EP1916490B1 - Thawing control method - Google Patents

Thawing control method Download PDF

Info

Publication number
EP1916490B1
EP1916490B1 EP07015726.8A EP07015726A EP1916490B1 EP 1916490 B1 EP1916490 B1 EP 1916490B1 EP 07015726 A EP07015726 A EP 07015726A EP 1916490 B1 EP1916490 B1 EP 1916490B1
Authority
EP
European Patent Office
Prior art keywords
nominal
frost formation
estimated
accordance
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07015726.8A
Other languages
German (de)
French (fr)
Other versions
EP1916490A1 (en
Inventor
Heiko Dreisbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wurm & Co KG Elektronische Systeme GmbH
Original Assignee
Wurm & Co KG Elektronische Systeme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wurm & Co KG Elektronische Systeme GmbH filed Critical Wurm & Co KG Elektronische Systeme GmbH
Publication of EP1916490A1 publication Critical patent/EP1916490A1/en
Application granted granted Critical
Publication of EP1916490B1 publication Critical patent/EP1916490B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/02Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • F25D23/023Air curtain closures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/14Sensors measuring the temperature outside the refrigerator or freezer

Definitions

  • the invention relates to a method for controlling the defrosting of an evaporator of a refrigerated cabinet.
  • Refrigerated cabinets are used, for example, as open sales refrigerated cabinets for the normal refrigeration or deep-freezing of food in supermarkets or the like.
  • the evaporator of the refrigerated cabinet serves to absorb heat from the product to be cooled and the air surrounding the goods. In this case, it comes as a result of the moisture contained in the ambient air over time to icing of the evaporator, which undesirably reduces the efficiency of the device. Particularly serious is this ice formation on the evaporator with open cooling furniture, in which constantly fresh ambient air and thus additional moisture reaches the evaporator. The evaporator must be defrosted regularly.
  • the evaporator For this purpose, it is known to equip the evaporator with an optionally activatable electric heater. Especially for the deep-freezing, a so-called hot gas defrosting is known in which heated gaseous refrigerant is passed through the heat exchanger tubes of the evaporator.
  • the problem is the detection of the actual degree of icing of the evaporator.
  • it is defrosted according to predetermined time intervals without taking into account the particular installation or environmental conditions of the furniture.
  • the defrost is therefore associated with an unnecessary energy demand, and the goods stored in the refrigerated cabinet may be affected by too frequent or unnecessary defrosting processes.
  • the degree of icing can be assessed by the melting time measured during the defrost, which is needed to melt off the ice buildup.
  • the disadvantage here is that the assessment is done only for the past.
  • an actual ice formation on the evaporator ie an amount of ice (mass or volume) or an ice formation rate
  • an ambient temperature and the ambient humidity are measured and taken into account. These measurements usually do not require significant additional effort
  • a central measurement of the ambient temperature and the humidity is usually carried out anyway, and these measured values are transmitted to the respective control device of the refrigerated cabinets or a central control device.
  • a nominal ice formation at the evaporator is estimated according to a predetermined nominal operating point of the refrigerated appliance or its evaporator, namely at least in accordance with a nominal ambient temperature and / or a nominal air humidity, whereby the determination of the nominal ice formation is analogous to the determination of the aforementioned actual ice formation is made.
  • Said nominal operating point may for example correspond to the nominal ambient temperature and / or the nominal air humidity of a climate class according to the standard EN441 or a comparable standard (for example EN23953), e.g. 25 ° C and 60% relative humidity for climate class "3".
  • a nominal icing rate of the evaporator is known for the rated operating point of the evaporator considered.
  • This rated icing rate may be determined empirically by the operator for the particular refrigerated cabinet and / or specified by the refrigeration cabinet manufacturer.
  • the named rated operating point of the evaporator is chosen in particular such that it corresponds to the worst-case expected environmental conditions (eg highest expected temperature and highest expected relative humidity at the installation site of the refrigerator).
  • the associated rated icing rate is, in particular, the icing rate that corresponds to these worst case expected environmental conditions.
  • the starting point for the method is therefore a nominal rate of icing, the consideration of which also applies to the most unfavorable environmental conditions to be expected (eg according to the ambient conditions according to a special climate class according to EN441) is sufficient for a timely defrost.
  • the stated nominal icing rate may be a defrost interval (ie a time interval between two consecutive defrosting dates) or else the specification of an ice formation volume or an ice formation mass per unit time.
  • the actual ice formation (based on the measurements) and the estimated (based on the respective nominal values) nominal ice formation are determined. Ice formation in relation to each other, for example - but not necessarily - by quotient formation, and this ratio is in turn set in relation to the aforementioned nominal icing rate, for example by multiplication or division.
  • This ratio formation ultimately causes a delay in the determined defrosting dates with respect to the nominal icing rate or defrosting dates assumed for the worst-case environmental conditions, or it determines the proportion by which the actual ice formation deviates from the nominal ice formation, respectively depending on the deviation of the measured real conditions from the nominal conditions.
  • a particular advantage of this method is the consideration of a climate class already specified by the device manufacturer (whereby the nominal ambient temperature and the nominal air humidity are specified) or a nominal freezing rate already known for such a nominal operating point of the evaporator anyway (eg nominal -Abtauintervall).
  • a nominal freezing rate already known for such a nominal operating point of the evaporator anyway (eg nominal -Abtauintervall).
  • Fig. 1 is a here on its front open cooling cabinet only shown schematically.
  • the refrigerator has an evaporator V.
  • This is integrated in a conventional manner in a known refrigerant circuit, ie, the evaporator V is connected in the flow direction of the refrigerant, for example with a compressor, a condenser and an expansion valve.
  • FIG. 1 shown different air flows.
  • an air flow 1 is guided in the refrigerator to the evaporator V.
  • the air is cooled at the evaporator V and leaves it as air flow 2.
  • the cooled air is discharged as air stream 3.
  • the cooled air flows along the front of the cabinet curtain down (air flow 4), wherein the goods arranged in the refrigerated goods is cooled.
  • air stream 4 air from the environment U (air stream 5) mixed.
  • the air temperature at the outlet A for example, about + 2 ° C and at the air inlet E of the refrigerator furniture approx. + 5 ° C.
  • Fig. 1 In addition, the temperatures at the air outlet A, in the environment U, at the air inlet E and at the evaporator V prevailing temperatures T, the relative humidity rF and the absolute humidity (water content) x are shown.
  • the measured values used in the context of the method according to the invention are each surrounded by a circle, wherein a solid line indicates a mandatory measured value and a dashed line indicates an optional measured value.
  • a respective rectangular border indicates a calculated value, and optional calculations are again indicated by a dashed line.
  • the respective water content x absolute humidity
  • the (volume or mass specific) actual ice formation on the evaporator is estimated.
  • at least the ambient temperature Tu and the relative humidity rFu of the environment are measured.
  • the water content x U of the ambient air stream 5 mixed with the cooling air flow 4 is known (Mollier diagram).
  • the absolute humidity x A at the air outlet A can be equated with the water content x V at the evaporator V.
  • the absolute water content x remains constant. It can also be reasonably assumed that the air at the evaporator V cools down to the dew point or below the dew point (relative humidity rFv at the evaporator V of 100%).
  • the water content x V or x A can be determined directly from the temperature Tv at the evaporator V (Mollier diagram). This value in turn can be measured by means of the temperature sensor, which is usually present at the evaporator V anyway. Alternatively, neglecting the above-mentioned heating, the temperature T A at the air outlet A may be used instead of the temperature Tv at the evaporator V.
  • the absolute humidity x E at the air inlet E is - as already mentioned - determined taking into account the fact that the at the air outlet
  • a output cooling air (air stream 3) an air stream 5 from the environment U is mixed.
  • the absolute humidity x E is therefore determined according to a mixing rule (mixture of the air masses located at different temperature levels), whereby the accumulating condensate quantities are specific, ie based in each case on a defined air mass (eg one kilogram).
  • a mixing temperature T 1 results for the air flow 1 at the air inlet E, which can initially be deduced from the temperatures T 4 and T 5 of the air flows 4 and 5 as well as from the corresponding masses and heat capacities:
  • c i denotes the respective specific mixing heat capacity of the air and the water content at a given temperature and relative humidity.
  • the heat capacity c i can be assumed to be constant as a simplification. It can be estimated that the errors caused by neglecting the unequal heat capacities of air and water are minor and that the above simplifications only make equation (2) "safer" as they ultimately lead to larger calculated condensate quantities at the evaporator V.
  • the temperature T 1 corresponds to that in connection with Fig. 1 said inlet temperature T E and can be measured by means of a arranged at the air inlet E of the refrigerator furniture temperature sensor.
  • the temperature T 3 corresponds to the outlet temperature T A of the air outlet A according to Fig. 1 ;
  • An associated temperature sensor can also be provided for this purpose, or the outlet temperature T A is equated with the temperature T V at the evaporator V for the sake of simplicity.
  • the temperature T 5 finally corresponds to the ambient temperature Tu according to Fig.
  • the absolute humidity x E at the air inlet E is the sum of the water content of the air flows 4 and 5 according to Fig. 1 ,
  • x e x A ⁇ m 3 - x A ⁇ m 6 + x U ⁇ m 5 m 3
  • the absolute humidity x E can be calculated as a value related to the recirculated air mass.
  • the absolute humidity x A at the air outlet A can namely be set equal to the water content x V of the air at the evaporator V, which in turn can be estimated from the temperature Tv measured at the evaporator V and from the assumption that the dew point is reached or undershot, as already explained above.
  • the absolute humidity x U of the ambient air can be calculated from the measured ambient temperature Tu and relative humidity rFu (Mollier diagram).
  • the aforementioned mass m 6 corresponds to the mass m 5 at a constant mass flow (cf. Fig. 2 ).
  • the aforementioned difference .DELTA.x of the absolute humidity x E and x A is known, which corresponds to the condensation or ice formation on the evaporator V, namely as a relative to the circulated air mass value (eg g / kg).
  • the actual ice formation .DELTA.x at the evaporator V has hitherto only been estimated as a volume or mass-specific value by taking account of the described mixing rule, namely based on the volume or the mass of the airflow circulating in the refrigeration appliance.
  • this is not known and should not be measured if possible.
  • the thus lacking mass flow or volume flow in the refrigerator is therefore taken into account indirectly, namely in the form of a nominal rate of icing of the cabinet or its evaporator.
  • This nominal icing rate for example a nominal defrost interval, may have been determined empirically by the operator of the refrigerated cabinet or - also on the basis of empirical determination - may be specified by the refrigeration cabinet manufacturer.
  • the rated icing rate corresponds to the worst possible expected real ambient conditions at the installation site of the refrigerated cabinet, and it may correspond to a specific climate class according to the EN441 standard.
  • the rated icing rate is associated with a nominal ambient temperature and nominal air humidity as the rated operating point of the evaporator.
  • the nominal ice formation x nominal is estimated at the evaporator V, with the actual ice formation being estimated analogously to the above-described estimation. For example, only the actually measured ambient temperature T U and air humidity rFu are replaced by the corresponding nominal values (rated ambient temperature or nominal air humidity).
  • the further calculation of the nominal ice formation x nominal takes place as explained in detail above for the calculation of the actual ice formation, in particular taking into account the same measured values (eg T A , T E , Tv).
  • the measured ambient temperature Tu and air humidity rF U can be replaced by the corresponding nominal value of the nominal operating point of the evaporator.
  • the measured ambient temperature Tu T 5 (and not the nominal ambient temperature).
  • the nominal ice formation x nominal is now available as a volume or mass-specific value (eg g / kg).
  • the (volume or mass specific) estimated actual ice formation ⁇ x at the evaporator and the (volume or mass specific) estimated nominal ice formation x nominal are set in relation to each other, for example by quotient ⁇ x / x nominal .
  • a ratio V of the actual ice formation X to the estimated nominal ice formation X nominal can be formed from the corresponding volume- or mass-specific quantities ⁇ x or x nominal as follows:
  • V ⁇ the volume flow (m 3 / min) is referred to in the refrigerator.
  • ⁇ Air is the density of the air (kg / m 3 ). It can be seen that the specific values of the actual ice formation ⁇ x and the nominal ice formation x nominal relate to a mass (eg 1 kg of air) circulating around the refrigerated cabinet. Since the calculation of the actual ice formation X and the calculation of the nominal ice formation X nominal are analogous to one another and the volume flow and the density of the air shorten out of the calculation of the ratio V, the volume flow and the density of the air can change without this affects the ratio V The volume flow and the density of the air need not be known.
  • the ratio V thus corresponds to a degree of icing. It indicates the ratio of actual ice formation to nominal ice formation. Of the Nominal ice formation, in turn, is assigned to the nominal icing rate.
  • the ratio V thus denotes the proportion by which the rated icing rate has fallen below due to the (more favorable) real conditions or a nominal defrost interval T defrost can be exceeded.
  • the ratio V can be determined periodically, for example, with the individual determined values V i being added up.
  • the estimated actual ice formation and the estimated nominal ice formation are therefore cumulated.
  • the individual determined values V i (or the sum formed) are additionally normalized with regard to the nominal icing rate, in particular by forming a ratio with the rated icing rate.
  • this accumulated and normalized degree of icing V (n) reaches or exceeds a predetermined threshold, such as 100%, the next defrost is initiated, either immediately or after a programmed defrost release deadline (eg defrost only to allow for certain night or weekend times). Thus, if more favorable environmental conditions exist than the nominal conditions, one or even several nominal defrosting dates are skipped.
  • a predetermined threshold value such as 100% corresponds indirectly to a comparison of the degree of icing with the nominal icing rate (eg with the nominal defrost interval T defrost ).
  • the predetermined regular defrosting dates are maintained, ie not skipped, independently of the determined degree of icing.
  • the type of defrosting method may be changed. In this case, a summation of the degrees of icing therefore does not take place over several nominal defrost intervals.
  • an energetic defrosting method can be selected instead of an otherwise provided non-energetic defrosting method.
  • a Um Kunststoff Abtauung temporary shutdown of the cooling, ie only the air circulating in the cabinet air provides for de-icing of the evaporator.
  • an electric defrost will be carried out at the nominal defrosting time instead of the circulating air defrosting.
  • the evaporator for example, electric Heating energy supplied;
  • an increased energy consumption is accepted, but a more effective de-icing is guaranteed, ie the evaporator is reliably completely de-iced.
  • the amount of condensate can be calculated on the evaporator V mass or volume specific, namely based on the air circulating in the refrigerator.
  • the mass flow of the circulating air i. the time dependence of the estimated condensate formation are taken into account.
  • the condensate model takes into account lower evaporation temperatures (ie lower than normal operating conditions) with a larger condensate (earlier defrost date). Covered refrigerated cabinets or times in which the refrigerated cabinets are temporarily covered or closed is taken into account with a lower condensate quantity (later defrost date).
  • the estimation of ice formation can also be made according to a simplified linear approach, so that the in Fig. 1 dashed bordered values do not necessarily have to be measured or determined.
  • the actual formation of ice on the evaporator V is estimated on the basis of the absolute humidity x U of the ambient air U. This is calculated from the measured ambient temperature T U and the measured relative humidity rFu of the environment.
  • a nominal ice formation on the evaporator V is estimated by calculating a reference humidity x Ref for a nominal ambient temperature and / or a nominal air humidity. These nominal conditions can in turn correspond to a climate class according to the standard EN441. It is important that these nominal conditions are assigned a known nominal icing rate.
  • the estimated actual ice formation (actual moisture xu) is then related by quotient formation to the nominal ice formation (reference moisture x Ref ) and the value obtained is compared with the nominal ice formation rate.
  • reference moisture x Ref reference moisture
  • a current degree of icing is formed by summing up and normalizing the measured values, or a time average of the estimated actual ice formation is determined and taken into account, for example, by integration.
  • correction parameters can be provided in the quotient formation, in particular a gradient correction value and / or an offset correction value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Steuern des Abtauens eines Verdampfers eines Kühlmöbels.The invention relates to a method for controlling the defrosting of an evaporator of a refrigerated cabinet.

Kühlmöbel werden beispielsweise als offene Verkaufskühlmöbel für die Normalkühlung oder Tiefkühlung von Lebensmitteln in Supermärkten oder dergleichen eingesetzt. Der Verdampfer des Kühlmöbels dient zur Aufnahme von Wärme von der zu kühlenden Ware und der die Ware umgebenden Luft. Hierbei kommt es infolge der in der Umgebungsluft enthaltenen Feuchtigkeit im Laufe der Zeit zu einer Vereisung des Verdampfers, die den Wirkungsgrad des Geräts unerwünscht verringert. Besonders gravierend ist diese Eisbildung am Verdampfer bei offenen Kühlmöbeln, bei denen ständig frische Umgebungsluft und somit zusätzliche Feuchtigkeit an den Verdampfer gelangt. Der Verdampfer muss also regelmäßig enteist werden.Refrigerated cabinets are used, for example, as open sales refrigerated cabinets for the normal refrigeration or deep-freezing of food in supermarkets or the like. The evaporator of the refrigerated cabinet serves to absorb heat from the product to be cooled and the air surrounding the goods. In this case, it comes as a result of the moisture contained in the ambient air over time to icing of the evaporator, which undesirably reduces the efficiency of the device. Particularly serious is this ice formation on the evaporator with open cooling furniture, in which constantly fresh ambient air and thus additional moisture reaches the evaporator. The evaporator must be defrosted regularly.

Hierfür ist es bekannt, den Verdampfer mit einer wahlweise aktivierbaren Elektroheizung auszustatten. Speziell für die Tiefkühlung ist eine sogenannte Heißgasabtauung bekannt, bei der erhitztes gasförmiges Kältemittel durch die Wärmetauscherrohre des Verdampfers geführt wird.For this purpose, it is known to equip the evaporator with an optionally activatable electric heater. Especially for the deep-freezing, a so-called hot gas defrosting is known in which heated gaseous refrigerant is passed through the heat exchanger tubes of the evaporator.

Problematisch ist jedoch die Erkennung des tatsächlichen Vereisungsgrades des Verdampfers. Üblicherweise wird in Abhängigkeit von dem speziellen Möbelfabrikat gemäß vorbestimmter Zeitintervalle abgetaut, ohne dass die besonderen Aufstell- bzw. Umgebungsbedingungen des Möbels berücksichtigt werden. Hierdurch wird in der Praxis meist unnötig oft abgetaut. Die Abtauung ist deshalb mit einem unnötigen Energiebedarf verbunden, und die in dem Kühlmöbel gelagerte Ware kann durch zu häufige oder unnötige Abtauprozesse in Mitleidenschaft gezogen werden. Der Vereisungsgrad kann zwar über die während der Abtauung gemessene Schmelzzeit beurteilt werden, die zum Abschmelzen des Eisansatzes benötigt wird. Nachteilig hieran ist jedoch, dass die Beurteilung nur für die Vergangenheit erfolgt.However, the problem is the detection of the actual degree of icing of the evaporator. Usually, depending on the particular furniture product, it is defrosted according to predetermined time intervals without taking into account the particular installation or environmental conditions of the furniture. As a result, often unnecessarily often defrosted in practice. The defrost is therefore associated with an unnecessary energy demand, and the goods stored in the refrigerated cabinet may be affected by too frequent or unnecessary defrosting processes. Although the degree of icing can be assessed by the melting time measured during the defrost, which is needed to melt off the ice buildup. The disadvantage here, however, is that the assessment is done only for the past.

Aus der EP-A-1 367 346 ist ein Verfahren zum Steuern des Abtauprozesses eines Verdampfers mit den Merkmalen des Oberbegriffs des Anspruchs 1 bekannt. Bei diesem Verfahren wird der Umluftvolumenstrom des Verdampfers ermittelt und berücksichtigt.From the EP-A-1 367 346 a method for controlling the defrosting process of an evaporator having the features of the preamble of claim 1 is known. In this method, the circulating air volume flow of the evaporator is determined and taken into account.

Es ist deshalb eine Aufgabe der Erfindung, ein Verfahren anzugeben, durch das sich der tatsächliche aktuelle Abtaubedarf eines Verdampfers eines Kühlmöbels unter Verwendung von möglichst wenigen zusätzlichen Messfühlern mit hoher Genauigkeit bestimmen lässt.It is therefore an object of the invention to provide a method by which the actual actual defrosting requirement of a vaporizer of a refrigerated cabinet can be determined using as few additional sensors as possible with high accuracy.

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved by a method having the features of claim 1.

Es werden also zwei rechnerische Abschätzungen vorgenommen. Zum einen wird eine tatsächliche Eisbildung am Verdampfer, also eine Eismenge (Masse oder Volumen) oder eine Eisbildungsrate, geschätzt. Hierfür werden zumindest die Umgebungstemperatur und die Luftfeuchte der Umgebung (relative oder absolute Luftfeuchte) gemessen und berücksichtigt. Diese Messungen bedeuten gewöhnlich keinen erheblichen Zusatzaufwand, da beispielsweise in Supermärkten mit mehreren Kühlmöbeln üblicherweise ohnehin eine zentrale Messung der Umgebungstemperatur und der Luftfeuchte erfolgt und diese Messwerte an die jeweilige Steuereinrichtung der Kühlmöbel oder eine zentrale Steuereinrichtung übermittelt werden.Thus, two computational estimates are made. On the one hand, an actual ice formation on the evaporator, ie an amount of ice (mass or volume) or an ice formation rate, is estimated. For this purpose, at least the ambient temperature and the ambient humidity (relative or absolute humidity) are measured and taken into account. These measurements usually do not require significant additional effort For example, in supermarkets with a plurality of refrigeration units, a central measurement of the ambient temperature and the humidity is usually carried out anyway, and these measured values are transmitted to the respective control device of the refrigerated cabinets or a central control device.

Zum anderen wird eine Nenn-Eisbildung am Verdampfer gemäß einem vorbestimmten Nenn-Betriebspunkt des Kühlmöbels bzw. dessen Verdampfers, nämlich zumindest gemäß einer Nenn-Umgebungstemperatur und/oder einer Nenn-Luftfeuchte geschätzt, wobei die Ermittlung der Nenn-Eisbildung analog zu der Ermittlung der vorgenannten tatsächlichen Eisbildung vorgenommen wird. Der genannte Nenn-Betriebspunkt kann beispielsweise der Nenn-Umgebungstemperatur und/oder der Nenn-Luftfeuchte einer Klimaklasse nach der Norm EN441 oder einer vergleichbaren Norm (z.B. EN23953) entsprechen, also z.B. 25°C und 60 % relative Feuchte für die Klimaklasse "3".On the other hand, a nominal ice formation at the evaporator is estimated according to a predetermined nominal operating point of the refrigerated appliance or its evaporator, namely at least in accordance with a nominal ambient temperature and / or a nominal air humidity, whereby the determination of the nominal ice formation is analogous to the determination of the aforementioned actual ice formation is made. Said nominal operating point may for example correspond to the nominal ambient temperature and / or the nominal air humidity of a climate class according to the standard EN441 or a comparable standard (for example EN23953), e.g. 25 ° C and 60% relative humidity for climate class "3".

Wichtig ist, dass für den berücksichtigten Nenn-Betriebspunkt des Verdampfers eine Nenn-Vereisungsrate des Verdampfers bekannt ist. Diese Nenn-Vereisungsrate kann für das spezielle Kühlmöbel vom Betreiber empirisch ermittelt worden und/oder vom Kühlmöbelhersteller spezifiziert sein. Der genannte Nenn-Betriebspunkt des Verdampfers ist insbesondere so gewählt, dass er den ungünstigsten zu erwartenden Umgebungsbedingungen entspricht (z.B. höchste zu erwartende Temperatur und höchste zu erwartende relative Luftfeuchte am Aufstellort des Kühlmöbels). Die zugeordnete Nenn-Vereisungsrate wiederum ist insbesondere die Vereisungsrate, die diesen ungünstigsten zu erwartenden Umgebungsbedingungen entspricht. Ausgangspunkt für das Verfahren ist also eine Nenn-Vereisungsrate, deren Berücksichtigung auch für die ungünstigsten zu erwartenden Umgebungsbedingungen (z.B. entsprechend den Umgebungsbedingungen gemäß einer speziellen Klimaklasse nach EN441) für eine rechtzeitige Abtauung ausreichend ist. Bei der genannten Nenn-Vereisungsrate kann es sich um ein Abtauintervall (also ein Zeitintervall zwischen zwei aufeinander folgenden Abtauterminen) oder auch um die Angabe eines Eisbildungsvolumens oder einer Eisbildungsmasse pro Zeiteinheit handeln.It is important that a nominal icing rate of the evaporator is known for the rated operating point of the evaporator considered. This rated icing rate may be determined empirically by the operator for the particular refrigerated cabinet and / or specified by the refrigeration cabinet manufacturer. The named rated operating point of the evaporator is chosen in particular such that it corresponds to the worst-case expected environmental conditions (eg highest expected temperature and highest expected relative humidity at the installation site of the refrigerator). In turn, the associated rated icing rate is, in particular, the icing rate that corresponds to these worst case expected environmental conditions. The starting point for the method is therefore a nominal rate of icing, the consideration of which also applies to the most unfavorable environmental conditions to be expected (eg according to the ambient conditions according to a special climate class according to EN441) is sufficient for a timely defrost. The stated nominal icing rate may be a defrost interval (ie a time interval between two consecutive defrosting dates) or else the specification of an ice formation volume or an ice formation mass per unit time.

Um einen nächsten erforderlichen Abtautermin zu bestimmen und/oder um für den nächsten vorbestimmten Abtautermin (Nenn-Abtautermin) eine geeignete Art des Abtauverfahrens festzulegen, werden die (anhand der Messwerte) geschätzte tatsächliche Eisbildung und die (auf Grundlage der entsprechenden Nennwerte) geschätzte Nenn-Eisbildung zueinander ins Verhältnis gesetzt, beispielsweise - jedoch nicht notwendigerweise - durch Quotientenbildung, und dieses Verhältnis wird wiederum mit der vorgenannten Nenn-Vereisungsrate ins Verhältnis gesetzt, beispielsweise durch Multiplikation oder Division.In order to determine a next required defrost date and / or to establish a suitable type of defrost procedure for the next predetermined defrost date (nominal defrost date), the actual ice formation (based on the measurements) and the estimated (based on the respective nominal values) nominal ice formation are determined. Ice formation in relation to each other, for example - but not necessarily - by quotient formation, and this ratio is in turn set in relation to the aforementioned nominal icing rate, for example by multiplication or division.

Durch diese Verhältnisbildung wird letztlich eine Verzögerung der ermittelten Abtautermine bezüglich der für die ungünstigsten zu erwartenden Umgebungsbedingungen vorausgesetzten Nenn-Vereisungsrate bzw. Abtautermine bewirkt, oder es wird hierdurch der Anteil ermittelt, um den die tatsächliche Eisbildung von der Nenn-Eisbildung abweicht, und zwar jeweils in Abhängigkeit von der Abweichung der gemessenen realen Bedingungen von den Nennbedingungen.This ratio formation ultimately causes a delay in the determined defrosting dates with respect to the nominal icing rate or defrosting dates assumed for the worst-case environmental conditions, or it determines the proportion by which the actual ice formation deviates from the nominal ice formation, respectively depending on the deviation of the measured real conditions from the nominal conditions.

Ein besonderer Vorteil dieses Verfahrens besteht in der Berücksichtigung einer vom Gerätehersteller bereits angegebenen Klimaklasse (wodurch die Nenn-Umgebungstemperatur und die Nenn-Luftfeuchte vorgegeben sind) bzw. einer für einen derartigen Nenn-Betriebspunkt des Verdampfers gewöhnlich ohnehin bereits bekannten Nenn-Vereisungsrate (z.B. Nenn-Abtauintervall). Dies hat nämlich zur Folge, dass der den Verdampfer beaufschlagende Volumen- oder Massenstrom der Umgebungsluft indirekt berücksichtigt werden kann, ohne dass eine eigene Messung dieses Volumen- oder Massenstroms erforderlich ist. Nur unter Berücksichtigung dieses Volumen- oder Massenstroms ist jedoch eine genaue Abschätzung der am Verdampfer pro Zeiteinheit anfallenden Kondensatmenge möglich.A particular advantage of this method is the consideration of a climate class already specified by the device manufacturer (whereby the nominal ambient temperature and the nominal air humidity are specified) or a nominal freezing rate already known for such a nominal operating point of the evaporator anyway (eg nominal -Abtauintervall). This has the consequence that the volume or mass flow of the ambient air impinging on the evaporator can be indirectly taken into account without the need for a separate measurement of this volume or mass flow. However, only taking into account this volume or mass flow, an accurate estimate of the amount of condensate occurring at the evaporator per unit time is possible.

Mögliche Ausgestaltungen des erfindungsgemäßen Verfahrens werden nachstehend erläutert, wobei zum besseren Verständnis zunächst der typische Aufbau des hier betroffenen Kühlmöbels erklärt werden soll.

Fig. 1 und 2
zeigen jeweils eine schematische Seitenansicht eines Kühlmöbels mit einem Verdampfer und verschiedenen Luftströmen.
Possible embodiments of the method according to the invention are explained below, wherein for better understanding, the typical structure of the refrigerator affected here should first be explained.
Fig. 1 and 2
each show a schematic side view of a refrigerated cabinet with an evaporator and different air streams.

In Fig. 1 ist ein hier an seiner Frontseite offenes Kühlmöbel lediglich schematisch dargestellt. Das Kühlmöbel besitzt einen Verdampfer V. Dieser ist in üblicher Weise in einen an sich bekannten Kältemittelkreislauf eingebunden, d.h. der Verdampfer V ist in Strömungsrichtung des Kältemittels beispielsweise mit einem Verdichter, einem Verflüssiger und einem Expansionsventil verbunden.In Fig. 1 is a here on its front open cooling cabinet only shown schematically. The refrigerator has an evaporator V. This is integrated in a conventional manner in a known refrigerant circuit, ie, the evaporator V is connected in the flow direction of the refrigerant, for example with a compressor, a condenser and an expansion valve.

Ferner sind in Fig. 1 verschiedene Luftströme gezeigt. So wird ein Luftstrom 1 in dem Kühlmöbel zu dem Verdampfer V geführt. Die Luft wird am Verdampfer V abgekühlt und verlässt diesen als Luftstrom 2. An der Oberseite des Kühlmöbels, nämlich an einem Luftaustritt A, wird die gekühlte Luft als Luftstrom 3 ausgegeben. Die gekühlte Luft strömt entlang der Frontseite des Kühlmöbels vorhangartig nach unten (Luftstrom 4), wobei die im Kühlmöbel angeordnete Ware gekühlt wird. In diesen Luftstrom 4 vermischt sich Luft aus der Umgebung U (Luftstrom 5). Die am unterseitigen Lufteintritt E des Kühlmöbels eintretende und den Luftstrom 1 bildende Luft ist also ein Gemisch des gekühlten Luftstroms 4 und des Umgebungsluftstroms 5. Für eine übliche Normalkühlung kann die Lufttemperatur am Austritt A beispielsweise ca. +2°C und am Lufteintritt E des Kühlmöbels ca. +5°C betragen.Furthermore, in Fig. 1 shown different air flows. Thus, an air flow 1 is guided in the refrigerator to the evaporator V. The air is cooled at the evaporator V and leaves it as air flow 2. At the top of the refrigerator, namely at an air outlet A, the cooled air is discharged as air stream 3. The cooled air flows along the front of the cabinet curtain down (air flow 4), wherein the goods arranged in the refrigerated goods is cooled. In this air stream 4, air from the environment U (air stream 5) mixed. The am For a conventional normal cooling, the air temperature at the outlet A, for example, about + 2 ° C and at the air inlet E of the refrigerator furniture approx. + 5 ° C.

In Fig. 1 sind außerdem die am Luftaustritt A, in der Umgebung U, am Lufteintritt E und am Verdampfer V vorherrschenden Temperaturen T, die relativen Feuchten rF und die absoluten Feuchten (Wassergehalt) x dargestellt. Die im Rahmen des erfindungsgemäßen Verfahrens verwendeten Messwerte sind jeweils von einem Kreis umgeben, wobei eine durchgezogene Linie einen obligatorischen Messwert und eine gestrichelte Linie einen optionalen Messwert kennzeichnet. Eine jeweilige rechteckige Umrandung kennzeichnet einen berechneten Wert, wobei optionale Berechnungen wiederum durch eine gestrichelte Linie gekennzeichnet sind. Speziell der jeweilige Wassergehalt x (absolute Feuchte) kann als Funktion der Temperatur T und der relativen Feuchte rF dem Mollier-Diagramm entnommen werden, wobei vereinfachend ein konstanter Druck angenommen werden kann.In Fig. 1 In addition, the temperatures at the air outlet A, in the environment U, at the air inlet E and at the evaporator V prevailing temperatures T, the relative humidity rF and the absolute humidity (water content) x are shown. The measured values used in the context of the method according to the invention are each surrounded by a circle, wherein a solid line indicates a mandatory measured value and a dashed line indicates an optional measured value. A respective rectangular border indicates a calculated value, and optional calculations are again indicated by a dashed line. Specifically, the respective water content x (absolute humidity) can be taken as a function of the temperature T and the relative humidity rF the Mollier diagram, wherein simplifying a constant pressure can be assumed.

Nachfolgend wird zunächst ein besonders genaues Verfahren zur Bestimmung eines Abtautermins für den Verdampfer V gemäß Fig. 1 erläutert (sogenanntes Kondensatmodell). Bei diesem Verfahren werden auch die in Fig. 1 als optional gekennzeichneten Messwerte ermittelt, und es werden die als optional gekennzeichneten Berechnungen durchgeführt. Anschließend wird eine vereinfachte Ausführungsform des erfindungsgemäßen Verfahrens erläutert (sogenannter linearer Ansatz).Hereinafter, a particularly accurate method for determining a defrosting deadline for the evaporator V according to Fig. 1 explained (so-called condensate model). In this process, the in Fig. 1 determined as optional measured values, and the calculations marked as optional are performed. Subsequently, a simplified embodiment of the method according to the invention is explained (so-called linear approach).

(a) Schätzen der tatsächlichen Eisbildung am Verdampfer V:(a) Estimate the actual ice formation on the evaporator V:

Zum einen wird die (volumen- oder massenspezifische) tatsächliche Eisbildung am Verdampfer geschätzt. Hierfür werden zumindest die Umgebungstemperatur Tu und die relative Feuchte rFu der Umgebung gemessen. Hierdurch ist der Wassergehalt xU des dem Kühlluftstrom 4 zugemischten Umgebungsluftstroms 5 bekannt (Mollier-Diagramm).On the one hand, the (volume or mass specific) actual ice formation on the evaporator is estimated. For this purpose, at least the ambient temperature Tu and the relative humidity rFu of the environment are measured. As a result, the water content x U of the ambient air stream 5 mixed with the cooling air flow 4 is known (Mollier diagram).

Im Rahmen des sogenannten Kondensatmodells wird für das Schätzen der tatsächlichen Eisbildung am Verdampfer V letztlich eine Differenz Δx zwischen der absoluten Feuchte xE am Verdampfereintritt E und der absoluten Feuchte xA am Luftaustritt A ermittelt, wobei angenommen wird, dass die Erwärmung der Kühlluft zwischen dem Luftaustritt A (Luftstrom 3) und dem Lufteintritt E (Luftstrom 1) allein aus der Beimischung der Umgebungsluft (Luftstrom 5) resultiert.In the context of the so-called condensate model, a difference Δx between the absolute humidity x E at the evaporator inlet E and the absolute humidity x A at the air outlet A is ultimately determined for the estimation of the actual ice formation on the evaporator V, it being assumed that the heating of the cooling air between the Air outlet A (air flow 3) and the air inlet E (air flow 1) alone from the admixture of the ambient air (air flow 5) results.

Die absolute Feuchte xA am Luftaustritt A kann mit dem Wassergehalt xV am Verdampfer V gleichgesetzt werden. Der Luftstrom 2 vom Verdampfer V zum Luftaustritt A erwärmt sich zwar, d.h. die relative Feuchte rF ändert sich. Der absolute Wassergehalt x bleibt jedoch konstant. Vernünftigerweise kann auch angenommen werden, dass sich die Luft am Verdampfer V auf den Taupunkt oder unterhalb des Taupunkts abkühlt (relative Feuchte rFv am Verdampfer V von 100 %). Somit kann der Wassergehalt xV bzw. xA direkt aus der Temperatur Tv am Verdampfer V ermittelt werden (Mollier-Diagramm). Dieser Wert wiederum kann mittels des üblicherweise am Verdampfer V ohnehin vorhandenen Temperatursensors gemessen werden. Alternativ kann unter Vernachlässigung der vorgenannten Erwärmung die Temperatur TA am Luftaustritt A anstelle der Temperatur Tv am Verdampfer V herangezogen werden.The absolute humidity x A at the air outlet A can be equated with the water content x V at the evaporator V. Although the air flow 2 from the evaporator V to the air outlet A heats up, that is, the relative humidity RH changes. The absolute water content x remains constant. It can also be reasonably assumed that the air at the evaporator V cools down to the dew point or below the dew point (relative humidity rFv at the evaporator V of 100%). Thus, the water content x V or x A can be determined directly from the temperature Tv at the evaporator V (Mollier diagram). This value in turn can be measured by means of the temperature sensor, which is usually present at the evaporator V anyway. Alternatively, neglecting the above-mentioned heating, the temperature T A at the air outlet A may be used instead of the temperature Tv at the evaporator V.

Die absolute Feuchte xE am Lufteintritt E wird - wie bereits erwähnt - unter Berücksichtigung des Umstands ermittelt, dass der am LuftaustrittThe absolute humidity x E at the air inlet E is - as already mentioned - determined taking into account the fact that the at the air outlet

A ausgegebenen Kühlluft (Luftstrom 3) ein Luftstrom 5 aus der Umgebung U beigemischt wird. Allerdings sind die jeweiligen Massenströme nicht bekannt. Die absolute Feuchte xE wird deshalb gemäß einer Mischungsregel ermittelt (Mischung der auf unterschiedlichem Temperaturniveau befindlichen Luftmassen), wobei die anfallenden Kondensatmengen spezifisch, also jeweils bezogen auf eine definierte Luftmasse (z.B. ein Kilogramm) bezogen werden.A output cooling air (air stream 3) an air stream 5 from the environment U is mixed. However, the respective mass flows are not known. The absolute humidity x E is therefore determined according to a mixing rule (mixture of the air masses located at different temperature levels), whereby the accumulating condensate quantities are specific, ie based in each case on a defined air mass (eg one kilogram).

Zur besseren Erläuterung der verwendeten Mischungsregel wird auf Fig. 2 verwiesen, in der die Massenströme eingezeichnet sind. Es wird angenommen, dass der Massenstrom im Kühlmöbel konstant ist (m1 = m3, ms = m6). Es findet somit ein Massenaustausch zwischen dem Luftstrom 2 im Kühlmöbel und der Umgebung U um den Betrag m6 = m5 statt. Mit dieser Bedingung bleibt der Massenstrom in der Berechnung konstant.For a better explanation of the mixing rule used on Fig. 2 referenced, in which the mass flows are drawn. It is assumed that the mass flow in the refrigeration cabinet is constant (m 1 = m 3 , ms = m 6 ). There is thus a mass exchange between the air stream 2 in the refrigerator and the environment U by the amount m 6 = m 5 instead. With this condition, the mass flow remains constant in the calculation.

Nach der Mischungsregel ergibt sich für den Luftstrom 1 am Lufteintritt E eine Mischtemperatur T1, die sich zunächst aus den Temperaturen T4 und T5 der Luftströme 4 und 5 sowie aus den entsprechenden Massen und Wärmekapazitäten ableiten lässt: T 1 = m i × c i × T i m i × c i = m 4 × c 4 × T 4 + m 5 × c 5 × T 5 m 4 × c 4 + m 5 × c 5

Figure imgb0001
According to the mixing rule, a mixing temperature T 1 results for the air flow 1 at the air inlet E, which can initially be deduced from the temperatures T 4 and T 5 of the air flows 4 and 5 as well as from the corresponding masses and heat capacities: T 1 = Σ m i × c i × T i Σ m i × c i = m 4 × c 4 × T 4 + m 5 × c 5 × T 5 m 4 × c 4 + m 5 × c 5
Figure imgb0001

Hierbei bezeichnet ci die jeweilige spezifische Mischwärmekapazität des Luft- und des Wasseranteils bei gegebener Temperatur und relativer Feuchte. Wie vorstehend erläutert, kann angenommen werden, dass m4 = m3 - m6 = m3 - m5 gilt. Außerdem wird zur Vereinfachung der jeweilige Wasseranteil in den Teilströmen, der beispielsweise maximal ca. 2 % der Gesamtmasse ausmacht, vernachlässigt. Aus der Gleichung (1) ergibt sich: m 5 = m 3 × c 3 × T 1 T 3 c 5 × T 5 c 3 × T 3 c 5 × T 1 + c 3 × T 1

Figure imgb0002
Here, c i denotes the respective specific mixing heat capacity of the air and the water content at a given temperature and relative humidity. As explained above, it can be assumed that m 4 = m 3 -m 6 = m 3 -m 5 . In addition, to simplify the respective water content in the partial streams, for example, a maximum of about 2% the total mass, neglected. From equation (1): m 5 = m 3 × c 3 × T 1 - T 3 c 5 × T 5 - c 3 × T 3 - c 5 × T 1 + c 3 × T 1
Figure imgb0002

Die Wärmekapazität ci kann vereinfachend als konstant angenommen werden. Es lässt sich abschätzen, dass die durch die Vernachlässigung der ungleichen Wärmekapazitäten von Luft und Wasser verursachten Fehler geringfügig sind und dass die vorgenannten Vereinfachungen die Gleichung (2) lediglich "sicherer" machen, da sie letztlich zu größeren berechneten Kondensatmengen am Verdampfer V führen.The heat capacity c i can be assumed to be constant as a simplification. It can be estimated that the errors caused by neglecting the unequal heat capacities of air and water are minor and that the above simplifications only make equation (2) "safer" as they ultimately lead to larger calculated condensate quantities at the evaporator V.

Hieraus kann dann die beizumischende Menge m5 Umgebungsluft näherungsweise berechnet werden zu: m 5 m 3 = T 1 T 3 T 5 T 3

Figure imgb0003
From this, the compounding amount m 5 can then ambient air will be approximately calculated as: m 5 m 3 = T 1 - T 3 T 5 - T 3
Figure imgb0003

Aufgrund der vorgenannten Gleichung (3) ist das Massenverhältnis m5/m3 bekannt. Die Temperatur T1 entspricht nämlich der im Zusammenhang mit Fig. 1 genannten Eintrittstemperatur TE und kann mittels eines am Lufteintritt E des Kühlmöbels angeordneten Temperatursensors gemessen werden. Die Temperatur T3 entspricht der Austrittstemperatur TA des Luftaustritts A gemäß Fig. 1; auch hierfür kann ein zugeordneter Temperatursensor vorgesehen sein, oder die Austrittstemperatur TA wird vereinfachend mit der Temperatur TV am Verdampfer V gleichgesetzt. Die Temperatur T5 schließlich entspricht der Umgebungstemperatur Tu gemäß Fig. 1. Somit ist aus der genannten Gleichung (3) durch Messung der Temperaturen TE, TA (oder TV) und TU das Massenverhältnis m5/m3 der anteiligen Beimischung der Umgebungsluft (Luftstrom 5 gemäß Fig. 1) in den Kühlluftstrom 3 bekannt.Due to the aforementioned equation (3), the mass ratio m 5 / m 3 is known. The temperature T 1 corresponds to that in connection with Fig. 1 said inlet temperature T E and can be measured by means of a arranged at the air inlet E of the refrigerator furniture temperature sensor. The temperature T 3 corresponds to the outlet temperature T A of the air outlet A according to Fig. 1 ; An associated temperature sensor can also be provided for this purpose, or the outlet temperature T A is equated with the temperature T V at the evaporator V for the sake of simplicity. The temperature T 5 finally corresponds to the ambient temperature Tu according to Fig. 1 , Thus, from the mentioned equation (3) by measuring the temperatures T E , T A (or T V ) and T U, the mass ratio m 5 / m 3 of the proportionate Admixture of the ambient air (air flow 5 according to Fig. 1 ) in the cooling air flow 3 known.

Die absolute Feuchte xE am Lufteintritt E, also der dort vorherrschende Wassergehalt (g/kg), ist die Summe des Wassergehalts der Luftströme 4 und 5 gemäß Fig. 1. Die absolute Feuchte xE ergibt sich somit aus dem Produkt der absoluten Feuchte xA am Luftaustritt A mit der dortigen Luftmasse m3, wobei hiervon das Produkt der absoluten Feuchte xA am Luftaustritt A mit der Masse m6 zu subtrahieren ist (an die Umgebung abgegebene Wassermenge), wobei hierzu wiederum das Produkt der absoluten Feuchte xU der Umgebungsluft mit der von der Umgebung U zugeführten Masse m5 zu addieren ist, und wobei diese Funktion natürlich hinsichtlich der Gesamtmasse m1 = m3 zu normieren ist: x E = x A × m 3 x A × m 6 + x U × m 5 m 3

Figure imgb0004
The absolute humidity x E at the air inlet E, ie the prevailing water content (g / kg), is the sum of the water content of the air flows 4 and 5 according to Fig. 1 , The absolute humidity x E thus results from the product of the absolute humidity x A at the air outlet A with the air mass m 3 there , from which the product of the absolute humidity x A at the air outlet A with the mass m 6 is to be subtracted (to the environment discharged water quantity), in which case again the product of the absolute humidity x U of the ambient air is to be added to the mass m 5 supplied by the environment U, and wherein this function is of course to be standardized with respect to the total mass m 1 = m 3 : x e = x A × m 3 - x A × m 6 + x U × m 5 m 3
Figure imgb0004

Insgesamt ergibt sich hieraus, dass die absolute Feuchte xE als ein auf die umgewälzte Luftmasse bezogener Wert berechnet werden kann. Die absolute Feuchte xA am Luftaustritt A kann nämlich mit dem Wassergehalt xV der Luft am Verdampfer V gleich gesetzt werden, der wiederum aus der am Verdampfer V gemessenen Temperatur Tv und aus der Annahme abgeschätzt werden kann, dass der Taupunkt erreicht oder unterschritten ist, wie vorstehend bereits erläutert. Die absolute Feuchte xU der Umgebungsluft kann aus der gemessenen Umgebungstemperatur Tu und relativen Feuchte rFu berechnet werden (Mollier-Diagramm). Die vorgenannte Masse m6 entspricht bei konstantem Massenstrom der Masse m5 (vgl. Fig. 2). Das Massenverhältnis m5/m3 ergibt sich gemäß Gleichung (3) aus den gemessenen Temperaturen T1 = TE, T3 = TA (oder T3 = TV) und T5 = TU.Overall, it follows that the absolute humidity x E can be calculated as a value related to the recirculated air mass. The absolute humidity x A at the air outlet A can namely be set equal to the water content x V of the air at the evaporator V, which in turn can be estimated from the temperature Tv measured at the evaporator V and from the assumption that the dew point is reached or undershot, as already explained above. The absolute humidity x U of the ambient air can be calculated from the measured ambient temperature Tu and relative humidity rFu (Mollier diagram). The aforementioned mass m 6 corresponds to the mass m 5 at a constant mass flow (cf. Fig. 2 ). The mass ratio m 5 / m 3 is obtained according to equation (3) from the measured temperatures T 1 = T E , T 3 = T A (or T 3 = T V ) and T 5 = T U.

Somit ist auch die vorgenannte Differenz Δx der absoluten Feuchten xE und xA bekannt, die der Kondensat- bzw. Eisbildung am Verdampfer V entspricht, und zwar als ein auf die umgewälzte Luftmasse bezogener Wert (z.B. g/kg). Mit anderen Worten ist durch Berücksichtigung der erläuterten Mischungsregel die tatsächliche Eisbildung Δx am Verdampfer V bislang lediglich als volumen- oder massenspezifischer Wert abgeschätzt, nämlich bezogen auf das Volumen bzw. die Masse des im Kühlmöbel zirkulierenden Luftstroms. Dieser ist jedoch nicht bekannt und soll möglichst nicht gemessen werden müssen.Thus, the aforementioned difference .DELTA.x of the absolute humidity x E and x A is known, which corresponds to the condensation or ice formation on the evaporator V, namely as a relative to the circulated air mass value (eg g / kg). In other words, the actual ice formation .DELTA.x at the evaporator V has hitherto only been estimated as a volume or mass-specific value by taking account of the described mixing rule, namely based on the volume or the mass of the airflow circulating in the refrigeration appliance. However, this is not known and should not be measured if possible.

(b) Schätzen einer Nenn-Eisbildung am Verdampfer:(b) Estimating a nominal ice formation on the evaporator:

Der somit fehlende Massenstrom oder Volumenstrom im Kühlmöbel wird deshalb indirekt berücksichtigt, nämlich in Form einer Nenn-Vereisungsrate des Kühlmöbels bzw. dessen Verdampfers. Diese Nenn-Vereisungsrate, beispielsweise ein Nenn-Abtauintervall, kann vom Betreiber des Kühlmöbels empirisch ermittelt worden sein oder - ebenfalls aufgrund empirischer Ermittlung - vom Kühlmöbelhersteller spezifiziert sein. Die Nenn-Vereisungsrate entspricht insbesondere den ungünstigsten zu erwartenden realen Umgebungsbedingungen am Aufstellort des Kühlmöbels, und sie kann einer speziellen Klimaklasse nach der Norm EN441 entsprechen. Der Nenn-Vereisungsrate sind als Nenn-Betriebspunkt des Verdampfers eine Nenn-Umgebungstemperatur und eine Nenn-Luftfeuchte zugeordnet.The thus lacking mass flow or volume flow in the refrigerator is therefore taken into account indirectly, namely in the form of a nominal rate of icing of the cabinet or its evaporator. This nominal icing rate, for example a nominal defrost interval, may have been determined empirically by the operator of the refrigerated cabinet or - also on the basis of empirical determination - may be specified by the refrigeration cabinet manufacturer. In particular, the rated icing rate corresponds to the worst possible expected real ambient conditions at the installation site of the refrigerated cabinet, and it may correspond to a specific climate class according to the EN441 standard. The rated icing rate is associated with a nominal ambient temperature and nominal air humidity as the rated operating point of the evaporator.

Anhand dieser Nenn-Umgebungstemperatur und Nenn-Luftfeuchte wird die Abschätzung der Nenn-Eisbildung xNenn am Verdampfer V vorgenommen, wobei analog zu der vorstehend erläuterten Abschätzung der tatsächlichen Eisbildung verfahren wird. Hierbei werden beispielsweise lediglich die tatsächlich gemessene Umgebungstemperatur TU und Luftfeuchte rFu durch die entsprechenden Nennwerte (Nenn-Umgebungstemperatur bzw. Nenn-Luftfeuchte) ersetzt. Die weitere Berechnung der Nenn-Eisbildung xNenn geschieht wie vorstehend für die Berechnung der tatsächlichen Eisbildung im Einzelnen erläutert, insbesondere unter Berücksichtigung derselben Messwerte (z.B. TA, TE, Tv).On the basis of this nominal ambient temperature and nominal air humidity, the nominal ice formation x nominal is estimated at the evaporator V, with the actual ice formation being estimated analogously to the above-described estimation. For example, only the actually measured ambient temperature T U and air humidity rFu are replaced by the corresponding nominal values (rated ambient temperature or nominal air humidity). The further calculation of the nominal ice formation x nominal takes place as explained in detail above for the calculation of the actual ice formation, in particular taking into account the same measured values (eg T A , T E , Tv).

Alternativ zu dem Ersetzen der tatsächlich gemessenen Umgebungstemperatur Tu und Luftfeuchte rFU durch die entsprechenden Nennwerte kann auch lediglich einer dieser Messwerte durch den entsprechenden Nennwert des Nenn-Betriebspunkts des Verdampfers ersetzt werden. Beispielsweise ist es ausreichend, lediglich die gemessene Luftfeuchte rFu der Umgebung durch die Nenn-Luftfeuchte des Kühlmöbels zu ersetzen, d.h. für die Berechnung der Nenn-Eisbildung xNenn analog zu der Berechnung der tatsächlichen Eisbildung wird die gemessene Umgebungstemperatur Tu = T5 (und nicht die Nenn-Umgebungstemperatur) berücksichtigt. Dies bedeutet gemäß der vorstehenden Gleichung (3), dass von demselben Massenverhältnis m5/m3 (Verhältnis des aus der Umgebung U zugeführten Luftstroms 5 zum Luftstrom 3 am Austritt A) ausgegangen wird wie bei der Berechnung der tatsächlichen Eisbildung, und nicht etwa von einem verringerten derartigen Massenverhältnis bei höherer Temperatur T5.As an alternative to replacing the actual measured ambient temperature Tu and air humidity rF U by the corresponding nominal values, only one of these measured values can be replaced by the corresponding nominal value of the nominal operating point of the evaporator. For example, it is sufficient to replace only the measured air humidity rFu of the environment by the rated humidity of the cooling cabinet, ie for the calculation of nominal ice formation x nominal analogous to the calculation of the actual ice formation, the measured ambient temperature Tu = T 5 (and not the nominal ambient temperature). This means according to the above equation (3) that the same mass ratio m 5 / m 3 (ratio of the air flow 5 supplied from the environment U to the air flow 3 at the outlet A) is assumed as in the calculation of the actual ice formation, and not of a reduced such mass ratio at a higher temperature T 5 .

Somit liegt nun auch die Nenn-Eisbildung xNenn als volumen- oder massenspezifischer Wert vor (z.B. g/kg).Thus, the nominal ice formation x nominal is now available as a volume or mass-specific value (eg g / kg).

(c) Verhältnisbildung der tatsächlichen Eisbildung und der Nenn-Eisbildung am Verdampfer:(c) Ratio of actual ice formation and nominal ice formation on the evaporator:

Schließlich werden die (volumen- oder massenspezifische) geschätzte tatsächliche Eisbildung Δx am Verdampfer und die (volumen- oder massenspezifische) geschätzte Nenn-Eisbildung xNenn zueinander ins Verhältnis gesetzt, beispielsweise durch Quotientenbildung Δx/xNenn. Durch Berücksichtigung der vorgenannten Nenn-Vereisungsrate wird der fehlenden Kenntnis des Luftvolumenstroms bzw. Luftmassenstroms Rechnung getragen.Finally, the (volume or mass specific) estimated actual ice formation Δx at the evaporator and the (volume or mass specific) estimated nominal ice formation x nominal are set in relation to each other, for example by quotient Δx / x nominal . By taking account of the aforementioned nominal icing rate, the missing knowledge of the air volume flow or air mass flow is taken into account.

So kann ein nun nicht mehr vom Volumenstrom oder Massenstrom abhängiges Verhältnis V der tatsächlichen Eisbildung X zu der geschätzten Nenn-Eisbildung XNenn aus den entsprechenden volumen- oder massenspezifischen Größen Δx bzw. xNenn gebildet werden wie folgt: V = X X Nenn = Δ x × V ˙ × ρ Luft Δ x Nenn × V ˙ × ρ Luft

Figure imgb0005
Thus, a ratio V of the actual ice formation X to the estimated nominal ice formation X nominal, which is no longer dependent on the volume flow or mass flow, can be formed from the corresponding volume- or mass-specific quantities Δx or x nominal as follows: V = X X nominal = Δ x × V ˙ × ρ air Δ x nominal × V ˙ × ρ air
Figure imgb0005

Mit ist hierbei der Volumenstrom (m3/min) im Kühlmöbel bezeichnet. ρLuft ist die Dichte der Luft (kg/m3). Es ist ersichtlich, dass die spezifischen Werte der tatsächlichen Eisbildung Δx und der Nenn-Eisbildung xNenn sich auf eine Masse beziehen (z.B. 1 kg Luft), die um das Kühlmöbel zirkuliert. Da die Berechnung der tatsächlichen Eisbildung X und die Berechnung der Nenn-Eisbildung XNenn analog zueinander erfolgen und der Volumenstrom und die Dichte der Luft sich aus der Berechnung des Verhältnisses V herauskürzen, können sich der Volumenstrom und die Dichte der Luft ändern, ohne dass dies das Verhältnis V beeinflusst. Der Volumenstrom und die Dichte der Luft müssen nicht bekannt sein.With V̇ in this case the volume flow (m 3 / min) is referred to in the refrigerator. ρ Air is the density of the air (kg / m 3 ). It can be seen that the specific values of the actual ice formation Δx and the nominal ice formation x nominal relate to a mass (eg 1 kg of air) circulating around the refrigerated cabinet. Since the calculation of the actual ice formation X and the calculation of the nominal ice formation X nominal are analogous to one another and the volume flow and the density of the air shorten out of the calculation of the ratio V, the volume flow and the density of the air can change without this affects the ratio V The volume flow and the density of the air need not be known.

Das Verhältnis V entspricht somit einem Vereisungsgrad. Es bezeichnet das Verhältnis der tatsächlichen Eisbildung zu der Nenn-Eisbildung. Der Nenn-Eisbildung wiederum ist die Nenn-Vereisungsrate zugeordnet. Das Verhältnis V bezeichnet somit den Anteil, um den aufgrund der (günstigeren) realen Bedingungen die Nenn-Vereisungsrate unterschritten ist bzw. ein Nenn-Abtauintervall TAbtau überschritten werden kann.The ratio V thus corresponds to a degree of icing. It indicates the ratio of actual ice formation to nominal ice formation. Of the Nominal ice formation, in turn, is assigned to the nominal icing rate. The ratio V thus denotes the proportion by which the rated icing rate has fallen below due to the (more favorable) real conditions or a nominal defrost interval T defrost can be exceeded.

Das Verhältnis V kann beispielsweise periodisch bestimmt werden, wobei die einzelnen ermittelten Werte Vi aufsummiert werden. Die geschätzte tatsächliche Eisbildung und die geschätzte Nenn-Eisbildung werden also kumuliert. Vorzugsweise werden die einzelnen ermittelten Werte Vi (oder die gebildete Summe) zusätzlich hinsichtlich der Nenn-Vereisungsrate normiert, insbesondere durch Verhältnisbildung mit der Nenn-Vereisungsrate. Zum Beispiel können die ermittelten Werte Vi mit dem Verhältnis des jeweiligen Messintervalls ΔtMess,i (Zeitdauer zwischen zwei Messungen) zu dem Nenn-Abtauintervall TAbtau (Abtauintervall für Nennbedingungen) multipliziert werden: v n = i = 1 n V i Δ t Mess , i T Abtau

Figure imgb0006
The ratio V can be determined periodically, for example, with the individual determined values V i being added up. The estimated actual ice formation and the estimated nominal ice formation are therefore cumulated. Preferably, the individual determined values V i (or the sum formed) are additionally normalized with regard to the nominal icing rate, in particular by forming a ratio with the rated icing rate. For example, the determined values V i can be multiplied by the ratio of the respective measurement interval Δt meas, i (time duration between two measurements) to the nominal defrost interval T defrost (defrost interval for nominal conditions): v n = Σ i = 1 n V i Δ t measuring . i T defrost
Figure imgb0006

Anstelle einer Summenbildung kann natürlich auch ein Aufintegrieren erfolgen.Of course, instead of a summation, an integration can also take place.

Sobald dieser aufsummierte (bzw. aufintegrierte) und normierte Vereisungsgrad V(n) einen vorbestimmten Schwellwert, beispielsweise den Wert 100 %, erreicht oder überschreitet, wird die nächste Abtauung eingeleitet, und zwar entweder sofort oder nach Erreichen eines programmierten Abtaufreigabetermins (beispielsweise um ein Abtauen lediglich zu bestimmten Nacht- oder Wochenendzeiten zu ermöglichen). Somit werden - sofern günstigere Umgebungsbedingungen vorliegen als die Nennbedingungen - ein oder sogar mehrere Nenn-Abtautermine übersprungen. Der Vergleich des hinsichtlich der Nenn-Vereisungsrate normierten Vereisungsgrads V(n) mit einem vorbestimmten Schwellwert (wie z.B. 100 %) entspricht indirekt einem Vergleich des Vereisungsgrads mit der Nenn-Vereisungsrate (z.B. mit dem Nenn-Abtauintervall TAbtau).Once this accumulated and normalized degree of icing V (n) reaches or exceeds a predetermined threshold, such as 100%, the next defrost is initiated, either immediately or after a programmed defrost release deadline (eg defrost only to allow for certain night or weekend times). Thus, if more favorable environmental conditions exist than the nominal conditions, one or even several nominal defrosting dates are skipped. The comparison the normalized degree of icing V (n) with a predetermined threshold value (such as 100%) corresponds indirectly to a comparison of the degree of icing with the nominal icing rate (eg with the nominal defrost interval T defrost ).

Es ist auch möglich, den aktuell ermittelten Vereisungsgrad in eine zeitliche Prognose des nächsten tatsächlich erforderlichen Abtautermins umzurechnen, beispielsweise indem der Vereisungsgrad mit dem Nenn-Abtauintervall TAbtau ins Verhältnis gesetzt wird.It is also possible to convert the currently determined degree of icing into a time prognosis of the next actually required defrosting date, for example by the icing degree being set in relation to the nominal defrost interval T defrost .

Alternativ zu dem vorstehend erläuterten Einleiten der nächsten Abtauung kann auch vorgesehen sein, dass unabhängig von dem ermittelten Vereisungsgrad die vorbestimmten regelmäßigen Abtautermine (Nenn-Abtautermine) beibehalten - also nicht übersprungen - werden. Jedoch kann in Abhängigkeit von dem ermittelten Vereisungsgrad lediglich die Art des Abtauverfahrens geändert werden. In diesem Fall findet eine Summierung der Vereisungsgrade also nicht über mehrere Nenn-Abtauintervalle statt. Insbesondere kann - falls bei Verstreichen eines Nenn-Abtauintervalls der ermittelte Vereisungsgrad einen Schwellwert von 100 % (gerechnet ab dem letzten Abtauvorgang) überschritten hat - anstelle eines ansonsten vorgesehenen nicht energetischen Abtauverfahrens ein energetisches Abtauverfahren ausgewählt werden. Zum Beispiel wird - insbesondere im Falle der Pluskühlung (>0°C) - für die erwarteten Umgebungsbedingungen zum jeweiligen Nenn-Abtautermin eine Umluftabtauung vorgesehen (zeitweiliges Abschalten der Kühlung, d.h. allein die im Kühlmöbel zirkulierende Luft sorgt für eine Enteisung des Verdampfers). Falls sich allerdings ungünstigere Umgebungsbedingungen einstellen (die zu einem erhöhten ermittelten Vereisungsgrad führen), so wird zu dem Nenn-Abtautermin anstelle der Umluftabtauung eine Elektroabtauung durchgeführt. In diesem Fall wird dem Verdampfer beispielsweise elektrische Heizenergie zugeführt; es wird also ein erhöhter Energieverbrauch in Kauf genommen, dafür ist jedoch eine wirkungsvollere Enteisung gewährleist, d.h. der Verdampfer wird zuverlässig vollständig enteist.As an alternative to the initiation of the next defrosting explained above, it can also be provided that the predetermined regular defrosting dates (nominal defrosting appointments) are maintained, ie not skipped, independently of the determined degree of icing. However, depending on the detected degree of icing, only the type of defrosting method may be changed. In this case, a summation of the degrees of icing therefore does not take place over several nominal defrost intervals. In particular, if, when a nominal defrost interval has elapsed, the determined degree of icing has exceeded a threshold value of 100% (calculated from the last defrosting operation), an energetic defrosting method can be selected instead of an otherwise provided non-energetic defrosting method. For example, - especially in the case of plus cooling (> 0 ° C) - provided for the expected ambient conditions for each nominal defrosting a Umluft Abtauung (temporary shutdown of the cooling, ie only the air circulating in the cabinet air provides for de-icing of the evaporator). However, if less favorable environmental conditions occur (which lead to an increased determined degree of icing), an electric defrost will be carried out at the nominal defrosting time instead of the circulating air defrosting. In this case, the evaporator, for example, electric Heating energy supplied; Thus, an increased energy consumption is accepted, but a more effective de-icing is guaranteed, ie the evaporator is reliably completely de-iced.

(d) Zusammenfassung des Kondensatmodells:(d) Summary of the condensate model:

Zusammenfassend sollen nochmals die dem vorstehend erläuterten Kondensatmodell zugrunde liegenden Annahmen genannt werden:

  • Es wird von einem konstanten Luftdruck ausgegangen (z.B. 1 bar). Die Erwärmung der Luft zwischen Austritt und Eintritt am Kühlmöbel erfolgt nur über die Umgebungsluft. Der kälteste Punkt des Luftkreislaufs im Kühlmöbel wird mittels eines Temperatursensors gemessen, wobei an diesem Punkt die relative Luftfeuchte 100 % beträgt. Der Massenstrom im Kühlmöbel ist konstant. Die Temperatur und Feuchte der Umgebungsluft sind bekannt bzw. werden gemessen.
In summary, the assumptions underlying the condensate model explained above should once again be mentioned:
  • It is assumed that the air pressure is constant (eg 1 bar). The heating of the air between the outlet and the entrance to the refrigerator is done only through the ambient air. The coldest point of the air circulation in the refrigerator is measured by means of a temperature sensor, at which point the relative humidity is 100%. The mass flow in the refrigerator is constant. The temperature and humidity of the ambient air are known or measured.

Durch Anwendung einer Massenmischungsregel lässt sich die Kondensatmenge am Verdampfer V massen- oder volumenspezifisch berechnen, nämlich bezogen auf die im Kühlmöbel zirkulierende Luft. Durch Berücksichtigung einer gerätespezifischen Nenn-Vereisungsrate mit zugeordneter Nenn-Umgebungstemperatur und Nenn-Luftfeuchte kann der Massenstrom bzw. Volumenstrom der zirkulierenden Luft, d.h. die Zeitabhängigkeit der geschätzten Kondensatbildung berücksichtigt werden.By applying a mass mixing rule, the amount of condensate can be calculated on the evaporator V mass or volume specific, namely based on the air circulating in the refrigerator. By considering a device specific rated icing rate with associated rated ambient temperature and nominal humidity, the mass flow of the circulating air, i. the time dependence of the estimated condensate formation are taken into account.

Das Kondensatmodell berücksichtigt tiefere Verdampfungstemperaturen (d.h. tiefer als den normalen Betriebsbedingungen entsprechend) mit einer größeren Kondensatmenge (früherer Abtautermin). Abgedeckte Kühlmöbel bzw. Zeiten, in denen das Kühlmöbel temporär abgedeckt oder geschlossen ist, werden mit einer geringeren Kondensatmenge berücksichtigt (späterer Abtautermin).The condensate model takes into account lower evaporation temperatures (ie lower than normal operating conditions) with a larger condensate (earlier defrost date). Covered refrigerated cabinets or times in which the refrigerated cabinets are temporarily covered or closed is taken into account with a lower condensate quantity (later defrost date).

(e) Linearer Ansatz:(e) Linear Approach:

Die Abschätzung der Eisbildung kann auch gemäß einem vereinfachten linearen Ansatz erfolgen, so dass die in Fig. 1 gestrichelt umrandeten Werte nicht zwingend gemessen bzw. bestimmt werden müssen. Hierfür wird die tatsächliche Eisbildung am Verdampfer V anhand der absoluten Feuchte xU der Umgebungsluft U geschätzt. Diese wird anhand der gemessenen Umgebungstemperatur TU und der gemessenen relativen Feuchte rFu der Umgebung berechnet. Außerdem wird eine Nenn-Eisbildung am Verdampfer V geschätzt, indem für eine Nenn-Umgebungstemperatur und/oder eine Nenn-Luftfeuchte eine Referenzfeuchte xRef berechnet wird. Diese Nennbedingungen können wiederum einer Klimaklasse nach der Norm EN441 entsprechen. Wichtig ist, dass diesen Nennbedingungen ist eine bekannte Nenn-Vereisungsrate zugeordnet ist.The estimation of ice formation can also be made according to a simplified linear approach, so that the in Fig. 1 dashed bordered values do not necessarily have to be measured or determined. For this purpose, the actual formation of ice on the evaporator V is estimated on the basis of the absolute humidity x U of the ambient air U. This is calculated from the measured ambient temperature T U and the measured relative humidity rFu of the environment. In addition, a nominal ice formation on the evaporator V is estimated by calculating a reference humidity x Ref for a nominal ambient temperature and / or a nominal air humidity. These nominal conditions can in turn correspond to a climate class according to the standard EN441. It is important that these nominal conditions are assigned a known nominal icing rate.

Es wird nun die geschätzte tatsächliche Eisbildung (tatsächliche Feuchte xu) durch Quotientenbildung zu der Nenn-Eisbildung (Referenzfeuchte xRef) ins Verhältnis gesetzt, und der hierbei erlangte Wert wird mit der Nenn-Vereisungsrate verglichen. Hierdurch kann beispielsweise - wie bei dem erläuterten Kondensatmodell - ein Vereisungsgrad bestimmt werden, um bei Erreichen eines Vereisungsgrads von 100 % einen Abtauvorgang einzuleiten.The estimated actual ice formation (actual moisture xu) is then related by quotient formation to the nominal ice formation (reference moisture x Ref ) and the value obtained is compared with the nominal ice formation rate. As a result, for example - as in the illustrated condensate model - a degree of icing can be determined in order to initiate a defrosting process when an ice degree of 100% is reached.

Insbesondere wird ein aktueller Vereisungsgrad durch Aufsummieren und Normieren der Messwerte gebildet, oder es wird beispielsweise durch Integration ein zeitlicher Mittelwert der geschätzten tatsächlichen Eisbildung ermittelt und berücksichtigt.In particular, a current degree of icing is formed by summing up and normalizing the measured values, or a time average of the estimated actual ice formation is determined and taken into account, for example, by integration.

Außerdem können bei der Quotientenbildung Korrekturparameter vorgesehen sein, insbesondere ein Steigungskorrekturwert und/oder ein Offsetkorrekturwert.In addition, correction parameters can be provided in the quotient formation, in particular a gradient correction value and / or an offset correction value.

Schließlich ist anzumerken, dass sowohl bei dem erläuterten Kondensatmodell als auch bei dem vereinfachten linearen Ansatz durch entsprechende Messung der Umgebungsdruck berücksichtigt werden kann, um eine noch höhere Genauigkeit der zugrunde liegenden Schätzungen zu erreichen.Finally, it should be noted that in both the illustrated condensate model and the simplified linear approach by appropriate measurement of the ambient pressure can be taken into account in order to achieve an even higher accuracy of the underlying estimates.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1 - 51 - 5
Luftstromairflow
AA
Luftaustrittair outlet
Ee
Lufteintrittair inlet
UU
UmgebungSurroundings
VV
VerdampferEvaporator

Claims (20)

  1. A method of controlling the defrosting of an evaporator (V) of a piece of refrigeration equipment, in which
    (a) an actual frost formation at the evaporator is estimated by measuring at least the environmental temperature (TU) and the air humidity (rFU) of the environment (U),
    characterized in that
    (b) a nominal frost formation at the evaporator is estimated for a nominal operating point of the refrigeration equipment, with a nominal frosting rate being known for the nominal operating point and with the estimation of the nominal frost formation taking place analog to the estimation of the actual frost formation; with
    - the measured environmental temperature (TU) being replaced with a nominal environmental temperature; or
    - the measured air humidity (rFU) of the environment being replaced with a nominal air humidity; or
    - the measured environmental temperature (TU) being replaced by a nominal environmental temperature and the measured air humidity (rFU) being replaced with a nominal air humidity; and
    (c) in that the estimated actual frost formation and the estimated nominal frost formation are set into relationship with one another in order to determine a next defrosting time or to fix a type of defrosting from the relationship and from the known nominal frosting rate.
  2. A method in accordance with claim 1
    characterized in that
    a difference of the air humidity (xE) at the evaporator inlet (E) and of the air humidity (xA) at the evaporator outlet (A) is determined for the estimation of the actual frost formation.
  3. A method in accordance with claim 2,
    characterized in that
    at least the environmental temperature (Tu) and the air humidity (rFu) of the environment (U) are taken into account for the determination of the air humidity (xE) at the evaporator inlet (E).
  4. A method in accordance with one of the claims 2 or 3,
    characterized in that
    the determination of the air humidity (xE) at the evaporator inlet (E) takes place in accordance with a mass mixing rule, with at least the temperature (TE) at the evaporator inlet (E) and the temperature (TA) at the evaporator outlet or the temperature (Tv) at the outlet additionally being taken into account.
  5. A method in accordance with claim 4,
    characterized in that
    the mass mixing rule takes account of an admixing of environmental air (5) into a cooling air flow (4) of the refrigeration equipment.
  6. A method in accordance with any one of the claims 2 to 5,
    characterized in that
    the temperature (TV) at the evaporator or the temperature (TA) at the evaporator outlet (A) is taken into account for the determination of the air humidity (xA) at the evaporator outlet, with a relative air humidity (rFv) at the evaporator (V) or at the evaporator outlet (A) of substantially 100% being assumed.
  7. A method in accordance with any one of the preceding claims,
    characterized in that
    the estimation of the actual frost formation takes place in a manner specific to the air volume or in a manner specific to the air mass.
  8. A method in accordance with any one of the preceding claims,
    characterized in that
    the environmental air pressure is additionally taken into account for the estimation of the actual frost formation.
  9. A method in accordance with any one of the preceding claims,
    characterized in that
    the nominal operating point of the refrigeration equipment is at least determined
    - by a nominal environmental temperature; or
    - by a nominal air humidity; or
    - by a nominal environmental temperature and a nominal air humidity.
  10. A method in accordance with any one of the preceding claims,
    characterized in that
    the nominal operating point of the refrigeration equipment corresponds to the most unfavorable environmental conditions to be expected at the installation site of the refrigeration equipment.
  11. A method in accordance with any one of the preceding claims,
    characterized in that
    the nominal frosting rate is a nominal defrosting interval or a frost formation volume or a frost formation mass per unit of time.
  12. A method in accordance with any one of the preceding claims,
    characterized in that
    the relationship of an estimated actual frost formation and an estimated nominal frost formation is set into relationship with the nominal frosting rate to determine the next defrosting time or to fix the type of defrosting.
  13. A method in accordance with any one of the preceding claims,
    characterized in that
    the estimated actual frost formation and the estimated nominal frost formation are accumulated starting from the last defrost event; or in that the relationship of estimated actual frost formation and estimated nominal frost formation is accumulated from the last defrost event.
  14. A method in accordance with any one of the preceding claims,
    characterized in that
    the estimated actual frost formation and the estimated nominal frost formation are standardized using the nominal frosting rate; or in that the relationship of estimated actual frost formation and estimated nominal frost formation are standardized using the nominal frosting rate.
  15. A method in accordance with any one of the preceding claims,
    characterized in that
    the relationship of estimated actual frost formation and estimated nominal frost formation is standardized with respect to the nominal frosting rate, with this standardized relationship being compared with a threshold value.
  16. A method in accordance with any one of the preceding claims,
    characterized in that
    the relationship of estimated actual frost formation and estimated nominal frost formation is accumulated from the last defrost event, with the accumulated relationship being standardized with respect to the nominal frosting rate, and with this accumulated and standardized relationship being compared with a threshold value.
  17. A method in accordance with any one of the preceding claims, characterized in that
    the next defrosting time or the type of defrosting is determined by the condition that the estimated actual frost formation corresponds to the estimated nominal frost formation or exceeds the estimated nominal frost formation.
  18. A method in accordance with any one of the preceding claims,
    characterized in that
    a next defrosting time is determined on the basis of the relationship of estimated actual frost formation and estimated nominal frost formation and on the basis of the nominal frosting rate, with said defrosting time differing from a nominal defrosting time which corresponds to the nominal operating point of the refrigeration equipment.
  19. A method in accordance with any one of the preceding claims,
    characterized in that
    one of a plurality of predefined defrost types, which effect a defrosting of the evaporator of different degrees, is fixed on the basis of the relationship of estimated actual frost formation and estimated nominal frost formation and on the basis of the nominal frosting rate.
  20. A method in accordance with any one of the preceding claims,
    characterized in that
    a selection is made between an energetic and a non-energetic defrost type on the basis of the relationship of estimated actual frost formation and estimated nominal frost formation and on the basis of the nominal frosting rate.
EP07015726.8A 2006-10-16 2007-08-09 Thawing control method Active EP1916490B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610048880 DE102006048880A1 (en) 2006-10-16 2006-10-16 Method for controlling defrosting of an evaporating unit of a refrigerator comprises estimating the actual ice formation on the unit by measuring the ambient temperature and air moisture of the surroundings and further processing

Publications (2)

Publication Number Publication Date
EP1916490A1 EP1916490A1 (en) 2008-04-30
EP1916490B1 true EP1916490B1 (en) 2016-10-12

Family

ID=38752398

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07015726.8A Active EP1916490B1 (en) 2006-10-16 2007-08-09 Thawing control method

Country Status (2)

Country Link
EP (1) EP1916490B1 (en)
DE (1) DE102006048880A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008011707U1 (en) * 2008-09-03 2008-12-18 Langheinrich, Lars-Peter Refrigerated furniture and measuring arrangement for such furniture
CN101846428B (en) * 2009-03-24 2014-04-02 泰州乐金电子冷机有限公司 Refrigerator automatic defrosting control device
CN115325754B (en) * 2022-08-10 2023-09-05 珠海格力电器股份有限公司 Defrosting control method and system for refrigeration house

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395887A (en) * 1981-12-14 1983-08-02 Amf Incorporated Defrost control system
EP0120490A3 (en) * 1983-03-28 1985-07-10 Honeywell Inc. Defrost control system
DE4318842A1 (en) * 1993-06-07 1994-12-08 York Int Gmbh Method of defrosting a refrigerating plant
DE10053422A1 (en) * 2000-10-27 2002-05-08 Bsh Bosch Siemens Hausgeraete Refrigeration device with automatic defrost
US7836710B2 (en) * 2002-05-16 2010-11-23 Bsh Bosch Und Siemens Hausgeraete Gmbh Freezer with defrosting indicator
DE10221903A1 (en) * 2002-05-16 2003-12-04 Bsh Bosch Siemens Hausgeraete Freezer with defrost indicator
DE10223716A1 (en) 2002-05-28 2003-12-11 Linde Ag Process for controlling the defrosting process of an evaporator

Also Published As

Publication number Publication date
DE102006048880A1 (en) 2008-04-17
EP1916490A1 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
EP1497597B1 (en) Method for detecting changes in a first flux of a heat or cold transport medium in a refrigeration system
AT500939B1 (en) Cooler for frozen products, has evaporator thermally impinging product chamber via sidewall of chamber and partly heating drain channel, when chamber is defrosted, where sidewall is equipped with drain channel
DE19713658C2 (en) Temperature control method for a refrigerator
EP2059733A1 (en) Refrigeration machine and operating method for it
EP1916490B1 (en) Thawing control method
EP2769155B1 (en) Refrigeration appliance comprising an evaporation tray and a heating device for promoting evaporation
WO2004088222A1 (en) Refrigeration device and operating method for the same
EP1497598B1 (en) Method for evaluating a non-measured operating variable in a refrigeration plant
DE102012019812A1 (en) Method for operating a refrigeration system of a freight container
EP1350068B1 (en) Method for regulating a cooling appliance
EP2853844B1 (en) Method for de-icing a heat pump
DE102012109198B4 (en) Process for controlling the defrosting of a refrigerant evaporator
DE102007015390A1 (en) Method and device for cooling a cold room and refrigerated vehicle
EP3699519A1 (en) Refrigeration device with two temperature zones and method of operation for same
EP1367346B1 (en) Method for controlling a defrost operation of an evaporator
DE102007039296A1 (en) heat pump system
EP2335128B1 (en) Cooler and/or freezer and method for controlling a cooler and/or freezer
EP4212786A1 (en) Method for defrosting an air inlet grid of an evaporator of an air heat pump, device for carrying out the method and computer program product
DE102012206828A1 (en) Single-circuit refrigerating appliance
DE102011085959A1 (en) Single-circuit refrigerating appliance
DE102022103488A1 (en) refrigerator and/or freezer
DE10126817A1 (en) The refrigerator
DE102011113477A1 (en) Cooling and freezing appliance for cooling interior space, has unit for measuring property of defrosted water, and contact element, which is provided directly or indirectly with measuring unit
DE102020210411A1 (en) Defrosting an evaporator of a refrigerator
DE102020107652A1 (en) Method for defrosting an external heat exchanger, operated as an air heat pump, of a refrigeration system for a motor vehicle, refrigeration system and motor vehicle with such a refrigeration system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20080723

17Q First examination report despatched

Effective date: 20080828

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WURM GMBH & CO. KG ELEKTRONISCHE SYSTEME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160317

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. GRAF AND PARTNER AG INTELLECTUAL PROPERTY, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 836902

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007015180

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170213

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007015180

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170112

26N No opposition filed

Effective date: 20170713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170809

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170809

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230821

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230902

Year of fee payment: 17

Ref country code: AT

Payment date: 20230822

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231027

Year of fee payment: 17

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240311

P02 Opt-out of the competence of the unified patent court (upc) changed

Effective date: 20240315