1 EP 1497597B1 EP 03746812 A EP03746812 A EP 03746812A EP 03746812 A EP03746812 A EP 03746812A EP 1497597 B1 EP1497597 B1 EP 1497597B1
Authority
EP
European Patent Office
Prior art keywords
medium flow
air
flow
heat exchanger
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03746812A
Other languages
German (de)
English (en)
Other versions
EP1497597A1 (fr
Inventor
Claus Thybo
Bjarne Dindler Rasmussen
Roozbeh Izadi-Zamanabad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danfoss AS
Original Assignee
Danfoss AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss AS filed Critical Danfoss AS
Publication of EP1497597A1 publication Critical patent/EP1497597A1/fr
Application granted granted Critical
Publication of EP1497597B1 publication Critical patent/EP1497597B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/008Alarm devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • F25B2700/135Mass flow of refrigerants through the evaporator
    • F25B2700/1352Mass flow of refrigerants through the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/04Calculation of parameters

Definitions

  • the invention relates to a method for detecting changes in a first media stream of a heat or cold transport medium in a refrigeration system, in which the first media stream is passed through a heat exchanger, in which a heat transfer between the first media stream and a second media stream of a heat or refrigerant he follows.
  • US 6,128,910 describes a method for diagnosing a refrigeration system for cooling air.
  • physical quantities of the air passing through a heat exchanger of the plant are measured by means of a sensor arrangement (48) which is part of a measuring unit (44).
  • the measured quantities are: air temperature, relative humidity and volume flow of the air.
  • the enthalpy change of the air is determined on passage of the heat exchanger.
  • the change, along with the volume flow is used to determine reduced air flow, reduced heat transfer, as well as decreased SHR.
  • the refrigerant charge can be examined.
  • a sales refrigerator is chosen below as an example of a refrigeration system. But it is also applicable to other refrigeration systems.
  • a sales freezer such as used in supermarkets for holding refrigerated or frozen products for sale
  • an air stream forming the first media stream circulates in an air duct in which an evaporator is located.
  • the evaporator is a heat exchanger to which on one side a refrigerant, that is the second medium flow, in a liquid or two-phase state (gaseous and liquid) is supplied. If the air on the other side is passed over the evaporator, there is a heat transfer from the air to the refrigerant and the air is cooled.
  • Another example of a heat exchanger is the condenser over which Air is passed to liquefy the refrigerant. In this case, the refrigerant heat is removed.
  • Such a refrigeration system With such a refrigeration system, one wishes to be able to determine with a certain degree of reliability whether the air flow can circulate to a sufficient extent, that is, one wishes to determine whether disturbances have occurred.
  • Such disturbances can be caused, for example, by the fact that a fan fails, that the evaporator ices, that settle dirt in the air duct or obstruct objects such as signs or goods, the air duct and increase the flow resistance for the amount of air and thereby impede the flow of air.
  • Such error detection should be made as possible before the cooling capacity of the refrigeration system has decreased too much. If an error can only be detected when the temperature rises, it may already be too late for the chilled or frozen products, ie there is a risk that these products will spoil. In many cases, a disturbance of the air flow but long before damage to the cooled products means that the refrigeration system is not operated at its optimum operating point. Thus, if an error has occurred, individual components of the refrigeration system can be charged more often, which reduces their service life. This can be easily understood using the example of fans. If one of several fans fails, the remaining fan or fans can still be used to generate the cooling capacity drive required air flow through the refrigeration system. The remaining fans are loaded more often. In addition to reducing the life of the components, such as the fans, a fault has the disadvantage of increased energy consumption. The refrigeration system is not operated at its optimum operating point. Also for this reason, the detection of errors is important.
  • the object of the invention is to be able to recognize changes in the first media stream as early as possible.
  • This object is achieved in a method of the type mentioned above in that it detects the change in the enthalpy of the second medium flow or a size derived therefrom for monitoring the first medium flow flowing through the heat exchanger.
  • the air flow carries a certain amount of heat and thus has a certain energy content.
  • the energy content can also be called enthalpy. This amount of heat is released to the refrigerant in the heat exchanger (or released from the refrigerant in the case of the condenser). If you can now capture this amount of heat, then you have a statement about how much air through the evaporator, ie the heat exchanger is performed. This statement is sufficient to detect if an error has occurred or not.
  • the heat released by the air per time corresponds to the heat absorbed by the refrigerant per time.
  • This balance is the basis of the method for detecting a reduced airflow in the channel. For example, you can compare this actual amount of air with a setpoint. If this actual value does not agree with the setpoint value, this is interpreted as a reduction of the airflow and one can, for example, indicate an error.
  • This error display can be done at a relatively early stage, so long before a heavy overload of the refrigeration system has occurred or even an undesirable increase in temperature has occurred.
  • another medium for example a liquid or a brine
  • a mass flow and a specific enthalpy difference of the second medium flow are determined via the heat exchanger.
  • the specific enthalpy of a refrigerant is a matter and condition characteristic and varies from refrigerant to refrigerant, or more generally, from second media stream to second media stream.
  • the specific enthalpy is the enthalpy per mass.
  • refrigerant can be measured by measured variables such as temperatures, pressures or the like, determine the specific enthalpy of the second medium flow before and after the heat exchanger. From this, a specific enthalpy difference can be formed which, together with the mass flow, allows a statement about the enthalpy.
  • the temperature and the pressure of the second medium flow and at the outlet of the heat exchanger the temperature of the second medium flow and either the pressure at the outlet of the heat exchanger or the boiling temperature of the second Media flow at the entrance of the heat exchanger determined.
  • the sensors for determining the temperature and the pressure of the second medium flow, in this case the refrigerant are present in most cases anyway. They are needed to control the refrigeration system accordingly. It is also possible to measure the pressure of the refrigerant at the inlet and from this determine the pressure at the outlet of the heat exchanger, taking into account the pressure drop in the evaporator.
  • a specific enthalpy difference of the first medium flow is also determined via the heat exchanger.
  • the specific enthalpy difference of the first media stream makes it possible to relatively easily measure the mass per time of the first media stream, e.g. air, as will be shown below.
  • the second medium flow is determined from a pressure difference across and the degree of opening of an expansion valve. If it is a pulse width modulated expansion valve, then the opening degree is replaced by the opening duration or the duty cycle.
  • the mass flow of the second medium flow, for example of the refrigerant, is then proportional to the pressure difference and the opening duration.
  • the refrigerant flow can be determined relatively easily in this way.
  • the subcooling of the refrigerant is, however, in some cases so great that it is necessary to measure also the subcooling, because the refrigerant flow, ie the second medium flow, is influenced by the subcooling by the expansion valve.
  • opening degree can also be understood the opening duration in pulse width modulated valves, ie the duty cycle.
  • the second medium flow can also be determined from operating data and a difference of the absolute pressures via a compressor together with the temperature of the second medium flow at the compressor inlet.
  • the operating data is, for example, the speed of the compressor, which, together with the pressure across the compressor, allows a statement about the amount of refrigerant. For this purpose, only the knowledge of the compressor properties is required.
  • the first medium stream from the second medium stream and a quotient of the specific enthalpy difference of the second medium stream and the specific enthalpy difference of the first medium stream via the heat exchanger are preferably determined.
  • the amount of heat in the air is the product of the mass flow of air through the heat exchanger and the specific enthalpy difference of the air across the heat exchanger.
  • the amount of heat of the refrigerant is the product of the refrigerant flow, ie mass of the refrigerant per time, through the heat exchanger and the specific enthalpy difference across the heat exchanger.
  • mass flow of air or more generally: the first media stream
  • one forms a residue as the difference of a first size, which is formed from a predetermined mass flow of the first media stream and the specific enthalpy difference, and a second size, which corresponds to the change in the enthalpy of the second medium stream, and the residuum is monitored.
  • This procedure facilitates the evaluation of the detected signals. Due to the inertia of the individual sensors, which determine temperatures, pressures and mass flow, it is possible that one can observe significant fluctuations in the signal representing the first medium flow, eg the air mass flow. These fluctuations have a relatively high frequency relative to the "inertia" of the refrigeration system. It is thus difficult to detect in such a "high-frequency" signal a trend that points to an error. By contrast, if one obtains a residual from the air mass signal, the monitoring of the residuum is much simpler and allows sufficient monitoring of the air mass flow.
  • a mean value over a predetermined period of time be used as the predetermined mass flow of the first medium flow. It is assumed that one determines the mass flow in a "error-free" operation. If, during operation, deviations result from this previously determined mass flow which last for a predetermined shorter or longer period of time, then this is an indication of an error.
  • the first reliability value is set to zero in most cases.
  • the second reliability value ⁇ 1 forms a criterion for how often one must accept a false alarm. If you have less wrong Alarms, one must accept a later discovery of a mistake. For example, if air circulation is restricted because, for example, a fan is no longer running, then the error indicator will increase with time because the periodically determined values of the residual r i will become greater than zero on average. If the error indicator S i has reached a predetermined size, then an alarm is triggered indicating that an error has occurred.
  • the second reliability value is an empirical value, which, however, can be specified by the manufacturer.
  • a defrost operation is initiated upon detection of a predetermined change. For example, you can initiate the defrost process when the error indicator reaches or exceeds a predetermined value. Defrosting processes can be initiated with the method if they are necessary, but the icing of the evaporator does not yet have any negative effects.
  • Fig. 1 shows schematically a refrigeration system 1 in the form of a sales freezer, as used for example in supermarkets for the sale of chilled or frozen food.
  • the refrigeration system 1 has a storage space 2, in which the food is stored.
  • An air duct 3 is passed around the storage space 2, i. it is located on both sides and below the storage space 2.
  • An air flow 4, which is shown by arrows, passes after passing through the air duct 3 in a cooling zone 5 above the storage space 2. The air is then fed back to the entrance of the air duct 3, where a mixing zone 6 is located. In the mixing zone, the air stream 4 is mixed with ambient air. In doing so, e.g. replaced the cooled air that has entered the storage room 2 or otherwise disappeared into the environment.
  • a fan assembly 7 is arranged, which may be formed by one or more fans can.
  • the fan assembly 7 ensures that the air flow 4 can be moved in the air duct 3.
  • the fan assembly 7 drives the air flow 4 so that the mass of air per time, which is moved through the air duct 3, is constant, as long as the fan assembly 7 is running and the system is working properly.
  • an evaporator 8 of a refrigerant circuit is arranged in the air duct 3.
  • the evaporator 8 is supplied through an expansion valve 9 refrigerant from a condenser or condenser 10.
  • the condenser 10 is supplied by a compressor or compressor 11 whose input is in turn connected to the evaporator 8, so that the refrigerant is circulated in a conventional manner.
  • the condenser 10 is provided with a fan 12, by means of which air from the environment can be blown through the condenser 10 to dissipate heat there.
  • the operation of such a refrigerant circuit is known per se.
  • the system circulates a refrigerant.
  • the refrigerant leaves the compressor 11 as a gas under high pressure and high temperature.
  • the condenser 10 the refrigerant is liquefied, giving off heat. After liquefaction, the refrigerant passes through the expansion valve 9, where it is released. After expansion, the refrigerant is biphasic, ie, liquid and gaseous.
  • the two-phase refrigerant is supplied to the evaporator 8.
  • the liquid phase evaporates there under heat absorption, whereby the heat out the air stream 4 is removed.
  • the refrigerant After the remaining refrigerant has evaporated, the refrigerant is still slightly heated and comes out of the evaporator 8 as superheated gas. Thereafter, it is fed back to the compressor 11 and compressed there.
  • Disturbances can result, for example, from the fact that the fan assembly 7 has a defect and no longer promotes sufficient air. For example, one fan unit with multiple fans may fail. Although the remaining blower can still promote a certain amount of air through the air duct 3, so that the temperature in the storage chamber 2 does not rise above an allowable value. As a result, however, the refrigeration system is heavily loaded, which can result in late damage. For example, elements of the refrigeration system, such as fans, are put into operation more often. Another error case, for example, the icing of the evaporator by moisture from the ambient air, which is reflected on the evaporator.
  • the monitoring can be done quite clocked, ie at successive times, for example, have a time interval of the order of a minute.
  • the determination of the mass per time of the air stream 4 with normal measuring devices relatively expensive. It is therefore used an indirect measurement by determining the heat content of the refrigerant, which has taken up the refrigerant in the evaporator 8.
  • Q • Ref m • Ref ( H Ref . out - H Ref . in )
  • ⁇ Ref the refrigerant mass per time flowing through the evaporator
  • h Ref, out is the specific enthalpy of the refrigerant at the evaporator outlet
  • h Ref, in the specific enthalpy at the expansion valve inlet.
  • the specific enthalpy of a refrigerant is a substance and state property, which varies from refrigerant to refrigerant, but can be determined for each refrigerant.
  • the refrigerant manufacturers therefore provide so-called log p, h diagrams for each refrigerant.
  • the specific enthalpy difference can be determined via the evaporator 8.
  • T Ref, in the expansion valve inlet
  • P Con the pressure at the expansion valve inlet
  • T ref, out the temperature at the evaporator outlet
  • P ref, out the pressure at the outlet
  • T ref, in the boiling temperature
  • the temperature at the outlet (T Ref, out ) can be measured with a temperature sensor.
  • the pressure at the outlet of the evaporator 8 (P ref, out ) can be measured with a pressure sensor.
  • the mass flow rate of the refrigerant ( ⁇ Ref ) can be determined either with a flow meter.
  • ⁇ Ref the mass flow rate of the refrigerant
  • T Vin the pressure difference across the valve and the subcooling at the inlet of the expansion valve 10
  • the mass flow m Ref through the expansion valve 9 can then be calculated by means of a valve characteristic, the pressure difference, the subcooling and the opening degree or the opening duration.
  • ⁇ Ref Another possibility for determining the mass flow rate ⁇ Ref is to evaluate variables from the compressor 11, for example the speed of the compressor, the pressure at the compressor inlet and outlet, the temperature at the compressor inlet and a compressor characteristic.
  • p w is the partial pressure of the water vapor in the air and p Amb is the pressure of the air.
  • p Amb can either be measured or simply use a standard atmospheric pressure for this size. The deviation of the actual pressure from the standard atmospheric pressure does not play a significant role in the calculation of the amount of heat released by the air per time.
  • RH is the relative humidity and Pw, sat is the partial pressure of the water vapor in saturated air.
  • P w, sat depends solely on the air temperature and can be found in thermodynamic reference works.
  • the relative humidity RH can be measured or one uses typical values in the calculation.
  • This actual value for the air mass flow rate ⁇ Air can then be compared with a setpoint value and in the case of significant differences between the actual value and the setpoint, the operator of the refrigeration system can be made aware by an error message that the system is not running optimally.
  • this setpoint can be determined as an average value over a certain period in which the Plant is running under stable and faultless operating conditions. Such a period may be, for example, 100 minutes.
  • the residual r For a plant that is flawless, the residual r should give an average of zero, although it is actually subject to significant fluctuations. Around an error characterized by a tendency of the residuum to be able to detect early, it is assumed that the value obtained for the residual r is normally distributed around an average value, irrespective of whether the installation is faultless or an error has occurred.
  • s i is taken from equation (12) and forms the sum of this value with the error indicator S i from an earlier point in time. If this sum is greater than zero, the error indicator is set to this new value. If this sum is equal to or less than zero, the error indicator is set to zero.
  • k 1 is a proportionality constant.
  • ⁇ 0 can be set to the value zero in the simplest case.
  • ⁇ 1 is an estimated value which can be determined, for example, by generating an error and determining the average value of the residual r for this error.
  • the value ⁇ 1 is a criterion for how often you have to accept a false alarm.
  • the two ⁇ values are therefore also referred to as reliability values.
  • the error indicator S i will become larger because the periodically determined values of the residual r i become greater than zero on average.
  • the fault indicator reaches a predetermined magnitude, an alarm is triggered indicating that air circulation is restricted. Increasing ⁇ 1 gives you fewer false positives, but it also risks discovering a bug later.
  • Figs. 5 and 6 show the development of the residual r and the development of the error indicator S i in the case where the evaporator 8 is gradually frozen.
  • the residual r and in Fig. 6 the error indicator S i is plotted upward, while the time t is applied to the right in minutes.
  • the method can also be used to start a defrost process.
  • the defrost operation is started when the error indicator S i reaches a predetermined size.
  • An advantage of this method is early detection of errors, although not more sensors are used than are present in a typical system.
  • the faults are detected before they cause higher temperatures in the refrigeration system.
  • errors are detected before the system no longer runs optimally, taking the energy consumed as a measure.
  • the method of detecting changes in the first media stream may also be used on installations that operate with indirect cooling.
  • one has a primary media stream in which refrigerant circulates and a secondary media stream where a refrigerant, eg brine, circulates.
  • a refrigerant eg brine
  • the first medium flow cools the second medium flow.
  • the second media stream then cools, for example, the air in a heat exchanger.
  • the constant c can be found in reference works, while the two temperatures can be measured, eg with temperature sensors.
  • the mass flow m KT can be determined by a mass flow meter . Of course, other options are also conceivable.
  • Q KT then replaces Q Ref in the further calculations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Claims (12)

  1. Procédé pour découvrir des modifications dans un premier flux d'un fluide caloporteur ou frigorigène dans une installation frigorifique dans laquelle le premier flux de fluide est conduit à travers un échangeur thermique où une transmission de chaleur a lieu entre le premier flux de fluide et le deuxième flux d'un fluide caloporteur ou frigorigène, caractérisé en ce que, pour surveiller le premier flux de fluide qui s'écoule à travers l'échangeur thermique, on détermine la modification de l'enthalpie dans le deuxième flux de fluide ou une grandeur qui en dérive.
  2. Procédé selon la revendication 1, caractérisé en ce que, pour établir la modification de l'enthalpie dans le deuxième flux de fluide, on détermine un flux massique et une différence spécifique de l'enthalpie dans le deuxième flux de fluide à travers l'échangeur thermique.
  3. Procédé selon la revendication 2, caractérisé en ce que, pour établir la différence spécifique de l'enthalpie dans le deuxième flux de fluide, on détermine à l'entrée de la soupape de détente, la température et la pression du deuxième flux de fluide et, à la sortie de l'échangeur thermique, la température du deuxième flux de fluide et soit la pression à la sortie de l'échangeur thermique soit la température d'ébullition du deuxième flux de fluide à l'entrée de l'échangeur thermique.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'on détermine une différence spécifique de l'enthalpie dans le premier flux de fluide à travers l'échangeur thermique.
  5. Procédé selon l'une quelconque des revendications 2 à 4, caractérisé en ce qu'on détermine le deuxième flux de fluide à partir d'une différence de pression et du degré d'ouverture d'une soupape de détente.
  6. Procédé selon l'une quelconque des revendications 2 à 4, caractérisé en ce qu'on détermine le deuxième flux de fluide à partir de données d'exploitation et une différence des pressions absolues à travers un compresseur conjointement avec la température du deuxième flux de fluide sur le compresseur.
  7. Procédé selon la revendication 5 ou 6, caractérisé en ce qu'on détermine le premier flux de fluide à partir du deuxième flux de fluide et à partir d'un quotient de la différence spécifique de l'enthalpie dans le deuxième flux de fluide sur la différence spécifique de l'enthalpie dans le premier flux de fluide à travers l'échangeur thermique.
  8. Procédé selon l'une quelconque des revendications 5 à 7, caractérisé en ce qu'on compare le premier flux de fluide à une valeur prescrite.
  9. Procédé selon l'une quelconque des revendications 5 à 7, caractérisé en ce qu'on forme un résidu sous forme de différence d'une première grandeur formée à partir d'un flux massique spécifié du premier flux de fluide et de la différence spécifique d'enthalpie et d'une deuxième grandeur qui correspond à la modification de l'enthalpie dans le deuxième flux de fluide et on surveille le résidu.
  10. Procédé selon la revendication 9, caractérisé en ce qu'on utilise comme flux massique spécifié du premier flux de fluide une moyenne sur une période prédéfinie.
  11. Procédé selon la revendication 9 ou 10, caractérisé en ce qu'on forme un indicateur d'erreur Si à l'aide du résidu d'après la règle suivante : S i = { S i 1 + s i , si S i 1 + s i > 0 0 si S i 1 + s i 0
    Figure imgb0021
    avec s i = k 1 ( r i μ 0 + μ 1 2 )
    Figure imgb0022
    ri étant le résidu,
    k1 une constante de proportionnalité,
    µ0 une première valeur de fiabilité,
    µ1 une deuxième valeur de fiabilité.
  12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'on lance une opération de dégivrage quand on découvre une modification prédéfinie.
EP03746812A 2002-04-22 2003-04-12 Procede permettant la detection de modifications dans un premier flux d'un milieu de transport de chaleur ou de froid dans un systeme de refrigeration Expired - Lifetime EP1497597B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10217975A DE10217975B4 (de) 2002-04-22 2002-04-22 Verfahren zum Entdecken von Änderungen in einem ersten Medienstrom eines Wärme- oder Kältetransportmediums in einer Kälteanlage
DE10217975 2002-04-22
PCT/DK2003/000251 WO2003089854A1 (fr) 2002-04-22 2003-04-12 Procede permettant la detection de modifications dans un premier flux d'un milieu de transport de chaleur ou de froid dans un systeme de refrigeration

Publications (2)

Publication Number Publication Date
EP1497597A1 EP1497597A1 (fr) 2005-01-19
EP1497597B1 true EP1497597B1 (fr) 2006-10-18

Family

ID=29224662

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03746812A Expired - Lifetime EP1497597B1 (fr) 2002-04-22 2003-04-12 Procede permettant la detection de modifications dans un premier flux d'un milieu de transport de chaleur ou de froid dans un systeme de refrigeration

Country Status (8)

Country Link
US (1) US7685830B2 (fr)
EP (1) EP1497597B1 (fr)
JP (1) JP2005533230A (fr)
AT (1) ATE343108T1 (fr)
AU (1) AU2003226943A1 (fr)
DE (1) DE10217975B4 (fr)
DK (1) DK1497597T3 (fr)
WO (1) WO2003089854A1 (fr)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10217974B4 (de) * 2002-04-22 2004-09-16 Danfoss A/S Verfahren zum Auswerten einer nicht gemessenen Betriebsgröße in einer Kälteanlage
WO2004005812A1 (fr) * 2002-07-08 2004-01-15 Danfoss A/S Procede et dispositif de detection d'un flash-gas
EP1565720B1 (fr) * 2002-10-15 2015-11-18 Danfoss A/S Procede pour detecter un defaut d'un echangeur thermique
US7412842B2 (en) 2004-04-27 2008-08-19 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system
US7275377B2 (en) 2004-08-11 2007-10-02 Lawrence Kates Method and apparatus for monitoring refrigerant-cycle systems
US7905100B2 (en) * 2004-12-16 2011-03-15 Danfoss A/S Method for controlling temperature in a refrigeration system
US7987679B2 (en) * 2005-02-24 2011-08-02 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
WO2007049372A1 (fr) * 2005-10-25 2007-05-03 Mitsubishi Electric Corporation Appareil de climatisation, procede de remplissage de refrigerant dans un appareil de climatisation et procede de nettoyage de remplissage/conduite de refrigerant pour climatiseur
US8316926B2 (en) 2005-10-31 2012-11-27 General Cybernation Group Inc. Arrangement and method for automatically determined time constant for a control device
CA2641698C (fr) * 2006-02-10 2011-06-21 Danfoss A/S Commande d'un systeme a grande capacite thermique
US8590325B2 (en) * 2006-07-19 2013-11-26 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US20080216494A1 (en) 2006-09-07 2008-09-11 Pham Hung M Compressor data module
US7827813B2 (en) * 2007-01-30 2010-11-09 Johnson Controls Technology Company Adaptive real-time optimization control
US20080179408A1 (en) * 2007-01-30 2008-07-31 Johnson Controls Technology Company Sensor-free optimal control of air-side economizer
RU2426957C1 (ru) * 2007-06-12 2011-08-20 Данфосс А/С Способ управления парокомпрессионной установкой
WO2008151629A1 (fr) * 2007-06-12 2008-12-18 Danfoss A/S Procédé permettant de commander une distribution d'un fluide frigorigène
GB2463827B (en) 2007-07-17 2012-09-05 Johnson Controls Tech Co Extremum seeking control with actuator saturation control
WO2009012282A2 (fr) * 2007-07-17 2009-01-22 Johnson Controls Technology Company Commande de recherche d'extremums avec commande de réinitialisation
US20090037142A1 (en) 2007-07-30 2009-02-05 Lawrence Kates Portable method and apparatus for monitoring refrigerant-cycle systems
US8393169B2 (en) 2007-09-19 2013-03-12 Emerson Climate Technologies, Inc. Refrigeration monitoring system and method
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
EP2128551A1 (fr) * 2008-05-29 2009-12-02 Siemens Aktiengesellschaft Surveillance d'échangeurs thermiques dans des systèmes de conduites de processus
US9753455B2 (en) * 2009-06-22 2017-09-05 Johnson Controls Technology Company Building management system with fault analysis
US11269303B2 (en) 2009-06-22 2022-03-08 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US8600556B2 (en) 2009-06-22 2013-12-03 Johnson Controls Technology Company Smart building manager
US9286582B2 (en) 2009-06-22 2016-03-15 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US8532839B2 (en) 2009-06-22 2013-09-10 Johnson Controls Technology Company Systems and methods for statistical control and fault detection in a building management system
US9606520B2 (en) 2009-06-22 2017-03-28 Johnson Controls Technology Company Automated fault detection and diagnostics in a building management system
US8788097B2 (en) 2009-06-22 2014-07-22 Johnson Controls Technology Company Systems and methods for using rule-based fault detection in a building management system
US9196009B2 (en) 2009-06-22 2015-11-24 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US8731724B2 (en) 2009-06-22 2014-05-20 Johnson Controls Technology Company Automated fault detection and diagnostics in a building management system
US10739741B2 (en) 2009-06-22 2020-08-11 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
WO2011100255A2 (fr) 2010-02-09 2011-08-18 Johnson Controls Technology Company Systèmes et procédés permettant de mesurer et de vérifier les économies d'énergie dans des bâtiments
US9285802B2 (en) 2011-02-28 2016-03-15 Emerson Electric Co. Residential solutions HVAC monitoring and diagnosis
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9390388B2 (en) 2012-05-31 2016-07-12 Johnson Controls Technology Company Systems and methods for measuring and verifying energy usage in a building
CH706736A1 (de) * 2012-07-09 2014-01-15 Belimo Holding Ag Verfahren zum Betrieb eines Wärmetauschers sowie HVAC-Anlage zur Durchführung des Verfahrens.
US9480177B2 (en) 2012-07-27 2016-10-25 Emerson Climate Technologies, Inc. Compressor protection module
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
CN105074344B (zh) 2013-03-15 2018-02-23 艾默生电气公司 Hvac系统远程监测和诊断
EP2981772B1 (fr) 2013-04-05 2022-01-12 Emerson Climate Technologies, Inc. Systeme de pompe a chaleur a diagnostique de charge de fluide refrigerant
CN105916729B (zh) 2013-11-18 2019-06-28 冷王公司 用于运输制冷系统的温度控制的系统和方法
EP3032194A1 (fr) * 2014-12-12 2016-06-15 Danfoss A/S Procédé pour commander une alimentation de réfrigérant vers un évaporateur comprenant le calcul d'une température de référence
US9778639B2 (en) 2014-12-22 2017-10-03 Johnson Controls Technology Company Systems and methods for adaptively updating equipment models
WO2017085525A1 (fr) 2015-11-19 2017-05-26 Carrier Corporation Système de diagnostic de refroidisseur et procédé d'évaluation de performance de refroidisseur
WO2019001683A1 (fr) 2017-06-26 2019-01-03 Siemens Aktiengesellschaft Procédé et dispositif de surveillance d'un échangeur de chaleur
EP3587962B1 (fr) 2018-06-22 2020-12-30 Danfoss A/S Procédé pour terminer le dégivrage d'un évaporateur à l'aide de mesures de température de l'air
EP3963529A4 (fr) * 2019-04-30 2022-12-21 Pfizer Inc. Suivi et gestion en temps réel de flux de travaux standard
CN112013999A (zh) * 2020-08-25 2020-12-01 国网北京市电力公司 测量制热量的装置

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2295992A (en) 1941-01-09 1942-09-15 Chrysler Corp Flash gas control for refrigerating systems
US3171462A (en) 1962-10-10 1965-03-02 Jr Thodore J Reinhart Toroidal pneumatic tire
US3707851A (en) 1970-10-28 1973-01-02 Mach Ice Co Refrigeration system efficiency monitor
US3918300A (en) 1974-01-03 1975-11-11 Aaron Weisstuch Heat transfer measuring device
DE2451361A1 (de) * 1974-10-29 1976-05-06 Jakob Verfahren zum regeln einer kompressorkuehlanlage
US4136528A (en) 1977-01-13 1979-01-30 Mcquay-Perfex Inc. Refrigeration system subcooling control
US4193781A (en) 1978-04-28 1980-03-18 Mcquay-Perfex Inc. Head pressure control for heat reclaim refrigeration systems
CA1146650A (fr) 1979-10-01 1983-05-17 Lee E. Sumner, Jr. Systeme de commande a detecteur-indicateur de defaut, assiste par microprocesseur
JPS5919273B2 (ja) 1979-12-05 1984-05-04 株式会社日立製作所 復水器性能監視方法
SE8006391L (sv) 1980-09-12 1982-03-13 Jacob Weitman Sett att reglera en vermevexlare
US4325223A (en) * 1981-03-16 1982-04-20 Cantley Robert J Energy management system for refrigeration systems
JPS591970A (ja) * 1982-06-25 1984-01-07 株式会社日立製作所 冷媒流量制御装置
US4510576A (en) * 1982-07-26 1985-04-09 Honeywell Inc. Specific coefficient of performance measuring device
US4479727A (en) 1982-09-01 1984-10-30 Carrier Corporation Apparatus and method for evaluating the performance of a heat exchanger
SE439063B (sv) 1983-06-02 1985-05-28 Henrik Sven Enstrom Forfarande och anordning for provning och prestandaovervakning vid vermepumpar och kylanleggningar
US4614087A (en) 1983-08-09 1986-09-30 Nihon Radiator Co., Ltd. Apparatus for alarming abnormal coolant in space cooling cycle
KR890001890B1 (ko) 1984-03-23 1989-05-30 더 뱁콕 앤드 윌콕스 컴퍼니 열교환기 성능 감지기
US4766553A (en) 1984-03-23 1988-08-23 Azmi Kaya Heat exchanger performance monitor
US4624502A (en) * 1984-11-21 1986-11-25 Boole Leon J Portable drawer assembly
US4621502A (en) * 1985-01-11 1986-11-11 Tyler Refrigeration Corporation Electronic temperature control for refrigeration system
CH670311A5 (fr) 1985-06-17 1989-05-31 Bbc Brown Boveri & Cie
SE454020B (sv) * 1986-02-21 1988-03-21 Etm Metteknik Ab Sett for bestemning av en kylprocess genom antagande om vissa parametrar, framfor allt kompressorverkningsgraden
JPS6371625A (ja) 1986-09-16 1988-04-01 Mitsubishi Heavy Ind Ltd 伝熱管の熱吸収量計測装置
US4768346A (en) * 1987-08-26 1988-09-06 Honeywell Inc. Determining the coefficient of performance of a refrigeration system
US4885914A (en) 1987-10-05 1989-12-12 Honeywell Inc. Coefficient of performance deviation meter for vapor compression type refrigeration systems
JPH01174870A (ja) 1987-12-28 1989-07-11 Toshiba Corp 冷凍機診断装置
GB9008788D0 (en) 1990-04-19 1990-06-13 Whitbread & Co Plc Diagnostic equipment
EP0470676A3 (en) 1990-08-09 1992-09-16 Riccius + Stroschen Gmbh Procedure to determine the state of clogging of heat conducting tubes
US5079930A (en) 1990-12-03 1992-01-14 Atron, Inc. Apparatus and method for monitoring refrigeration system
DE4119020A1 (de) 1991-06-09 1992-12-10 Braun Ag Haartrockner
DE4207144A1 (de) 1992-03-06 1993-09-09 Bayer Ag Verfahren zur regelung von waermeuebertragern
JPH05264136A (ja) 1992-03-24 1993-10-12 Mitsubishi Electric Corp 空気調和機の熱交換器汚れ検出装置
US5289692A (en) * 1993-01-19 1994-03-01 Parker-Hannifin Corporation Apparatus and method for mass flow control of a working fluid
US5341649A (en) 1993-03-05 1994-08-30 Future Controls, Inc. Heat transfer system method and apparatus
JPH07234043A (ja) * 1994-02-22 1995-09-05 Hitachi Building Syst Eng & Service Co Ltd 空調設備における室内側熱交換器の能力把握方法
US5623426A (en) 1994-02-23 1997-04-22 Sanyo Electric Co., Ltd. Failure diagnosing system for absorption chillers
US5457965A (en) 1994-04-11 1995-10-17 Ford Motor Company Low refrigerant charge detection system
US5596507A (en) * 1994-08-15 1997-01-21 Jones; Jeffrey K. Method and apparatus for predictive maintenance of HVACR systems
US5623834A (en) 1995-05-03 1997-04-29 Copeland Corporation Diagnostics for a heating and cooling system
US5615733A (en) 1996-05-01 1997-04-01 Helio-Compatic Corporation On-line monitoring system of a simulated heat-exchanger
US6128910A (en) * 1997-02-06 2000-10-10 Federal Air Conditioning Technologies, Inc. Diagnostic unit for an air conditioning system
US6089033A (en) 1999-02-26 2000-07-18 Dube; Serge High-speed evaporator defrost system
US6321564B1 (en) * 1999-03-15 2001-11-27 Denso Corporation Refrigerant cycle system with expansion energy recovery
US6225907B1 (en) 1999-05-14 2001-05-01 International Comfort Products Corporation (Usa) Environmental control system incipient failure indicator apparatus
US6223544B1 (en) * 1999-08-05 2001-05-01 Johnson Controls Technology Co. Integrated control and fault detection of HVAC equipment
US6330802B1 (en) 2000-02-22 2001-12-18 Behr Climate Systems, Inc. Refrigerant loss detection
JP2001255046A (ja) 2000-03-13 2001-09-21 Sanyo Electric Co Ltd 冷凍装置
US6272868B1 (en) 2000-03-15 2001-08-14 Carrier Corporation Method and apparatus for indicating condenser coil performance on air-cooled chillers
GB0014972D0 (en) 2000-06-19 2000-08-09 Borealis Tech Oy Degassing apparatus
CA2344908C (fr) 2000-07-20 2010-06-15 Siemens Building Technologies, Inc. Methodologie de detection d'anomalie et de diagnostic par modeles pour les sous-systemes cvac
US7139564B2 (en) * 2000-08-08 2006-11-21 Hebert Thomas H Wireless communication device for field personnel
US6460358B1 (en) 2000-11-13 2002-10-08 Thomas H. Hebert Flash gas and superheat eliminator for evaporators and method therefor
JP3951711B2 (ja) 2001-04-03 2007-08-01 株式会社デンソー 蒸気圧縮式冷凍サイクル
ATE406547T1 (de) 2001-05-03 2008-09-15 Matts Lindgren Verfahren und anordnung zur steuerung der temperatur des abgehenden stroms von einem wärmetauscher und messung von erzeugter hitze
US6701725B2 (en) * 2001-05-11 2004-03-09 Field Diagnostic Services, Inc. Estimating operating parameters of vapor compression cycle equipment
US6658373B2 (en) 2001-05-11 2003-12-02 Field Diagnostic Services, Inc. Apparatus and method for detecting faults and providing diagnostics in vapor compression cycle equipment
US6590362B2 (en) * 2001-07-27 2003-07-08 Texas A&M University System Method and system for early detection of incipient faults in electric motors
DE10217974B4 (de) 2002-04-22 2004-09-16 Danfoss A/S Verfahren zum Auswerten einer nicht gemessenen Betriebsgröße in einer Kälteanlage
US6973793B2 (en) 2002-07-08 2005-12-13 Field Diagnostic Services, Inc. Estimating evaporator airflow in vapor compression cycle cooling equipment
WO2004005812A1 (fr) 2002-07-08 2004-01-15 Danfoss A/S Procede et dispositif de detection d'un flash-gas
EP1565720B1 (fr) 2002-10-15 2015-11-18 Danfoss A/S Procede pour detecter un defaut d'un echangeur thermique

Also Published As

Publication number Publication date
DE10217975A1 (de) 2003-11-13
JP2005533230A (ja) 2005-11-04
DE10217975B4 (de) 2004-08-19
WO2003089854A1 (fr) 2003-10-30
AU2003226943A1 (en) 2003-11-03
US20050172647A1 (en) 2005-08-11
US7685830B2 (en) 2010-03-30
EP1497597A1 (fr) 2005-01-19
DK1497597T3 (da) 2007-03-12
ATE343108T1 (de) 2006-11-15

Similar Documents

Publication Publication Date Title
EP1497597B1 (fr) Procede permettant la detection de modifications dans un premier flux d'un milieu de transport de chaleur ou de froid dans un systeme de refrigeration
DE3928430C1 (fr)
DE102004044990A1 (de) System und Verfahren zur Erfassung von Kühlmittellecks
EP1965158A2 (fr) Procédé destiné au calibrage d'une installation de refroidissement et installation de refroidissement
DE60103107T2 (de) Eine gekühlte Verkaufsanlage und Verfahren zum Betreiben einer gekühlten Verkaufsanlage
EP1497598B1 (fr) Procede d'evaluation d'une variable de fonctionnement non mesuree dans une installation frigorifique
AT520000A2 (de) Kältemittelkreislauf einer Kälteanlage mit einer Anordnung zum Abtauen eines Wärmeübertragers und Verfahren zum Betreiben des Kältemittelkreislaufs
DE60309181T2 (de) Verfahren und vorrichtung für das entdecken von flash gas
DE4330925A1 (de) Kühlgerät für einen Schaltschrank oder ein Elektronikgehäuse mit Vereisungsschutzeinrichtung
EP1350068B1 (fr) Procede pour reguler un appareil de refroidissement
EP1916490B1 (fr) Procédé de commande de dégivrage
DE4105880A1 (de) Verfahren und vorrichtung zur leistungsoptimierung und abtausteuerung von kaeltemittelverdampfern
DE102022109395A1 (de) Kühlvorrichtung für ein Objekt und Verfahren zum Betreiben einer Kühlvorrichtung für ein Objekt
DE10011110B4 (de) Verfahren zum Entdecken von Fehlern in einer Kühlanlage
DE102020130850B3 (de) Verfahren zum Erkennen von Leckagen in einem Kältekreis einer Kompressionskältemaschine und Leckagedetektiersystem
DE3934801A1 (de) Verfahren und einrichtung zur regelung eines ventils fuer einen kaeltemittelverdampfer
DE10015159C2 (de) Steuervorrichtung und Steuerverfahren für eine Kälteanlage
DE102022125945A1 (de) Verfahren zur Regelung des Füllstandes eines Ölabscheiders für einen Kältekreislauf
EP3076109A1 (fr) Système de refroidissement et procédé de fonctionnement du système de refroidissement
DE202022002793U1 (de) Kühlvorrichtung für ein Objekt
WO2020120240A1 (fr) Appareil frigorifique et procédé pour initialiser une opération de dégivrage dans un appareil frigorifique
EP4212786A1 (fr) Procédé de dégivrage d'une grille d'entrée d'air d'un évaporateur d'une pompe à chaleur à air, dispositif pour la mise en oeuvre du procédé et produit programme informatique
DD226355A1 (de) Verfahren und einrichtung zum einleiten der abtauung von reifansatz an verdampfern von kaelteanlagen
DE1092937B (de) Verfahren fuer den Betrieb einer Kuehlanlage und Kuehlanlage zur Durchfuehrung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: IZADI-ZAMANABAD, ROOZBEH

Inventor name: THYBO, CLAUS

Inventor name: RASMUSSEN, BJARNE, DINDLER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: IZADI-ZAMANABAD, ROOZBEH

Inventor name: RASMUSSEN, BJARNE, DINDLER

Inventor name: THYBO, CLAUS

RTI1 Title (correction)

Free format text: METHOD FOR DETECTING CHANGES IN A FIRST FLUX OF A HEAT OR COLD TRANSPORT MEDIUM IN A REFRIGERATION SYSTEM

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070129

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070118

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070319

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070719

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: DANFOSS A/S

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070419

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20130410

Year of fee payment: 11

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20140430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200326

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200312

Year of fee payment: 18

Ref country code: GB

Payment date: 20200401

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210412

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200412