EP2128551A1 - Surveillance d'échangeurs thermiques dans des systèmes de conduites de processus - Google Patents

Surveillance d'échangeurs thermiques dans des systèmes de conduites de processus Download PDF

Info

Publication number
EP2128551A1
EP2128551A1 EP08009815A EP08009815A EP2128551A1 EP 2128551 A1 EP2128551 A1 EP 2128551A1 EP 08009815 A EP08009815 A EP 08009815A EP 08009815 A EP08009815 A EP 08009815A EP 2128551 A1 EP2128551 A1 EP 2128551A1
Authority
EP
European Patent Office
Prior art keywords
heat flow
heat exchanger
heat
flow
reference heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08009815A
Other languages
German (de)
English (en)
Inventor
Michael Friedrich
Herbert Grieb
Thomas Dr. Müller-Heinzerling
Bernd-Markus Dr. Pfeiffer
Michael Schüler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08009815A priority Critical patent/EP2128551A1/fr
Priority to US12/474,310 priority patent/US8069003B2/en
Publication of EP2128551A1 publication Critical patent/EP2128551A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • F28G15/003Control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2200/00Prediction; Simulation; Testing

Definitions

  • the invention relates to a method according to the preamble of claim 1, for monitoring the effectiveness of a heat exchanger in which heat flows from a first medium into a second medium. Furthermore, the invention relates to a device for controlling a system with at least one heat exchanger.
  • Heat exchangers are technical apparatus in which, for example, fluids of a first temperature deliver part of their heat to, for example, fluids of a second temperature below the first temperature.
  • a first medium product medium
  • service medium can be, for example, cooling water or heating steam.
  • the service medium typically either flows through a piping arrangement which is disposed within the product medium or flows around the piping arrangement through which the product medium flows.
  • a particular disadvantage is that the pads are often not visible from the outside. Therefore, it is not clear when a cleaning is required. A cleaning is often only then made when problems caused by the poor performance of the heat exchanger occur. To avoid this, the heat exchanger must be cleaned preventively at regular intervals. This is also disadvantageous because the heat exchanger is cleaned in such a case, even if the deposits are not very strong.
  • simulation programs are known, which are used for the process engineering design and dimensioning of heat exchangers in the planning phase of a plant, which are based on a physico-thermodynamic modeling of the heat exchanger, which is mathematically divided into numerous segments, but it is not known, these simulation programs to use for on-line monitoring of heat exchangers during operation. Therefore, there is not yet a satisfactory solution to realize the monitoring of heat exchangers within a process control system, especially when the heat exchangers are driven in the operating phase at different operating points, for example, because flow or temperature of the product are not constant.
  • a method for monitoring the effectiveness of a heat exchanger in which heat flows from a first medium to a second medium characterized in that an actual heat flow is detected and with at least one each predetermined degree of contamination the heat exchanger corresponding reference heat flow is compared.
  • a device for controlling a system with at least one heat exchanger is characterized in that a memory is present in which at least one reference heat flow of the heat exchanger is stored.
  • Characterized in that a current heat flow is detected and compared with at least one respective predetermined degree of contamination of the heat exchanger corresponding reference heat flow, can be on the effectiveness of the heat exchanger make a very reliable statement; because by the inventive idea, to use the heat flow itself as a measure of the performance of the heat exchanger, a size is used as a measure of the effectiveness of the heat exchanger, which represents the most essential function of the heat exchanger. This eliminates problems associated with an indirect determination of the performance of the heat exchanger, d. H. when using another size characterizing the heat exchanger for determining the performance of the heat exchanger, may occur.
  • the determination of the current heat flow ( Q act ) can be done by the flow (F P ) of the product medium through the heat exchanger, the flow (F S ) of the service medium through the heat exchanger, the temperature (T P, A ) of the product medium at the inlet of the product medium in the heat exchanger, the Temperature (T P, Out ) of the product medium at the outlet of the product medium from the heat exchanger, the temperature (T S, Ein ) of the service medium at the entrance of the service medium into the heat exchanger and the temperature (T S, Out ) of the service medium at the output of the service medium be detected the heat exchanger.
  • the calculation of the reference heat flow is carried out by means of the simulation program.
  • To increase the accuracy measurements are made to fine-tune parameters of the simulation program at a few operating points in the clean state of the heat exchanger.
  • the current heat flow can be compared with the reference heat flow of the dirty heat exchanger.
  • the difference between the current heat flow and the reference heat flow then forms a reciprocal measure of the deposits, ie, the smaller the difference, the larger the deposits.
  • the current heat flow is advantageously compared with a reference heat flow corresponding to a contamination level of zero and with a reference heat flow corresponding to a maximum permissible degree of contamination. This allows a characteristic value to be determined which corresponds to the degree of soiling of the heat exchanger from 0 to 100%.
  • the characteristic value is 100% in the clean state of the heat exchanger and 0% in the maximum soiled state of the heat exchanger.
  • the characteristic value can be continuously calculated and displayed in the process control system in which the heat exchanger is integrated as a trend over longer periods of time. As soon as the characteristic value falls below a specified limit, a maintenance message can be generated.
  • the reference heat flow is exactly the same operating point, the z. B. as a combination of the two flows product medium F P and service medium F S and the two input temperatures product medium T P, A and service medium T S, Ein is defined, as the basis of the current heat flow.
  • This has a very advantageous effect on the accuracy of the method according to the invention.
  • Other sizes can be used for the definition of the operating point, if z. B. phase transitions (evaporation or condensation) occur within the heat exchanger.
  • the theoretically transferable amount of heat for a large number of possible operating points is first calculated with the aid of the process engineering simulation program with which the heat exchanger was designed or could be designed. Such simulation calculations are carried out both for the reference state "freshly cleaned” and for a reference state "maximally contaminated” in which a cleaning of the heat exchanger is absolutely necessary.
  • the calculated simulation values are used as interpolation points for two multidimensional maps each having a plurality of input variables (eg four input variables in each case) and one output variable.
  • the reference heat flow for the current operating point can be taken from the relevant characteristic field. If the operating point lies between several interpolation points, the reference heat flow for the current operating point can optionally be determined by a map interpolation.
  • the time-consuming simulation calculation can advantageously be carried out offline in advance of the operation of the process plant or of the heat exchanger. During operation of the process plant or the heat exchanger, only the map interpolation may be necessary.
  • hyperbolic cube in the high-dimensional lattice network of the input variables is the current operating point.
  • This hyperbolic cube with the simulation values of all vertices is transformed into the coordinate origin and normalized.
  • the searched starting point is then calculated by evaluating a multilinear polynomial.
  • the computation is preferably temporarily frozen because the underlying model describes only the steady state thermal balance.
  • the method according to the invention it is advantageously possible to carry out a monitoring of heat exchangers with a variable operating point in process control systems.
  • direct consideration of the heat flow can be hard to interpret auxiliary quantities to determine the effectiveness are dispensed with the heat exchanger, whereby the associated problems are avoided.
  • the process engineering simulation program the operating point dependence of the transmittable heat quantity can be predicted, for example, at several hundred interpolation points without having to carry out correspondingly time-consuming measurements on the real system.
  • the model of the heat exchanger is used several times: first in the planning phase for dimensioning the heat exchanger and then at the beginning of the operating phase for parameterizing the monitoring.
  • the online monitoring function is based on a linear map interpolation and can be implemented seamlessly within a process control system.
  • the actual wear stock of the heat exchanger can be calculated. If it is observed during operation that the wear reserve is slowly approaching the value zero, appropriate maintenance measures can be reasonably planned, for example between two batches of a batch plant or as part of another planned plant shutdown for a continuously operating plant.
  • a process plant 1 As Fig. 1 can be removed, a process plant 1, a heat exchanger 2.
  • the heat exchanger 2 has a container 2a, in which a pipe assembly 2b is arranged.
  • the container 2a has a first input 2 EP and a first output 2 AP .
  • Via the first input 2 EP a product medium flows into the container 2 a, which leaves the container 2 a again at the first outlet 2 AP .
  • the pipeline assembly 2 b is led out of the container 2 a of the heat exchanger 2 via a second input 2 ES and via a second output 2 AS . Via the second input 2 ES , a service medium can be conducted into the pipeline arrangement 2 b, which leaves the pipeline arrangement 2 b again at the second outlet 2 AS .
  • the amount of the product medium supplied to the container 2a can be detected.
  • the amount of the service medium supplied to the piping arrangement 2b can be detected.
  • a first temperature sensor 5 the temperature of the product medium supplied to the container 2a can be detected at the first inlet 2 EP of the container 2a.
  • a second temperature sensor 6 the temperature of the pipe assembly 2b supplied service medium be detected at the second input 2 ES of the pipe assembly 2b.
  • a third temperature sensor 7 the temperature of the product medium at the first output 2 AP of the container 2a can be detected.
  • a fourth temperature sensor 8 the temperature of the service medium at the second output 2 AS of the pipe assembly 2b can be detected.
  • the output signals 3a, 4a of the flow meter 3, 4 and the output signals 5a, 6a of the temperature sensors 5, 6 are fed to a first map module 9 and a second map module 10.
  • the map modules 9, 10 each have a high-dimensional map is stored, which was calculated by means of a procedural simulation program, with which the heat exchanger 2 has been designed or can be designed.
  • a three-dimensional section through a five-dimensional characteristic field 16 stored in the map module 9 is shown in FIG Fig. 2 shown.
  • the map 16 relates to a predetermined temperature of the product medium at the first input 2 EP of the heat exchanger 2 and a predetermined temperature of the service medium at the second input 2 ES of the pipe assembly 2b.
  • first map module 9 operating point-dependent maps 16 are deposited, which relate to the heat exchanger 2 in the clean state.
  • maps are stored, which relate to the heat exchanger 2 in the maximum polluted state.
  • the maps of the first map module 9 give in response to the output signals 3a, 4a of the flow meter 3, 4 and the output signals 5a, 6a of the temperature sensors 5, 6 a heat flow again, which can be used as a reference heat flow of the non-polluted heat exchanger 2.
  • the maps of the second map module 10 are in response to the output signals 3a, 4a of the flow meter 3, 4 and the output signals 5a, 6a of the temperature sensors 5, 6 a heat flow again, which can be used as a reference heat flow of the maximum contaminated heat exchanger 2.
  • the reproduced heat flows are each as an output signal 9a, 10a of the relevant map module 9, 10 a monitoring module 11 is supplied.
  • variables other than those given above may also be used as input variables in the characteristic diagrams.
  • the map building blocks 9, 10 have a computer, by means of the intermediate values, for which no interpolation point is stored, are calculated by interpolation.
  • the monitoring module 11 is also supplied with the heat flows 9a, 10a determined by interpolation.
  • the monitoring module 11 is supplied with the output signals 3a, 4a of the flowmeters 3, 4 as well as the output signals 5a, 6a of the temperature sensors 5, 6, which indicate the current operating point of the heat exchanger 2.
  • the monitoring module 11 nor the output signals 7a, 8a of the third temperature sensor 7 and the fourth temperature sensor 8 are supplied. In special cases, such as, for example, during phase transitions within the heat exchanger (evaporation, condensation), variables other than those indicated above may also be supplied to the monitoring module.
  • a current heat flow can thus be calculated.
  • the current heat flow is then linked to the characteristic block building blocks 9, 10 extracted operating point-dependent reference heat flows.
  • output signal 11a can then be given a value between 0 and 100%, indicating the degree of contamination of the heat exchanger 2.
  • signals 12 P , 13 P , 14 P of the process plant 1 to control modules 12, 13, 14 which are dependent on corresponding process parameters are output, which transmit the signals 12 P , 13 P , 14 P evaluate whether the process plant 1 is in a stationary state. If the process installation 1 is in a stationary state, a signal 12a, 13a, 14a is applied to the outputs of the control modules 12, 13, 14, which signals are logically linked together in an AND gate 15. The output signal 15a of the AND gate 15 is applied to the monitoring module 11 as an enable signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing And Monitoring For Control Systems (AREA)
EP08009815A 2008-05-29 2008-05-29 Surveillance d'échangeurs thermiques dans des systèmes de conduites de processus Withdrawn EP2128551A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08009815A EP2128551A1 (fr) 2008-05-29 2008-05-29 Surveillance d'échangeurs thermiques dans des systèmes de conduites de processus
US12/474,310 US8069003B2 (en) 2008-05-29 2009-05-29 Monitoring of heat exchangers in process control systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08009815A EP2128551A1 (fr) 2008-05-29 2008-05-29 Surveillance d'échangeurs thermiques dans des systèmes de conduites de processus

Publications (1)

Publication Number Publication Date
EP2128551A1 true EP2128551A1 (fr) 2009-12-02

Family

ID=39938381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08009815A Withdrawn EP2128551A1 (fr) 2008-05-29 2008-05-29 Surveillance d'échangeurs thermiques dans des systèmes de conduites de processus

Country Status (2)

Country Link
US (1) US8069003B2 (fr)
EP (1) EP2128551A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017190729A1 (fr) * 2016-05-03 2017-11-09 Jens-Werner Kipp Procédé et dispositif de surveillance d'un échangeur de chaleur
WO2019001683A1 (fr) 2017-06-26 2019-01-03 Siemens Aktiengesellschaft Procédé et dispositif de surveillance d'un échangeur de chaleur
WO2021180581A1 (fr) 2020-03-09 2021-09-16 Siemens Aktiengesellschaft Procédé et dispositif de détermination d'encrassement dans échangeur de chaleur
WO2022207100A1 (fr) 2021-03-31 2022-10-06 Siemens Aktiengesellschaft Procédé et dispositif de détermination d'encrassement dans un échangeur de chaleur

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1021400C2 (nl) * 2002-09-05 2004-03-08 Tno Werkwijze en inrichting voor het bepalen van een faseovergang van een stof.
US8147130B2 (en) * 2008-04-18 2012-04-03 General Electric Company Heat flux measurement device for estimating fouling thickness
CA2916636C (fr) * 2013-07-01 2020-06-09 Knew Value, LLC Dispositif d'essai d'echangeur de chaleur
US10234361B2 (en) 2013-07-01 2019-03-19 Knew Value Llc Heat exchanger testing device
US9631585B2 (en) * 2013-09-11 2017-04-25 GM Global Technology Operations LLC EGHR mechanism diagnostics
CH709194A2 (de) * 2014-01-17 2015-07-31 Joulia Ag Wärmetauscher für eine Dusche oder Badewanne.
WO2016188635A1 (fr) * 2015-05-28 2016-12-01 Linde Aktiengesellschaft Procédé pour déterminer l'état d'un dispositif d'échange de chaleur
ES2928141T3 (es) 2017-09-19 2022-11-15 Ecolab Usa Inc Método para monitorear y controlar el agua de enfriamiento

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390058A (en) * 1979-12-05 1983-06-28 Hitachi, Ltd. Method of monitoring condenser performance and system therefor
EP0470676A2 (fr) * 1990-08-09 1992-02-12 RICCIUS + STROSCHEN GmbH Procédé pour le diagnostic de l'état d'encrassement de tuyaux conducteurs de chaleur
US5181482A (en) * 1991-12-13 1993-01-26 Stone & Webster Engineering Corp. Sootblowing advisor and automation system
DE19502096A1 (de) * 1995-01-24 1996-07-25 Bergemann Gmbh Verfahren und Vorrichtung zur Steuerung von Rußbläsern in einer Kesselanlage
DE10217975A1 (de) * 2002-04-22 2003-11-13 Danfoss As Verfahren zum Entdecken von Änderungen in einem ersten Medienstrom eines Wärme- oder Kältetransportmediums in einer Kälteanlage
US6736089B1 (en) * 2003-06-05 2004-05-18 Neuco, Inc. Method and system for sootblowing optimization
US20050105583A1 (en) * 2003-11-19 2005-05-19 General Electric Company Deposition sensor based on differential heat flux measurement
DE202004021057U1 (de) * 2004-06-28 2006-09-14 Wiessner Gmbh Vorrichtung zum Ermitteln eines Zustandes einer Wärmeübertragungseinrichtung
EP2105081A2 (fr) * 2008-03-26 2009-09-30 MEIKO Maschinenbau GmbH & Co. KG Dispositif de production de récupération de chaleur doté d'un autonettoyage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918300A (en) * 1974-01-03 1975-11-11 Aaron Weisstuch Heat transfer measuring device
US5248198A (en) * 1992-08-19 1993-09-28 Droege Thomas F Method and apparatus for evaluating heat exchanger efficiency
DE4309313A1 (de) * 1993-03-23 1994-09-29 Armin Niederer Verfahren zur Überwachung des Verschmutzungs- und/oder Verkalkungszustandes von Wärmetauschern in Heiz- oder Kühlanlagen
US20080023917A1 (en) 2006-07-28 2008-01-31 Hydril Company Lp Seal for blowout preventer with selective debonding
US7827006B2 (en) * 2007-01-31 2010-11-02 Fisher-Rosemount Systems, Inc. Heat exchanger fouling detection

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390058A (en) * 1979-12-05 1983-06-28 Hitachi, Ltd. Method of monitoring condenser performance and system therefor
EP0470676A2 (fr) * 1990-08-09 1992-02-12 RICCIUS + STROSCHEN GmbH Procédé pour le diagnostic de l'état d'encrassement de tuyaux conducteurs de chaleur
US5181482A (en) * 1991-12-13 1993-01-26 Stone & Webster Engineering Corp. Sootblowing advisor and automation system
DE19502096A1 (de) * 1995-01-24 1996-07-25 Bergemann Gmbh Verfahren und Vorrichtung zur Steuerung von Rußbläsern in einer Kesselanlage
DE10217975A1 (de) * 2002-04-22 2003-11-13 Danfoss As Verfahren zum Entdecken von Änderungen in einem ersten Medienstrom eines Wärme- oder Kältetransportmediums in einer Kälteanlage
US6736089B1 (en) * 2003-06-05 2004-05-18 Neuco, Inc. Method and system for sootblowing optimization
US20050105583A1 (en) * 2003-11-19 2005-05-19 General Electric Company Deposition sensor based on differential heat flux measurement
DE202004021057U1 (de) * 2004-06-28 2006-09-14 Wiessner Gmbh Vorrichtung zum Ermitteln eines Zustandes einer Wärmeübertragungseinrichtung
EP2105081A2 (fr) * 2008-03-26 2009-09-30 MEIKO Maschinenbau GmbH & Co. KG Dispositif de production de récupération de chaleur doté d'un autonettoyage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZOLZER K ET AL.: "Einsatz des Kessel-Diagnose-Systems KEDI im Kraftwerk Staudinger 5", VGB KRAFTWERKSTECHNIK, vol. 75, no. 9, 1 September 1995 (1995-09-01), pages 755 - 762, XP000525900
ZOLZER K ET AL: "EINSATZ DES KESSEL-DIAGNODE-SYSTEMS KEDI IM KRAFTWERK STAUDINGER 5. REALISIERUNG UND BETRIEBSERFAHRUNG", VGB KRAFTWERKSTECHNIK, ESSEN, DE, vol. 75, no. 9, 1 September 1995 (1995-09-01), pages 755 - 762, XP000525900, ISSN: 0372-5715 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017190729A1 (fr) * 2016-05-03 2017-11-09 Jens-Werner Kipp Procédé et dispositif de surveillance d'un échangeur de chaleur
WO2019001683A1 (fr) 2017-06-26 2019-01-03 Siemens Aktiengesellschaft Procédé et dispositif de surveillance d'un échangeur de chaleur
WO2021180581A1 (fr) 2020-03-09 2021-09-16 Siemens Aktiengesellschaft Procédé et dispositif de détermination d'encrassement dans échangeur de chaleur
WO2022207100A1 (fr) 2021-03-31 2022-10-06 Siemens Aktiengesellschaft Procédé et dispositif de détermination d'encrassement dans un échangeur de chaleur

Also Published As

Publication number Publication date
US8069003B2 (en) 2011-11-29
US20100036638A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
EP2128551A1 (fr) Surveillance d'échangeurs thermiques dans des systèmes de conduites de processus
EP1743133B1 (fr) Procede et dispositif servant a determiner le rendement d'un echangeur de chaleur
DE102014100855A1 (de) Systeme und Verfahren zum Überwachen von Betriebsprozessen
EP3279756B1 (fr) Dispositif de diagnostic et procédé de surveillance du fonctionnement d'une installation technique
EP2587328A1 (fr) Aide au diagnostic d'erreurs d'une installation industrielle
DE102005055333B4 (de) Verfahren zur Leistungsbewertung von Wärmetauschern
DE102012105308A1 (de) Virtuelle Sensorsysteme und Verfahren zur Schätzung der Effizienz von Dampfturbinenabschnitten
DE112020005513T5 (de) Ventilzustandserfassungssystem, Anzeigevorrichtung und Drehventil, Ventilzustandserfassungsprogramm, Aufzeichnungsmedium und Ventilzustandserfassungsverfahren
WO2018215095A1 (fr) Procédé et système de détermination de la durée de vie restante d'un appareil d'ingénierie traversé par un fluide
CN106845826A (zh) 一种基于PCA‑Cpk的冷连轧生产线服役质量状态评估方法
EP2067080B1 (fr) Procédé pour faire fonctionner une installation industrielle, et système de guidage correspondant
EP3599583A1 (fr) Détermination de la consommation de l'énergie de chauffage ou de refroidissement d'une sous-unité de construction
DE3136225A1 (de) Verfahren und vorrichtung zum pruefen von fluiden
EP2327971B1 (fr) Procédé d'analyse de la répartition des quantités de chaleur dans un système de chauffage et dispositif d'exécution du procédé
EP3864279B1 (fr) Méthode pour détecter et prédire l'encrassement d'un refroidisseur rge dans un moteur diesel à combustion
EP2398345B1 (fr) Procédé et dispositif de surveillance d'une installation de pasteurisation
DE19504325C2 (de) Verfahren und Vorrichtung zur kostenorientierten Überwachung und/oder Anzeige des Betriebszustandes eines reinigbaren Wärmetauschers
WO2019001683A1 (fr) Procédé et dispositif de surveillance d'un échangeur de chaleur
EP1598717B1 (fr) Procédé de surveillance d'une pluralité des installations de gaz
EP4088077B1 (fr) Procédé et dispositif de détermination de l'encrassement dans un échangeur de chaleur
WO2022207100A1 (fr) Procédé et dispositif de détermination d'encrassement dans un échangeur de chaleur
EP3844582A1 (fr) Procédé de surveillance d'une station de mesure dans une installation d'automatisation de processus
EP3179192A1 (fr) Procede de determination d'un etat d'un echangeur de chaleur
DE10329909A1 (de) System und Verfahren zur Bestimmung, Überwachung und Regulierung von Flüssigkeitsverlusten in Wasserversorgungsbetrieben oder Wasserversorgungsnetzen
EP2848862B1 (fr) Procédé de fonctionnement d'une chaudière à vapeur et dispositif destiné à l'exécution du procédé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20161205

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180426

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180907