EP1497597B1 - Method for detecting changes in a first flux of a heat or cold transport medium in a refrigeration system - Google Patents

Method for detecting changes in a first flux of a heat or cold transport medium in a refrigeration system Download PDF

Info

Publication number
EP1497597B1
EP1497597B1 EP03746812A EP03746812A EP1497597B1 EP 1497597 B1 EP1497597 B1 EP 1497597B1 EP 03746812 A EP03746812 A EP 03746812A EP 03746812 A EP03746812 A EP 03746812A EP 1497597 B1 EP1497597 B1 EP 1497597B1
Authority
EP
European Patent Office
Prior art keywords
medium flow
air
flow
heat exchanger
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03746812A
Other languages
German (de)
French (fr)
Other versions
EP1497597A1 (en
Inventor
Claus Thybo
Bjarne Dindler Rasmussen
Roozbeh Izadi-Zamanabad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danfoss AS
Original Assignee
Danfoss AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss AS filed Critical Danfoss AS
Publication of EP1497597A1 publication Critical patent/EP1497597A1/en
Application granted granted Critical
Publication of EP1497597B1 publication Critical patent/EP1497597B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/008Alarm devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • F25B2700/135Mass flow of refrigerants through the evaporator
    • F25B2700/1352Mass flow of refrigerants through the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/04Calculation of parameters

Definitions

  • the invention relates to a method for detecting changes in a first media stream of a heat or cold transport medium in a refrigeration system, in which the first media stream is passed through a heat exchanger, in which a heat transfer between the first media stream and a second media stream of a heat or refrigerant he follows.
  • US 6,128,910 describes a method for diagnosing a refrigeration system for cooling air.
  • physical quantities of the air passing through a heat exchanger of the plant are measured by means of a sensor arrangement (48) which is part of a measuring unit (44).
  • the measured quantities are: air temperature, relative humidity and volume flow of the air.
  • the enthalpy change of the air is determined on passage of the heat exchanger.
  • the change, along with the volume flow is used to determine reduced air flow, reduced heat transfer, as well as decreased SHR.
  • the refrigerant charge can be examined.
  • a sales refrigerator is chosen below as an example of a refrigeration system. But it is also applicable to other refrigeration systems.
  • a sales freezer such as used in supermarkets for holding refrigerated or frozen products for sale
  • an air stream forming the first media stream circulates in an air duct in which an evaporator is located.
  • the evaporator is a heat exchanger to which on one side a refrigerant, that is the second medium flow, in a liquid or two-phase state (gaseous and liquid) is supplied. If the air on the other side is passed over the evaporator, there is a heat transfer from the air to the refrigerant and the air is cooled.
  • Another example of a heat exchanger is the condenser over which Air is passed to liquefy the refrigerant. In this case, the refrigerant heat is removed.
  • Such a refrigeration system With such a refrigeration system, one wishes to be able to determine with a certain degree of reliability whether the air flow can circulate to a sufficient extent, that is, one wishes to determine whether disturbances have occurred.
  • Such disturbances can be caused, for example, by the fact that a fan fails, that the evaporator ices, that settle dirt in the air duct or obstruct objects such as signs or goods, the air duct and increase the flow resistance for the amount of air and thereby impede the flow of air.
  • Such error detection should be made as possible before the cooling capacity of the refrigeration system has decreased too much. If an error can only be detected when the temperature rises, it may already be too late for the chilled or frozen products, ie there is a risk that these products will spoil. In many cases, a disturbance of the air flow but long before damage to the cooled products means that the refrigeration system is not operated at its optimum operating point. Thus, if an error has occurred, individual components of the refrigeration system can be charged more often, which reduces their service life. This can be easily understood using the example of fans. If one of several fans fails, the remaining fan or fans can still be used to generate the cooling capacity drive required air flow through the refrigeration system. The remaining fans are loaded more often. In addition to reducing the life of the components, such as the fans, a fault has the disadvantage of increased energy consumption. The refrigeration system is not operated at its optimum operating point. Also for this reason, the detection of errors is important.
  • the object of the invention is to be able to recognize changes in the first media stream as early as possible.
  • This object is achieved in a method of the type mentioned above in that it detects the change in the enthalpy of the second medium flow or a size derived therefrom for monitoring the first medium flow flowing through the heat exchanger.
  • the air flow carries a certain amount of heat and thus has a certain energy content.
  • the energy content can also be called enthalpy. This amount of heat is released to the refrigerant in the heat exchanger (or released from the refrigerant in the case of the condenser). If you can now capture this amount of heat, then you have a statement about how much air through the evaporator, ie the heat exchanger is performed. This statement is sufficient to detect if an error has occurred or not.
  • the heat released by the air per time corresponds to the heat absorbed by the refrigerant per time.
  • This balance is the basis of the method for detecting a reduced airflow in the channel. For example, you can compare this actual amount of air with a setpoint. If this actual value does not agree with the setpoint value, this is interpreted as a reduction of the airflow and one can, for example, indicate an error.
  • This error display can be done at a relatively early stage, so long before a heavy overload of the refrigeration system has occurred or even an undesirable increase in temperature has occurred.
  • another medium for example a liquid or a brine
  • a mass flow and a specific enthalpy difference of the second medium flow are determined via the heat exchanger.
  • the specific enthalpy of a refrigerant is a matter and condition characteristic and varies from refrigerant to refrigerant, or more generally, from second media stream to second media stream.
  • the specific enthalpy is the enthalpy per mass.
  • refrigerant can be measured by measured variables such as temperatures, pressures or the like, determine the specific enthalpy of the second medium flow before and after the heat exchanger. From this, a specific enthalpy difference can be formed which, together with the mass flow, allows a statement about the enthalpy.
  • the temperature and the pressure of the second medium flow and at the outlet of the heat exchanger the temperature of the second medium flow and either the pressure at the outlet of the heat exchanger or the boiling temperature of the second Media flow at the entrance of the heat exchanger determined.
  • the sensors for determining the temperature and the pressure of the second medium flow, in this case the refrigerant are present in most cases anyway. They are needed to control the refrigeration system accordingly. It is also possible to measure the pressure of the refrigerant at the inlet and from this determine the pressure at the outlet of the heat exchanger, taking into account the pressure drop in the evaporator.
  • a specific enthalpy difference of the first medium flow is also determined via the heat exchanger.
  • the specific enthalpy difference of the first media stream makes it possible to relatively easily measure the mass per time of the first media stream, e.g. air, as will be shown below.
  • the second medium flow is determined from a pressure difference across and the degree of opening of an expansion valve. If it is a pulse width modulated expansion valve, then the opening degree is replaced by the opening duration or the duty cycle.
  • the mass flow of the second medium flow, for example of the refrigerant, is then proportional to the pressure difference and the opening duration.
  • the refrigerant flow can be determined relatively easily in this way.
  • the subcooling of the refrigerant is, however, in some cases so great that it is necessary to measure also the subcooling, because the refrigerant flow, ie the second medium flow, is influenced by the subcooling by the expansion valve.
  • opening degree can also be understood the opening duration in pulse width modulated valves, ie the duty cycle.
  • the second medium flow can also be determined from operating data and a difference of the absolute pressures via a compressor together with the temperature of the second medium flow at the compressor inlet.
  • the operating data is, for example, the speed of the compressor, which, together with the pressure across the compressor, allows a statement about the amount of refrigerant. For this purpose, only the knowledge of the compressor properties is required.
  • the first medium stream from the second medium stream and a quotient of the specific enthalpy difference of the second medium stream and the specific enthalpy difference of the first medium stream via the heat exchanger are preferably determined.
  • the amount of heat in the air is the product of the mass flow of air through the heat exchanger and the specific enthalpy difference of the air across the heat exchanger.
  • the amount of heat of the refrigerant is the product of the refrigerant flow, ie mass of the refrigerant per time, through the heat exchanger and the specific enthalpy difference across the heat exchanger.
  • mass flow of air or more generally: the first media stream
  • one forms a residue as the difference of a first size, which is formed from a predetermined mass flow of the first media stream and the specific enthalpy difference, and a second size, which corresponds to the change in the enthalpy of the second medium stream, and the residuum is monitored.
  • This procedure facilitates the evaluation of the detected signals. Due to the inertia of the individual sensors, which determine temperatures, pressures and mass flow, it is possible that one can observe significant fluctuations in the signal representing the first medium flow, eg the air mass flow. These fluctuations have a relatively high frequency relative to the "inertia" of the refrigeration system. It is thus difficult to detect in such a "high-frequency" signal a trend that points to an error. By contrast, if one obtains a residual from the air mass signal, the monitoring of the residuum is much simpler and allows sufficient monitoring of the air mass flow.
  • a mean value over a predetermined period of time be used as the predetermined mass flow of the first medium flow. It is assumed that one determines the mass flow in a "error-free" operation. If, during operation, deviations result from this previously determined mass flow which last for a predetermined shorter or longer period of time, then this is an indication of an error.
  • the first reliability value is set to zero in most cases.
  • the second reliability value ⁇ 1 forms a criterion for how often one must accept a false alarm. If you have less wrong Alarms, one must accept a later discovery of a mistake. For example, if air circulation is restricted because, for example, a fan is no longer running, then the error indicator will increase with time because the periodically determined values of the residual r i will become greater than zero on average. If the error indicator S i has reached a predetermined size, then an alarm is triggered indicating that an error has occurred.
  • the second reliability value is an empirical value, which, however, can be specified by the manufacturer.
  • a defrost operation is initiated upon detection of a predetermined change. For example, you can initiate the defrost process when the error indicator reaches or exceeds a predetermined value. Defrosting processes can be initiated with the method if they are necessary, but the icing of the evaporator does not yet have any negative effects.
  • Fig. 1 shows schematically a refrigeration system 1 in the form of a sales freezer, as used for example in supermarkets for the sale of chilled or frozen food.
  • the refrigeration system 1 has a storage space 2, in which the food is stored.
  • An air duct 3 is passed around the storage space 2, i. it is located on both sides and below the storage space 2.
  • An air flow 4, which is shown by arrows, passes after passing through the air duct 3 in a cooling zone 5 above the storage space 2. The air is then fed back to the entrance of the air duct 3, where a mixing zone 6 is located. In the mixing zone, the air stream 4 is mixed with ambient air. In doing so, e.g. replaced the cooled air that has entered the storage room 2 or otherwise disappeared into the environment.
  • a fan assembly 7 is arranged, which may be formed by one or more fans can.
  • the fan assembly 7 ensures that the air flow 4 can be moved in the air duct 3.
  • the fan assembly 7 drives the air flow 4 so that the mass of air per time, which is moved through the air duct 3, is constant, as long as the fan assembly 7 is running and the system is working properly.
  • an evaporator 8 of a refrigerant circuit is arranged in the air duct 3.
  • the evaporator 8 is supplied through an expansion valve 9 refrigerant from a condenser or condenser 10.
  • the condenser 10 is supplied by a compressor or compressor 11 whose input is in turn connected to the evaporator 8, so that the refrigerant is circulated in a conventional manner.
  • the condenser 10 is provided with a fan 12, by means of which air from the environment can be blown through the condenser 10 to dissipate heat there.
  • the operation of such a refrigerant circuit is known per se.
  • the system circulates a refrigerant.
  • the refrigerant leaves the compressor 11 as a gas under high pressure and high temperature.
  • the condenser 10 the refrigerant is liquefied, giving off heat. After liquefaction, the refrigerant passes through the expansion valve 9, where it is released. After expansion, the refrigerant is biphasic, ie, liquid and gaseous.
  • the two-phase refrigerant is supplied to the evaporator 8.
  • the liquid phase evaporates there under heat absorption, whereby the heat out the air stream 4 is removed.
  • the refrigerant After the remaining refrigerant has evaporated, the refrigerant is still slightly heated and comes out of the evaporator 8 as superheated gas. Thereafter, it is fed back to the compressor 11 and compressed there.
  • Disturbances can result, for example, from the fact that the fan assembly 7 has a defect and no longer promotes sufficient air. For example, one fan unit with multiple fans may fail. Although the remaining blower can still promote a certain amount of air through the air duct 3, so that the temperature in the storage chamber 2 does not rise above an allowable value. As a result, however, the refrigeration system is heavily loaded, which can result in late damage. For example, elements of the refrigeration system, such as fans, are put into operation more often. Another error case, for example, the icing of the evaporator by moisture from the ambient air, which is reflected on the evaporator.
  • the monitoring can be done quite clocked, ie at successive times, for example, have a time interval of the order of a minute.
  • the determination of the mass per time of the air stream 4 with normal measuring devices relatively expensive. It is therefore used an indirect measurement by determining the heat content of the refrigerant, which has taken up the refrigerant in the evaporator 8.
  • Q • Ref m • Ref ( H Ref . out - H Ref . in )
  • ⁇ Ref the refrigerant mass per time flowing through the evaporator
  • h Ref, out is the specific enthalpy of the refrigerant at the evaporator outlet
  • h Ref, in the specific enthalpy at the expansion valve inlet.
  • the specific enthalpy of a refrigerant is a substance and state property, which varies from refrigerant to refrigerant, but can be determined for each refrigerant.
  • the refrigerant manufacturers therefore provide so-called log p, h diagrams for each refrigerant.
  • the specific enthalpy difference can be determined via the evaporator 8.
  • T Ref, in the expansion valve inlet
  • P Con the pressure at the expansion valve inlet
  • T ref, out the temperature at the evaporator outlet
  • P ref, out the pressure at the outlet
  • T ref, in the boiling temperature
  • the temperature at the outlet (T Ref, out ) can be measured with a temperature sensor.
  • the pressure at the outlet of the evaporator 8 (P ref, out ) can be measured with a pressure sensor.
  • the mass flow rate of the refrigerant ( ⁇ Ref ) can be determined either with a flow meter.
  • ⁇ Ref the mass flow rate of the refrigerant
  • T Vin the pressure difference across the valve and the subcooling at the inlet of the expansion valve 10
  • the mass flow m Ref through the expansion valve 9 can then be calculated by means of a valve characteristic, the pressure difference, the subcooling and the opening degree or the opening duration.
  • ⁇ Ref Another possibility for determining the mass flow rate ⁇ Ref is to evaluate variables from the compressor 11, for example the speed of the compressor, the pressure at the compressor inlet and outlet, the temperature at the compressor inlet and a compressor characteristic.
  • p w is the partial pressure of the water vapor in the air and p Amb is the pressure of the air.
  • p Amb can either be measured or simply use a standard atmospheric pressure for this size. The deviation of the actual pressure from the standard atmospheric pressure does not play a significant role in the calculation of the amount of heat released by the air per time.
  • RH is the relative humidity and Pw, sat is the partial pressure of the water vapor in saturated air.
  • P w, sat depends solely on the air temperature and can be found in thermodynamic reference works.
  • the relative humidity RH can be measured or one uses typical values in the calculation.
  • This actual value for the air mass flow rate ⁇ Air can then be compared with a setpoint value and in the case of significant differences between the actual value and the setpoint, the operator of the refrigeration system can be made aware by an error message that the system is not running optimally.
  • this setpoint can be determined as an average value over a certain period in which the Plant is running under stable and faultless operating conditions. Such a period may be, for example, 100 minutes.
  • the residual r For a plant that is flawless, the residual r should give an average of zero, although it is actually subject to significant fluctuations. Around an error characterized by a tendency of the residuum to be able to detect early, it is assumed that the value obtained for the residual r is normally distributed around an average value, irrespective of whether the installation is faultless or an error has occurred.
  • s i is taken from equation (12) and forms the sum of this value with the error indicator S i from an earlier point in time. If this sum is greater than zero, the error indicator is set to this new value. If this sum is equal to or less than zero, the error indicator is set to zero.
  • k 1 is a proportionality constant.
  • ⁇ 0 can be set to the value zero in the simplest case.
  • ⁇ 1 is an estimated value which can be determined, for example, by generating an error and determining the average value of the residual r for this error.
  • the value ⁇ 1 is a criterion for how often you have to accept a false alarm.
  • the two ⁇ values are therefore also referred to as reliability values.
  • the error indicator S i will become larger because the periodically determined values of the residual r i become greater than zero on average.
  • the fault indicator reaches a predetermined magnitude, an alarm is triggered indicating that air circulation is restricted. Increasing ⁇ 1 gives you fewer false positives, but it also risks discovering a bug later.
  • Figs. 5 and 6 show the development of the residual r and the development of the error indicator S i in the case where the evaporator 8 is gradually frozen.
  • the residual r and in Fig. 6 the error indicator S i is plotted upward, while the time t is applied to the right in minutes.
  • the method can also be used to start a defrost process.
  • the defrost operation is started when the error indicator S i reaches a predetermined size.
  • An advantage of this method is early detection of errors, although not more sensors are used than are present in a typical system.
  • the faults are detected before they cause higher temperatures in the refrigeration system.
  • errors are detected before the system no longer runs optimally, taking the energy consumed as a measure.
  • the method of detecting changes in the first media stream may also be used on installations that operate with indirect cooling.
  • one has a primary media stream in which refrigerant circulates and a secondary media stream where a refrigerant, eg brine, circulates.
  • a refrigerant eg brine
  • the first medium flow cools the second medium flow.
  • the second media stream then cools, for example, the air in a heat exchanger.
  • the constant c can be found in reference works, while the two temperatures can be measured, eg with temperature sensors.
  • the mass flow m KT can be determined by a mass flow meter . Of course, other options are also conceivable.
  • Q KT then replaces Q Ref in the further calculations.

Abstract

The invention concerns a method for detecting changes in a first flow of a heating or cooling medium in a refrigeration system whereby the first flow is conveyed through a heat exchanger wherein occurs heat transfer from the first flow to a second flow of a heating or cooling medium. The earliest possible detection of the changes is desired. For this it is provided that for the supervision of the first media flow moving through the heat exchanger a change in the enthalpy of the second media stream or a value derived therefrom is determined.

Description

Die Erfindung betrifft ein Verfahren zum Entdecken von Änderungen in einem ersten Medienstrom eines Wärme- oder Kältetransportmediums in einer Kälteanlage, in der der erste Medienstrom durch einen Wärmetauscher geführt wird, in dem ein Wärmeübergang zwischen dem ersten Medienstrom und einem zweiten Medienstrom eines Wärme- oder Kälteträgers erfolgt.The invention relates to a method for detecting changes in a first media stream of a heat or cold transport medium in a refrigeration system, in which the first media stream is passed through a heat exchanger, in which a heat transfer between the first media stream and a second media stream of a heat or refrigerant he follows.

Die US 6,128,910 beschreibt ein Verfahren zur Diagnostisierung einer Kälteanlage zum Kühlen von Luft. Bei dem Verfahren werden physikalische Grössen der Luft, die einem Värmetauscher der Anlage passiert, mit einer Fühleranordnung (48), die Teil einer Messeinheit (44) ist, gemessen. Die gemessenen Grössen sind: Lufttemperatur, relative Luftfeuchtigkeit und Volumenstrom der Luft. Anhand der Lufttemperatur und die relative Luftfeuchtigkeit wird die Enthalpieänderung der Luft bei Passage des Wärmetauschers bestimmt. Die Änderung wird, zusammen mit dem Volumenstrom, benutzt um verringerte Luftdurchströmung, verringerte Wärmeübertragung, sowie verringerter SHR festzustellen. Anhand zusätzlicher Messungen der Kältemitteltemperatur in der Saugleitung sowie der Temperatur des flüssigen Kältemittels zwischen Verflüssiger und Expansionsventil, kann die Kältemittelfüllung untersucht werden.US 6,128,910 describes a method for diagnosing a refrigeration system for cooling air. In the method, physical quantities of the air passing through a heat exchanger of the plant are measured by means of a sensor arrangement (48) which is part of a measuring unit (44). The measured quantities are: air temperature, relative humidity and volume flow of the air. Based on the air temperature and the relative humidity, the enthalpy change of the air is determined on passage of the heat exchanger. The change, along with the volume flow, is used to determine reduced air flow, reduced heat transfer, as well as decreased SHR. Based on additional measurements of the refrigerant temperature in the suction line and the temperature of the liquid refrigerant between condenser and expansion valve, the refrigerant charge can be examined.

Um die Erfindung zu erläutern, wird nachfolgend eine Verkaufskühltruhe als Beispiel für eine Kälteanlage gewählt. Sie ist aber auch bei anderen Kälteanlagen anwendbar. Bei einer Verkaufskühltruhe, wie sie beispielsweise in Supermärkten verwendet wird, um gekühlte oder gefrorene Produkte zum Verkauf bereitzuhalten, zirkuliert ein Luftstrom, der den ersten Medienstrom bildet, in einem Luftkanal, in dem ein Verdampfer angeordnet ist. Der Verdampfer ist ein Wärmetauscher, dem auf einer Seite ein Kältemittel, also der zweite Medienstrom, in einem flüssigen oder zweiphasigen Zustand (gasförmig und flüssig) zugeführt wird. Wenn die Luft auf der anderen Seite über den Verdampfer geführt wird, erfolgt ein Wärmeübergang von der Luft auf das Kältemittel und die Luft wird gekühlt. Ein anderes Beispiel für einen Wärmetauscher ist der Kondensator, über den Luft geführt wird, um das Kältemittel zu verflüssigen. Dabei wird dem Kältemittel Wärme entzogen.In order to explain the invention, a sales refrigerator is chosen below as an example of a refrigeration system. But it is also applicable to other refrigeration systems. In a sales freezer, such as used in supermarkets for holding refrigerated or frozen products for sale, an air stream forming the first media stream circulates in an air duct in which an evaporator is located. The evaporator is a heat exchanger to which on one side a refrigerant, that is the second medium flow, in a liquid or two-phase state (gaseous and liquid) is supplied. If the air on the other side is passed over the evaporator, there is a heat transfer from the air to the refrigerant and the air is cooled. Another example of a heat exchanger is the condenser over which Air is passed to liquefy the refrigerant. In this case, the refrigerant heat is removed.

Man möchte bei einer derartigen Kälteanlage mit einer gewissen Zuverlässigkeit feststellen können, ob der Luftstrom in einem ausreichenden Maße zirkulieren kann, d.h., man möchte feststellen, ob Störungen aufgetreten sind. Derartige Störungen können beispielsweise dadurch verursacht werden, daß ein Ventilator ausfällt, daß der Verdampfer vereist, daß sich Verschmutzungen im Luftkanal festsetzen oder Gegenstände, wie Verkaufsschilder oder Waren, den Luftkanal versperren und den Strömungswiderstand für die Luftmenge vergrößern und dadurch den Luftstrom behindern.With such a refrigeration system, one wishes to be able to determine with a certain degree of reliability whether the air flow can circulate to a sufficient extent, that is, one wishes to determine whether disturbances have occurred. Such disturbances can be caused, for example, by the fact that a fan fails, that the evaporator ices, that settle dirt in the air duct or obstruct objects such as signs or goods, the air duct and increase the flow resistance for the amount of air and thereby impede the flow of air.

Eine derartige Fehlererkennung sollte möglichst erfolgen, bevor die Kühlleistung der Kälteanlage zu stark abgenommen hat. Wenn ein Fehler sich erst bei einer Temperaturerhöhung erkennen läßt, kann es für die gekühlten oder gefrorenen Produkte bereits zu spät sein, d.h. es besteht das Risiko, daß diese Produkte verderben. In vielen Fällen bedeutet eine Störung des Luftstroms aber bereits lange vor einer Beschädigung der gekühlten Produkte, daß die Kälteanlage nicht in ihrem optimalen Betriebspunkt betrieben wird. Wenn also ein Fehler aufgetreten ist, können einzelne Komponenten der Kälteanlage öfter belastet werden, was ihre Lebensdauer herabsetzt. Dies läßt sich problemlos am Beispiel von Ventilatoren nachvollziehen. Wenn einer von mehreren Ventilatoren ausfällt, können der oder die übrigen Ventilatoren nach wie vor noch den zur Erzeugung der Kälteleistung erforderlichen Luftstrom durch die Kälteanlage treiben. Die verbleibenden Ventilatoren werden aber öfter belastet. Neben einer Verringerung der Lebensdauer der Komponenten, beispielsweise der Ventilatoren, hat ein Fehler den Nachteil eines erhöhten Energieverbrauchs. Die Kälteanlage wird nicht in ihrem optimalen Betriebspunkt betrieben. Auch aus diesem Grunde ist die Erkennung von Fehlern wichtig.Such error detection should be made as possible before the cooling capacity of the refrigeration system has decreased too much. If an error can only be detected when the temperature rises, it may already be too late for the chilled or frozen products, ie there is a risk that these products will spoil. In many cases, a disturbance of the air flow but long before damage to the cooled products means that the refrigeration system is not operated at its optimum operating point. Thus, if an error has occurred, individual components of the refrigeration system can be charged more often, which reduces their service life. This can be easily understood using the example of fans. If one of several fans fails, the remaining fan or fans can still be used to generate the cooling capacity drive required air flow through the refrigeration system. The remaining fans are loaded more often. In addition to reducing the life of the components, such as the fans, a fault has the disadvantage of increased energy consumption. The refrigeration system is not operated at its optimum operating point. Also for this reason, the detection of errors is important.

Der Erfindung liegt die Aufgabe zugrunde, Änderungen im ersten Medienstrom möglichst früh erkennen zu können.The object of the invention is to be able to recognize changes in the first media stream as early as possible.

Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art dadurch gelöst, daß man zur Überwachung des durch den Wärmetauscher strömenden ersten Medienstromes die Änderung der Enthalpie des zweiten Medienstromes oder eine davon abgeleitete Größe ermittelt.This object is achieved in a method of the type mentioned above in that it detects the change in the enthalpy of the second medium flow or a size derived therefrom for monitoring the first medium flow flowing through the heat exchanger.

Wenn der erste Medienstrom durch einen Luftstrom gebildet ist, ist die Ermittlung der Masse der durchströmenden Luft durch eine Messung des Luftstromes selbst relativ schwierig. Eine derartige Messung würde im übrigen den Luftstrom auch behindern, was unerwünscht ist. Man wählt daher einen anderen Weg: man geht davon aus, daß der Luftstrom eine gewisse Wärmemenge transportiert und damit einen gewissen Energieinhalt hat. Der Energieinhalt läßt sich auch als Enthalpie bezeichnen. Diese Wärmemenge wird im Wärmetauscher an das Kältemittel abgegeben (oder im Falle des Kondensators vom Kältemittel abgegeben). Wenn man nun diese Wärmemenge erfassen kann, dann hat man eine Aussage darüber, wie viel Luft durch den Verdampfer, d.h. den Wärmetauscher geführt wird. Diese Aussage reicht aus, um zu erkennen, ob ein Fehler aufgetreten ist oder nicht. Die von der Luft abgegebene Wärme pro Zeit entspricht der vom Kältemittel aufgenommenen Wärme pro Zeit. Dieses Gleichgewicht ist die Grundlage des Verfahrens zur Entdeckung eines verringerten Luftstromes im Kanal. Man kann diese tatsächliche Luftmenge beispielsweise mit einem Sollwert vergleichen. Wenn dieser Istwert nicht mit dem Sollwert übereinstimmt, wird dies als eine Verringerung des Luftstromes interpretiert und man kann beispielsweise einen Fehler anzeigen. Diese Fehleranzeige kann in einem relativ frühen Stadium erfolgen, also lange bevor eine starke Überlastung der Kälteanlage aufgetreten ist oder sogar eine unerwünschte Temperaturerhöhung eingetreten ist. Die gleiche Vorgehensweise gilt natürlich auch dann, wenn anstelle von Luft ein anderes Medium, beispielsweise eine Flüssigkeit oder eine Sole, als erster Medienstrom verwendet wird.If the first medium flow is formed by an air flow, the determination of the mass of the air flowing through by measuring the air flow itself is relatively difficult. Moreover, such a measurement would also hinder the air flow, which is undesirable. Therefore, one chooses a different way: it is assumed that the air flow carries a certain amount of heat and thus has a certain energy content. The energy content can also be called enthalpy. This amount of heat is released to the refrigerant in the heat exchanger (or released from the refrigerant in the case of the condenser). If you can now capture this amount of heat, then you have a statement about how much air through the evaporator, ie the heat exchanger is performed. This statement is sufficient to detect if an error has occurred or not. The heat released by the air per time corresponds to the heat absorbed by the refrigerant per time. This balance is the basis of the method for detecting a reduced airflow in the channel. For example, you can compare this actual amount of air with a setpoint. If this actual value does not agree with the setpoint value, this is interpreted as a reduction of the airflow and one can, for example, indicate an error. This error display can be done at a relatively early stage, so long before a heavy overload of the refrigeration system has occurred or even an undesirable increase in temperature has occurred. Of course, the same procedure also applies if, instead of air, another medium, for example a liquid or a brine, is used as the first medium flow.

Vorzugsweise ermittelt man zur Bestimmung der Änderung der Enthalpie des zweiten Medienstromes einen Massenstrom und eine spezifische Enthalpiedifferenz des zweiten Medienstromes über den Wärmetauscher. Die spezifische Enthalpie eines Kältemittels ist eine Stoff- und Zustandseigenschaft und variiert von Kältemittel zu Kältemittel, oder allgemeiner, von zweitem Medienstrom zu zweitem Medienstrom. Die spezifische Enthalpie ist die Enthalpie pro Masse. Da aber bekannt ist, welches Kältemittel verwendet wird, läßt sich anhand von gemessenen Größen, wie Temperaturen, Drücken oder ähnlichem, die spezifische Enthalpie des zweiten Medienstromes vor und nach dem Wärmetauscher feststellen. Daraus läßt sich eine spezifische Enthalpiedifferenz bilden, die gemeinsam mit dem Massenstrom eine Aussage über die Enthalpie erlaubt.Preferably, to determine the change in the enthalpy of the second medium flow, a mass flow and a specific enthalpy difference of the second medium flow are determined via the heat exchanger. The specific enthalpy of a refrigerant is a matter and condition characteristic and varies from refrigerant to refrigerant, or more generally, from second media stream to second media stream. The specific enthalpy is the enthalpy per mass. However, since it is known which refrigerant is used, can be measured by measured variables such as temperatures, pressures or the like, determine the specific enthalpy of the second medium flow before and after the heat exchanger. From this, a specific enthalpy difference can be formed which, together with the mass flow, allows a statement about the enthalpy.

Hierbei ist besonders bevorzugt, daß man zur Bestimmung der spezifischen Enthalpiedifferenz des zweiten Medienstromes am Eingang des Expansionsventils die Temperatur und den Druck des zweiten Medienstromes und am Ausgang des Wärmetauschers die Temperatur des zweiten Medienstromes und entweder den Druck am Ausgang des Wärmetauschers oder die Siedetemperatur des zweiten Medienstromes am Eingang des Wärmetauschers ermittelt. Die Sensoren zur Ermittlung der Temperatur und des Drucks des zweiten Medienstromes, hier des Kältemittels, sind in den meisten Fällen ohnehin vorhanden. Sie werden benötigt, um die Kälteanlage entsprechend steuern zu können. Man kann den Druck des Kältemittels auch am Eingang messen und daraus den Druck am Ausgang des Wärmetauschers ermitteln, indem man den Druckabfall im Verdampfer berücksichtigt. Anhand der gemessenen oder berechneten Werte kann man dann mit Hilfe von Diagrammen, die von den Kältemittelherstellern zur Verfügung gestellt werden (sogenannte Log p, h-Diagramme) die spezifische Enthalpie bestimmen. In vielen Fällen kann dies auch automatisch erfolgen, wenn die entsprechenden Beziehungen in Tabellen abgelegt sind oder über Zustandsgleichungen zur Verfügung stehen.It is particularly preferred that, for determining the specific enthalpy difference of the second medium flow at the inlet of the expansion valve, the temperature and the pressure of the second medium flow and at the outlet of the heat exchanger, the temperature of the second medium flow and either the pressure at the outlet of the heat exchanger or the boiling temperature of the second Media flow at the entrance of the heat exchanger determined. The sensors for determining the temperature and the pressure of the second medium flow, in this case the refrigerant, are present in most cases anyway. They are needed to control the refrigeration system accordingly. It is also possible to measure the pressure of the refrigerant at the inlet and from this determine the pressure at the outlet of the heat exchanger, taking into account the pressure drop in the evaporator. Based on the measured or calculated values, it is then possible to determine the specific enthalpy with the aid of diagrams provided by the refrigerant manufacturers (so-called Log p, h diagrams). In many cases, this can also be done automatically if the corresponding relationships are stored in tables or are available via equations of state.

Vorzugsweise ermittelt man auch eine spezifische Enthalpiedifferenz des ersten Medienstromes über den Wärmetauscher. Die spezifische Enthalpiedifferenz des ersten Medienstromes erlaubt es, auf relativ einfache Weise die Masse pro Zeit des ersten Medienstromes, z.B. der Luft, zu berechnen, wie weiter unten gezeigt werden wird.Preferably, a specific enthalpy difference of the first medium flow is also determined via the heat exchanger. The specific enthalpy difference of the first media stream makes it possible to relatively easily measure the mass per time of the first media stream, e.g. air, as will be shown below.

Bevorzugterweise bestimmt man den zweiten Medienstrom aus einer Druckdifferenz über und dem Öffnungsgrad eines Expansionsventils. Wenn es sich um ein pulsbreitenmoduliertes Expansionsventil handelt, dann wird der Öffnungsgrad durch die Öffnungsdauer bzw. das Tastverhältnis ersetzt. Der Massenstrom des zweiten Medienstromes, z.B. des Kältemittels, ist dann proportional der Druckdifferenz und der Öffnungsdauer. Der Kältemittelstrom läßt sich auf diese Weise relativ einfach ermitteln. Die Unterkühlung des Kältemittels ist allerdings in machen Fällen so groß, daß es notwendig ist, auch die Unterkühlung zu messen, weil der Kältemittelstrom, d.h. der zweite Medienstrom, durch das Expansionsventil von der Unterkühlung beeinflußt wird. In vielen Fällen braucht man aber nur die Druckdifferenz und den Öffnungsgrad des Ventils zu kennen, weil die Unterkühlung eine feste Größe der Kälteanlage ist, die dann in einer Ventilcharakteristik oder in einer Proportionalitätskonstante berücksichtigt werden kann. Mit "Öffnungsgrad" kann auch die Öffnungsdauer bei pulsbreitenmodulierten Ventilen verstanden werden, d.h. das Tastverhältnis.Preferably, the second medium flow is determined from a pressure difference across and the degree of opening of an expansion valve. If it is a pulse width modulated expansion valve, then the opening degree is replaced by the opening duration or the duty cycle. The mass flow of the second medium flow, for example of the refrigerant, is then proportional to the pressure difference and the opening duration. The refrigerant flow can be determined relatively easily in this way. The subcooling of the refrigerant is, however, in some cases so great that it is necessary to measure also the subcooling, because the refrigerant flow, ie the second medium flow, is influenced by the subcooling by the expansion valve. In many cases, however, one only needs to know the pressure difference and the degree of opening of the valve, because the subcooling is a fixed size of the refrigeration system, which can then be taken into account in a valve characteristic or in a proportionality constant. With "opening degree" can also be understood the opening duration in pulse width modulated valves, ie the duty cycle.

In einer alternativen oder zusätzlichen Ausgestaltung kann man den zweiten Medienstrom auch aus Betriebsdaten und einer Differenz der absoluten Drücke über einen Verdichter zusammen mit der Temperatur des zweiten Medienstromes am Verdichtereingang ermitteln. Bei den Betriebsdaten handelt es sich beispielsweise um die Drehzahl des Verdichters, die zusammen mit dem Druck über den Verdichter eine Aussage über die Kältemittelmenge erlaubt. Hierzu ist lediglich die Kenntnis der Verdichtereigenschaften erforderlich.In an alternative or additional embodiment, the second medium flow can also be determined from operating data and a difference of the absolute pressures via a compressor together with the temperature of the second medium flow at the compressor inlet. The operating data is, for example, the speed of the compressor, which, together with the pressure across the compressor, allows a statement about the amount of refrigerant. For this purpose, only the knowledge of the compressor properties is required.

Bevorzugterweise ermittelt man den ersten Medienstrom aus dem zweiten Medienstrom und einem Quotienten aus der spezifischen Enthalpiedifferenz des zweiten Medienstromes und der spezifischen Enthalpiedifferenz des ersten Medienstromes über den Wärmetauscher. Wie oben erläutert, geht man davon aus, daß zwischen der Wärmemenge, die von der Luft an das Kältemittel übertragen wird, und der Wärmemenge, die vom Kältemittel aus der Luft aufgenommen wird, ein Gleichgewicht besteht, d.h. beide Größen stimmen überein. Vereinfacht ausgedrückt ist die Wärmemenge der Luft das Produkt aus dem Massenstrom der Luft durch den Wärmetauscher und der spezifischen Enthalpiedifferenz der Luft über den Wärmetauscher. Die Wärmemenge des Kältemittels ist das Produkt aus dem Kältemittelstrom, d.h. Masse des Kältemittels pro Zeit, durch den Wärmetauscher und der spezifischen Enthalpiedifferenz über den Wärmetauscher. Durch einen einfachen Dreisatz läßt sich dann der Massenstrom der Luft (oder allgemeiner: des ersten Medienstromes) durch den Wärmetauscher bestimmen.The first medium stream from the second medium stream and a quotient of the specific enthalpy difference of the second medium stream and the specific enthalpy difference of the first medium stream via the heat exchanger are preferably determined. As explained above, it is considered that there is an equilibrium between the amount of heat transferred from the air to the refrigerant and the amount of heat absorbed by the refrigerant from the air, that is, both quantities are the same. Put simply, the amount of heat in the air is the product of the mass flow of air through the heat exchanger and the specific enthalpy difference of the air across the heat exchanger. The amount of heat of the refrigerant is the product of the refrigerant flow, ie mass of the refrigerant per time, through the heat exchanger and the specific enthalpy difference across the heat exchanger. By a simple rule of three then the mass flow of air (or more generally: the first media stream) can be determined by the heat exchanger.

In einer bevorzugten Ausgestaltung ist vorgesehen, daß man den ersten Medienstrom mit einem Sollwert vergleicht. Wenn der tatsächlich ermittelte, d.h. aus den oben angegebenen Größen berechnete erste Medienstrom nicht mit dem Sollwert übereinstimmt, kann eine Fehlermeldung erzeugt werden.In a preferred embodiment, it is provided that one compares the first media stream with a desired value. If the actually detected, i. If the first media stream calculated from the above values does not agree with the setpoint, an error message can be generated.

In einer Alternative ist hingegen vorgesehen, daß man ein Residuum als Differenz aus einer ersten Größe, die aus einem vorgegebenen Massenstrom des ersten Medienstromes und der spezifischen Enthalpiedifferenz gebildet wird, und einer zweiten Größe bildet, die der Änderung der Enthalpie des zweiten Medienstromes entspricht, und das Residuum überwacht. Diese Vorgehensweise erleichtert die Auswertung der ermittelten Signale. Aufgrund der Trägheit der einzelnen Sensoren, die Temperaturen, Drücke und Massendurchfluß ermitteln, ist es möglich, daß man in dem Signal, das den ersten Medienstrom, z.B. den Luftmassenstrom, wiedergibt, erhebliche Schwankungen beobachten kann. Diese Schwankungen haben bezogen auf die "Trägheit" der Kälteanlage eine relativ hohe Frequenz. Es ist also schwierig, in einem derartig "hochfrequenten" Signal einen Trend zu erkennen, der auf einen Fehler hindeutet. Wenn man aus dem Luftmassensignal hingegen ein Residuum gewinnt, dann ist die Überwachung des Residuums wesentlich einfacher und erlaubt eine ausreichende Überwachung des Luftmassenstromes.In an alternative, however, it is provided that one forms a residue as the difference of a first size, which is formed from a predetermined mass flow of the first media stream and the specific enthalpy difference, and a second size, which corresponds to the change in the enthalpy of the second medium stream, and the residuum is monitored. This procedure facilitates the evaluation of the detected signals. Due to the inertia of the individual sensors, which determine temperatures, pressures and mass flow, it is possible that one can observe significant fluctuations in the signal representing the first medium flow, eg the air mass flow. These fluctuations have a relatively high frequency relative to the "inertia" of the refrigeration system. It is thus difficult to detect in such a "high-frequency" signal a trend that points to an error. By contrast, if one obtains a residual from the air mass signal, the monitoring of the residuum is much simpler and allows sufficient monitoring of the air mass flow.

Hierbei ist besonders bevorzugt, daß man als vorgegebenen Massenstrom des ersten Medienstromes einen Mittelwert über einen vorbestimmten Zeitraum verwendet. Man geht dabei davon aus, daß man den Massenstrom in einem "fehlerfreien" Betrieb ermittelt. Wenn sich dann im Betrieb Abweichungen von diesem vorher ermittelten Massenstrom ergeben, die über einen vorbestimmten kürzeren oder längeren Zeitraum anhalten, dann ist dies ein Zeichen für einen Fehler.In this case, it is particularly preferred that a mean value over a predetermined period of time be used as the predetermined mass flow of the first medium flow. It is assumed that one determines the mass flow in a "error-free" operation. If, during operation, deviations result from this previously determined mass flow which last for a predetermined shorter or longer period of time, then this is an indication of an error.

Vorzugsweise bildet man mit Hilfe des Residuums einen Fehlerindikator Si nach folgender Vorschrift: S i = { S i 1 + s i , wenn S i 1 + s i > 0 0 , wenn S i 1 + s i 0

Figure imgb0001

wobei si nach der folgenden Vorschrift berechnet wird: s i = k 1 ( r i μ 0 + μ 1 2 )
Figure imgb0002
worin

  • i: Index eines Abtastzeitpunkts
  • ri: Residuum
  • k1: Proportionalitätskonstante
  • µ 0: erster Zuverlässigkeits-Wert
  • µ 1: zweiter Zuverlässigkeits-Wert.
Preferably, with the help of the residual, an error indicator S i is formed according to the following rule: S i = { S i - 1 + s i . if S i - 1 + s i > 0 0 . if S i - 1 + s i 0
Figure imgb0001

where s i is calculated according to the following rule: s i = k 1 ( r i - μ 0 + μ 1 2 )
Figure imgb0002
wherein
  • i: index of a sampling time
  • r i : Residual
  • k 1 : Proportionality constant
  • μ 0 : first reliability value
  • μ 1 : second reliability value.

Der erste Zuverlässigkeits-Wert wird in den meisten Fällen auf Null gesetzt. Der zweite Zuverlässigkeits-Wert µ1 bildet ein Kriterium dafür, wie oft man einen falschen Alarm akzeptieren muß. Wenn man weniger falsche Alarme haben möchte, muß man eine spätere Entdeckung eines Fehlers in Kauf nehmen. Wenn die Luftzirkulation eingeschränkt wird, weil beispielsweise ein Gebläse nicht länger läuft, dann wird der Fehlerindikator mit der Zeit größer werden, weil die periodisch ermittelten Werte des Residuums ri im Durchschnitt größer als Null werden. Wenn der Fehlerindikator Si eine vorbestimmte Größe erreicht hat, dann wird ein Alarm ausgelöst, der anzeigt, daß ein Fehler aufgetreten ist. Der zweite Zuverlässigkeits-Wert ist ein Erfahrungswert, der allerdings vom Hersteller vorgegeben werden kann.The first reliability value is set to zero in most cases. The second reliability value μ 1 forms a criterion for how often one must accept a false alarm. If you have less wrong Alarms, one must accept a later discovery of a mistake. For example, if air circulation is restricted because, for example, a fan is no longer running, then the error indicator will increase with time because the periodically determined values of the residual r i will become greater than zero on average. If the error indicator S i has reached a predetermined size, then an alarm is triggered indicating that an error has occurred. The second reliability value is an empirical value, which, however, can be specified by the manufacturer.

Vorzugsweise leitet man bei Entdecken einer vorbestimmten Änderung einen Abtauvorgang ein. Beispielsweise kann man den Abtauvorgang einleiten, wenn der Fehlerindikator einen vorbestimmten Wert erreicht oder überschreitet. Mit dem Verfahren lassen sich Abtauvorgänge dann einleiten, wenn sie notwendig sind, die Vereisung des Verdampfers aber noch keine negativen Auswirkungen zeigt.Preferably, a defrost operation is initiated upon detection of a predetermined change. For example, you can initiate the defrost process when the error indicator reaches or exceeds a predetermined value. Defrosting processes can be initiated with the method if they are necessary, but the icing of the evaporator does not yet have any negative effects.

Die Erfindung wird im folgenden anhand eines bevorzugten Ausführungsbeispiels in Verbindung mit der Zeichnung näher beschrieben. Hierin zeigen:

Fig. 1
eine schematische Ansicht einer Kälteanlage,
Fig. 2
eine schematische Ansicht mit der Darstellung von Größen um einen Wärmetauscher,
Fig. 3
die Darstellung eines Residuums in einem ersten Fehlerfall,
Fig. 4
den Verlauf eines Fehlerindikators für den ersten Fehlerfall,
Fig. 5
den Verlauf des Residuums für einen zweiten Fehlerfall und
Fig. 6
die Darstellung des Fehlerindikators für den zweiten Fehlerfall.
The invention will be described below with reference to a preferred embodiment in conjunction with the drawings. Herein show:
Fig. 1
a schematic view of a refrigeration system,
Fig. 2
a schematic view showing the sizes of a heat exchanger,
Fig. 3
the representation of a residuum in a first error case,
Fig. 4
the course of an error indicator for the first error case,
Fig. 5
the course of the residuum for a second error case and
Fig. 6
the representation of the error indicator for the second error case.

Fig. 1 zeigt schematisch eine Kälteanlage 1 in Form einer Verkaufskühltruhe, wie sie beispielsweise in Supermärkten zum Verkaufen von gekühlten oder gefrorenen Lebensmitteln verwendet wird. Die Kälteanlage 1 weist einen Vorratsraum 2 auf, in dem die Lebensmittel gelagert werden. Ein Luftkanal 3 ist um den Vorratsraum 2 herumgeführt, d.h. er befindet sich an beiden Seiten und unterhalb des Vorratsraums 2. Ein Luftstrom 4, der durch Pfeile dargestellt ist, gelangt nach dem Durchlaufen des Luftkanals 3 in eine Kühlzone 5 oberhalb des Vorratsraums 2. Die Luft wird dann wieder zum Eingang des Luftkanals 3 geführt, wo sich eine Mischzone 6 befindet. In der Mischzone wird der Luftstrom 4 mit Umgebungsluft vermischt. Dabei wird z.B. die gekühlte Luft ersetzt, die in den Vorratsraum 2 gelangt ist oder sonstwie in die Umgebung verschwunden ist.Fig. 1 shows schematically a refrigeration system 1 in the form of a sales freezer, as used for example in supermarkets for the sale of chilled or frozen food. The refrigeration system 1 has a storage space 2, in which the food is stored. An air duct 3 is passed around the storage space 2, i. it is located on both sides and below the storage space 2. An air flow 4, which is shown by arrows, passes after passing through the air duct 3 in a cooling zone 5 above the storage space 2. The air is then fed back to the entrance of the air duct 3, where a mixing zone 6 is located. In the mixing zone, the air stream 4 is mixed with ambient air. In doing so, e.g. replaced the cooled air that has entered the storage room 2 or otherwise disappeared into the environment.

Im Luftkanal 3 ist eine Gebläseanordnung 7 angeordnet, die durch einen oder mehrere Ventilatoren gebildet sein kann. Die Gebläseanordnung 7 sorgt dafür, daß der Luftstrom 4 im Luftkanal 3 bewegt werden kann. Für die nachfolgende Beschreibung wird davon ausgegangen, daß die Gebläseanordnung 7 den Luftstrom 4 so antreibt, daß die Masse der Luft pro Zeit, die durch den Luftkanal 3 bewegt wird, konstant ist, solange die Gebläseanordnung 7 läuft und die Anlage fehlerfrei arbeitet.In the air duct 3, a fan assembly 7 is arranged, which may be formed by one or more fans can. The fan assembly 7 ensures that the air flow 4 can be moved in the air duct 3. For the following description it is assumed that the fan assembly 7 drives the air flow 4 so that the mass of air per time, which is moved through the air duct 3, is constant, as long as the fan assembly 7 is running and the system is working properly.

Im Luftkanal 3 ist ein Verdampfer 8 eines Kältemittelkreislaufs angeordnet. Dem Verdampfer 8 wird durch ein Expansionsventil 9 Kältemittel aus einem Kondensator oder Verflüssiger 10 zugeführt. Der Kondensator 10 wird durch einen Verdichter oder Kompressor 11 versorgt, dessen Eingang wiederum mit dem Verdampfer 8 verbunden ist, so daß das Kältemittel in an sich bekannter Weise im Kreis geführt wird. Der Kondensator 10 ist mit einem Gebläse 12 versehen, mit dessen Hilfe Luft aus der Umgebung über den Kondensator 10 geblasen werden kann, um dort Wärme abzuführen.In the air duct 3, an evaporator 8 of a refrigerant circuit is arranged. The evaporator 8 is supplied through an expansion valve 9 refrigerant from a condenser or condenser 10. The condenser 10 is supplied by a compressor or compressor 11 whose input is in turn connected to the evaporator 8, so that the refrigerant is circulated in a conventional manner. The condenser 10 is provided with a fan 12, by means of which air from the environment can be blown through the condenser 10 to dissipate heat there.

Die Arbeitsweise eines derartigen Kältemittelkreislaufs ist an sich bekannt. In der Anlage zirkuliert ein Kältemittel. Das Kältemittel verläßt den Verdichter 11 als Gas unter hohem Druck und mit hoher Temperatur. Im Kondensator 10 wird das Kältemittel verflüssigt, wobei es Wärme abgibt. Nach der Verflüssigung passiert das Kältemittel das Expansionsventil 9, wo es entspannt wird. Nach der Entspannung ist das Kältemittel zweiphasig, d.h. flüssig und gasförmig. Das zweiphasige Kältemittel wird dem Verdampfer 8 zugeführt. Die flüssige Phase verdampft dort unter Wärmeaufnahme, wobei die Wärme aus dem Luftstrom 4 entnommen wird. Nachdem das restliche Kältemittel verdampft ist, wird das Kältemittel noch leicht erwärmt und kommt als überhitztes Gas aus dem Verdampfer 8 heraus. Danach wird es dem Verdichter 11 wieder zugeführt und dort verdichtet.The operation of such a refrigerant circuit is known per se. The system circulates a refrigerant. The refrigerant leaves the compressor 11 as a gas under high pressure and high temperature. In the condenser 10, the refrigerant is liquefied, giving off heat. After liquefaction, the refrigerant passes through the expansion valve 9, where it is released. After expansion, the refrigerant is biphasic, ie, liquid and gaseous. The two-phase refrigerant is supplied to the evaporator 8. The liquid phase evaporates there under heat absorption, whereby the heat out the air stream 4 is removed. After the remaining refrigerant has evaporated, the refrigerant is still slightly heated and comes out of the evaporator 8 as superheated gas. Thereafter, it is fed back to the compressor 11 and compressed there.

Man möchte nun überwachen, ob der Luftstrom 4 ungestört durch den Luftkanal 3 hindurchströmen kann. Störungen können sich beispielsweise dadurch ergeben, daß die Gebläseanordnung 7 einen Defekt aufweist und nicht mehr genügend Luft fördert. Beispielsweise kann von einer Gebläseeinheit mit mehreren Gebläsen eines ausfallen. Die übrigen Gebläse können dann zwar noch eine gewisse Luftmenge durch den Luftkanal 3 fördern, so daß die Temperatur im Vorratsraum 2 nicht über einen erlaubten Wert hinaus ansteigt. Dadurch wird aber die Kälteanlage stark belastet, was Spätschäden nach sich ziehen kann. Beispielsweise werden Elemente der Kälteanlage, wie Ventilatoren, öfter in Betrieb genommen. Ein anderer Fehlerfall ist beispielsweise die Vereisung des Verdampfers durch Feuchtigkeit aus der Umgebungsluft, die sich am Verdampfer niederschlägt.It would now like to monitor whether the air flow 4 can flow undisturbed through the air duct 3. Disturbances can result, for example, from the fact that the fan assembly 7 has a defect and no longer promotes sufficient air. For example, one fan unit with multiple fans may fail. Although the remaining blower can still promote a certain amount of air through the air duct 3, so that the temperature in the storage chamber 2 does not rise above an allowable value. As a result, however, the refrigeration system is heavily loaded, which can result in late damage. For example, elements of the refrigeration system, such as fans, are put into operation more often. Another error case, for example, the icing of the evaporator by moisture from the ambient air, which is reflected on the evaporator.

Mit anderen Worten möchte man also in der Lage sein, die Luftmenge pro Zeit, die durch den Luftkanal 3 strömt, permanent zu überwachen. Die Überwachung kann dabei durchaus getaktet erfolgen, also in aufeinanderfolgenden Zeitpunkten, die beispielsweise zeitlich einen Abstand in der Größenordnung von einer Minute aufweisen. Allerdings ist die Ermittlung der Masse pro Zeit des Luftstromes 4 mit normalen Meßvorrichtungen relativ aufwendig. Man verwendet daher eine indirekte Messung, indem man den Wärmeinhalt des Kältemittels, den das Kältemittel im Verdampfer 8 aufgenommen hat, ermittelt.In other words, you want to be able to permanently monitor the amount of air per time flowing through the air duct 3. The monitoring can be done quite clocked, ie at successive times, for example, have a time interval of the order of a minute. However, the determination of the mass per time of the air stream 4 with normal measuring devices relatively expensive. It is therefore used an indirect measurement by determining the heat content of the refrigerant, which has taken up the refrigerant in the evaporator 8.

Dabei legt man folgende Überlegung zugrunde: die zum Verdampfen des Kältemittels benötigte Wärme wird im Verdampfer 8, der als Wärmetauscher wirkt, von der Luft aufgenommen. Dementsprechend gilt folgende Gleichung: Q Air = Q Ref

Figure imgb0003

wobei Air die von der Luft tatsächlich entnommene Wärme pro Zeit und Ref die vom Kältemittel aufgenommene Wärme pro Zeit ist. Mit dieser Gleichung kann man den Istwert für den Massenstrom, d.h. die Masse pro Zeit, für die durch den Luftkanal 3 strömende Luft bestimmen, wenn man die vom Kältemittel aufgenommene Wärme bestimmen kann. Den tatsächlichen Massenstrom der Luft kann man dann mit einem Sollwert vergleichen. Wenn der Istwert nicht mit dem Sollwert übereinstimmt, wird dies als ein Fehler interpretiert, d.h. als ein behinderter Luftstrom 4. Eine entsprechende Fehlermeldung für die Anlage kann ausgegeben werden.This is based on the following consideration: the heat required to evaporate the refrigerant is taken up by the air in the evaporator 8, which acts as a heat exchanger. Accordingly, the following equation holds: Q Air = Q Ref
Figure imgb0003

where Air is the heat actually extracted from the air per time, and Ref is the heat absorbed by the refrigerant per time. With this equation one can determine the actual value for the mass flow, ie the mass per time, for the air flowing through the air duct 3, if one can determine the heat absorbed by the refrigerant. The actual mass flow of air can then be compared with a setpoint. If the actual value does not agree with the setpoint, this is interpreted as an error, ie as a disabled airflow 4. A corresponding error message for the system can be output.

Die Grundlage für die Bestimmung von Ref ist die folgende Gleichung: Q Ref = m Ref ( h Ref , out h Ref , in )

Figure imgb0004

wobei Ref die Kältemittelmasse pro Zeit ist, die durch den Verdampfer strömt, hRef,out ist die spezifische Enthalpie des Kältemittels am Verdampferaustritt und hRef,in ist die spezifische Enthalpie am Expansionsventileintritt.The basis for the determination of Ref is the following equation: Q Ref = m Ref ( H Ref . out - H Ref . in )
Figure imgb0004

where Ref is the refrigerant mass per time flowing through the evaporator, h Ref, out is the specific enthalpy of the refrigerant at the evaporator outlet and h Ref, in is the specific enthalpy at the expansion valve inlet.

Die spezifische Enthalpie eines Kältemittels ist eine Stoff- und Zustandseigenschaft, die von Kältemittel zu Kältemittel variiert, für jedes Kältemittel aber bestimmbar ist. Die Kältemittelhersteller stellen daher sogenannte Log p, h-Diagramme für jedes Kältemittel bereit. Anhand dieser Diagramme kann die spezifische Enthalpiedifferenz über den Verdampfer 8 bestimmt werden. Um beispielsweise hRef,in mit einem solchen Log p, h-Diagramm zu bestimmen, braucht man nur die Temperatur des Kältemittels am Expansionsventileingang (TRef,in) und den Druck am Expansionsventileingang (PCon). Diese Größen können mit Hilfe von einem Temperaturfühler oder einem Drucksensor gemessen werden. Die Meßstellen sind in Fig. 2 schematisch dargestellt.The specific enthalpy of a refrigerant is a substance and state property, which varies from refrigerant to refrigerant, but can be determined for each refrigerant. The refrigerant manufacturers therefore provide so-called log p, h diagrams for each refrigerant. On the basis of these diagrams, the specific enthalpy difference can be determined via the evaporator 8. For example, to determine h Ref, in such a log p, h diagram, one needs only the temperature of the refrigerant at the expansion valve inlet (T Ref, in ) and the pressure at the expansion valve inlet (P Con ). These quantities can be measured by means of a temperature sensor or a pressure sensor. The measuring points are shown schematically in Fig. 2.

Um die spezifische Enthalpie am Verdampferaustritt zu bestimmen, braucht man zwei Meßwerte: die Temperatur am Verdampferaustritt (TRef,out) und entweder den Druck am Austritt (PRef,out) oder die Siedetemperatur (TRef,in). Die Temperatur am Austritt (TRef,out) kann mit einem Temperaturfühler gemessen werden. Der Druck am Ausgang des Verdampfers 8 (PRef,out) kann mit einem Drucksensor gemessen werden.In order to determine the specific enthalpy at the evaporator outlet, two measured values are needed: the temperature at the evaporator outlet (T ref, out ) and either the pressure at the outlet (P ref, out ) or the boiling temperature (T ref, in ). The temperature at the outlet (T Ref, out ) can be measured with a temperature sensor. The pressure at the outlet of the evaporator 8 (P ref, out ) can be measured with a pressure sensor.

Anstelle der Log p, h-Diagramme kann man natürlich auch Tabellenwerte verwenden, was die Berechnung mit Hilfe eines Prozessors vereinfacht. In vielen Fällen stellen die Kältemittelhersteller auch Zustandsgleichungen für die Kältemittel zu Verfügung.Of course, instead of the log p, h diagrams, one can also use table values, which simplifies the calculation with the aid of a processor. In many cases, the refrigerant manufacturers also provide equations of state for the refrigerants.

Der Massendurchfluß des Kältemittels ( Ref) kann entweder mit einem Durchflußmesser bestimmt werden. Bei Anlagen mit elektronisch gesteuerten Expansionsventilen, die pulsbreitenmoduliert betrieben werden, ist es möglich, über den Öffnungsgrad oder die Öffnungsdauer den Massendurchfluß Ref zu bestimmen, wenn die Druckdifferenz über das Ventil und die Unterkühlung am Eingang des Expansionsventils 10 (TVin) bekannt ist. Bei den meisten Anlagen ist dies der Fall, weil man Drucksensoren zur Verfügung hat, die den Druck im Verflüssiger 10 messen. Die Unterkühlung ist in vielen Fällen konstant und abschätzbar und braucht deshalb nicht gemessen zu werden. Der Massendurchfluß m Ref durch das Expansionsventil 9 kann dann mit Hilfe einer Ventilcharakteristik, der Druckdifferenz, der Unterkühlung und dem Öffnungsgrad bzw. der Öffnungsdauer berechnet werden. Bei vielen pulsbreitenmodulierten Expansionsventilen 9 hat es sich gezeigt, daß der Durchfluß m Ref annähernd proportional zu der Druckdifferenz und der Öffnungsdauer ist. In diesem Fall kann man den Durchfluß nach folgender Gleichung bestimmen: m Ref = k Exp ( P Con P Ref , out ) O D

Figure imgb0005

wobei PCon der Druck im Verflüssiger 10, PRef,out der Druck im Verdampfer, OD die Öffnungsdauer und kExp eine Proportionalitätskonstante ist, die vom Ventil abhängt. In manchen Fällen ist die Unterkühlung des Kältemittels so groß, daß es notwendig ist, die Unterkühlung zu messen, weil der Kältemittelstrom durch das Expansionsventil von der Unterkühlung beeinflußt wird. In vielen Fällen benötigt man aber nur die Druckdifferenz und den Öffnungsgrad des Ventils, weil die Unterkühlung eine feste Größe der Kälteanlage ist, die dann in einer Ventilcharakteristik oder in einer Proportionalitätskonstante berücksichtigt werden kann. Eine andere Möglichkeit zur Bestimmung des Massendurchflusses Ref besteht darin, Größen vom Verdichter 11 auszuwerten, beispielsweise die Drehzahl des Verdichters, den Druck am Verdichtereintritt und -austritt, die Temperatur am Verdichtereintritt und eine Verdichtercharakteristik.The mass flow rate of the refrigerant ( Ref ) can be determined either with a flow meter. In systems with electronically controlled expansion valves operated in pulse width modulated mode, it is possible to determine the mass flow rate Ref via the opening degree or opening duration when the pressure difference across the valve and the subcooling at the inlet of the expansion valve 10 (T Vin ) is known. This is the case with most systems because pressure sensors are available to measure the pressure in condenser 10. Hypothermia is constant and predictable in many cases and therefore does not need to be measured. The mass flow m Ref through the expansion valve 9 can then be calculated by means of a valve characteristic, the pressure difference, the subcooling and the opening degree or the opening duration. In many pulse width modulated expansion valves 9, it has been found that the flow m ref is approximately proportional to the pressure difference and the opening duration. In this case one can determine the flow according to the following equation: m Ref = k Exp ( P con - P Ref . out ) O D
Figure imgb0005

where P Con is the pressure in the condenser 10, P Ref, out the pressure in the evaporator, OD the opening time and k Exp is a proportionality constant, which depends on the valve. In some cases, the subcooling of the refrigerant is so large that it is necessary to measure the subcooling because the refrigerant flow through the expansion valve is affected by the subcooling. In many cases, however, you only need the pressure difference and the degree of opening of the valve, because the subcooling is a fixed size of the refrigeration system, which can then be considered in a valve characteristic or in a proportionality constant. Another possibility for determining the mass flow rate Ref is to evaluate variables from the compressor 11, for example the speed of the compressor, the pressure at the compressor inlet and outlet, the temperature at the compressor inlet and a compressor characteristic.

Für die tatsächlich aus der Luft entnommene Wärme pro Zeit Air kann prinzipiell dieselbe Gleichung verwendet werden wie für die Wärme pro Zeit, die das Kältemittel abgibt. Q Air = m Air ( h Air , in h Air , out )

Figure imgb0006

wobei Air den Massendurchfluß von Luft, hAir,in die spezifische Enthalpie der Luft vor dem Verdampfer und hAir,out die spezifische Enthalpie der Luft nach dem Verdampfer bezeichnet.For the actual heat extracted from the air per time Air can be used in principle the same equation as for the heat per time that emits the refrigerant. Q Air = m Air ( H Air . in - H Air . out )
Figure imgb0006

where Air is the mass flow of air, h Air, in the specific enthalpy of air in front of the evaporator and h Air, referred to the specific enthalpy of air after the evaporator.

Die spezifische Enthalpie der Luft kann mit Hilfe der folgenden Gleichung berechnet werden: h Air = 1 , 006 t + x ( 2501 + 1 , 8 t ) , [ h ] = kJ / kg

Figure imgb0007

wobei t die Temperatur der Luft ist, also TEva,in vor dem Verdampfer und TEVa,out hinter dem Verdampfer. "x" wird als Feuchtigkeitsverhältnis der Luft bezeichnet. Das Feuchtigkeitsverhältnis der Luft kann durch folgende Gleichung berechnet werden: x = 0 , 62198 p W p Amb p W
Figure imgb0008
The specific enthalpy of the air can be calculated using the following equation: H Air = 1 . 006 t + x ( 2501 + 1 . 8th t ) . [ H ] = kJ / kg
Figure imgb0007

where t is the temperature of the air, ie T Eva, in front of the evaporator and T EVa, out behind the evaporator. "x" is called the moisture ratio of the air. The moisture ratio of the air can be calculated by the following equation: x = 0 . 62198 p W p Amb - p W
Figure imgb0008

Hier ist pw der Partialdruck des Wasserdampfes in der Luft und pAmb ist der Druck der Luft. pAmb kann entweder gemessen werden oder man verwendet für diese Größe einfach einen Standard-Atmosphärendruck. Die Abweichung des tatsächlichen Drucks vom Standard-Atmosphärendruck spielt keine signifikante Rolle bei der Berechnung der von der Luft abgegebenen Wärmemenge pro Zeit. Der Partialdruck des Wasserdampfes ist durch die relative Feuchtigkeit der Luft und den Partialdruck des Wasserdampfes in gesättigter Luft bestimmt und kann anhand der folgenden Gleichung berechnet werden: p W = p W , Sat R H

Figure imgb0009
Here p w is the partial pressure of the water vapor in the air and p Amb is the pressure of the air. p Amb can either be measured or simply use a standard atmospheric pressure for this size. The deviation of the actual pressure from the standard atmospheric pressure does not play a significant role in the calculation of the amount of heat released by the air per time. The partial pressure of the water vapor is determined by the relative humidity of the air and the partial pressure of the water vapor in saturated air and can be calculated by the following equation: p W = p W . Sat R H
Figure imgb0009

Hierbei ist RH die relative Luftfeuchtigkeit und Pw,sat der Partialdruck des Wasserdampfes in gesättigter Luft. Pw,sat hängt allein von der Lufttemperatur ab und kann in thermodynamischen Nachschlagewerken gefunden werden. Die relative Luftfeuchtigkeit RH kann gemessen werden oder man verwendet bei der Berechnung typische Werte.Here, RH is the relative humidity and Pw, sat is the partial pressure of the water vapor in saturated air. P w, sat depends solely on the air temperature and can be found in thermodynamic reference works. The relative humidity RH can be measured or one uses typical values in the calculation.

Wenn man die Gleichungen (2) und (4) gleichsetzt, wie in Gleichung (1) vorausgesetzt, dann ergibt sich m Ref ( h Ref , out h Ref , in ) = m Air ( h Air , in h Air , out )

Figure imgb0010
If one equates the equations (2) and (4), as assumed in equation (1), then it results m Ref ( H Ref . out - H Ref . in ) = m Air ( H Air . in - H Air . out )
Figure imgb0010

Daraus kann der tatsächliche Luftmassendurchfluß Air gefunden werden, indem man Air isoliert: m Air = m Ref ( h Ref , out h Ref , in ) ( h Air , in h Air , out )

Figure imgb0011
From this, the actual air mass flow rate Air can be found by isolating Air : m Air = m Ref ( H Ref . out - H Ref . in ) ( H Air . in - H Air . out )
Figure imgb0011

Dieser Istwert für den Luftmassendurchfluß Air kann dann mit einem Sollwert verglichen werden und bei wesentlichen Unterschieden zwischen dem Istwert und dem Sollwert kann der Betreiber der Kälteanlage durch eine Fehlermeldung darauf aufmerksam gemacht werden, daß die Anlage nicht optimal läuft.This actual value for the air mass flow rate Air can then be compared with a setpoint value and in the case of significant differences between the actual value and the setpoint, the operator of the refrigeration system can be made aware by an error message that the system is not running optimally.

In vielen Fällen empfiehlt es sich, den Sollwert für den Luftstrom in einer Anlage zu ermitteln. Beispielsweise kann dieser Sollwert als Durchschnittswert über einen gewissen Zeitraum ermittelt werden, in dem die Anlage unter stabilen und fehlerfreien Betriebsbedingungen läuft. Ein derartiger Zeitraum kann beispielsweise 100 Minuten betragen.In many cases, it is advisable to determine the setpoint for the air flow in a system. For example, this setpoint can be determined as an average value over a certain period in which the Plant is running under stable and faultless operating conditions. Such a period may be, for example, 100 minutes.

Eine gewisse Schwierigkeit ergibt sich allerdings dadurch, daß die von den einzelnen Sensoren (Thermometer, Drucksensoren) abgegebenen Signale erheblichen Schwankungen unterworfen sind. Diese Schwankungen können durchaus gegenläufig sein, so daß man für die Größe Air ein Signal erhält, das gewisse Schwierigkeiten bei der Auswertung bietet. Diese Schwankungen sind ein Resultat der dynamischen Verhältnisse im Kühlsystem. Deswegen kann es günstig sein, anstelle der Gleichung (9) in regelmäßigen Zeitabständen, beispielsweise einmal pro Minute, eine Größe zu berechnen, die nachfolgend als "Residuum" bezeichnet wird: r = m Air ( h Air , in h Air , out ) m Ref ( h Ref , out h Ref , in )

Figure imgb0012
m Air
Figure imgb0013
ist ein geschätzter Wert für den Luftmassendurchfluß bei fehlerlosen Betriebsbedingungen. Anstelle einer Schätzung kann man auch einen Wert verwenden, der sich als Mittelwert über einen gewissen Zeitraum aus Gleichung (9) bei fehlerfreien Betriebsbedingungen ermittelt.However, a certain difficulty arises from the fact that the signals emitted by the individual sensors (thermometers, pressure sensors) are subject to considerable fluctuations. These fluctuations may well be in opposite directions, so that one receives a signal for the size Air , which offers certain difficulties in the evaluation. These fluctuations are a result of the dynamic conditions in the cooling system. Therefore, it may be convenient, instead of the equation (9) at regular time intervals, for example once a minute, to calculate a size, which is hereinafter referred to as "Residuum": r = m ~ Air ( H Air . in - H Air . out ) - m Ref ( H Ref . out - H Ref . in )
Figure imgb0012
m ~ Air
Figure imgb0013
is an estimated value for the air mass flow rate under faultless operating conditions. Instead of an estimate, one can also use a value which is determined as an average over a certain period of time from equation (9) under fault-free operating conditions.

Bei einer Anlage, die fehlerfrei läuft, sollte das Residuum r einen Durchschnittswert von Null geben, obwohl es tatsächlich erheblichen Schwankungen unterliegt. Um einen Fehler, der sich durch eine Tendenz des Residuums auszeichnet, frühzeitig erkennen zu können, nimmt man an, daß der ermittelte Wert für das Residuum r normalverteilt um einen Durchschnittswert ist und zwar unabhängig davon, ob die Anlage fehlerlos arbeitet oder ein Fehler aufgetreten ist. Man berechnet dann einen Fehlerindikator Si nach folgender Beziehung: S i = { S i 1 + s i , wenn S i 1 + s i > 0 0 , wenn S i 1 + s i 0

Figure imgb0014
wo si mit der folgenden Gleichung berechnet werden kann: s i = k 1 ( r i μ 0 + μ 1 2 )
Figure imgb0015
For a plant that is flawless, the residual r should give an average of zero, although it is actually subject to significant fluctuations. Around an error characterized by a tendency of the residuum to be able to detect early, it is assumed that the value obtained for the residual r is normally distributed around an average value, irrespective of whether the installation is faultless or an error has occurred. One then calculates an error indicator S i according to the following relationship: S i = { S i - 1 + s i . if S i - 1 + s i > 0 0 . if S i - 1 + s i 0
Figure imgb0014
where s i can be calculated with the following equation: s i = k 1 ( r i - μ 0 + μ 1 2 )
Figure imgb0015

Hierbei ist natürlich vorausgesetzt, daß der Fehlerindikator Si, d.h. zum ersten Zeitpunkt, auf Null gesetzt worden ist. Zu einem späteren Zeitpunkt verwendet man si aus der Gleichung (12) und bildet die Summe aus diesem Wert mit dem Fehlerindikator Si aus einem früheren Zeitpunkt. Wenn diese Summe größer Null ist, wird der Fehlerindikator auf diesen neuen Wert gesetzt. Wenn diese Summe gleich oder kleiner als Null ist, wird der Fehlerindikator auf Null gesetzt. In Gleichung (12) ist k1 eine Proportionalitätskonstante. µ0 kann im einfachsten Fall auf den Wert Null gesetzt werden. µ1 ist ein geschätzter Wert, der sich beispielsweise dadurch ermitteln läßt, daß man einen Fehler erzeugt und den Durchschnittswert des Residuums r bei diesem Fehler ermittelt. Der Wert µ 1 ist ein Kriterium dafür, wie oft man einen falschen Alarm akzeptieren muß. Die beiden µ-Werte werden deswegen auch als Zuverlässigkeits-Werte bezeichnet.Of course, it is assumed that the error indicator S i , ie at the first time, has been set to zero. At a later time, s i is taken from equation (12) and forms the sum of this value with the error indicator S i from an earlier point in time. If this sum is greater than zero, the error indicator is set to this new value. If this sum is equal to or less than zero, the error indicator is set to zero. In equation (12), k 1 is a proportionality constant. μ 0 can be set to the value zero in the simplest case. μ 1 is an estimated value which can be determined, for example, by generating an error and determining the average value of the residual r for this error. The value μ 1 is a criterion for how often you have to accept a false alarm. The two μ values are therefore also referred to as reliability values.

Wenn beispielsweise ein Fehler dadurch auftritt, daß ein Gebläse aus der Gebläseanordnung 7 nicht läuft, dann wird der Fehlerindikator Si größer werden, weil die periodisch ermittelten Werte des Residuums ri im Durchschnitt größer als Null werden. Wenn der Fehlerindikator eine vorbestimmte Größe erreicht hat, dann wird ein Alarm ausgelöst, der anzeigt, daß die Luftzirkulation eingeschränkt ist. Wenn man µ 1 größer macht, bekommt man zwar weniger Fehlalarme, riskiert aber auch ein späteres Entdecken eines Fehlers.For example, if an error occurs because a blower from the fan assembly 7 is not running, then the error indicator S i will become larger because the periodically determined values of the residual r i become greater than zero on average. When the fault indicator reaches a predetermined magnitude, an alarm is triggered indicating that air circulation is restricted. Increasing μ 1 gives you fewer false positives, but it also risks discovering a bug later.

Die Wirkungsweise der Filterung nach Gleichung (11) soll anhand der Fig. 3 und 4 erläutert werden. In Fig. 3 ist nach rechts die Zeit in Minuten und nach oben das Residuum r aufgetragen. Zwischen t = 510 und t = 644 Minuten ist ein Gebläse der Gebläseanordnung 7 ausgefallen. Dies äußert sich in einem erhöhten Wert des Residuums r. Diese Erhöhung ist zwar anhand von Fig. 3 bereits zu erkennen. Eine bessere Erkennungsmöglichkeit ergibt sich jedoch, wenn man den Fehlerindikator Si betrachtet, dessen Verlauf in Fig. 4 dargestellt ist. Hier ist der Fehlerindikator Si nach oben und die Zeit t in Minuten nach rechts aufgetragen. Der Fehlerindikator steigt also in der Zeit zwischen t = 510 Minuten und t = 644 Minuten kontinuierlich an. Man kann beispielsweise beim Überschreiten des Wertes Si von 0,2 x 108 einen Alarm auslösen.The operation of the filtering according to equation (11) will be explained with reference to FIGS. 3 and 4. In Fig. 3, the time in minutes to the right and the residue r is plotted to the right. Between t = 510 and t = 644 minutes, a blower of the fan assembly 7 has failed. This manifests itself in an increased value of the residual r. Although this increase can already be seen with reference to FIG. However, a better recognition possibility results if one looks at the error indicator S i , the course of which is shown in FIG. 4. Here the error indicator S i is plotted upward and the time t in minutes to the right. The error indicator thus increases continuously in the time between t = 510 minutes and t = 644 minutes. One can For example, when exceeding the value S i of 0.2 x 10 8 trigger an alarm.

In der Zeit zwischen t = 700 und t = 824 Minuten wird ebenfalls ein Gebläse der Gebläseanordnung 7 stillgesetzt. Der Fehlerindikator Si steigt weiter an. Zwischen diesen beiden Störungszuständen waren wieder beide Gebläse aktiv. Der Fehlerindikator Si wird also verringert, geht aber nicht auf Null zurück. Der Fehlerindikator Si wird im Fehlerfall zuverlässig erhöht. In der Zeit von 0 bis 510 Minuten bewegt sich der Fehlerindikator Si in der Gegend des Nullpunkts. Der Fehlerindikator Si würde auf Null zurückgehen, wenn die Anlage lange genug fehlerfrei läuft. In der Praxis wird man allerdings den Fehlerindikator Si auf Null setzen, wenn ein Fehler behoben worden ist.In the time between t = 700 and t = 824 minutes, a fan of the fan assembly 7 is also stopped. The error indicator S i continues to increase. Between these two fault conditions both blowers were active again. The error indicator S i is thus reduced, but does not return to zero. The error indicator S i is reliably increased in the event of an error. In the time from 0 to 510 minutes, the error indicator S i moves in the area of the zero point. The error indicator S i would return to zero if the system runs error free long enough. In practice, however, one will set the error indicator S i to zero when an error has been corrected.

Die Fig. 5 und 6 zeigen die Entwicklung des Residuums r und die Entwicklung des Fehlerindikators Si in dem Fall, wo der Verdampfer 8 langsam vereist. Hierbei ist in Fig. 5 das Residuum r und in Fig. 6 der Fehlerindikator Si nach oben aufgetragen, während die Zeit t nach rechts in Minuten aufgetragen ist.Figs. 5 and 6 show the development of the residual r and the development of the error indicator S i in the case where the evaporator 8 is gradually frozen. Here, in Fig. 5, the residual r and in Fig. 6, the error indicator S i is plotted upward, while the time t is applied to the right in minutes.

In Fig. 5 ist zu erkennen, daß der Mittelwert des Residuums r allmählich ansteigt. Es ist allerdings ebenfalls zu erkennen, daß dieser Anstieg mit der für eine Fehlermeldung notwendigen Sicherheit nur schwer quantitativ zu erfassen ist. Bei t = 600 Minuten tritt eine beginnende Vereisung des Verdampfers 8 auf. Erst bei t = 1200 Minuten könnte man eine derartige Vereisung erfassen durch eine verminderte Leistungsfähigkeit der Kälteanlage.In Fig. 5, it can be seen that the mean value of the residual r gradually increases. However, it can also be seen that this increase is difficult to quantify with the necessary security for an error message. At t = 600 minutes incipient icing of the evaporator 8 occurs. Only at t = 1200 minutes could one capture such icing due to a reduced capacity of the refrigeration system.

Wenn man beispielsweise den Grenzwert für den Fehlerindikator auf 1 x 107 setzt, dann würde ein Fehler bereits bei etwa t = 750 Minuten entdeckt werden, also wesentlich früher, als durch eine verminderte Leistungsfähigkeit der Anlage.If, for example, the limit value for the error indicator is set to 1 × 10 7 , then an error would already be detected at about t = 750 minutes, ie much earlier than through a reduced performance of the system.

Das Verfahren kann auch dazu verwendet werden, einen Abtauvorgang zu starten. Der Abtauvorgang wird dann gestartet, wenn der Fehlerindikator Si eine vorbestimmte Größe erreicht.The method can also be used to start a defrost process. The defrost operation is started when the error indicator S i reaches a predetermined size.

Vorteilhaft bei diesem Verfahren ist ein frühes Entdecken von Fehlern, obwohl nicht mehr Sensoren verwendet werden, als bei einer typischen Anlage vorhanden sind. Die Fehler werden entdeckt, bevor sie höhere Temperaturen in der Kälteanlage bewirken. Auch werden Fehler entdeckt, bevor die Anlage nicht mehr optimal läuft, wenn man die verbrauchte Energie als Maß nimmt.An advantage of this method is early detection of errors, although not more sensors are used than are present in a typical system. The faults are detected before they cause higher temperatures in the refrigeration system. Also, errors are detected before the system no longer runs optimally, taking the energy consumed as a measure.

Dargestellt wurde die Überwachung der Luftströme am Verdampfer 8. Selbstverständlich kann man eine ähnliche Überwachung auch am Kondensator 10 durchführen. In diesem Fall sind die Berechnungen sogar einfacher, weil keine Luftfeuchtigkeit der Umgebungsluft entnommen wird, wenn die Luft den Kondensator 10 passiert. Dementsprechend kondensiert auch kein Wasser aus der Luft am Kondensator 10, weil dieser wärmer ist. Nachteilig ist es bei der Verwendung des Verfahrens am Kondensator 10, daß zwei zusätzliche Temperaturfühler erforderlich sind, die die Temperatur der Luft vor und nach dem Kondensator messen.The monitoring of the air flows at the evaporator 8 was shown. Of course, similar monitoring can also be carried out on the condenser 10. In this case, the calculations are even easier, because no humidity of the ambient air is removed when the air passes through the condenser 10. Accordingly, no water from the air condenses on the condenser 10 because it is warmer. It is disadvantageous when using the method on the capacitor 10 that two additional temperature sensors are needed to measure the temperature of the air before and after the condenser.

Beschrieben wurde das Verfahren für den Fall, daß der Luftstrom konstant ist und eine Anpassung an unterschiedliche Kälteleistungs-Anforderungen dadurch erzielt wird, daß der Luftstrom intermittierend erzeugt wird. Es ist aber prinzipiell auch möglich, in gewissen Grenzen eine Variation des Luftstromes zuzulassen, wenn man zusätzlich die Antriebsleistung oder die Drehzahl der Gebläse berücksichtigt.The method has been described for the case where the air flow is constant and an adaptation to different cooling performance requirements is achieved by the air flow is generated intermittently. However, it is in principle also possible to allow within certain limits, a variation of the air flow, if one additionally takes into account the drive power or the speed of the blower.

Das Verfahren zur Entdeckung von Änderungen in dem ersten Medienstrom kann auch bei Anlagen verwendet werden, die mit einer indirekten Kühlung arbeiten. Bei solchen Anlagen hat man einen primären Medienstrom, in dem Kältemittel zirkuliert, und einen sekundären Medienstrom, wo ein Kälteträger, z.B. Sole, zirkuliert. Im Verdampfer kühlt der erste Medienstrom den zweiten Medienstrom. Der zweite Medienstrom kühlt dann z.B. die Luft in einem Wärmetauscher. Man kann dieses Verfahren am Verdampfer, aber auch am Luft/Kälteträger-Wärmetauscher verwenden. An der Luftseite des Wärmetauschers ändern sich die Berechnungen nicht. Die Enthalpiesteigerung kann, wenn der Kälteträger im Wärmetauscher nicht einem Verdampfungsprozeß unterzogen wird, sondern nur einer Temperatursteigerung, mit der nachfolgenden Formel berechnet werden: Q K T = c m K T ( T nach T vor )

Figure imgb0016

wobei c die spezifische Wärmekapazität der Sole, Tnach die Temperatur nach dem Wärmetauscher, Tvor die Temperatur vor dem Wärmetauscher und m KT der Massenstrom des Kälteträgers ist. Die Konstante c kann in Nachschlagewerken gefunden werden, während die beiden Temperaturen gemessen werden können, z.B. mit Temperaturfühlern. Der Massenstrom m KT kann durch einen Massendurchflußmesser bestimmt werden. Andere Möglichkeiten sind natürlich auch denkbar. QKT ersetzt dann in den weiteren Berechnungen QRef.The method of detecting changes in the first media stream may also be used on installations that operate with indirect cooling. In such plants, one has a primary media stream in which refrigerant circulates and a secondary media stream where a refrigerant, eg brine, circulates. In the evaporator, the first medium flow cools the second medium flow. The second media stream then cools, for example, the air in a heat exchanger. One can use this method on the evaporator, but also on the air / brine heat exchanger. On the air side of the heat exchanger, the calculations do not change. The enthalpy increase, if the brine in the heat exchanger is not subjected to an evaporation process but only to an increase in temperature, can be calculated by the following formula: Q K T = c m K T ( T to - T in front )
Figure imgb0016

where c is the specific heat capacity of the brine, T after the temperature after the heat exchanger, T before the temperature before the heat exchanger and m KT is the mass flow of the brine. The constant c can be found in reference works, while the two temperatures can be measured, eg with temperature sensors. The mass flow m KT can be determined by a mass flow meter . Of course, other options are also conceivable. Q KT then replaces Q Ref in the further calculations.

Claims (12)

  1. Method for determining changes in a first medium flow in a heat or cold carrying medium in a refrigeration system, in which the first medium flow is led through a heat exchanger, in which a heat transition between the first medium flow and a second medium flow of a heat or cold carrying medium takes place, characterised in that to monitor the first medium flow through the heat exchanger the enthalpy change of the second medium flow or a value derived from that is determined.
  2. Method according to claim 1, characterised in that to determine the enthalpy change of the second medium flow, a mass flow and a specific enthalpy difference of the second medium flow over the heat exchanger are determined.
  3. Method according to claim 2, characterised in that to determine the specific enthalpy difference of the second medium flow, at the inlet of the expansion valve the temperature and the pressure of the second medium flow are determined and at the outlet of the heat exchanger the temperature of the second medium flow and either the pressure at the outlet of the heat exchanger or the boiling temperature of the second medium flow at the inlet of the heat exchanger are determined.
  4. Method according to one of the claims 1 to 3, characterised in that a specific enthalpy difference of the first medium flow over the heat exchanger is determined.
  5. Method according to one of the claims 2 to 4, characterised in that the second medium flow is determined on the basis of a pressure difference over and the opening degree of an expansion valve.
  6. Method according to one of the claims 2 to 4, characterised in that the second medium flow is determined on the basis of operation data and a difference of the absolute pressures over a compressor together with the temperature of the second medium flow at the compressor.
  7. Method according to claim 5 or 6, characterised in that the first medium flow is determined on the basis of the second medium flow and a quotient of the specific enthalpy difference of the second medium flow and the specific enthalpy difference of the first medium flow over the heat exchanger.
  8. Method according to one of the claims 5 to 7, characterised in that the first medium flow is compared with a nominal value.
  9. Method according to one of the claims 5 to 7, characterised in that a residual is formed as a difference between a first value, which is formed by a prespecified mass flow of the first medium flow and the specific enthalpy difference, and a second value, which corresponds to the enthalpy change of the second medium flow, the residual being monitored.
  10. Method according to claim 9, characterised in that a medium value over a predetermined period of time is used as prespecified mass flow of the first medium flow.
  11. Method according to claim 9 or 10, characterised in that by means of the residual a fault indicator Si is formed according to the following specification: S i = { S i 1 + s i , wenn S i 1 + s i > 0 0 , wenn S i 1 + s i 0
    Figure imgb0019
    with s i = k 1 ( r i μ 0 + μ 1 2 )
    Figure imgb0020
    ri: Residual
    k1: Proportionality constant
    µ0: First reliability value
    µ1: Second reliability value.
  12. Method according to one of the claims 1 to 11, characterised in that a defrosting is started, when a predetermined change is discovered.
EP03746812A 2002-04-22 2003-04-12 Method for detecting changes in a first flux of a heat or cold transport medium in a refrigeration system Expired - Lifetime EP1497597B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10217975 2002-04-22
DE10217975A DE10217975B4 (en) 2002-04-22 2002-04-22 Method for detecting changes in a first media stream of a heat or cold transport medium in a refrigeration system
PCT/DK2003/000251 WO2003089854A1 (en) 2002-04-22 2003-04-12 Method for detecting changes a first flux of a heat or cold transport medium in a refrigeration system

Publications (2)

Publication Number Publication Date
EP1497597A1 EP1497597A1 (en) 2005-01-19
EP1497597B1 true EP1497597B1 (en) 2006-10-18

Family

ID=29224662

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03746812A Expired - Lifetime EP1497597B1 (en) 2002-04-22 2003-04-12 Method for detecting changes in a first flux of a heat or cold transport medium in a refrigeration system

Country Status (8)

Country Link
US (1) US7685830B2 (en)
EP (1) EP1497597B1 (en)
JP (1) JP2005533230A (en)
AT (1) ATE343108T1 (en)
AU (1) AU2003226943A1 (en)
DE (1) DE10217975B4 (en)
DK (1) DK1497597T3 (en)
WO (1) WO2003089854A1 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10217974B4 (en) * 2002-04-22 2004-09-16 Danfoss A/S Method for evaluating an unmeasured operating variable in a refrigeration system
DE60309181T2 (en) * 2002-07-08 2007-08-30 Danfoss A/S METHOD AND DEVICE FOR DISCOVERING FLASH GAS
WO2004036170A1 (en) * 2002-10-15 2004-04-29 Danfoss A/S A method and a device for detecting an abnormality of a heat exchanger, and the use of such a device
US7412842B2 (en) 2004-04-27 2008-08-19 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system
US7275377B2 (en) 2004-08-11 2007-10-02 Lawrence Kates Method and apparatus for monitoring refrigerant-cycle systems
US7905100B2 (en) * 2004-12-16 2011-03-15 Danfoss A/S Method for controlling temperature in a refrigeration system
ES2510665T3 (en) * 2005-02-24 2014-10-21 Mitsubishi Electric Corporation Air conditioning system
EP1942306B1 (en) * 2005-10-25 2019-05-08 Mitsubishi Electric Corporation Air-conditioning apparatus, method of refrigerant filling in air-conditioning apparatus, method of judging state of refrigerant filling in air-conditioning apparatus, and method of refrigerant filling/piping cleaning for air-conditioning apparatus
US8316926B2 (en) * 2005-10-31 2012-11-27 General Cybernation Group Inc. Arrangement and method for automatically determined time constant for a control device
RU2376530C1 (en) 2006-02-10 2009-12-20 Данфосс А/С Control method of system with high thermal capacity
US8590325B2 (en) * 2006-07-19 2013-11-26 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US20080216494A1 (en) 2006-09-07 2008-09-11 Pham Hung M Compressor data module
US20080179408A1 (en) * 2007-01-30 2008-07-31 Johnson Controls Technology Company Sensor-free optimal control of air-side economizer
US7827813B2 (en) * 2007-01-30 2010-11-09 Johnson Controls Technology Company Adaptive real-time optimization control
CN101765750B (en) * 2007-06-12 2012-03-21 丹福斯有限公司 A method for controlling a refrigerant distribution
WO2008151630A1 (en) * 2007-06-12 2008-12-18 Danfoss A/S A method for controlling a vapour compression system
WO2009012269A2 (en) * 2007-07-17 2009-01-22 Johnson Controls Technology Company Extremum seeking control with actuator saturation control
WO2009012282A2 (en) 2007-07-17 2009-01-22 Johnson Controls Technology Company Extremum seeking control with reset control
US20090037142A1 (en) 2007-07-30 2009-02-05 Lawrence Kates Portable method and apparatus for monitoring refrigerant-cycle systems
US8393169B2 (en) 2007-09-19 2013-03-12 Emerson Climate Technologies, Inc. Refrigeration monitoring system and method
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
EP2128551A1 (en) * 2008-05-29 2009-12-02 Siemens Aktiengesellschaft Monitoring of heat exchangers in process control systems
US8788097B2 (en) 2009-06-22 2014-07-22 Johnson Controls Technology Company Systems and methods for using rule-based fault detection in a building management system
US8532839B2 (en) 2009-06-22 2013-09-10 Johnson Controls Technology Company Systems and methods for statistical control and fault detection in a building management system
US10739741B2 (en) 2009-06-22 2020-08-11 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US9286582B2 (en) 2009-06-22 2016-03-15 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US9606520B2 (en) 2009-06-22 2017-03-28 Johnson Controls Technology Company Automated fault detection and diagnostics in a building management system
US9753455B2 (en) * 2009-06-22 2017-09-05 Johnson Controls Technology Company Building management system with fault analysis
US8731724B2 (en) 2009-06-22 2014-05-20 Johnson Controls Technology Company Automated fault detection and diagnostics in a building management system
US11269303B2 (en) 2009-06-22 2022-03-08 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US9196009B2 (en) 2009-06-22 2015-11-24 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US8600556B2 (en) * 2009-06-22 2013-12-03 Johnson Controls Technology Company Smart building manager
WO2011100255A2 (en) * 2010-02-09 2011-08-18 Johnson Controls Technology Company Systems and methods for measuring and verifying energy savings in buildings
WO2012118830A2 (en) 2011-02-28 2012-09-07 Arensmeier Jeffrey N Residential solutions hvac monitoring and diagnosis
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9390388B2 (en) 2012-05-31 2016-07-12 Johnson Controls Technology Company Systems and methods for measuring and verifying energy usage in a building
CH706736A1 (en) * 2012-07-09 2014-01-15 Belimo Holding Ag Process for operating a heat exchanger and HVAC system for performing the process.
US9480177B2 (en) 2012-07-27 2016-10-25 Emerson Climate Technologies, Inc. Compressor protection module
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
WO2014144446A1 (en) 2013-03-15 2014-09-18 Emerson Electric Co. Hvac system remote monitoring and diagnosis
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
AU2014248049B2 (en) 2013-04-05 2018-06-07 Emerson Climate Technologies, Inc. Heat-pump system with refrigerant charge diagnostics
DE112014005249T5 (en) 2013-11-18 2016-08-25 Thermo King Corporation System and method for temperature control for a transport refrigeration system
EP3032194A1 (en) * 2014-12-12 2016-06-15 Danfoss A/S A method for controlling a supply of refrigerant to an evaporator including calculating a reference temperature
US9778639B2 (en) 2014-12-22 2017-10-03 Johnson Controls Technology Company Systems and methods for adaptively updating equipment models
EP3377951B1 (en) 2015-11-19 2019-11-06 Carrier Corporation Diagnostics system for a chiller and method of evaluating performance of a chiller
WO2019001683A1 (en) 2017-06-26 2019-01-03 Siemens Aktiengesellschaft Method and device for monitoring a heat exchanger
EP3587962B1 (en) 2018-06-22 2020-12-30 Danfoss A/S A method for terminating defrosting of an evaporator by use of air temperature measurements
US20220207454A1 (en) * 2019-04-30 2022-06-30 Pfizer Inc. Real-time tracking and management of standard workflows
CN112013999A (en) * 2020-08-25 2020-12-01 国网北京市电力公司 Device for measuring heating capacity

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2295992A (en) * 1941-01-09 1942-09-15 Chrysler Corp Flash gas control for refrigerating systems
US3171462A (en) * 1962-10-10 1965-03-02 Jr Thodore J Reinhart Toroidal pneumatic tire
US3707851A (en) * 1970-10-28 1973-01-02 Mach Ice Co Refrigeration system efficiency monitor
US3918300A (en) * 1974-01-03 1975-11-11 Aaron Weisstuch Heat transfer measuring device
DE2451361A1 (en) * 1974-10-29 1976-05-06 Jakob Coolant circulation in refrigerator of cold-storage plant - controlled drive-motor speeds maintain constant temperature at expansion valve
US4136528A (en) * 1977-01-13 1979-01-30 Mcquay-Perfex Inc. Refrigeration system subcooling control
US4193781A (en) * 1978-04-28 1980-03-18 Mcquay-Perfex Inc. Head pressure control for heat reclaim refrigeration systems
CA1146650A (en) 1979-10-01 1983-05-17 Lee E. Sumner, Jr. Microcomputer based fault detection and indicator control system
JPS5919273B2 (en) * 1979-12-05 1984-05-04 株式会社日立製作所 Condenser performance monitoring method
SE8006391L (en) * 1980-09-12 1982-03-13 Jacob Weitman WAY TO CONTROL A SWITCH EXCHANGE
US4325223A (en) * 1981-03-16 1982-04-20 Cantley Robert J Energy management system for refrigeration systems
JPS591970A (en) * 1982-06-25 1984-01-07 株式会社日立製作所 Controller for flow rate of refrigerant
US4510576A (en) * 1982-07-26 1985-04-09 Honeywell Inc. Specific coefficient of performance measuring device
US4479727A (en) * 1982-09-01 1984-10-30 Carrier Corporation Apparatus and method for evaluating the performance of a heat exchanger
SE439063B (en) * 1983-06-02 1985-05-28 Henrik Sven Enstrom PROCEDURE AND DEVICE FOR TESTING AND PERFORMANCE MONITORING IN HEAT PUMPS AND COOLING INSTALLATIONS
US4614087A (en) * 1983-08-09 1986-09-30 Nihon Radiator Co., Ltd. Apparatus for alarming abnormal coolant in space cooling cycle
KR890001890B1 (en) 1984-03-23 1989-05-30 더 뱁콕 앤드 윌콕스 컴퍼니 Heat exchanger performance monita
US4766553A (en) * 1984-03-23 1988-08-23 Azmi Kaya Heat exchanger performance monitor
US4624502A (en) * 1984-11-21 1986-11-25 Boole Leon J Portable drawer assembly
US4621502A (en) 1985-01-11 1986-11-11 Tyler Refrigeration Corporation Electronic temperature control for refrigeration system
CH670311A5 (en) * 1985-06-17 1989-05-31 Bbc Brown Boveri & Cie
SE454020B (en) * 1986-02-21 1988-03-21 Etm Metteknik Ab SET FOR DETERMINING A COOLING PROCESS BY ADOPTING CERTAIN PARAMETERS, BEFORE ALL THE COMPRESSOR EFFECTIVE
JPS6371625A (en) 1986-09-16 1988-04-01 Mitsubishi Heavy Ind Ltd Measuring device for heat absortion quantity of heat conduction pipe
US4768346A (en) * 1987-08-26 1988-09-06 Honeywell Inc. Determining the coefficient of performance of a refrigeration system
US4885914A (en) * 1987-10-05 1989-12-12 Honeywell Inc. Coefficient of performance deviation meter for vapor compression type refrigeration systems
JPH01174870A (en) 1987-12-28 1989-07-11 Toshiba Corp Device for diagnosis of refrigerator
GB9008788D0 (en) 1990-04-19 1990-06-13 Whitbread & Co Plc Diagnostic equipment
EP0470676A3 (en) 1990-08-09 1992-09-16 Riccius + Stroschen Gmbh Procedure to determine the state of clogging of heat conducting tubes
US5079930A (en) * 1990-12-03 1992-01-14 Atron, Inc. Apparatus and method for monitoring refrigeration system
DE4119020A1 (en) 1991-06-09 1992-12-10 Braun Ag HAIR DRYER
DE4207144A1 (en) 1992-03-06 1993-09-09 Bayer Ag METHOD FOR REGULATING HEAT EXCHANGERS
JPH05264136A (en) 1992-03-24 1993-10-12 Mitsubishi Electric Corp Heat exchanger contaminat detector for air conditioner
US5289692A (en) * 1993-01-19 1994-03-01 Parker-Hannifin Corporation Apparatus and method for mass flow control of a working fluid
US5341649A (en) * 1993-03-05 1994-08-30 Future Controls, Inc. Heat transfer system method and apparatus
JPH07234043A (en) * 1994-02-22 1995-09-05 Hitachi Building Syst Eng & Service Co Ltd Method for knowing capacity of indoor-side heat exchanger in air conditioning equipment
US5623426A (en) * 1994-02-23 1997-04-22 Sanyo Electric Co., Ltd. Failure diagnosing system for absorption chillers
US5457965A (en) * 1994-04-11 1995-10-17 Ford Motor Company Low refrigerant charge detection system
US5596507A (en) * 1994-08-15 1997-01-21 Jones; Jeffrey K. Method and apparatus for predictive maintenance of HVACR systems
US5623834A (en) * 1995-05-03 1997-04-29 Copeland Corporation Diagnostics for a heating and cooling system
US5615733A (en) * 1996-05-01 1997-04-01 Helio-Compatic Corporation On-line monitoring system of a simulated heat-exchanger
US6128910A (en) * 1997-02-06 2000-10-10 Federal Air Conditioning Technologies, Inc. Diagnostic unit for an air conditioning system
US6089033A (en) * 1999-02-26 2000-07-18 Dube; Serge High-speed evaporator defrost system
US6321564B1 (en) * 1999-03-15 2001-11-27 Denso Corporation Refrigerant cycle system with expansion energy recovery
US6225907B1 (en) * 1999-05-14 2001-05-01 International Comfort Products Corporation (Usa) Environmental control system incipient failure indicator apparatus
US6223544B1 (en) * 1999-08-05 2001-05-01 Johnson Controls Technology Co. Integrated control and fault detection of HVAC equipment
US6330802B1 (en) * 2000-02-22 2001-12-18 Behr Climate Systems, Inc. Refrigerant loss detection
JP2001255046A (en) 2000-03-13 2001-09-21 Sanyo Electric Co Ltd Refrigeration system
US6272868B1 (en) * 2000-03-15 2001-08-14 Carrier Corporation Method and apparatus for indicating condenser coil performance on air-cooled chillers
GB0014972D0 (en) * 2000-06-19 2000-08-09 Borealis Tech Oy Degassing apparatus
CA2344908C (en) 2000-07-20 2010-06-15 Siemens Building Technologies, Inc. Model based fault detection and diagnosis methodology for hvac subsystems
US7139564B2 (en) * 2000-08-08 2006-11-21 Hebert Thomas H Wireless communication device for field personnel
US6460358B1 (en) * 2000-11-13 2002-10-08 Thomas H. Hebert Flash gas and superheat eliminator for evaporators and method therefor
JP3951711B2 (en) * 2001-04-03 2007-08-01 株式会社デンソー Vapor compression refrigeration cycle
EP1393004B1 (en) 2001-05-03 2008-08-27 Matts Lindgren Method and arrangement for controlling the temperature of the outstream flow from a heat exchanger and measuring produced heat
US6701725B2 (en) * 2001-05-11 2004-03-09 Field Diagnostic Services, Inc. Estimating operating parameters of vapor compression cycle equipment
US6658373B2 (en) 2001-05-11 2003-12-02 Field Diagnostic Services, Inc. Apparatus and method for detecting faults and providing diagnostics in vapor compression cycle equipment
US6590362B2 (en) * 2001-07-27 2003-07-08 Texas A&M University System Method and system for early detection of incipient faults in electric motors
DE10217974B4 (en) * 2002-04-22 2004-09-16 Danfoss A/S Method for evaluating an unmeasured operating variable in a refrigeration system
DE60309181T2 (en) * 2002-07-08 2007-08-30 Danfoss A/S METHOD AND DEVICE FOR DISCOVERING FLASH GAS
US6973793B2 (en) 2002-07-08 2005-12-13 Field Diagnostic Services, Inc. Estimating evaporator airflow in vapor compression cycle cooling equipment
WO2004036170A1 (en) * 2002-10-15 2004-04-29 Danfoss A/S A method and a device for detecting an abnormality of a heat exchanger, and the use of such a device

Also Published As

Publication number Publication date
US7685830B2 (en) 2010-03-30
DE10217975B4 (en) 2004-08-19
DK1497597T3 (en) 2007-03-12
JP2005533230A (en) 2005-11-04
DE10217975A1 (en) 2003-11-13
AU2003226943A1 (en) 2003-11-03
US20050172647A1 (en) 2005-08-11
ATE343108T1 (en) 2006-11-15
EP1497597A1 (en) 2005-01-19
WO2003089854A1 (en) 2003-10-30

Similar Documents

Publication Publication Date Title
EP1497597B1 (en) Method for detecting changes in a first flux of a heat or cold transport medium in a refrigeration system
DE3928430C1 (en)
DE102004044990A1 (en) System and method for detecting coolant leaks
EP1965158A2 (en) Method for calibrating a cooling assembly and cooling assembly
DE60103107T2 (en) A refrigerated sales facility and method for operating a refrigerated sales facility
EP2154435A2 (en) Cooking device and method for monitoring a cooking process
EP1497598B1 (en) Method for evaluating a non-measured operating variable in a refrigeration plant
AT520000A2 (en) Refrigerant circuit of a refrigeration system with an arrangement for defrosting a heat exchanger and method for operating the refrigerant circuit
DE60309181T2 (en) METHOD AND DEVICE FOR DISCOVERING FLASH GAS
DE4330925A1 (en) Cooling unit (refrigerator) for a switchgear cabinet or an electronics housing having an icing protection device
EP1350068B1 (en) Method for regulating a cooling appliance
EP1916490B1 (en) Thawing control method
DE4105880A1 (en) METHOD AND DEVICE FOR OPTIMIZING THE PERFORMANCE AND DEFROSTING OF REFRIGERANT EVAPORATORS
DE102015119362A1 (en) Cooling system and method of operating the cooling system
EP3244142A1 (en) Method for operating and de-icing a modular cooling system
DE102022109395A1 (en) Cooling device for an object and method for operating a cooling device for an object
DE10011110B4 (en) Process for detecting faults in a cooling system
DE102020130850B3 (en) Method for detecting leaks in a refrigeration circuit of a compression refrigeration machine and leak detection system
DE10015159C2 (en) Control device and control method for a refrigeration system
DE102022125945A1 (en) Method for controlling the filling level of an oil separator for a refrigeration circuit
EP3076109A1 (en) Cooling system and method for operating the cooling system
DE202022002793U1 (en) Cooling device for an object
WO2020120240A1 (en) Refrigeration appliance and method for initialising a defrosting operation in a refrigeration appliance
EP4212786A1 (en) Method for defrosting an air inlet grid of an evaporator of an air heat pump, device for carrying out the method and computer program product
DD226355A1 (en) METHOD AND DEVICE FOR INTRODUCING THE DEFROSTING OF TIRE TREATMENT TO EVAPORATORS OF COZY FACILITIES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: IZADI-ZAMANABAD, ROOZBEH

Inventor name: THYBO, CLAUS

Inventor name: RASMUSSEN, BJARNE, DINDLER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: IZADI-ZAMANABAD, ROOZBEH

Inventor name: RASMUSSEN, BJARNE, DINDLER

Inventor name: THYBO, CLAUS

RTI1 Title (correction)

Free format text: METHOD FOR DETECTING CHANGES IN A FIRST FLUX OF A HEAT OR COLD TRANSPORT MEDIUM IN A REFRIGERATION SYSTEM

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070129

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070118

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070319

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070719

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: DANFOSS A/S

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070419

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20130410

Year of fee payment: 11

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20140430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200326

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200312

Year of fee payment: 18

Ref country code: GB

Payment date: 20200401

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210412

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200412