EP2769155B1 - Refrigeration appliance comprising an evaporation tray and a heating device for promoting evaporation - Google Patents

Refrigeration appliance comprising an evaporation tray and a heating device for promoting evaporation Download PDF

Info

Publication number
EP2769155B1
EP2769155B1 EP12780139.7A EP12780139A EP2769155B1 EP 2769155 B1 EP2769155 B1 EP 2769155B1 EP 12780139 A EP12780139 A EP 12780139A EP 2769155 B1 EP2769155 B1 EP 2769155B1
Authority
EP
European Patent Office
Prior art keywords
operation phase
evaporation
temperature
measuring operation
refrigeration appliance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12780139.7A
Other languages
German (de)
French (fr)
Other versions
EP2769155A2 (en
Inventor
Roland Bender
Adolf Feinauer
Wolfgang FLICKINGER
Hans Ihle
Peter LIENHART
Achim Paulduro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Publication of EP2769155A2 publication Critical patent/EP2769155A2/en
Application granted granted Critical
Publication of EP2769155B1 publication Critical patent/EP2769155B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2321/00Details or arrangements for defrosting; Preventing frosting; Removing condensed or defrost water, not provided for in other groups of this subclass
    • F25D2321/14Collecting condense or defrost water; Removing condense or defrost water
    • F25D2321/141Removal by evaporation
    • F25D2321/1413Removal by evaporation using heat from electric elements or using an electric field for enhancing removal

Definitions

  • the present invention relates to a refrigeration appliance, in particular a household refrigeration appliance such as a refrigerator or freezer, with an evaporation tray for the evaporation of condensate derived from a storage chamber of the device and a heater which is operable to, if necessary, the evaporation of condensate in the evaporation tray promote.
  • a refrigeration appliance in particular a household refrigeration appliance such as a refrigerator or freezer, with an evaporation tray for the evaporation of condensate derived from a storage chamber of the device and a heater which is operable to, if necessary, the evaporation of condensate in the evaporation tray promote.
  • the condensate which is reflected in the storage chamber, reaches there via stored refrigerated goods as well as in the form of water vapor, which is contained in the entering each time the door of the refrigerator in the storage chamber ambient air.
  • the extent of the water entry, and thus the rate at which it flows out of the storage chamber of the evaporation tray, is difficult to estimate, as it depends on numerous factors such as type of refrigerated goods and its packaging, temperature and percentage humidity of the ambient air and the amount of Door opening between the environment and storage chamber exchanged air dependent, and various of these sizes are barely measurable with reasonable effort.
  • the construction of the refrigeration unit must ensure that the condensation water of the evaporation tray evaporates quickly enough to reliably prevent overflow, which could damage the refrigeration unit and its surroundings.
  • a refrigerator according to the preamble of claim 1 is made WO 2005/090878 known.
  • a refrigeration device has become known in which a arranged on the evaporation tray temperature sensor is used to gain information about the water level. If, during the defrosting of this conventional refrigeration appliance, condensate enters the evaporating dish in large quantities, a heating device is started in order to evaporate the resulting water, and the resulting heating is monitored. As long as there is water in the shell, the warming is slow. The shell is heated to a maximum temperature, then allowed to cool to a minimum temperature, and reheated. When the rate of temperature rise in the heating phase exceeds a threshold, it is considered that there is no more water in the evaporation tray, and heating of the tray is stopped. To remove condensation that enters the evaporation tray between defrosts, it is heated from time to time, and the temperature rise rate measured determines whether or not the tray contains water that needs to be evaporated.
  • the average temperature during the evaporation operation is significantly lower than the maximum temperature. Accordingly, the average evaporation rate is also significantly lower than the evaporation rate at the maximum temperature. Furthermore, the one needed to achieve the maximum temperature Heating device significantly more powerful than a heater that achieves the same evaporation effect by keeping the evaporation tray constant at a medium temperature.
  • the object of the present invention is to minimize the energy consumption of the heating device in a refrigeration device with a heatable by a heater evaporation tray.
  • the object is achieved by providing in a refrigeration appliance, in particular a household refrigeration appliance, with at least one storage chamber, an evaporation tray for evaporating condensate discharged from the storage chamber, a temperature sensor arranged on the evaporation tray, a control unit connected to the temperature sensor, and a heating device which is heated by the Control unit is operable to increase the evaporation rate in the evaporation tray, the control circuit is arranged to decide on a continuation or non-operation of the heater by changing the temperature detected by the temperature sensor during a measurement operation phase of the heater and an evaporation operation phase of the heater in which the Evaporating tray is heated above the highest measured in the measuring phase of operation temperature, only to initiate when the change is weaker than a first limit. In this way, since the temperature rise in the measurement operation phase can be limited to a few degrees, checking whether the evaporation tray contains dew water in an amount that requires heating requires little energy.
  • the evaporation operation phase should be as promptly as possible, without intermediate cooling of the evaporation tray, following the measurement operation phase so that the heat energy expended for the measurement operation phase is not lost unused ,
  • the extent to which the measured temperature change is below the first limit is a quantitative measure of the amount of water in the evaporation tray.
  • the control circuit can therefore be set up expediently, the duration of an evaporation operating phase following the measurement operation phase the heating device on the basis of the level below the limit. In this way it can be ensured that a single evaporation operating phase is sufficient to reduce the amount of water in the evaporation tray to a permissible level, and energy losses due to a cooling of the tray between two short consecutive evaporation operating phases can be avoided.
  • the evaporation tray is preferably mounted on the compressor.
  • control circuit is further configured to determine, after an evaporation operation phase, the rate of decrease of the temperature sensed by the sensor, and to begin another phase of evaporation operation when the rate of decrease is below a second limit. Too slow a decrease in temperature indicates the presence of a large amount of water in the shell. Such a measurement of the rate of decrease of the temperature is particularly useful if the duration of the evaporation operating phase has not been determined as described above as a function of the results of the measurement operation phase, but is fixedly predetermined.
  • a third limit value for the temperature change in the measuring operation phase and, if the deviation has fallen below the third limit value, after a short time, if the third limit value is not exceeded after a longer time, to repeat the measuring operation phase. If a shortfall of the third limit value indicates a large amount of water in the evaporation tray which can not be eliminated in a single phase of the evaporation operation, then after a short time recheck if the water level in the evaporation tray is at a critical level, and re-heat if necessary to accelerate evaporation.
  • the third limit may be equal to the first limit or lower.
  • the duration of the measurement operation phase can be fixed, and as a measure of the change in the temperature in the measurement operation phase, the difference between the temperature at the beginning of the measurement operation phase and the temperature at the end of the measurement operation phase can be formed.
  • the duration of the measuring operation phase can then be selected between 5 and 30 minutes.
  • control unit may also be arranged to terminate a measurement operation phase if the difference between the measured and the actual temperature measured at the beginning of the measurement operation phase is a target value of e.g. has reached up to 10 K or up to 6 K, and the shorter the measurement operation phase has been, the more the temperature change is judged.
  • a target value e.g. has reached up to 10 K or up to 6 K
  • the control unit comprises means for estimating the supply voltage, and the first limit value or the duration of the measuring operating phase is predetermined as a function of the supply voltage.
  • Fig. 1 and 2 show schematic sections through a household refrigerator, in which the present invention is applicable.
  • the sectional planes of the two figures are shown in the other figure as a dotted line II or II-II.
  • the household refrigerator here a refrigerator, has in the usual way a heat-insulating housing with a body 1 and a door 2, which limit a storage chamber 3.
  • the storage chamber 3 is here cooled by a coldwall evaporator 4 arranged on its rear wall between an inner container of the body 1 and an insulating foam layer surrounding it, but it should be immediately obvious to the person skilled in the art that the special features of the invention explained below also apply in connection with FIG any other types of evaporator, in particular a Nofrost evaporator, are applicable. Also conceivable is the application to a Nofrost freezer, since this, at least in a defrosting phase of the evaporator, also discharges condensation.
  • a pipeline 8 leads from the lowest point of the gutter 7 through the insulating foam layer through to an evaporation tray 9, which is mounted in a machine room 5 on a housing of a compressor 6 to be heated by waste heat of the compressor 6.
  • a corresponding pipeline could emanate from the bottom of a chamber receiving the evaporator.
  • An electric heater 10 is shown here in the form of a heating loop extending in the interior of the evaporation tray 9; it could also be mounted, for example, in the form of a film heater on an outer wall 11 of the evaporation tray 9, in which case an insulation layer can still be provided around the film heater outside, in order to ensure that the heater essentially releases its heat into the evaporation tray 9 ,
  • a fan 12 may be arranged in the engine room 5 so that it drives an air flow over the water level of the evaporation tray 9.
  • Heating device 10 and fan 12 are controlled by an electronic control unit 13, which is shown here for simplicity in the engine room 5, but in practice largely arbitrarily on the refrigerator and in particular adjacent to a - not shown - control panel can be arranged.
  • the control unit 13 switches the heating device 10 and the fan 12 on and off at the same time; It is also conceivable to let the fan 12 run after switching off the heating device 10 for a while to exploit heat that is still present in the water of the evaporation tray 9 at this time, for the evaporation.
  • the control unit 13 is connected to a temperature sensor 15, which is mounted in or on the evaporation tray 9 and is in thermal contact with condensation water in the evaporation tray 9, if any.
  • the same control unit 13 can also control the operation of the compressor 6 on the basis of a temperature sensor 14 arranged on the bearing chamber 3.
  • Condensation can more or less continuously, or, if the evaporator 4 cools in an operating phase of the compressor 6 below 0 ° C and thawed again during the standstill of the compressor 6, in time of the operating phases of the compressor 6 flow from the storage chamber 3 into the evaporation tray 9 ,
  • the water level should not be so high be that in the case of a strong inflow from the storage chamber 3, the evaporation tray 9 overflows.
  • control unit 13 tests from time to time the water level in the evaporation tray by turning on the heater 10 and monitored by means of the temperature sensor 15, the resulting change in temperature of the evaporation tray 9.
  • this measurement of the water level can take place at regular intervals.
  • the waiting time between two measurements may vary under certain conditions: If at a time when the nominal waiting time has expired, the compressor is in operation, it also contributes to the heating of the water in the evaporation tray, so that one this time measurement would give a wrong result. Even some time after the compressor is switched off, this still gives off heat to the evaporation tray and possibly drives a convection movement of the water in the tray, which can lead to heat emitted by the heater 10 reaching the temperature sensor 15 faster or slower than in the case in that, when the heating device 10 is switched on, the compressor 6 is cold and the water in the evaporation tray 9 is at rest.
  • the water level measuring control unit 13 may turn on the heater 10 each at a compressor start or at a predetermined delay to a compressor start.
  • the waste heat from the compressor 6 contributes to the measured temperature rise, and the power of the heater 10 needed to achieve a given temperature rise is lower, which in turn improves the overall efficiency of the device.
  • a scarce and Accordingly, inexpensive compressor can be used, which is frequently and long lasting in operation, since no long periods of inactivity of the compressor for the water level measurement are needed.
  • the refrigerator has an automatic defrost, especially in a NoFrost device, condensate enters the evaporation tray 9 every time the evaporator is defrosted.
  • the temperature of the water in the evaporation tray 9 can drop significantly below that of the surrounding machine room 5, and heating the water takes place without the help of the heater 10 by temperature compensation with the surrounding engine room. Also this temperature compensation can falsify a measurement of the water level. Therefore, in these refrigerators, the control unit 13 is set up, a water level measurement, which is pending at a time to be expected because of a current or recent defrosting temperature changes in the evaporation tray 9, suspend until these temperature changes are subsided again.
  • the control unit 13 has means for detecting a past power failure and is set up when a power failure has been detected, immediately perform a measurement of the water level.
  • Fig. 3 shows the temperature profile of the evaporation tray 9 detected by the sensor 15 in the course of several water level measurements. For the sake of clarity of presentation, times in which the temperature of the evaporation tray is increased by the operation of the compressor 6 and therefore water level measurements are excluded are shown in the diagram of FIG Fig. 3 hidden.
  • a first measuring operating phase begins. The water level in the evaporation tray 9 is low, and the evaporation tray heats up accordingly fast.
  • the temperature has increased by more than dTmin. The water level is considered uncritical assessed.
  • the heater 10 is turned off again, and the evaporation tray 9 cools down again.
  • a thermostat control can take place based on the measurement value of the temperature sensor 15, i. the control unit 13 switches off the heating device 10 when Tmax is exceeded, and switches it on again if Tmax - ⁇ is undershot, where ⁇ is a small positive value, and preferably smaller than dTmin.
  • control unit 13 terminates the evaporation operation phase by turning off the heater 10.
  • the temperature goes back to T0 over time, and the temperature in Fig. 3 cycle shown repeats itself.
  • FIG. 4 is a flowchart showing a working procedure of the control unit 13 whose execution is similar to that in FIG Fig. 3 can show the temperature profile shown.
  • the process starts measuring the exit temperature T0 of the evaporation tray 9 at the beginning of a measuring operation phase in step S1.
  • the heating device 10 is switched on (step S2) and the control unit 13 waits for the predetermined duration .DELTA.t1 of the measuring operation phase (step S3), before it receives a further temperature measurement T1 in step S4.
  • step S5 the temperature change T1-T0 attained during the measuring operation phase is subtracted from the threshold value dTmin.
  • step S6 the difference between the measurement operation phases [t0, t1] and [t2, t3] Fig. 2 .
  • step S8 a predetermined period of time .DELTA.t2 that is many times longer than .DELTA.t1 is awaited before the start of a new measurement phase.
  • step S6 If it is determined in step S6 that dT is greater than or equal to 0, corresponding to the case of the measuring operation phase [t4, t5] Fig. 3 , then the process goes into an evaporation operation phase by the heater remains switched on at the end of the measuring operation phase.
  • step S9 a time period .DELTA.t3 is awaited before the process goes to step S7 and thus ends the Schufeldsphase.
  • the heater can operate continuously to heat the shell to Tmax and intermittently operate in a second part to maintain it at that temperature.
  • the duration .DELTA.t3 of the evaporation operating phase can be fixed. In this case, at the end of the evaporation operation phase, it is not certain that the water level in the evaporation tray 9 has been lowered to a safe level. Therefore, in this case, it is appropriate to make the waiting time ⁇ t2 of the step S8 considerably shorter following an evaporation operation phase than in the case that no evaporation operation phase has taken place.
  • Fig. 5 Another possibility is in Fig. 5 shown.
  • the steps S1 to S9 of the flowchart shown there are with those of Fig. 4 identical and will not be described again.
  • a temperature reading T0 is also taken in again (step S11), and a second temperature reading T1 is taken after waiting the time period ⁇ t1 (S12) in step S13.
  • the difference T0-T1 becomes a second limit dTmin 'compared. If the difference is smaller than the limit dTmin ', ie, the temperature slowly decreases, then this is an indication that the amount of water in the evaporation tray 9 is still large.
  • the method may jump back directly from S14 to S1 to repeat the measurement operation phase and finally decide at the end of it in step S6 whether an evaporation operation phase is still to be connected.
  • the heater 10 may unconditionally be turned on again and jumped back to the step S9 to repeat the evaporation operation phase.
  • step S14 indicates a rapid drop in temperature
  • the amount of residual water in the evaporation tray 9 is apparently small, and the process returns to step S8.
  • Fig. 4 determine the duration .DELTA.t3 of the evaporation phase of operation as a function of dT: the larger dT is, the more the temperature rise in the measuring operation phase has lagged behind the limit value dTmin, and the larger the amount of water in the evaporation tray 9 must be.
  • the relationship between dT and the amount of water in a given refrigerator model can be determined empirically. Based on such empirical data, it is possible to set ⁇ t3 as a function of dT such that the time period ⁇ t3 is exactly sufficient to lower the water level in the evaporation tray 9 to an uncritical value.
  • Fig. 6 shows an alternative embodiment of the measuring operation phase, which is applicable to all the above-described embodiments of the operating method of the control unit 13.
  • Steps S1 and S2 of measuring the output temperature T0 and turning on the heater 10 at the beginning of the measuring operation phase are the same as those described with reference to FIG Fig. 4 described.
  • a timer is started (step S3 ').
  • the temperature T of the evaporation tray 9 is then continuously monitored until it has risen by at least dTmin (S4 '). Once this is the case, the timer is read in step S5 '.
  • a low measured value t of the timer shows a rapid increase in temperature or a Low water level, and it follows the step S7, as with reference to Fig. 4 described.
  • a time reading t> tmax indicates the exceeding of the critical water level in the evaporation tray 9, so that the process proceeds to step S9 as described with reference to FIG Fig. 4 or 5 described.
  • the power of the electric heater 10 is proportional to the square of the supply voltage applied thereto. If this voltage is the mains voltage or a voltage derived from the mains voltage proportional to it, fluctuations in the mains voltage have a strong effect on the measured rate of temperature change and can significantly falsify the estimation of the amount of water in the evaporation tray 9. According to a further developed embodiment, therefore, the control unit is equipped with a voltage sensor for detecting the supply voltage of the heating device. Variations in the supply voltage can then be compensated in different ways. For example, in the method according to Fig.
  • the duration .DELTA.t1 of the measuring operation phase are set in inverse proportion to the square of the supply voltage, so that the amount of heat released in each measuring operation phase is the same regardless of the exact value of the supply voltage.
  • the limit value dTmin can be set directly proportional to the square of the supply voltage. Then, the duration of the measuring operation phase is independent of the value of the operating voltage, but at low voltage, the limit value of the temperature rise, below which an excessively high, heating water level is detected, adjusted according to the reduced amount of heat released.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

Die vorliegende Erfindung betrifft ein Kältegerät, insbesondere ein Haushaltskältegerät wie etwa ein Kühl- oder Gefrierschrank, mit einer Verdunstungsschale zum Verdunsten von aus einer Lagerkammer des Geräts abgeleitetem Tauwasser und einer Heizeinrichtung, die betreibbar ist, um bei Bedarf die Verdunstung des Tauwassers in der Verdunstungsschale zu fördern.The present invention relates to a refrigeration appliance, in particular a household refrigeration appliance such as a refrigerator or freezer, with an evaporation tray for the evaporation of condensate derived from a storage chamber of the device and a heater which is operable to, if necessary, the evaporation of condensate in the evaporation tray promote.

Das Tauwasser, das sich in der Lagerkammer niederschlägt, gelangt dort hin über eingelagertes Kühlgut sowie in Form von Wasserdampf, der in der bei jedem Öffnen der Tür des Kältegeräts in die Lagerkammer gelangenden Umgebungsluft enthalten ist. Das Ausmaß des Wassereintrags, und damit die Rate, in der es aus der Lagerkammer der Verdunstungsschale zufließt, ist schwierig abzuschätzen, da sie von zahlreichen Faktoren wie etwa Art des Kühlguts und seiner Verpackung, Temperatur und prozentuale Feuchte der Umgebungsluft sowie der Menge der bei einem Türöffnen zwischen Umgebung und Lagerkammer ausgetauschten Luft abhängt, und diverse dieser Größen kaum mit vertretbarem Aufwand messbar sind.The condensate, which is reflected in the storage chamber, reaches there via stored refrigerated goods as well as in the form of water vapor, which is contained in the entering each time the door of the refrigerator in the storage chamber ambient air. The extent of the water entry, and thus the rate at which it flows out of the storage chamber of the evaporation tray, is difficult to estimate, as it depends on numerous factors such as type of refrigerated goods and its packaging, temperature and percentage humidity of the ambient air and the amount of Door opening between the environment and storage chamber exchanged air dependent, and various of these sizes are barely measurable with reasonable effort.

Durch die Konstruktion des Kältegerätes muss sichergestellt sein, dass das Tauwasser der Verdunstungsschale schnell genug verdampft, um ein Überlaufen, das zu Schäden am Kältegerät und seiner Umgebung führen könnte, sicher zu vermeiden.The construction of the refrigeration unit must ensure that the condensation water of the evaporation tray evaporates quickly enough to reliably prevent overflow, which could damage the refrigeration unit and its surroundings.

Herkömmlicherweise ist eine solche Verdunstungsschale meist auf einem Verdichter des Kältegerätes montiert, um mit dessen Abwärme das Tauwasser in der Verdunstungsschale zu beheizen und seine Verdunstung zu fördern. Verbesserungen der Isolation und der Kälteerzeugung führen bei modernen Kältegeräten jedoch dazu, dass das Verhältnis von anfallendem Tauwasser zur am Verdichter verfügbaren Abwärme immer ungünstiger wird. Um die Verdunstungsschale dennoch auf einer eine ausreichende Verdunstung gewährleistenden Temperatur zu halten, wurde vorgeschlagen, eine elektrische Heizeinrichtung zum Beheizen der Tauwasserschale einzusetzen. Allerdings beeinträchtigt die Leistungsaufnahme einer solchen Heizeinrichtung massiv die Gesamtenergieeffizienz des Kältegeräts. Ihr Einsatz ist daher auf Zeiten zu begrenzen, in denen dies zum Verhindern des Überlaufens der Verdunstungsschale unabdingbar ist. Um die Heizeinrichtung geeignet steuern zu können, ist es daher erforderlich, den Wasserstand in der Verdunstungsschale zu überwachen.Conventionally, such an evaporation tray is usually mounted on a compressor of the refrigerator to heat with its waste heat the condensation in the evaporation tray and to promote its evaporation. Improvements in insulation and cooling, however, in modern refrigerators result in the ratio of accumulating condensate to the waste heat available at the compressor becoming increasingly unfavorable. In order to still keep the evaporation tray at a sufficient evaporation to ensure a temperature, it has been proposed to use an electric heater for heating the condensed water. However, the power consumption of such affects Heating device massively the overall energy efficiency of the refrigerator. Their use is therefore to be limited to times when this is essential for preventing the overflow of the evaporation tray. In order to control the heater suitable, it is therefore necessary to monitor the water level in the evaporation tray.

Ein Kältegerät gemäß dem Oberbegriff von Anspruch 1 ist aus WO 2005/090878 bekannt.A refrigerator according to the preamble of claim 1 is made WO 2005/090878 known.

Aus JP 2009-085473 A ist ein Kältegerät bekannt geworden, bei dem ein an der Verdunstungsschale angeordneter Temperatursensor genutzt wird, um Aufschluss über den Wasserstand zu gewinnen. Wenn beim Abtauen dieses herkömmlichen Kältegeräts Tauwasser in großer Menge in die Verdunstungsschale gelangt, wird eine Heizeinrichtung in Gang gesetzt, um das anfallende Wasser zu verdunsten, und die resultierende Erwärmung wird überwacht. Solange sich Wasser in der Schale befindet, ist die Erwärmung langsam. Die Schale wird auf eine Maximaltemperatur erwärmt, anschließend auf eine Minimaltemperatur abkühlen gelassen, und erneut erwärmt. Wenn die Geschwindigkeit des Temperaturanstiegs in der Erwärmungsphase einen Grenzwert überschreitet, wird angenommen, dass sich kein Wasser mehr in der Verdunstungsschale befindet, und die Beheizung der Schale wird beendet. Um Tauwasser zu beseitigen, das zwischen Abtauvorgängen in die Verdunstungsschale gelangt, wird diese von Zeit zu Zeit erhitzt, und anhand der dabei gemessenen Temperaturanstiegsgeschwindigkeit wird entschieden, ob die Schale Wasser enthält, das verdunstet werden muss, oder nicht.Out JP 2009-085473 A a refrigeration device has become known in which a arranged on the evaporation tray temperature sensor is used to gain information about the water level. If, during the defrosting of this conventional refrigeration appliance, condensate enters the evaporating dish in large quantities, a heating device is started in order to evaporate the resulting water, and the resulting heating is monitored. As long as there is water in the shell, the warming is slow. The shell is heated to a maximum temperature, then allowed to cool to a minimum temperature, and reheated. When the rate of temperature rise in the heating phase exceeds a threshold, it is considered that there is no more water in the evaporation tray, and heating of the tray is stopped. To remove condensation that enters the evaporation tray between defrosts, it is heated from time to time, and the temperature rise rate measured determines whether or not the tray contains water that needs to be evaporated.

Diese regelmäßige Überprüfung erfordert einen erheblichen Energieeinsatz, der den Wirkungsgrad des Kältegeräts beeinträchtigt. Insbesondere ist die zum Erwärmen der Schale benötigte Energiemenge umso größer, je größer die Schale ist. Eine große Schale ist jedoch wünschenswert, um eine große Verdunstungsoberfläche bereitstellen zu können, über die Tauwasser auch ohne zusätzliche elektrische Beheizung verdunsten kann.This regular check requires a considerable amount of energy, which affects the efficiency of the refrigeration device. In particular, the larger the shell, the larger the amount of energy required to heat the shell. However, a large shell is desirable to provide a large evaporation surface over which condensation can evaporate without additional electrical heating.

Da während des Verdunstungsbetriebs die Temperatur stark schwanken muss, um in regelmäßigen Zeitabständen anhand der Temperaturanstiegsgeschwindigkeit überprüfen zu können, ob die Schale noch Wasser enthält, ist die mittlere Temperatur während des Verdunstungsbetriebs deutlich niedriger als die Maximaltemperatur. Dementsprechend ist auch die mittlere Verdunstungsrate erheblich niedriger, als die Verdunstungsrate bei der Maximaltemperatur. Ferner muss die zum Erzielen der Maximaltemperatur benötigte Heizeinrichtung erheblich leistungsstärker sein als eine Heizeinrichtung, die die gleiche Verdunstungswirkung dadurch erzielt, dass sie die Verdunstungsschale konstant auf einer mittleren Temperatur hält.Since during the evaporation operation, the temperature must fluctuate greatly to check at regular intervals by the rate of increase in temperature, whether the shell still contains water, the average temperature during the evaporation operation is significantly lower than the maximum temperature. Accordingly, the average evaporation rate is also significantly lower than the evaporation rate at the maximum temperature. Furthermore, the one needed to achieve the maximum temperature Heating device significantly more powerful than a heater that achieves the same evaporation effect by keeping the evaporation tray constant at a medium temperature.

Aufgabe der vorliegenden Erfindung ist, bei einem Kältegerät mit einer von einer Heizeinrichtung beheizbaren Verdunstungsschale den Energieverbrauch der Heizeinrichtung zu minimieren.The object of the present invention is to minimize the energy consumption of the heating device in a refrigeration device with a heatable by a heater evaporation tray.

Die Aufgabe wird gelöst, indem bei einem Kältegerät, insbesondere einem Haushaltskältegerät, mit wenigstens einer Lagerkammer, einer Verdunstungsschale zum Verdunsten von aus der Lagerkammer abgeleitetem Tauwasser, einem an der Verdunstungsschale angeordneten Temperatursensor, einer mit dem Temperatursensor verbundenen Steuereinheit und einer Heizeinrichtung, die durch die Steuereinheit betreibbar ist, um die Verdunstungsrate in der Verdunstungsschale zu erhöhen, die Steuerschaltung eingerichtet ist, anhand einer Änderung der von dem Temperatursensor während einer Messbetriebsphase der Heizeinrichtung erfassten Temperaturen über Weiterbetrieb oder nicht Betrieb der Heizeinrichtung zu entscheiden und eine Verdunstungsbetriebsphase der Heizeinrichtung, in der die Verdunstungsschale über die höchste in der Messbetriebsphase gemessene Temperatur hinaus erhitzt wird, nur einzuleiten, wenn die Änderung schwächer als ein erster Grenzwert ist. Da auf diese Weise der Temperaturanstieg in der Messbetriebsphase auf wenige Grad begrenzt bleiben kann, erfordert die Überprüfung, ob die Verdunstungsschale Tauwasser in einer Menge enthält, die ein Beheizen erforderlich macht, nur wenig Energie.The object is achieved by providing in a refrigeration appliance, in particular a household refrigeration appliance, with at least one storage chamber, an evaporation tray for evaporating condensate discharged from the storage chamber, a temperature sensor arranged on the evaporation tray, a control unit connected to the temperature sensor, and a heating device which is heated by the Control unit is operable to increase the evaporation rate in the evaporation tray, the control circuit is arranged to decide on a continuation or non-operation of the heater by changing the temperature detected by the temperature sensor during a measurement operation phase of the heater and an evaporation operation phase of the heater in which the Evaporating tray is heated above the highest measured in the measuring phase of operation temperature, only to initiate when the change is weaker than a first limit. In this way, since the temperature rise in the measurement operation phase can be limited to a few degrees, checking whether the evaporation tray contains dew water in an amount that requires heating requires little energy.

Wenn die Messbetriebsphase ergibt, das genügend Wasser in der Verdunstungsschale ist, um einen Betrieb der Heizeinrichtung zu rechtfertigen, dann sollte die Verdunstungsbetriebsphase möglichst unverzüglich, ohne zwischenzeitliche Abkühlung der Verdunstungsschale, auf die Messbetriebsphase folgen, damit nicht die für die Messbetriebsphase aufgewandte Heizenergie ungenutzt verloren geht.If the measurement operation phase results in sufficient water in the evaporation tray to justify operation of the heater then the evaporation operation phase should be as promptly as possible, without intermediate cooling of the evaporation tray, following the measurement operation phase so that the heat energy expended for the measurement operation phase is not lost unused ,

Das Ausmaß, in dem die gemessene Temperaturänderung den ersten Grenzwert unterschreitet, ist ein quantitatives Maß für die Menge des Wassers in der Verdunstungsschale. Die Steuerschaltung kann daher zweckmäßigerweise eingerichtet sein, die Dauer einer auf die Messbetriebsphase folgenden Verdunstungsbetriebsphase der Heizeinrichtung anhand der Stärke der Unterschreitung des Grenzwertes festzulegen. Auf diese Weise kann sichergestellt werden, dass eine einzige Verdunstungsbetriebsphase ausreicht, um die Wassermenge in der Verdunstungsschale auf ein zulässiges Maß zu reduzieren, und Energieverluste durch eine Abkühlung der Schale zwischen zwei kurz aufeinanderfolgenden Verdunstungsbetriebsphasen können vermieden werden. Darüber hinaus ist mit einer kontinuierlich hohen Verdunstungstemperatur eine höhere Verdunstungsrate erreichbar als mit einer schwankenden Temperatur, sodass ein hoher Wasserstand in der Verdunstungsschale zugelassen werden kann, bevor die Heizeinrichtung zu Hilfe genommen werden muss, um das Wasser zu beseitigen. So reduziert sich, insbesondere wenn noch andere Quellen von Wärme, insbesondere von Abwärme, zum Beheizen der Verdunstungsschale zur Verfügung stehen, die Häufigkeit, mit der die Heizeinrichtung betrieben werden muss.The extent to which the measured temperature change is below the first limit is a quantitative measure of the amount of water in the evaporation tray. The control circuit can therefore be set up expediently, the duration of an evaporation operating phase following the measurement operation phase the heating device on the basis of the level below the limit. In this way it can be ensured that a single evaporation operating phase is sufficient to reduce the amount of water in the evaporation tray to a permissible level, and energy losses due to a cooling of the tray between two short consecutive evaporation operating phases can be avoided. Moreover, with a continuously high evaporation temperature, a higher evaporation rate is achievable than with a fluctuating temperature, so that a high level of water in the evaporation tray can be allowed before the heater must be used to clear the water. Thus, especially when other sources of heat, in particular waste heat, are available for heating the evaporation tray, the frequency with which the heating device must be operated is reduced.

Um die Abwärme nutzen zu können, die insbesondere von einem Verdichter des Kältegeräts erzeugt wird, ist die Verdunstungsschale vorzugsweise auf dem Verdichter montiert.In order to use the waste heat, which is generated in particular by a compressor of the refrigerator, the evaporation tray is preferably mounted on the compressor.

Vorzugsweise ist die Steuerschaltung weiter eingerichtet, nach einer Verdunstungsbetriebsphase die Abnahmegeschwindigkeit der vom Sensor erfassten Temperatur zu ermitteln, und eine weitere Verdunstungsbetriebsphase zu beginnen, wenn die Abnahmegeschwindigkeit unter einem zweiten Grenzwert liegt. Eine zu langsame Abnahme der Temperatur deutet auf das Vorhandensein einer großen Wassermenge in der Schale hin. Eine solche Messung der Abnahmegeschwindigkeit der Temperatur ist insbesondere dann sinnvoll, wenn die Dauer der Verdunstungsbetriebsphase nicht, wie oben beschrieben, in Abhängigkeit von den Ergebnissen der Messbetriebsphase festgelegt wurde, sondern fest vorgegeben ist.Preferably, the control circuit is further configured to determine, after an evaporation operation phase, the rate of decrease of the temperature sensed by the sensor, and to begin another phase of evaporation operation when the rate of decrease is below a second limit. Too slow a decrease in temperature indicates the presence of a large amount of water in the shell. Such a measurement of the rate of decrease of the temperature is particularly useful if the duration of the evaporation operating phase has not been determined as described above as a function of the results of the measurement operation phase, but is fixedly predetermined.

Denkbar ist auch, einen dritten Grenzwert für die Temperaturänderung in der Messbetriebsphase zu definieren und, wenn die Abweichung den dritten Grenzwert unterschritten hat, nach kurzer Zeit, bei Nichtunterschreitung des dritten Grenzwerts nach längerer Zeit, die Messbetriebsphase zu wiederholen. Wenn eine Unterschreitung des dritten Grenzwerts auf eine große, in einer einzelnen Verdunstungsbetriebsphase nicht zu beseitigende Wassermenge in der Verdunstungsschale hinweist, wird so nach kurzer Zeit erneut überprüft, ob der Wasserstand in der Verdunstungsschale ein kritisches Niveau hat, und ggf. erneut beheizt, um die Verdunstung zu beschleunigen.It is also conceivable to define a third limit value for the temperature change in the measuring operation phase and, if the deviation has fallen below the third limit value, after a short time, if the third limit value is not exceeded after a longer time, to repeat the measuring operation phase. If a shortfall of the third limit value indicates a large amount of water in the evaporation tray which can not be eliminated in a single phase of the evaporation operation, then after a short time recheck if the water level in the evaporation tray is at a critical level, and re-heat if necessary to accelerate evaporation.

Der dritte Grenzwert kann gleich dem ersten Grenzwert oder niedriger gewählt sein.The third limit may be equal to the first limit or lower.

Die Dauer der Messbetriebsphase kann fest vorgegeben sein, und als Maß für die Änderung der Temperatur in der Messbetriebsphase kann die Differenz zwischen der Temperatur zu Beginn der Messbetriebsphase und der Temperatur zum Ende der Messbetriebsphase gebildet werden.The duration of the measurement operation phase can be fixed, and as a measure of the change in the temperature in the measurement operation phase, the difference between the temperature at the beginning of the measurement operation phase and the temperature at the end of the measurement operation phase can be formed.

Eine Temperaturänderung in der Messbetriebsphase von unter 10 K, vorzugsweise sogar unter 6 K, hat sich als ausreichend erwiesen, um den Wasserstand in der Verdunstungsschale zuverlässig beurteilen zu können.A temperature change in the measuring operation phase of less than 10 K, preferably even less than 6 K, has proven to be sufficient to reliably assess the water level in the evaporation tray can.

Die Dauer der Messbetriebsphase kann dann zwischen 5 und 30 Minuten gewählt sein.The duration of the measuring operation phase can then be selected between 5 and 30 minutes.

Alternativ kann die Steuereinheit auch eingerichtet sein, eine Messbetriebsphase zu beenden, wenn die Differenz zwischen am Anfang der Messbetriebsphase gemessener und gegenwärtiger Temperatur einen Sollwert von z.B. bis zu 10 K oder bis zu 6 K erreicht hat, und die Temperaturänderung als um so stärker zu beurteilen, je kürzer die Messbetriebsphase gewesen ist. Da die Zeit bis zum Erreichen des Sollwerts der Temperatur umso kürzer ist, je weniger Wasser die Schale enthält, kann auf diese Weise der Energieaufwand für eine Füllstandsbeurteilung insbesondere in den Fällen, in denen der Wasserstand niedrig ist und die Verdunstung nicht von der Heizeinrichtung beschleunigt werden muss, verringert werden.Alternatively, the control unit may also be arranged to terminate a measurement operation phase if the difference between the measured and the actual temperature measured at the beginning of the measurement operation phase is a target value of e.g. has reached up to 10 K or up to 6 K, and the shorter the measurement operation phase has been, the more the temperature change is judged. In this way, since the time required to reach the target value of the temperature is shorter, the less water the shell contains, the energy expenditure for a filling level assessment can be accelerated by the heating device, in particular in cases where the water level is low and the evaporation must be reduced.

Auch eine schwankende Versorgungsspannung kann sich stark auf die Anstiegsrate der Temperatur in einer Messbetriebsphase oder die im Laufe einer vorgegebenen Zeitspanne erreichte Temperatursteigerung auswirken. Um eine Verfälschung von Wasserstandsmessungen zu vermeiden, umfasst die Steuereinheit Mittel zum Abschätzen der Versorgungsspannung, und der erste Grenzwert oder die Dauer der Messbetriebsphase ist als Funktion der Versorgungsspannung vorgegeben.Also, a fluctuating supply voltage can greatly affect the rate of increase of the temperature in a measuring operation phase or the temperature increase achieved over a given period of time. In order to avoid a falsification of water level measurements, the control unit comprises means for estimating the supply voltage, and the first limit value or the duration of the measuring operating phase is predetermined as a function of the supply voltage.

Die Aufgabe wird ferner gelöst durch ein Verfahren zum Überwachen des Wasserstands in einer Verdunstungsschale eines Kältegeräts, insbesondere wie es von der Steuereinheit des oben beschriebenen Kältegeräts ausgeführt wird, mit den Schritten:

  • in einer Messbetriebsphase Beheizen der Verdunstungsschale und Beurteilen des Wasserstands anhand der aus dem Beheizen resultierenden Änderung einer an der Verdunstungsschale gemessenen Temperatur;
  • Einleiten einer Verdunstungsbetriebsphase der Heizeinrichtung, in der die Verdunstungsschale über die höchste in der Messbetriebsphase gemessene Temperatur hinaus erhitzt wird, wenn die Änderung schwächer als ein erster Grenzwert ist.
The object is further achieved by a method for monitoring the water level in an evaporation tray of a refrigeration appliance, in particular as is carried out by the control unit of the refrigeration appliance described above, with the following steps:
  • in a measuring operation phase, heating the evaporation tray and evaluating the water level based on the change of a temperature measured at the evaporation tray resulting from the heating;
  • Initiating an evaporation operation phase of the heater in which the evaporation tray is heated above the highest temperature measured during the measurement operation phase when the change is weaker than a first limit value.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren. Aus dieser Beschreibung und den Figuren gehen auch Merkmale der Ausführungsbeispiele hervor, die nicht in den Ansprüchen erwähnt sind. Solche Merkmale können auch in anderen als den hier spezifisch offenbarten Kombinationen auftreten. Die Tatsache, dass mehrere solche Merkmale in einem gleichen Satz oder in einer anderen Art von Textzusammenhang miteinander erwähnt sind, rechtfertigt daher nicht den Schluss, dass sie nur in der spezifisch offenbarten Kombination auftreten können; stattdessen ist grundsätzlich davon auszugehen, dass von mehreren solchen Merkmalen auch einzelne weggelassen oder abgewandelt werden können, sofern dies die Funktionsfähigkeit der Erfindung nicht in Frage stellt. Es zeigen:

Fig. 1
einen schematischen Schnitt in Breitenrichtung durch ein Haushaltskältegerät gemäß der vorliegenden Erfindung;
Fig. 2
einen Schnitt in Tiefenrichtung durch das Kältegerät;
Fig. 3
einen exemplarischen zeitlichen Verlauf der Temperatur der Verdunstungsschale des Kältegeräts aus Fig. 1 und 2;
Fig. 4
ein Flussdiagramm eines Verfahrens zum Steuern der Heizeinrichtung des Kältegeräts, durch das sich der in Fig. 3 gezeigte Temperaturverlauf ergeben kann, gemäß einer ersten Ausgestaltung der Erfindung;
Fig. 5
ein Flussdiagramm eines Verfahrens zum Steuern der Heizeinrichtung gemäß einer zweiten Ausgestaltung; und
Fig. 6
einen alternativen Ablauf der Messbetriebsphase des Verfahrens gemäß Fig. 4 oder Fig. 5.
Further features and advantages of the invention will become apparent from the following description of embodiments with reference to the accompanying figures. From this description and the figures also show features of the embodiments, which are not mentioned in the claims. Such features may also occur in combinations other than those specifically disclosed herein. Therefore, the fact that several such features are mentioned in the same sentence or in a different type of textual context does not justify the conclusion that they can occur only in the specific combination disclosed; instead, it is generally to be assumed that it is also possible to omit or modify individual ones of several such features, provided this does not call into question the functionality of the invention. Show it:
Fig. 1
a schematic section in the width direction by a household refrigerator according to the present invention;
Fig. 2
a section in the depth direction by the refrigerator;
Fig. 3
an exemplary time profile of the temperature of the evaporation tray of the refrigerator Fig. 1 and 2 ;
Fig. 4
a flowchart of a method for controlling the heating device of the refrigerator, through which the in Fig. 3 shown temperature profile, according to a first embodiment of the invention;
Fig. 5
a flowchart of a method for controlling the heating device according to a second embodiment; and
Fig. 6
an alternative sequence of Meßbetriebsphase the method according to Fig. 4 or Fig. 5 ,

Fig. 1 und 2 zeigen schematische Schnitte durch ein Haushaltskältegerät, bei dem die vorliegende Erfindung anwendbar ist. Die Schnittebenen der beiden Figuren sind in der jeweils anderen Figur als strichpunktierte Linie I-I bzw. II-II eingezeichnet. Fig. 1 and 2 show schematic sections through a household refrigerator, in which the present invention is applicable. The sectional planes of the two figures are shown in the other figure as a dotted line II or II-II.

Das Haushaltskältegerät, hier ein Kühlschrank, hat in üblicher Weise ein wärmeisolierendes Gehäuse mit einem Korpus 1 und einer Tür 2, die eine Lagerkammer 3 begrenzen. Die Lagerkammer 3 ist hier durch einen an ihrer Rückwand zwischen einem Innenbehälter des Korpus 1 und einer diesen umgebenden isolierenden Schaumstoffschicht angeordneten Coldwall-Verdampfer 4 gekühlt, doch dürfte für den Fachmann unmittelbar einsichtig sein, dass die im Folgenden erläuterten Besonderheiten der Erfindung auch in Verbindung mit beliebigen anderen Typen von Verdampfer, insbesondere einem Nofrost-Verdampfer, anwendbar sind. Denkbar ist auch die Anwendung auf ein Nofrost-Gefriergerät, da dieses, zumindest in einer Abtauphase des Verdampfers, ebenfalls Tauwasser abgibt.The household refrigerator, here a refrigerator, has in the usual way a heat-insulating housing with a body 1 and a door 2, which limit a storage chamber 3. The storage chamber 3 is here cooled by a coldwall evaporator 4 arranged on its rear wall between an inner container of the body 1 and an insulating foam layer surrounding it, but it should be immediately obvious to the person skilled in the art that the special features of the invention explained below also apply in connection with FIG any other types of evaporator, in particular a Nofrost evaporator, are applicable. Also conceivable is the application to a Nofrost freezer, since this, at least in a defrosting phase of the evaporator, also discharges condensation.

Bei dem hier betrachteten Coldwall-Kältegerät erstreckt sich am Fuße der durch den Verdampfer 4 gekühlten Rückwand der Lagerkammer 3 eine Auffangrinne 7, die Kondenswasser, das sich an dem vom Verdampfer 4 gekühlten Bereich des Innenbehälters niederschlägt und daran abwärts fließt, auffängt. Eine Rohrleitung 8 führt vom tiefsten Punkt der Auffangrinne 7 durch die isolierende Schaumstoffschicht hindurch zu einer Verdunstungsschale 9, die in einem Maschinenraum 5 auf einem Gehäuse eines Verdichters 6 montiert ist, um durch Abwärme des Verdichters 6 beheizt zu werden. Bei einem Nofrost-Kältegerät könnte eine entsprechende Rohrleitung vom Boden einer den Verdampfer aufnehmenden Kammer ausgehen.In the case of the Coldwall refrigeration device considered here, at the foot of the rear wall of the storage chamber 3 cooled by the evaporator 4, there extends a collecting channel 7, which collects condensed water, which deposits on the region of the inner container cooled by the evaporator 4 and flows downwards there. A pipeline 8 leads from the lowest point of the gutter 7 through the insulating foam layer through to an evaporation tray 9, which is mounted in a machine room 5 on a housing of a compressor 6 to be heated by waste heat of the compressor 6. In a Nofrost refrigeration appliance, a corresponding pipeline could emanate from the bottom of a chamber receiving the evaporator.

Eine elektrische Heizeinrichtung 10 ist hier in Form einer sich im Innern der Verdunstungsschale 9 erstreckten Heizschleife dargestellt; sie könnte auch beispielsweise in Form einer Folienheizung an einer Außenwand 11 der Verdunstungsschale 9 angebracht sein, wobei in diesem Fall außen um die Folienheizung herum noch eine Isolationsschicht vorgesehen werden kann, um sicherzustellen, dass die Heizeinrichtung ihre Wärme im Wesentlichen in die Verdunstungsschale 9 hinein abgibt.An electric heater 10 is shown here in the form of a heating loop extending in the interior of the evaporation tray 9; it could also be mounted, for example, in the form of a film heater on an outer wall 11 of the evaporation tray 9, in which case an insulation layer can still be provided around the film heater outside, in order to ensure that the heater essentially releases its heat into the evaporation tray 9 ,

Um die Verdunstung von Tauwasser in der Verdunstungsschale 9 zu fördern, kann zusätzlich zu der Heizeinrichtung 10 noch ein Ventilator 12 in dem Maschinenraum 5 so angeordnet sein, dass er einen Luftstrom über dem Wasserspiegel der Verdunstungsschale 9 antreibt.In order to promote the evaporation of condensate in the evaporation tray 9, in addition to the heater 10, a fan 12 may be arranged in the engine room 5 so that it drives an air flow over the water level of the evaporation tray 9.

Heizeinrichtung 10 und Ventilator 12 sind gesteuert durch eine elektronische Steuereinheit 13, die hier der Einfachheit halber in dem Maschinenraum 5 dargestellt ist, die aber in der Praxis weitgehend beliebig am Kältegerät und insbesondere benachbart zu einem - hier nicht dargestellten - Bedienfeld angeordnet sein kann. Im einfachsten Falle schaltet die Steuereinheit 13 die Heizeinrichtung 10 und den Ventilator 12 jeweils gleichzeitig ein und aus; denkbar ist auch den Ventilator 12 nach Ausschalten der Heizeinrichtung 10 noch eine Zeit lang nachlaufen zu lassen, um Wärme, die zu dieser Zeit noch im Wasser der Verdunstungsschale 9 enthalten ist, für die Verdunstung auszunutzen. Die Steuereinheit 13 ist mit einem Temperatursensor 15 verbunden, der in oder an der Verdunstungsschale 9 montiert ist und mit Tauwasser in der Verdunstungsschale 9, falls vorhanden, in thermischem Kontakt steht.Heating device 10 and fan 12 are controlled by an electronic control unit 13, which is shown here for simplicity in the engine room 5, but in practice largely arbitrarily on the refrigerator and in particular adjacent to a - not shown - control panel can be arranged. In the simplest case, the control unit 13 switches the heating device 10 and the fan 12 on and off at the same time; It is also conceivable to let the fan 12 run after switching off the heating device 10 for a while to exploit heat that is still present in the water of the evaporation tray 9 at this time, for the evaporation. The control unit 13 is connected to a temperature sensor 15, which is mounted in or on the evaporation tray 9 and is in thermal contact with condensation water in the evaporation tray 9, if any.

Dieselbe Steuereinheit 13 kann auch den Betrieb des Verdichters 6 anhand eines an der Lagerkammer 3 angeordneten Temperatursensors 14 steuern.The same control unit 13 can also control the operation of the compressor 6 on the basis of a temperature sensor 14 arranged on the bearing chamber 3.

Kondenswasser kann mehr oder weniger kontinuierlich, oder, falls der Verdampfer 4 in einer Betriebsphase des Verdichters 6 unter 0°C abkühlt und während des Stillstands des Verdichters 6 wieder auftaut, im Takt der Betriebsphasen des Verdichters 6 aus der Lagerkammer 3 in die Verdunstungsschale 9 abfließen. Um die Abwärme des Verdichters 6 effizient nutzen zu können, ist es zweckmäßig, eine große Wassermenge in der Verdunstungsschale zu speichern, die die Wärme lange hält und eine große freie Oberfläche zur Verdunstung aufweist. Andererseits darf der Wasserspiegel nicht so hoch sein, dass im Falle eines starken Zuflusses aus der Lagerkammer 3 die Verdunstungsschale 9 überläuft. Es ist daher notwendig, die Wassermenge in der Verdunstungsschale 9 abschätzen zu können, um beurteilen zu können, ob es erforderlich ist, das Wasser in der Verdunstungsschale 9 durch die Heizeinrichtung 10 aufzuheizen, um so die Verdunstung zu beschleunigen und ein Überlaufen zu vermeiden. Zu diesem Zweck testet die Steuereinheit 13 von Zeit zu Zeit den Wasserstand in der Verdunstungsschale, indem sie die Heizeinrichtung 10 einschaltet und mittels des Temperatursensors 15 die daraus resultierende Temperaturänderung der Verdunstungsschale 9 überwacht.Condensation can more or less continuously, or, if the evaporator 4 cools in an operating phase of the compressor 6 below 0 ° C and thawed again during the standstill of the compressor 6, in time of the operating phases of the compressor 6 flow from the storage chamber 3 into the evaporation tray 9 , In order to use the waste heat of the compressor 6 efficiently, it is expedient to store a large amount of water in the evaporation tray, which keeps the heat long and has a large free surface for evaporation. On the other hand, the water level should not be so high be that in the case of a strong inflow from the storage chamber 3, the evaporation tray 9 overflows. It is therefore necessary to be able to estimate the amount of water in the evaporation tray 9 to judge whether it is necessary to heat the water in the evaporation tray 9 by the heater 10 so as to accelerate the evaporation and avoid overflow. For this purpose, the control unit 13 tests from time to time the water level in the evaporation tray by turning on the heater 10 and monitored by means of the temperature sensor 15, the resulting change in temperature of the evaporation tray 9.

Im einfachsten Fall kann diese Messung des Wasserstandes in regelmäßigen Zeitabständen stattfinden. Einer bevorzugten Weiterbildung kann die Wartezeit zwischen zwei Messungen unter bestimmten Bedingungen variieren: Wenn zu einem Zeitpunkt, an dem die nominelle Wartezeit abgelaufen ist, der Verdichter in Betrieb ist, dann trägt auch er zur Erwärmung des Wassers in der Verdunstungsschale bei, so dass eine zu dieser Zeit durchgeführte Messung ein falsches Ergebnis liefern würde. Auch einige Zeit nach Abschalten des Verdichters gibt dieser noch Wärme an die Verdunstungsschale ab und treibt eventuell eine Konvektionsbewegung des Wassers in der Schale an, die dazu führen kann, dass von der Heizeinrichtung 10 abgegebene Wärme den Temperatursensor 15 schneller oder langsamer erreicht als in dem Fall, dass bei Einschalten der Heizeinrichtung 10 der Verdichter 6 kalt und das Wasser in der Verdunstungsschale 9 in Ruhe ist.In the simplest case, this measurement of the water level can take place at regular intervals. In a preferred embodiment, the waiting time between two measurements may vary under certain conditions: If at a time when the nominal waiting time has expired, the compressor is in operation, it also contributes to the heating of the water in the evaporation tray, so that one this time measurement would give a wrong result. Even some time after the compressor is switched off, this still gives off heat to the evaporation tray and possibly drives a convection movement of the water in the tray, which can lead to heat emitted by the heater 10 reaching the temperature sensor 15 faster or slower than in the case in that, when the heating device 10 is switched on, the compressor 6 is cold and the water in the evaporation tray 9 is at rest.

Daher wartet die Steuereinheit 13, wenn am Ende der nominellen Wartezeit der Verdichter 6 in Betrieb oder noch von einer vorhergehenden Betriebshase warm ist, noch eine vorgegebene Zeitspanne ab Ausschalten des Verdichters 6 ab, bevor sie zum Messen des Wasserstandes die Heizeinrichtung 10 einschaltet.Therefore, waiting for the end of the nominal waiting time of the compressor 6 in operation or even from a previous hive, waiting for a predetermined period of time from turning off the compressor 6 before it turns on the heater 10 for measuring the water level.

Alternativ kann die Steuereinheit 13 zur Messung des Wasserstands die Heizeinrichtung 10 jeweils bei einem Verdichterstart oder mit einer vorgegebenen Verzögerung zu einem Verdichterstart einschalten. So trägt die Abwärme des Verdichters 6 zum gemessenen Temperaturanstieg bei, und die Leistung der Heizeinrichtung 10, die benötigt wird, um einen gegebenen Temperaturanstieg zu erzielen, ist geringer, was wiederum die Gesamteffizienz des Gerätes verbessert. Außerdem kann ein knapp dimensionierter und dementsprechend preiswerter Verdichter eingesetzt werden, der häufig und lang anhaltend in Betrieb ist, da keine langen Stillstandsphasen des Verdichters für die Wasserstandsmessung benötigt werden.Alternatively, the water level measuring control unit 13 may turn on the heater 10 each at a compressor start or at a predetermined delay to a compressor start. Thus, the waste heat from the compressor 6 contributes to the measured temperature rise, and the power of the heater 10 needed to achieve a given temperature rise is lower, which in turn improves the overall efficiency of the device. In addition, a scarce and Accordingly, inexpensive compressor can be used, which is frequently and long lasting in operation, since no long periods of inactivity of the compressor for the water level measurement are needed.

Wenn das Kältegerät eine automatische Abtauung aufweist, insbesondere bei einem NoFrost-Gerät, gelangt Tauwasser bei jedem Abtauen des Verdampfers schwallweise in die Verdunstungsschale 9. Dadurch kann die Temperatur des Wassers in der Verdunstungsschale 9 deutlich unter die des umgebenden Maschinenraums 5 abfallen, und eine Erwärmung des Wassers findet ohne Zutun der Heizeinrichtung 10 durch Temperaturausgleich mit dem umgebenden Maschinenraum statt. Auch dieser Temperaturausgleich kann eine Messung des Wasserstandes verfälschen. Daher ist bei diesen Kältegeräten die Steuereinheit 13 eingerichtet, eine Wasserstandsmessung, die zu einer Zeit ansteht, an der wegen eines laufenden oder kurz zurückliegenden Abtauvorgangs Temperaturänderungen in der Verdunstungsschale 9 zu erwarten sind, auszusetzen, bis diese Temperaturänderungen wieder abgeklungen sind.If the refrigerator has an automatic defrost, especially in a NoFrost device, condensate enters the evaporation tray 9 every time the evaporator is defrosted. As a result, the temperature of the water in the evaporation tray 9 can drop significantly below that of the surrounding machine room 5, and heating the water takes place without the help of the heater 10 by temperature compensation with the surrounding engine room. Also this temperature compensation can falsify a measurement of the water level. Therefore, in these refrigerators, the control unit 13 is set up, a water level measurement, which is pending at a time to be expected because of a current or recent defrosting temperature changes in the evaporation tray 9, suspend until these temperature changes are subsided again.

Da ein Stromausfall je nach seiner Dauer zum Abtauen des Verdampfers führen kann, aber nicht muss, besteht die Gefahr, dass der Wasserstand in der Verdunstungsschale 9 nach einem Stromausfall deutlich höher ist als davor. Um ggf. einem zu hohen Wasserstand rechtzeitig entgegenwirken zu können, verfügt einer anderen Weiterbildung zufolge die Steuereinheit 13 über Mittel zum Erkennen eines zurückliegenden Stromausfalls und ist eingerichtet, wenn ein Stromausfall erkannt worden ist, sofort eine Messung des Wasserstandes durchzuführen.Since a power failure depending on its duration can lead to the defrosting of the evaporator, but does not have to, there is a risk that the water level in the evaporation tray 9 after a power failure is significantly higher than before. To possibly counteract too high a level of water in time, according to another development, the control unit 13 has means for detecting a past power failure and is set up when a power failure has been detected, immediately perform a measurement of the water level.

Fig. 3 zeigt den vom Sensor 15 im Laufe mehrerer Wasserstandsmessungen erfassten Temperaturverlauf der Verdunstungsschale 9. Der Übersichtlichkeit der Darstellung halber sind Zeiten, in denen die Temperatur der Verdunstungsschale durch den Betrieb des Verdichters 6 erhöht ist und deshalb Wasserstandsmessungen ausgeschlossen sind, in dem Diagramm der Fig. 3 ausgeblendet. Zum Zeitpunkt t0 beginnt mit dem Einschalten der Heizeinrichtung 10 durch die Steuereinheit 13 eine erste Messbetriebsphase. Der Wasserstand in der Verdunstungsschale 9 ist gering, und die Verdunstungsschale erwärmt sich dementsprechend schnell. Am Ende der Messbetriebsphase hat die Temperatur um mehr als dTmin zugenommen. Der Wasserstand wird als unkritisch beurteilt. Die Heizeinrichtung 10 wird wieder ausgeschaltet, und die Verdunstungsschale 9 kühlt sich wieder ab. Fig. 3 shows the temperature profile of the evaporation tray 9 detected by the sensor 15 in the course of several water level measurements. For the sake of clarity of presentation, times in which the temperature of the evaporation tray is increased by the operation of the compressor 6 and therefore water level measurements are excluded are shown in the diagram of FIG Fig. 3 hidden. At time t0, when the heating device 10 is switched on by the control unit 13, a first measuring operating phase begins. The water level in the evaporation tray 9 is low, and the evaporation tray heats up accordingly fast. At the end of the measurement phase, the temperature has increased by more than dTmin. The water level is considered uncritical assessed. The heater 10 is turned off again, and the evaporation tray 9 cools down again.

Bis zum Beginn einer weiteren Messbetriebsphase zum Zeitpunkt t2 hat sich etwas mehr Kondenswasser in der Verdunstungsschale gesammelt, und der Temperaturanstieg ist sichtlich verlangsamt. Er ist jedoch immer noch schnell genug, um am Ende der Messbetriebsphase, zur Zeit t3 (= t2 + Δt1) die Schwelle dTmin zu überschreiten, und so wird wiederum am Ende der Messbetriebsphase zur Zeit t3 die Heizeinrichtung 10 ausgeschaltet.Until the beginning of a further measuring operation phase at time t2, a little more condensed water has collected in the evaporation tray, and the temperature rise is visibly slowed down. However, it is still fast enough to exceed the threshold dTmin at the end of the measurement operation phase, at time t3 (= t2 + Δt1), and so again at the end of the measurement operation phase at time t3, the heater 10 is turned off.

Zu Beginn einer dritten Messbetriebsphase, zum Zeitpunkt t4, ist die Kondenswassermenge so weit erhöht, dass bis zum Zeitpunkt t5 (= t4 + Δt1) eine Temperatursteigerung um dTmin nicht mehr erreicht wird. Erst jetzt schließt sich eine Verdunstungsbetriebsphase an, in der die Heizeinrichtung 10 eingeschaltet bleibt. In einem ersten Teil der Verdunstungsbetriebsphase läuft die Heizeinrichtung kontinuierlich mit hoher Leistung, und die die Temperatur steigt kontinuierlich weiter bis auf einen zugelassenen Höchstwert Tmax. Während dTmin im Allgemeinen unter 10 K und vorzugsweise sogar unter 6 K beträgt, kann der Temperaturanstieg in der Verdunstungsbetriebsphase ohne weiteres mehrere 10 K betragen.At the beginning of a third measuring operation phase, at the time t4, the amount of condensed water is increased so much that until the time t5 (= t4 + .DELTA.t1), a temperature increase by dTmin is no longer achieved. Only now joins an evaporation operation phase in which the heater 10 remains turned on. In a first part of the evaporation phase of operation, the heater runs continuously at high power, and the temperature continues to rise to a maximum permitted value Tmax. While dTmin is generally below 10K, and preferably even below 6K, the temperature rise in the vaporization phase of operation may easily be as high as 10K.

Um im zweiten Teil der Verdunstungsbetriebsphase die Temperatur der Verdunstungsschale in etwa konstant auf Tmax zu halten, kann basierend auf dem Messwert des Temperatursensors 15 eine Thermostatregelung stattfinden, d.h. die Steuereinheit 13 schaltet die Heizeinrichtung 10 aus, wenn Tmax überschritten ist, und schaltet sie wieder ein, wenn Tmax - ε unterschritten ist, wobei ε ein kleiner positiver Wert und vorzugsweise kleiner als dTmin ist.In order to keep the temperature of the evaporation tray approximately constant at Tmax in the second part of the evaporation phase of operation, a thermostat control can take place based on the measurement value of the temperature sensor 15, i. the control unit 13 switches off the heating device 10 when Tmax is exceeded, and switches it on again if Tmax - ε is undershot, where ε is a small positive value, and preferably smaller than dTmin.

Zum Zeitpunkt t6 beendet die Steuereinheit 13 die Verdunstungsbetriebsphase durch Ausschalten der Heizeinrichtung 10. Die Temperatur geht im Laufe der Zeit zurück auf T0, und der in Fig. 3 gezeigte Zyklus wiederholt sich.At time t6, the control unit 13 terminates the evaporation operation phase by turning off the heater 10. The temperature goes back to T0 over time, and the temperature in Fig. 3 cycle shown repeats itself.

Fig. 4 veranschaulicht in einem Flussdiagramm ein Arbeitsverfahren der Steuereinheit 13, dessen Ausführung den in Fig. 3 gezeigten Temperaturverlauf ergeben kann. Das Verfahren beginnt der Messung der Ausgangstemperatur T0 der Verdunstungsschale 9 zu Beginn einer Messbetriebsphase in Schritt S1. Die Heizeinrichtung 10 wird eingeschaltet (Schritt S2) und die Steuereinheit 13 wartet die vorgegebene Dauer Δt1 der Messbetriebsphase ab (Schritt S3), bevor sie in Schritt S4 einen weiteren Temperaturmesswert T1 aufnimmt. In Schritt S5 wird die im Laufe der Messbetriebsphase erreichte Temperaturänderung T1-T0 von dem Schwellwert dTmin subtrahiert. Wenn die dabei erhaltene Differenz dT negativ ist, dann ist im Laufe der Messbetriebsphase die Temperatur in der Verdunstungsschale stärker als dTmin gestiegen, entsprechend den Messbetriebsphasen [t0, t1] und [t2, t3] aus Fig. 2. In diesem Fall verzweigt das Verfahren von Schritt S6 nach S7, wo die Heizeinrichtung 10 wieder ausgeschaltet wird, und in Schritt S8 wird vor Beginn einer neuen Messbetriebsphase eine vorgegebene Zeitspanne Δt2 abgewartet, die um ein Vielfaches länger ist als Δt1. Fig. 4 FIG. 4 is a flowchart showing a working procedure of the control unit 13 whose execution is similar to that in FIG Fig. 3 can show the temperature profile shown. The process starts measuring the exit temperature T0 of the evaporation tray 9 at the beginning of a measuring operation phase in step S1. The heating device 10 is switched on (step S2) and the control unit 13 waits for the predetermined duration .DELTA.t1 of the measuring operation phase (step S3), before it receives a further temperature measurement T1 in step S4. In step S5, the temperature change T1-T0 attained during the measuring operation phase is subtracted from the threshold value dTmin. If the difference dT thus obtained is negative, then in the course of the measurement operation phase, the temperature in the evaporation tray has increased more than dTmin, corresponding to the measurement operation phases [t0, t1] and [t2, t3] Fig. 2 , In this case, the method branches from step S6 to S7, where the heater 10 is turned off again, and in step S8, a predetermined period of time .DELTA.t2 that is many times longer than .DELTA.t1 is awaited before the start of a new measurement phase.

Wenn in Schritt S6 festgestellt wird, dass dT größer oder gleich 0 ist, entsprechend dem Fall der Messbetriebsphase [t4, t5] aus Fig. 3, dann geht das Verfahren in eine Verdunstungsbetriebsphase über, indem am Ende der Messbetriebsphase die Heizeinrichtung eingeschaltet bleibt. In Schritt S9 wird eine Zeitspanne Δt3 abgewartet bevor das Verfahren zu Schritt S7 übergeht und damit die Heizbetriebsphase beendet. Wie in Fig. 3 gezeigt, kann in einem ersten Teil der Zeitspanne Δt3 die Heizeinrichtung kontinuierlich arbeiten, um die Schale auf Tmax aufzuheizen, und in einem zweiten Teil intermittierend arbeiten, um sie auf dieser Temperatur zu halten.If it is determined in step S6 that dT is greater than or equal to 0, corresponding to the case of the measuring operation phase [t4, t5] Fig. 3 , then the process goes into an evaporation operation phase by the heater remains switched on at the end of the measuring operation phase. In step S9, a time period .DELTA.t3 is awaited before the process goes to step S7 and thus ends the Heizbetriebsphase. As in Fig. 3 For a first part of the period .DELTA.t3, the heater can operate continuously to heat the shell to Tmax and intermittently operate in a second part to maintain it at that temperature.

Die Dauer Δt3 der Verdunstungsbetriebsphase kann fest vorgegeben sein. In diesem Fall ist es am Ende der Verdunstungsbetriebsphase nicht gewiss, dass der Wasserstand in der Verdunstungsschale 9 auf ein sicheres Niveau abgesenkt worden ist. Daher ist es in diesem Fall zweckmäßig, die Wartezeit Δt2 des Schritts S8 im Anschluss an eine Verdunstungsbetriebsphase erheblich kürzer zu wählen, als in dem Fall, dass keine Verdunstungsbetriebsphase stattgefunden hat.The duration .DELTA.t3 of the evaporation operating phase can be fixed. In this case, at the end of the evaporation operation phase, it is not certain that the water level in the evaporation tray 9 has been lowered to a safe level. Therefore, in this case, it is appropriate to make the waiting time Δt2 of the step S8 considerably shorter following an evaporation operation phase than in the case that no evaporation operation phase has taken place.

Eine andere Möglichkeit ist in Fig. 5 gezeigt. Die Schritte S1 bis S9 des dort gezeigten Flussdiagramms sind mit denen der Fig. 4 identisch und werden nicht erneut beschrieben. Wenn nach Ende der Verdunstungsbetriebsphase in Schritt S10 die Heizeinrichtung 10 ausgeschaltet wird, wird auch erneut ein Temperaturmesswert T0 aufgenommen (Schritt S11), und ein zweiter Temperaturmesswert T1 wird nach Abwarten der Zeitspanne Δt1 (S12) im Schritt S13 aufgenommen. Im Schritt S14 wird die Differenz T0 - T1 mit einem zweiten Grenzwert dTmin' verglichen. Wenn die Differenz kleiner als der Grenzwert dTmin' ist, d.h. die Temperatur langsam abnimmt, dann ist dies ein Indiz dafür, dass die Wassermenge in der Verdunstungsschale 9 noch groß ist. In diesem Fall kann das Verfahren, wie gezeigt, unmittelbar von S14 zu S1 zurückspringen, um die Messbetriebsphase zu wiederholen und an deren Ende in Schritt S6 definitiv zu entscheiden, ob noch eine Verdunstungsbetriebsphase angeschlossen wird. Alternativ kann, wenn in Schritt 14 die Unterschreitung des Grenzwerts dTmin' festgestellt wird, die Heizeinrichtung 10 bedingungslos wieder eingeschaltet und zu Schritt S9 zurückgesprungen werden, um die Verdunstungsbetriebsphase zu wiederholen.Another possibility is in Fig. 5 shown. The steps S1 to S9 of the flowchart shown there are with those of Fig. 4 identical and will not be described again. When the heater 10 is turned off after the end of the evaporation operation phase in step S10, a temperature reading T0 is also taken in again (step S11), and a second temperature reading T1 is taken after waiting the time period Δt1 (S12) in step S13. In step S14, the difference T0-T1 becomes a second limit dTmin 'compared. If the difference is smaller than the limit dTmin ', ie, the temperature slowly decreases, then this is an indication that the amount of water in the evaporation tray 9 is still large. In this case, as shown, the method may jump back directly from S14 to S1 to repeat the measurement operation phase and finally decide at the end of it in step S6 whether an evaporation operation phase is still to be connected. Alternatively, if the step falls below the threshold value dTmin ', the heater 10 may unconditionally be turned on again and jumped back to the step S9 to repeat the evaporation operation phase.

Wenn jedoch der Vergleich des Schritts S14 auf einen schnellen Temperaturabfall hinweist, ist die Restwassermenge in der Verdunstungsschale 9 offenbar gering, und das Verfahren springt zurück zu Schritt S8.However, if the comparison of step S14 indicates a rapid drop in temperature, the amount of residual water in the evaporation tray 9 is apparently small, and the process returns to step S8.

Noch eine Alternative ist, beim Verfahren der Fig. 4 die Dauer Δt3 der Verdunstungsbetriebsphase als Funktion von dT festzulegen: je größer dT ist, um so stärker ist der Temperaturanstieg in der Messbetriebsphase hinter dem Grenzwert dTmin zurückgeblieben, und um so größer muss die Wassermenge in der Verdunstungsschale 9 sein. Wie der Zusammenhang zwischen dT und der Wassermenge bei einem gegebenen Kältegerätemodell im Detail aussieht, kann empirisch ermittelt werden. Anhand solcher empirischer Daten ist es möglich, Δt3 als Funktion von dT so festzulegen, dass die Zeitspanne Δt3 genau ausreicht, um den Wasserstand in der Verdunstungsschale 9 auf einen unkritischen Wert zu senken.Another alternative is in the process of Fig. 4 determine the duration .DELTA.t3 of the evaporation phase of operation as a function of dT: the larger dT is, the more the temperature rise in the measuring operation phase has lagged behind the limit value dTmin, and the larger the amount of water in the evaporation tray 9 must be. The relationship between dT and the amount of water in a given refrigerator model can be determined empirically. Based on such empirical data, it is possible to set Δt3 as a function of dT such that the time period Δt3 is exactly sufficient to lower the water level in the evaporation tray 9 to an uncritical value.

Fig. 6 zeigt eine alternative Ausgestaltung der Messbetriebsphase, die bei sämtlichen oben beschriebenen Ausgestaltungen des Betriebsverfahrens der Steuereinheit 13 anwendbar ist. Die Schritte S1 und S2 des Messens der Ausgangstemperatur T0 und des Einschaltens der Heizeinrichtung 10 zu Beginn der Messbetriebsphase sind dieselben wie die mit Bezug auf Fig. 4 beschrieben. Zusätzlich wird gleichzeitig mit dem Einschalten der Heizeinrichtung und dem Messen der Temperatur T0 ein Zeitmesser gestartet (Schritt S3'). Die Temperatur T der Verdunstungsschale 9 wird nun solange kontinuierlich überwacht, bis sie um wenigstens dTmin angestiegen ist (S4'). Sobald dies der Fall ist, wird in Schritt S5' der Zeitmesser ausgelesen. Ein niedriger Messwert t des Zeitmessers, unterhalb eines Grenzwert tmax, zeigt einen schnellen Temperaturanstieg bzw. einen niedrigen Wasserstand an, und es folgt der Schritt S7, wie mit Bezug auf Fig. 4 beschrieben. Ein Zeitmesswert t > tmax, entsprechend einem langsamen Anstieg, zeigt die Überschreitung des kritischen Wasserstandes in der Verdunstungsschale 9 an, sodass das Verfahren zu Schritt S9 übergeht, wie mit Bezug auf Fig. 4 oder 5 beschrieben. Fig. 6 shows an alternative embodiment of the measuring operation phase, which is applicable to all the above-described embodiments of the operating method of the control unit 13. Steps S1 and S2 of measuring the output temperature T0 and turning on the heater 10 at the beginning of the measuring operation phase are the same as those described with reference to FIG Fig. 4 described. In addition, simultaneously with turning on the heater and measuring the temperature T0, a timer is started (step S3 '). The temperature T of the evaporation tray 9 is then continuously monitored until it has risen by at least dTmin (S4 '). Once this is the case, the timer is read in step S5 '. A low measured value t of the timer, below a limit value tmax, shows a rapid increase in temperature or a Low water level, and it follows the step S7, as with reference to Fig. 4 described. A time reading t> tmax, corresponding to a slow rise, indicates the exceeding of the critical water level in the evaporation tray 9, so that the process proceeds to step S9 as described with reference to FIG Fig. 4 or 5 described.

Die Leistung der elektrischen Heizeinrichtung 10 ist proportional zum Quadrat der an sie angelegten Versorgungsspannung. Wenn diese Spannung die Netzspannung oder eine von der Netzspannung abgeleitete, zu ihr proportionale Spannung ist, wirken sich Schwankungen der Netzspannung stark auf die gemessene Temperaturänderungsrate aus und können die Abschätzung der Wassermenge in der Verdunstungsschale 9 erheblich verfälschen. Einer weiterentwickelten Ausgestaltung zufolge ist daher die Steuereinheit mit einem Spannungssensor zum Erfassen der Versorgungsspannung der Heizeinrichtung ausgestattet. Schwankungen der Versorgungsspannung können dann auf unterschiedliche Weise kompensiert werden. Z.B. kann im Verfahren nach Fig. 4 oder 5 die Dauer Δt1 der Messbetriebsphase umgekehrt proportional zum Quadrat der Versorgungsspannung festgelegt werden, so dass die in jeder Messbetriebsphase freigesetzte Wärmemenge unabhängig vom genauen Wert der Versorgungsspannung dieselbe ist. Alternativ kann der Grenzwert dTmin direkt proportional zum Quadrat der Versorgungsspannung festgelegt werden. Dann ist die Dauer der Messbetriebsphase vom Wert der Betriebsspannung unabhängig, aber bei niedriger Spannung ist der Grenzwert des Temperaturanstiegs, bei dessen Unterschreitung ein zu hoher, Beheizen erforderlich machender Wasserstand erkannt wird, entsprechend der verringerten freigesetzten Wärmemenge angepasst.The power of the electric heater 10 is proportional to the square of the supply voltage applied thereto. If this voltage is the mains voltage or a voltage derived from the mains voltage proportional to it, fluctuations in the mains voltage have a strong effect on the measured rate of temperature change and can significantly falsify the estimation of the amount of water in the evaporation tray 9. According to a further developed embodiment, therefore, the control unit is equipped with a voltage sensor for detecting the supply voltage of the heating device. Variations in the supply voltage can then be compensated in different ways. For example, in the method according to Fig. 4 or 5 the duration .DELTA.t1 of the measuring operation phase are set in inverse proportion to the square of the supply voltage, so that the amount of heat released in each measuring operation phase is the same regardless of the exact value of the supply voltage. Alternatively, the limit value dTmin can be set directly proportional to the square of the supply voltage. Then, the duration of the measuring operation phase is independent of the value of the operating voltage, but at low voltage, the limit value of the temperature rise, below which an excessively high, heating water level is detected, adjusted according to the reduced amount of heat released.

Claims (16)

  1. Refrigeration appliance, in particular domestic refrigeration appliance, having at least one storage chamber (3), an evaporation tray (9) for evaporating condensation water discharged from the storage chamber (3), a temperature sensor arranged on the evaporation tray (9), a control unit (13) connected to the temperature sensor and a heating device (10), which can be operated by the control unit (13), in order to increase the evaporation rate in the evaporation tray (9), wherein the control circuit (13) is configured to make a decision on a further operation or non-operation of the heating device (10) (S6, S6') on the basis of a change (T1-T0) in the temperature (T0, T1) acquired by the temperature sensor (15) during a measuring operation phase ([t0, t1], [t2, t3], [t4, t5]; S1-S5, S1-S5') of the heating device (13), characterised in that the control circuit (13) is configured to only introduce an evaporation operation phase ([t5, t6]; S9) of the heating device (10), in which the evaporation tray (9) is heated to beyond the highest temperature (T1) measured in the measuring operation phase if the change (T1, T0) is weaker than a first limit value (dTmin).
  2. Refrigeration appliance according to claim 1, characterised in that the control circuit is configured to allow the evaporation operation phase ([t5, t6]; S9) to follow the measuring operation phase ([t4, t5]; S1-S5, S1-S5') without intermediate cooling of the evaporation tray (9).
  3. Refrigeration appliance according to claim 1 or 2, characterised in that the control circuit is configured to define the duration (Δt3) of an evaporation operation phase ([t5, t6]; S9) of the heating device (10) following the measuring operation phase ([t4, t5]; S1-S5, S1-S5') on the basis of the extent (dT) of the exceedence of the limit value (dTmin).
  4. Refrigeration appliance according to one of the preceding claims, characterised in that the evaporation tray (9) is mounted on a compressor (6).
  5. Refrigeration appliance according to one of claims 1 to 4, characterised in that the control circuit (13) is configured, after an evaporation operation phase ([t5, t6]; S9), to determine the take-up speed of the temperature acquired by the sensor (S11-S13) and to begin a further evaporation operation phase (S 14) if the take-up speed lies below a second limit value (dTmin').
  6. Refrigeration appliance according to one of claims 1 to 4, characterised in that the control circuit (13) is configured to select the time interval (Δt2) between the measuring operation phase ([t0, t1], [t2, t3], [t4, t5]; S1-S5, S1-S5') and a subsequent measuring operation phase ([t2, t3], [t4, t5], S1-S5, S1-S5') to be long if the change has not reached a third limit value and to select the time interval (Δt2) to be short if the deviation has not reached the third limit value (dTmin).
  7. Refrigeration appliance according to one of the preceding claims, characterised in that the duration (Δt1) of the measuring operation phase ([t0, t1], [t2, t3], [t4, t5]; S1-S5) is predetermined and that the change between temperatures (T0, T1) acquired by the temperature sensor (15) during a measuring operation phase ofthe heating device (10) is the difference (T1-T0) between the temperature (T0) at the start (t0, t2, ...) of the measuring operation phase and the temperature (T1) at the end (t1, t3,...) of the measuring operation phase.
  8. Refrigeration appliance according to claim 7, characterised in that the first limit value (dTmin) is below 10K, preferably below 6K.
  9. Refrigeration appliance according to claim 7 or 8, characterised in that the predetermined duration (Δt1) of the measuring operation phase is selected in the range between 5 and 30 min.
  10. Refrigeration appliance according to one of claims 7 to 9, characterised in that the control unit (13) comprises means for estimating a supply voltage and that the first limit value (dTmin) or the duration (Δt1) of the measuring operation phase ([t0, t1], [t2, t3], [t4, t5]; S1-S5) is predetermined as a function of the supply voltage.
  11. Refrigeration appliance according to one of claims 1 to 6, characterised in that the control unit is configured to terminate a measuring operation phase (S1-S5') if the difference (T1-T0) between the temperature (T0) measured at the start of the measuring operation phase and the current temperature (T) has reached a desired value (dTmin) (S4'), and the temperature change is considered to be more significant, the shorter the measuring operation phase (S1-S5').
  12. Refrigeration appliance according to one of the preceding claims, characterised in that the control unit is configured not to implement a measuring operation phase with an operating compressor (6).
  13. Refrigeration appliance according to one of claims 1 to 11, characterised in that the control unit is configured to perform a measuring operation phase with a predetermined time offset at the start of the compressor (6).
  14. Refrigeration appliance according to one of the preceding claims, characterised in that the control unit is configured not to perform a measuring operation phase during a condensation process.
  15. Refrigeration appliance according to one of the preceding claims, characterised in that the control unit is configured to perform a measuring operation phase after a power failure in each case.
  16. Method for monitoring the water level in an evaporation tray of a refrigeration appliance having the steps:
    - in a measuring operation phase ([t0, t1], [t2, t3], [t4, t5]; S1-S5, S1-S5'), heating the evaporation tray (9) and assessing the water level based on the change (T1-T0, T-T0) in a temperature measured on the evaporation tray (9) as a result of the heating process;
    - introducing an evaporation operation phase ([t5, t6]; S9) of the heating device (10), in which the evaporation tray (9) is heated to beyond the highest temperature (T1) measured in the measuring operation phase ([t0, t1], [t2, t3], [t4, t5], S1-S5, S1-S5') if the change is weaker than a first limit value (dTmin).
EP12780139.7A 2011-10-18 2012-10-11 Refrigeration appliance comprising an evaporation tray and a heating device for promoting evaporation Active EP2769155B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110084718 DE102011084718A1 (en) 2011-10-18 2011-10-18 Refrigeration unit with evaporation tray and heater for evaporation promotion
PCT/EP2012/070198 WO2013057039A2 (en) 2011-10-18 2012-10-11 Refrigeration appliance comprising an evaporation tray and a heating device for promoting evaporation

Publications (2)

Publication Number Publication Date
EP2769155A2 EP2769155A2 (en) 2014-08-27
EP2769155B1 true EP2769155B1 (en) 2016-03-09

Family

ID=47115816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12780139.7A Active EP2769155B1 (en) 2011-10-18 2012-10-11 Refrigeration appliance comprising an evaporation tray and a heating device for promoting evaporation

Country Status (4)

Country Link
EP (1) EP2769155B1 (en)
CN (1) CN103890510B (en)
DE (1) DE102011084718A1 (en)
WO (1) WO2013057039A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012221295A1 (en) * 2012-11-21 2014-05-22 BSH Bosch und Siemens Hausgeräte GmbH Refrigerating appliance with a cooling compartment
DE102013212893A1 (en) * 2013-07-02 2015-01-08 Robert Bosch Gmbh Method for operating a heat pump
ES2604003B1 (en) * 2015-09-02 2017-12-12 Bsh Electrodomésticos España, S.A. Household refrigerator appliance with a specific receiver for defrosting water
CN114264113A (en) * 2017-06-15 2022-04-01 合肥华凌股份有限公司 Refrigerator, control method and device thereof, and computer-readable storage medium
CN110001361B (en) * 2019-04-28 2020-12-11 泉州台商投资区五逸季科技有限公司 Condenser with external circulating water forced cooling function for automobile air conditioner
IT202100032828A1 (en) * 2021-12-28 2023-06-28 Irca Spa EVAPORATION TRAY FOR REFRIGERATOR CONDENSATION WATER

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695849B2 (en) * 1996-05-30 2005-09-14 三洋電機株式会社 Cooling storage
DE10208558A1 (en) * 2002-02-27 2003-09-04 Vasilios Zigaris Method for evaporating excess condensation water from cooling appliances has tray containing heater, thermostat and float switch
DE102004012498A1 (en) * 2004-03-15 2005-10-06 BSH Bosch und Siemens Hausgeräte GmbH The refrigerator
JP2009085473A (en) 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Low-temperature storage
CN201355107Y (en) * 2009-01-14 2009-12-02 北京上佳蓝基制冷设备有限公司 Evaporating water disc used for refrigerating and air conditioning equipment

Also Published As

Publication number Publication date
DE102011084718A1 (en) 2013-04-18
CN103890510A (en) 2014-06-25
WO2013057039A2 (en) 2013-04-25
EP2769155A2 (en) 2014-08-27
WO2013057039A3 (en) 2013-08-08
CN103890510B (en) 2016-12-07

Similar Documents

Publication Publication Date Title
EP2769155B1 (en) Refrigeration appliance comprising an evaporation tray and a heating device for promoting evaporation
EP2283287A1 (en) Method for defrost control of a refrigerator and refrigerator which uses this method
EP2059733B1 (en) Refrigeration machine and operating method for it
DE102011085153A1 (en) Refrigeration unit with evaporation tray
EP3759405A1 (en) Refrigeration appliance comprising a defrost heater
EP2769156B1 (en) Refrigeration appliance comprising an evaporation tray and a heating device for promoting evaporation
WO2018100166A1 (en) Method for operating a rotational-speed-variable refrigerant compressor
EP2841856B1 (en) Single-circuit refrigerator and operating method therefor
DE102011078320B4 (en) Refrigeration device with evaporation tray and auxiliary device for promoting evaporation
EP3548812A1 (en) Method for operating a rotational-speed-variable refrigerant compressor
DE102011078324A1 (en) Cooling device, particularly household cooling device, such as refrigerator or freezer, has control unit, which is arranged to take decision on switching of auxiliary device based on temperature of storage chamber
DE102011075002A1 (en) Monitoring method for monitoring filling level in evaporation container of refrigerator, particularly domestic refrigerating appliance, involves placing heating element with temperature-dependant resistance value under evaporation container
WO2013000773A2 (en) Refrigeration device with evaporation pan and auxiliary device for promoting evaporation
DE102012213644A1 (en) Refrigeration unit with automatic defrost
WO2013000765A1 (en) Refrigeration device with evaporation pan and auxiliary device for promoting evaporation
WO2013000759A2 (en) Refrigeration device with evaporation pan and auxiliary device for promoting evaporation
DE102011085155A1 (en) Refrigeration unit with evaporation tray and auxiliary device for evaporation promotion
EP3699519A1 (en) Refrigeration device with two temperature zones and method of operation for same
EP2776768B1 (en) Refrigeration device
EP4400787A1 (en) Determining a defrosting time of an evaporator of a domestic refrigeration appliance
WO2022037880A1 (en) Method for defrosting an evaporator of a refrigerator
DE60013374T2 (en) Automatic refrigeration unit with defrost control
DE102021208510A1 (en) Method for operating a refrigeration device and refrigeration device with a defrost heater
WO2003060402A1 (en) Air-temperature regulated refrigerator
DE10126817A1 (en) The refrigerator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140519

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BSH HAUSGERAETE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150720

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LIENHART, PETER

Inventor name: PAULDURO, ACHIM

Inventor name: FLICKINGER, WOLFGANG

Inventor name: IHLE, HANS

Inventor name: BENDER, ROLAND

Inventor name: FEINAUER, ADOLF

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 779827

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012006235

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160609

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160709

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160711

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012006235

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

26N No opposition filed

Effective date: 20161212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160609

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161011

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161011

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161011

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 779827

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20211005

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211029

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221031

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502012006235

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221011

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012006235

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240501