EP1478608B1 - Plastische sprengstoffzusammensetzung, insbondere für eine kleinkalibrige initialzündung für den tunnelbau, und ein verfahren zu dessen herstellung und einen booster zu dessen anwendung - Google Patents

Plastische sprengstoffzusammensetzung, insbondere für eine kleinkalibrige initialzündung für den tunnelbau, und ein verfahren zu dessen herstellung und einen booster zu dessen anwendung Download PDF

Info

Publication number
EP1478608B1
EP1478608B1 EP02740286A EP02740286A EP1478608B1 EP 1478608 B1 EP1478608 B1 EP 1478608B1 EP 02740286 A EP02740286 A EP 02740286A EP 02740286 A EP02740286 A EP 02740286A EP 1478608 B1 EP1478608 B1 EP 1478608B1
Authority
EP
European Patent Office
Prior art keywords
sleeve
explosive
ignitor
booster
nitrocellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02740286A
Other languages
English (en)
French (fr)
Other versions
EP1478608A1 (de
Inventor
Thomas Mann
Christian Heinze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MaxamCorp Holding SL
Original Assignee
MAXAM DEUTSCHLAND GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAXAM DEUTSCHLAND GmbH filed Critical MAXAM DEUTSCHLAND GmbH
Publication of EP1478608A1 publication Critical patent/EP1478608A1/de
Application granted granted Critical
Publication of EP1478608B1 publication Critical patent/EP1478608B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/26Arrangements for mounting initiators; Accessories therefor, e.g. tools
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/32Compositions containing a nitrated organic compound the compound being nitrated pentaerythritol
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/34Compositions containing a nitrated organic compound the compound being a nitrated acyclic, alicyclic or heterocyclic amine
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C7/00Non-electric detonators; Blasting caps; Primers

Definitions

  • the invention relates to a plastic explosive composition, in particular for a small-caliber starter for tunneling, with substances that are non-toxic, have good handling safety and detonability, with at least one highly explosive explosive and a plasticizer; and a method for its production with the features of the preamble of the single method claim; and a booster for an aforementioned plastic explosive composition, in particular for loading hoses for boreholes and a small-caliber initial ignition, ie boosting charge for tunneling, with a tubular sleeve with plugs made of plastic at both end portions, of which at least one permeable to an igniter of the explosive in the sleeve is.
  • Explosive-free explosives such as ANFO (Ammonium Nitrate Fuel Oil) explosives and emulsion explosives
  • ANFO Ammonium Nitrate Fuel Oil
  • emulsion explosives are produced on mixed-load vehicles and are pumped directly into the wells by means of discharge devices.
  • Such explosives have good blasting parameters, but are not in most cases Explosive capsule sensitive and require a strong initiation.
  • a so-called impact cartridge is used for this, which can be initiated with a conventional explosive ignition safely.
  • boosters or ignition amplifiers has been amplified instead of impact cartridges.
  • These usually consist of highly explosive explosives such as pentaerythritol tetranitrate (Nitropenta) and / or trinitrotoluene (TNT).
  • the diameter of such booster is usually 65 mm.
  • the borehole diameters in tunneling are much smaller than those of surface mining operations in order to be able to carry out targeted explosions. Usually they are in the range of 36 to 50 mm.
  • the loose explosives are blown or pumped into the wells using a loading hose.
  • the loading tube is understandably smaller in diameter than the bore so that there is no jamming / clogging when the loading tube is inserted into the wellbore.
  • the outside diameter of the loading tube is between 25 and 27 mm, the inside diameter 19 mm.
  • the booster must cause a small-caliber initial ignition, so represent a small-caliber boost charge.
  • Known booster consist of a tubular sleeve, the ends of which are closed with plugs, one of the plugs having openings, such as a slot for easier insertion of the explosive and a detonator. From these openings explosive constituents can escape and liquid enter, whereby explosives can reach the inner walls of the packages, so the inner walls of bags or boxes for boosters, which can lead to problems from a safety and work-hygenic point of view.
  • the slot also serves to insert the igniter into the explosive mass in the booster, which protrudes only loosely, at least without any further attachment and positioning in the explosive mixture.
  • an explosive substance may only be transported if its impact energy greater than 2 J and its friction energy is greater than 80 N.
  • Stettbacher also proposed a substitute for dynamite, which consists only of nitroglycerin, nitrocellulose and nitropenta. Investigations have shown that this explosive is characterized on the one hand by a very high detonation velocity (> 8000 m / s), on the other hand the impact energy required for the explosion release is only 7.5 J (with the addition of potassium nitrate even 5 J), the required frictional energy only 180 N.
  • gelatinous ammonium nitrate explosives with high nitroglycerin and / or nitroglycol content can be used for boosters. Since the critical diameter for gelatinous ammonium nitrate explosives is between 15 and 16 mm (excluding inclusion) depending on the composition, gelatinous ammonium nitrate explosives for such applications are additionally provided with highly explosive explosives in order to obtain the required detonator sensitivity. These explosive compositions are also very sensitive to impact. The impact sensitivity required for detonation release is 7.5 J. Another disadvantage of these explosive mixtures is the effect of "aging". Prolonged storage causes the fine air bubbles introduced by the manufacturing process to disappear. The internal surface of the explosive composition decreases and thus also its sensitivity (cf. Ullmann's Encyclopedia of Industrial Chemistry, Verlag Chemie GmbH, Weinheim, Volume 21 ).
  • Newer plastic explosives like for example FR-A-947052 known contain hexogen / octogen / Nitropenta mixtures and a plasticizer (eg, styrene-butadiene copolymer).
  • a plasticizer eg, styrene-butadiene copolymer
  • the known boosters are not dense and expensive to handle and are strongly influenced by the physical properties of the explosive mixtures, with the result that cavities for the detonators undergo changes which are difficult to calculate when the explosive mixtures are changed. Consequently, the known boosters are also unsuitable for satisfactorily achieving the object of the present invention.
  • Object of the present invention is to provide a plastic explosive composition, especially for a small-caliber initial ignition, ie boosting charge in tunneling, which contains no toxic substances, has a small critical diameter and still improved handling safety (higher impact and friction energy) than before to disclose known explosive compositions and a process for its preparation.
  • the composition consists of 50 to 80 parts by weight of a highly explosive explosive such as pentaerythritol tetranitrate and / or hexogen and / or octogen, 15 to 30 parts by weight of a plasticizer such as dibutyl phthalate and / or diamyl phthalate, nitrocellulose in the order of 0.5 to 3%, inorganic nitrates such as sodium and / or potassium nitrate up to 10% and small amounts of colorants and inert substances.
  • a highly explosive explosive such as pentaerythritol tetranitrate and / or hexogen and / or octogen
  • a plasticizer such as dibutyl phthalate and / or diamyl phthalate
  • nitrocellulose in the order of 0.5 to 3%
  • inorganic nitrates such as sodium and / or potassium nitrate up to 10% and small amounts of colorants and inert substances.
  • the explosive composition is primarily intended as a small-caliber initial charge (diameter 15 mm), also known as boosters or boosters, for the safe ignition of loose explosives. Also powdery or emulsions.
  • Dibutyl phthalate and diamyl phthalate are used in the explosive industry, especially in the production of smokeless powder as a plasticizer (see Ullmann's Encyclopedia of Industrial Chemistry, Verlag Chemie GmbH, Weinheim, Volume 20, p 102). These substances therefore surprisingly contribute significantly to the composition according to the invention.
  • the use of dibutyl phthalate is still out US-A-3311513 known.
  • the detonability of an explosive basically depends on its ignitability and the ability to relay the detonation.
  • the ignitability is defined according to DIN 20163 "Blasting technique, November 1994 edition", a comparison parameter for the ignition sensitivity of an explosive which detects the required detonator strength or the explosive quantity of an ignition amplifier.
  • the "critical diameter” is according to DIN 20163 “blasting technique", the diameter of a charging station below which the detonation is no longer reliably forwarded.
  • An explosive of high detonability therefore generally requires a small detonator strength and has a small critical diameter.
  • For testing is generally z.
  • a detonator or an electric detonator contains 0.6 g Nitropenta as a secondary charge.
  • dibutyl phthalate and diamyl phthalate are used as an excellent substitute for nitroglycerin / nitroglycol in order to overcome the disadvantages mentioned above - toxicological (very toxic) and safety-related properties.
  • both substances are classified as “harmful” by the current hazardous substances legislation, they are not classified as “very toxic” or "toxic”.
  • the non-toxic, in any case not classified as "very toxic” or "toxic” dibutyl phthalate used in the application according to the invention is also referred to as Diisobutylphtalat and is classified according to hazardous substances legislation as only "dangerous for the environment".
  • Example 4 is to be regarded as a comparative example, since no alkali metal nitrate is used here.
  • dibutyl phthalate and diamyl phthalate have a phlegmatizing effect on the explosive composition.
  • the handling safety is significantly improved in the above formulations according to the application and the recipe according to the invention.
  • Impact and friction energy are higher than known explosive compositions.
  • the explosive composition has a small critical diameter which is desired for so-called boosters.
  • the constituents of dibutyl phthalate and / or diamyl phthalate form a gelatin with nitrocellulose by mixing, which together with nitropenta and / or hexogen and / or octogen and sodium nitrate and / or potassium nitrate and the colorants and inert substances is a plastic homogeneous mass.
  • the explosive mixture is thus particularly easy to handle and can be well filled in even extremely thin plastic sleeves, which are well movable in the thin charging tube of perhaps only up to 19 mm inside diameter.
  • the explosive mixture is mainly filled in rigid, cylindrical plastic sleeves, which are closed on both sides with plastic plugs.
  • the plastic plugs have a star-shaped predetermined breaking point, whereby the insertion of the igniter can be done very easily and easily.
  • the explosive mixture has a consistency with a plasticity, which causes a simple insertion in both sides closable plastic sleeves, as well as the introduction of a detonator facilitates in this booster and ensures the maintenance of the igniter therein.
  • the explosive composition thus has a plastic consistency, which facilitates the insertion of the igniter.
  • the retention of the igniter in the plastic sleeve (the booster) is significantly better for a plastic explosive composition than for cast or pressed explosive compositions (TNT / Nitropenta).
  • the task with regard to the booster for a plastic explosive composition according to the application is achieved according to the invention in that the plugs firmly and tightly close the sleeve and at least one plug has a central, individually openable passage opening for an igniter which centers, locks and seals the igniter.
  • the igniter can be introduced particularly easily and precisely into a plastic explosive mass despite initially closed plug.
  • a combination of the plastic explosive mass with the booster according to the invention ensures almost automatically the safe and centric Seat of the igniter in the sleeve with largely tightness even with inserted detonator.
  • D. h. The plastic explosive mass is securely and tightly packed in the sleeve due to the mutual stopper, so that neither explosives or explosive components can get to the outside and humidity inside.
  • the explosive mixture fills the inner volume of the sealed sleeve only incompletely.
  • a swelling of plastic explosive mass when inserting the second plug and the igniter is safely excluded in a simple manner.
  • the remaining volume in the closed sleeve corresponds at least to the volume of the initiator to be introduced and a plug.
  • various effects can be prevented. It has been found that thereby pushing out of the opposite plug when inserting the second plug can be prevented as well as when inserting the igniter in one of the plug. Experience has shown that even a few percent of the filling volume suffice as a free-standing cavity.
  • the sleeve is rigid and circular cylindrical and the plug tight and firmly projecting with a portion into the interior of the sleeve and having an outer remaining flange whose outer diameter corresponds to that of the sleeve.
  • each plug can only be pressed to a predetermined depth in the sleeve.
  • the plugs are either easy to squeeze o. The like. And / or with adhesive o. The like. Provide and thus virtually automatically seal the sleeve. Since the flange has the same outer diameter as the sleeve, the mobility of the booster in the charging hose is not limited.
  • each plug is elastic and circularly symmetrical and the outer flange, together with a central projecting into the sleeve portion has a shape similar to a thimble, with a protruding into the sleeve bottom, which forms the passage opening for the igniter.
  • the bottom of the plug is oriented orthogonally to the longitudinal extent of the sleeve and has a smaller wall thickness with a predetermined breaking point applied radially from the center.
  • a predetermined breaking point applied radially from the center.
  • one or both surfaces of the bottom are radially provided with straight lines of reduced cross-section, which form the predetermined breaking point (s) and, similar to a cake, at least three identical straps (pieces).
  • the production cost is to keep low, since the predetermined breaking point itself are to be made of radially extending lines of smaller cross-section and already satisfy three pieces of cake-shaped tabs to form a star-shaped through hole and to achieve all application advantages can.
  • the tabs of the star-shaped passage opening center the detonated detonator due to their predetermined elasticity, set and seal the sleeve at the same time.
  • the inserted igniter is always inserted centrally in the sleeve and at the same time secured by the forming tabs against pulling out.
  • the star-shaped passage opening is broken only as far as necessary, that is according to the diameter of the igniter.
  • the forming tabs nestle snugly and thus close to the detonator.
  • the sleeve is sealed according to the application with and without detonator. Also, an accidentally inserted detonator can be removed again, because the elasticity of the tabs allow this and they relax after removal and close the passage opening again.
  • the sleeve and the plug made of polyethylene or polypropylene. This allows the materials to be used, which are easy to work with, ensure a safe interaction with each other and optimally meet the sliding requirements in the charging hose, with an outer diameter corresponding to the critical diameter and, if necessary, smaller than the inner charging hose diameter.
  • the sleeve meets the requirements of an extrusion process and the plug which an injection-molding process. This makes it possible to manufacture the booster according to the application economically attractive.
  • the formulations are characterized by explosive properties, which correspond to those formed with toxic substances, by an extremely high impact energy and the other advantages already mentioned.
  • Fig. 1 partially shows a view of a booster 10 according to the application, which has a sleeve 11 made of plastic and two plugs 12, also made of plastic.
  • the plugs 12 have an outer flange 13 with an outer diameter corresponding to that of the sleeve 11.
  • the sleeve 11 and the plug 12 have a circular cylindrical basic shape and are firmly and tightly connected. This connection takes place via a circular cylindrical portion 14 which is integrally connected to the flange 13 of the plug 12 and z.
  • B. protrudes a few millimeters into the sleeve 11 and is firmly and tightly engaged with the inner wall 15 of the sleeve 11. This connection can be made non-positively and / or by the aid of adhesive or heat.
  • the flange 13 has a centrally disposed, projecting into the sleeve 11 thimble-shaped (cylindrical) section 16 with a bottom 17 and one in the Fig. 1 indicated radial breaking point 18.
  • the flange 13 is open in the area of the thimble-shaped portion 16, so that only a cross-sectional area in Fig. 4 shown detonator 21 with its front side against the bottom 17 and thus can be pressed against the predetermined breaking point 18 and breaks them in a predeterminable manner.
  • the detonator can also fill the entire star-shaped through opening 19, that is to say the base 17.
  • the predetermined breaking point (s) 18 are formed by from the center radially (radially) extending lines with cross-sectional reduction, which in one of the surfaces, for. B. the outer surface of the bottom 17 is introduced.
  • the flange 13 also prevents the plug 12 from being pushed in during the opening 19 being broken through.
  • Fig. 2 shows a plan view corresponding to line AA in Fig. 1 , Visible are the circular symmetrical shape of the plug 12 and the flange 13 as well as the bottom 17 with radial, radial predetermined breaking points 18 are provided, two of which are shown. These form a total of six cake piece-shaped sections, better called tabs 20.
  • the thus formed, star-shaped through hole 19 is arranged deep in the thimble-shaped portion 16 and thus facilitates quasi funnel-shaped threading of the igniter 21.
  • Fig. 1 directed.
  • Fig. 3 schematically shows a side view of a plug 12 with flange 13, cylindrical portion 14 for fixing the plug 12 in the sleeve 11 and the thimble-shaped portion 16 shown in phantom to insert this plug 12 with still closed through hole 19 in the sleeve 11, without the, the other end of the sleeve 11 occlusive, further plug 12 is pushed out again, according to the application provided that the sleeve 11 is only partially filled with plastic explosive.
  • the sleeve 11 is also filled with plastic explosive only to such an extent that even expulsion of explosive during the insertion of the igniter 21 fails to occur.
  • the remaining volume about 1 cm at a z. B. 15 mm diameter booster 10 corresponds, or about a filling of only 90 to 95% of the booster 10th
  • Fig. 4 shows a plan view of Fig. 3 along the line BB.
  • the representation corresponds to the acc. Fig. 2 to the description of which reference is also made.
  • the passage opening 19 is broken and therefore shown in a star shape, with an inner cross section which may correspond to that of a fuze 21.
  • the igniter 21 can be larger and smaller Have cross-section.
  • the radially arranged lines of the predetermined breaking points 18 have formed elastic tabs 20, which determine the available free diameter of the passage opening 19 with their angular tips and, due to their elastic material tension, hold the igniter 21 in the center and secure it against being pulled out. With a suitable choice of the material break the predetermined breaking points barely on, as absolutely necessary and the tabs 20 nestle against the igniter 21, so that even in the case of the inserted igniter 21, the through hole 19 is virtually closed tight.
  • the radial predetermined breaking point 18 of the plug 12 is designed so that it is dense on the one hand and thus prevents the escape of explosives or components thereof, on the other hand is thin and has a special construction, the easy insertion of the igniter 21st allows.
  • the igniter 21 can easily be introduced into the plastic explosive mass according to the invention and is thus securely and centrically fixed in the sleeve 11 by the combination of the elastic explosive mass with the plastic bottles 20. By the tabs 20 slipping out of the igniter 21 is further difficult. Since the plug 12 is identical on both sides, the igniter 21 can be inserted from each side into the sleeve 11.
  • the booster 10 does not have to be taken by the person entitled to blast in a certain direction in order to introduce the igniter 21 can.
  • the advantage of a plastic explosive mass in such a booster 12 over a cast, solid explosive mixture is further that for the introduction of the igniter 21 no preformed cavity must be present in the explosive. A preformed cavity always presents a risk that the igniter 21 may be too loose or jamming occurs upon insertion of the igniter 21.
  • the volume of the sleeve 11 is only 90 to 95% filled with the plastic explosive mass (on one side of the sleeve 11 remain empty about 10 millimeters, with a diameter of the sleeve 11 in the centimeter range). This cavity is u. a. sufficient for the insertion of the igniter 21, without that arranged on the opposite side of the sleeve 11 plug 12 is moved out of the sleeve 11.
  • the sleeve 11 and the plug 12 are made of plastics such as polyethylene and polypropylene.
  • the sleeve 11 preferably in the extrusion process and the plug 12 in the injection-molding process, which leads to a good economic price-performance ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Portable Nailing Machines And Staplers (AREA)
  • Air Bags (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Paints Or Removers (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

  • Die Erfindung betrifft eine plastische Sprengstoffzusammensetzung, insbesondere für eine kleinkalibrige Initialzündung für den Tunnelbau, mit Substanzen, die nicht giftig sind, gute Handhabungssicherheit und Detonationsfähigkeit haben, mit mindestens einem hochbrisanten Explosivstoff und einem Plastifiziermittel; und ein Verfahren zu dessen Herstellung mit den Merkmalen des Oberbegriffes des einzigen Verfahrensanspruches; sowie einen Booster für eine vorgenannte plastische Sprengstoffzusammensetzung, insbesondere für Ladeschläuche für Bohrlöcher und eine kleinkalibrige Initialzündung, also Verstärkungsladung für den Tunnelbau, mit einer rohrförmigen Hülse mit Stopfen aus Kunststoff an beiden Endabschnitten, von denen mindestens einer durchlässig für einen Zünder des Sprengstoffes in der Hülse ist.
  • Der weltweite Trend zu größeren Sprenganlagen bei der Rohstoffgewinnung hat zur Mechanisierung der Ladearbeiten geführt. Explosivstofffreie Sprengstoffe, wie ANFO(Ammonium Nitrate Fuel Oil)-Sprengstoffe und Emulsionssprengstoffe werden auf Mischladefahrzeugen hergestellt und mittels Austragevorrichtungen direkt in die Bohrlöcher gefüllt bzw. gepumpt. Derartige Sprengstoffe besitzen gute sprengtechnische Parameter, sind aber in den meisten Fällen nicht sprengkapselempfindlich und bedürfen einer kräftigen Initiierung. Häufig wird dafür eine sogenannte Schlagpatrone verwendet, die sich mit einem herkömmlichen sprengkräftigen Zündmittel sicher initiieren lässt. In den letzten Jahren hat sich anstelle von Schlagpatronen der Einsatz von Boostern oder Zündverstärkern verstärkt. Diese bestehen meistens aus hochbrisanten Sprengstoffen wie Pentaerythrittetranitrat (Nitropenta) und/oder Trinitrotoluen (TNT). Bei übertägigen Anwendungen beträgt der Durchmesser solcher Booster meist 65 mm.
  • Nun werden lose Sprengstoffe, pulverförmig oder als Emulsionen auch in stärkerem Maße im untertägigen Bereich, vor allem im Tunnelbau, eingesetzt. Die Bohrlochdurchmesser im Tunnelbau sind jedoch wesentlich kleiner als bei übertägigen Sprengarbeiten, um gezielte Sprengungen durchführen zu können. Meist liegen sie im Bereich von 36 bis 50 mm. Die losen Sprengstoffe werden mit einem Ladeschlauch in die Bohrlöcher geblasen oder gepumpt. Der Ladeschlauch besitzt verständlicherweise einen kleineren Durchmesser als das Bohrloch, damit es beim Einführen des Ladeschlauches in das Bohrloch nicht zum Verklemmen/Verstopfen kommt. Meist beträgt der Außendurchmesser des Ladeschlauches zwischen 25 und 27 mm, der Innendurchmesser 19 mm. Bei der Ladetechnologie im Tunnelbau wird der Booster mit dem sprengkräftigen Zündmittel versehen, in den Ladeschlauch gesteckt und auf diese Weise mit dem Ladeschlauch in das Bohrloch gebracht. Der Durchmesser des Boosters muss also kleiner als der Innendurchmesser des Ladeschlauches sein.
  • Der Booster muß eine kleinkalibrige Initialzündung bewirken, also eine kleinkalibrige Verstärkungsladung darstellen.
  • Bekannte Booster bestehen aus einer rohrförmigen Hülse, deren Enden mit Stopfen verschlossen sind, wobei einer der Stopfen Öffnungen, etwa einen Schlitz zum leichteren Einführen des Sprengstoffes und eines Zünders, aufweist. Aus diesen Öffnungen können Sprengstoffbestandteile austreten und Flüssigkeit eintreten, wodurch Sprengstoff an die Innenwände der Verpackungen, also die inneren Wände von Beuteln oder Kartons für Booster gelangen kann, was aus sicherheitstechnischer und arbeitshygenischer Sicht zu Problemen führen kann. Der Schlitz dient auch dem Einführen des Zünders in die Sprengstoffmasse im Booster, der lediglich lose, jedenfalls ohne jegliche weitere Befestigung und Positionierung in die Sprengstoffmischung hineinragt. Im Fall einer festen Sprengstoffmischung ist in der Regel sogar ein vorgeformter Hohlraum für den Zünder in die Sprengstoffmischung einzuarbeiten, der jedoch die Gefahr mit sich bringt, dass der Zünder im Hohlraum zu lose sitzt oder es umgekehrt zum Verklemmen beim Einführen des Zünders in den Hohlraum der Booster kommt. Beim Einbringen des Zünders quillt überdies die Sprengstoffmischung aus dem Booster heraus, was ebenfalls zu ungewünschten Verschmutzungen führt. Der so vorbereitete Booster ist auch nur von einer Seite mit einem Zünder zu bestücken und führt folglich zu einer aufwendigen, weil nur aufrechten Handhabung, die die Gefahr des Verlustes des Zünders und/oder der Sprengstoffmischung enthält. Eine exakte, weil äußerst effektive, zentrische Ausrichtung der je Hersteller im Durchmesser leicht variierenden Zünder ist nur durch sorgfältige Handhabung und Ausrichtung während des Einführens des Zünders individuell möglich. D. h., der Sprengberechtigte kann dies nur von Hand justieren.
  • In der Literatur sind mehrere Zusammensetzungen für derartige Booster bekannt. Bereits 1929 beschrieb Stettbacher (Urbanski, T., Chemie und Technologie der Explosivstoffe, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1964, Band III, Seite 239) Sprengstoffe, die nur aus Nitropenta und Nitroglyzerin bestehen und von ihm als Pentrinite bezeichnet wurden. Je nach Qualität des Nitropentas (Kristallgröße) und der Zusammensetzung kann ein plastisches Gemisch erhalten werden, ansonsten läuft nach einigen Tagen Nitroglyzerin aus dem Gemisch heraus. Ein Austritt von Nitroglyzerin aus einem Sprengstoffgemisch stellt immer einen gravierenden Qualitäts- und Sicherheitsmangel dar, da Nitroglyzerin eine Schlagenergie von 0,2 J aufweist. Nach den z. B. gültigen deutschen und auch europäischen Transportbestimmungen darf ein explosiver Stoff nur befördert werden, wenn seine Schlagenergie größer als 2 J und seine Reibenergie größer als 80 N beträgt.
    Stettbacher schlug weiterhin einen Ersatz für Dynamit vor, der nur aus Nitroglyzerin, Nitrocellulose und Nitropenta besteht. Untersuchungen haben ergeben, dass sich dieser Sprengstoff einerseits durch eine sehr hohe Detonationsgeschwindigkeit (>8000 m/s) auszeichnet, andererseits beträgt die zur Explosionsauslösung erforderliche Schlagenergie nur 7,5 J (bei Zusatz von Kaliumnitrat sogar 5 J), die erforderliche Reibenergie nur 180 N.
  • Auch gelatinöse Ammonsalpetersprengstoffe mit hohem Nitroglyzerin- und/oder Nitroglykolgehalt können für Booster verwendet werden. Da der kritische Durchmesser für gelatinöse Ammonsalpetersprengstoffe je nach Zusammensetzung zwischen 15 und 16 mm (ohne Einschluss) liegt, werden gelatinöse Ammonsalpetersprengstoffe für solche Anwendungen zusätzlich mit hochbrisanten Explosivstoffen versehen, um die erforderliche Sprengkapselempfindlichkeit zu erhalten. Auch diese Sprengstoffzusammensetzungen sind gegenüber Schlageinwirkung sehr empfindlich. Die zur Detonationsauslösung erforderliche Schlagempfindlichkeit beträgt 7,5 J. Ein weiterer Nachteil dieser Sprengstoffmischungen ist der Effekt der "Alterung". Bei längerer Lagerung verschwinden die durch den Herstellungsprozess eingebrachten feinen Luftbläschen. Die innere Oberfläche der Sprengstoffzusammensetzung verringert sich und somit auch ihre Empfindlichkeit (vgl. Ullmanns Enzyklopädie der technischen Chemie, Verlag Chemie GmbH, Weinheim, Band 21).
  • Auch gegossene oder gepresste Sprengstoffzusammensetzungen aus TNT oder Nitropenta oder Gemischen beider Stoffe werden für Booster eingesetzt.
  • Neuere plastische Sprengstoffe wie zum Beispiel aus FR-A-947052 bekannt, enthalten Hexogen/Octogen-/Nitropenta-Gemische und ein Plastifiziermittel (z. B. Styren-Butadien-Copolymerisat).
  • Viele der aufgeführten Sprengstoffzusammensetzungen enthalten Nitroglyzerin und/oder Nitroglykol als Komponente. Diese Stoffe werden nach geltendem Gefahrstoffrecht als "sehr giftig" eingestuft. Auch die Komponente TNT wird als "giftig" bewertet. Die Verwendung dieser Stoffe vor allem im untertägigen Bereich wird als problematisch angesehen. Die bekannten Sprengstoffzusammensetzungen sind daher wenig geeignet, die Aufgabe der vorliegenden Erfindung befriedigend zu lösen.
  • Wie bereits erwähnt, sind die bekannten Booster nicht dicht und aufwendig zu handhaben und werden stark von den physikalischen Eigenschaften der Sprengstoffmischungen beeinflußt, mit der Folge, dass auch Hohlräume für die Zünder bei Veränderungen der Sprengstoffmischungen schwer kalkulierbare Veränderungen erfahren. Auch die bekannten Booster sind folglich wenig geeignet, die Aufgabe der vorliegenden Erfindung befriedigend zu lösen.
  • Aufgabe der vorliegenden Erfindung ist es, eine plastische Sprengstoffzusammensetzung, insbesondere für eine kleinkalibrige Initialzündung, also Verstärkungsladung im Tunnelbau zu schaffen, die keine giftigen Substanzen enthält, einen kleinen kritischen Durchmesser aufweist und trotzdem eine verbesserte Handhabungssicherheit (höhere Schlag- und Reibenergie) aufweist als bisher bekannte Sprengstoffzusammensetzungen und ein Verfahren zu dessen Herstellung anzugeben.
  • Ferner ist es Aufgabe der vorliegenden Erfindung, einen Booster für eine plastische Sprengstoffzusammensetzung, insbesondere für Ladeschläuche für Bohrlöcher und eine kleinkalibrige Initialzündung, also Verstärkungsladung im Tunnelbau zu schaffen, der keine der im Stand der Technik genannten Nachteile aufweist, im Zusammenhang mit der anmeldungsgemäßen plastischen Sprengstoffzusammensetzung transport- und anwendungssicher, wie auch einfach anzuwenden ist, und eine optimale und gesicherte Positionierung des Zünders im Booster sicherstellt. Die Aufgabe hinsichtlich der plastischen Sprengstoffzusammensetzung wird erfindungsgemäß dadurch gelöst, dass die Zusammensetzung aus
    • 50 - 80 Gew.-% Pentaerythrittetranitrat und/oder Hexogen und/oder Octogen als hochbrisantem Explosivstoff,
    • 15 - 30 Gew.-% Dibutylphtalat und/oder Diamylphtalat als Plastifiziermittel,
    • 0,5 - 3 Gew.-% Nitrocellulose,
    • bis zu 10 Gew.-% anorganischen Nitraten, wie Natrium- und/oder Kaliumnitrat, und
    • geringen Beimengungen an Farb- und Inertstoffen
    besteht; und hinsichtlich des Verfahrens zu dessen Herstellung durch die kennzeichnenden Merkmale des einzigen Verfahrensanspruches.
  • Die Aufgabe hinsichtlich des Boosters wird erfindungsgemäß durch die kennzeichnenden Merkmale des den Booster betreffenden unabhängigen Anspruches gelöst.
  • Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
  • Erfindungsgemäß besteht die Zusammensetzung aus 50 bis 80 Gewichtsanteilen eines hochbrisanten Explosivstoffes wie Pentaerythrittetranitrat und/oder Hexogen und/oder Octogen, 15 bis 30 Gewichtsanteilen eines Plastifiziermittels wie Dibutylphtalat und/oder Diamylphtalat, Nitrocellulose in der Größenordnung von 0,5 bis 3 %, anorganischen Nitraten wie Natrium- und/oder Kaliumnitrat bis zu 10 % und geringen Mengen an Farb- und Inertstoffen.
  • Die Sprengstoffzusammensetzung ist vorrangig vorgesehen als kleinkalibrige Initialladung (Durchmesser 15 mm), auch Zündverstärker oder Booster genannt, zur sicheren Zündung von losen Sprengstoffen. Auch pulverförmigen oder Emulsionen.
  • Dibutylphtalat und Diamylphtalat werden in der Explosivstoffindustrie vor allem in der Herstellung rauchloser Pulver als Weichmacher verwendet (vgl. Ullmanns Enzyklopädie der technischen Chemie, Verlag Chemie GmbH, Weinheim, Band 20, S. 102). Diese Stoffe tragen daher überraschenderweise zur erfindungsgemäßen Zusammensetzung wesentlich bei. Die Verwendung von Dibutylphtalat ist weiterhin aus US-A-3311513 bekannt.
  • Die Detonationsfähigkeit eines Sprengstoffes hängt grundsätzlich von seiner Zündbarkeit und der Fähigkeit ab, die Detonation weiterzuleiten.
  • Als Zündbarkeit wird gemäß DIN 20163 "Sprengtechnik, Ausgabe November 1994", eine Vergleichsgröße für die Zündempfindlichkeit eines Sprengstoffes definiert, die die erforderliche Sprengkapselstärke oder die Sprengstoffmenge eines Zündverstärkers erfasst. Der "kritische Durchmesser" ist nach DIN 20163 "Sprengtechnik", der Durchmesser einer Ladesäule, unterhalb dessen die Detonation nicht mehr zuverlässig weitergeleitet wird. Ein Sprengstoff hoher Detonationsfähigkeit erfordert deshalb im allgemeinen eine geringe Sprengkapselstärke und besitzt einen kleinen kritischen Durchmesser. Zur Prüfung wird allgemein z. B. wie folgt vorgegangen: Eine Sprengkapsel oder ein elektrischer Zünder enthalten 0,6 g Nitropenta als Sekundärladung. Gemäß geltenden (u. a. deutschen) Vorschriften wird die Prüfung eines Sprengstoffes auf Sprengkapselempfindlichkeit mit einem Prüfzünder durchgeführt, der eine geringere Sekundärladung besitzt. Solche Prüfzünder enthalten 0,375 g oder nur 0,250 g Nitropenta. International werden auch Prüfzünder mit 0,450 g Nitropenta eingesetzt.
  • Erfindungsgemäß werden Dibutylphtalat und Diamylphtalat als ausgezeichneter Ersatz für Nitroglyzerin/Nitroglykol eingesetzt, um die bereits genannten Nachteile - toxikologische (sehr giftige) und sicherheitstechnische Eigenschaften - zu überwinden. Beide Stoffe sind nach geltendem Gefahrstoffrecht zwar als "gesundheitsschädlich", jedoch nicht als "sehr giftig" oder "giftig" eingestuft. Das in der Anmeldung erfindungsgemäß zur Anwendung kommende ungiftige, jedenfalls als nicht "sehr giftig" oder "giftig" eingestufte Dibutylphtalat wird auch als Diisobutylphtalat bezeichnet und ist gemäß Gefahrstoffrecht als nur "umweltgefährlich" eingestuft.
  • Anmeldungsgemäß wird vorteilhaft vorgeschlagen, dass zur Erzielung einer gewünschten hohen Detonationsgeschwindigkeit von wenigstens 6260 m/s, einer Schlagenergie von mindestens 15 J und einer Reibenergie von mindestens 360 N und einem kritischen Durchmesser von mindestens 15 mm und für Ladeschläuche weniger als deren Innendurchmesser, jeweils anmeldungsgemäße Rezepturen der nachstehenden Tabelle
    Figure imgb0001
    zu einer Gelatine gemischt werden. Beispiel 4 ist als Vergleichsbeispiel zu betrachten, da hier kein Alkalimetallnitrat eingesetzt wird. Dibutylphtalat und Diamylphtalat besitzen, wie bereits ausgeführt, eine phlegmatisierende Wirkung für die Sprengstoffzusammensetzung. Die Handhabungssicherheit wird bei den vorstehenden anmeldungsgemäßen Rezepturen und der erfindungsgemäßen Rezeptur deutlich verbessert. Schlag- und Reibenergie sind höher als bei bekannten Sprengstoffzusammensetzungen. Andererseits weist die Sprengstoffzusammensetzung einen kleinen kritischen Durchmesser auf, der für sogenannte Booster gewünscht wird.
  • Vorteilhaft ist ferner vorgesehen, dass die Bestandteile von Dibutylphtalat und/oder Diamylphtalat durch Vermischung eine Gelatine mit Nitrocellulose bilden, die zusammen mit Nitropenta und/oder Hexogen und/oder Octogen und Natriumnitrat und/oder Kaliumnitrat und den Farb- und Inertstoffen eine plastische homogene Masse ist. Die Sprengstoffmischung ist hierdurch besonders gut zu handhaben und läßt sich gut in auch äußerst dünne Kunststoffhülsen füllen, die im dünnen Ladeschlauch von vielleicht nur bis zu 19 mm Innendurchmesser gut beweglich sind. Die Sprengstoffmischung wird hauptsächlich in starre, zylinderförmige Kunststoffhülsen gefüllt, die beiderseitig mit Kunststoffstopfen verschlossen sind. Die Kunststoffstopfen weisen eine sternförmige Sollbruchstelle auf, womit das Einführen des Zünders sehr einfach und leicht erfolgen kann.
  • Vorteilhaft ist ferner vorgesehen, dass die Sprengstoffmischung eine Konsistenz mit einer Plastizität hat, die ein einfaches Einführen in beidseitig verschließbare Kunststoffhülsen bewirkt, wie auch das Einführen eines Zünders in diesen Zündverstärker erleichtert und den Halt des Zünders darin sicherstellt. Die Sprengstoffzusammensetzung weist somit eine plastische Konsistenz auf, wodurch das Einführen des Zünders erleichtert wird. Auch der Halt des Zünders in der Kunststoffhülse (dem Booster) ist bei einer plastischen Sprengstoffzusammensetzung wesentlich besser als bei gegossenen oder gepressten Sprengstoffzusammensetzungen (TNT/Nitropenta).
  • Das erfindungsgemäße Verfahren, wonach eine Zusammensetzung aus
    • 15 - 30 Gew.-% Dibutylphtalat und/oder Diamylphtalat als Plastifiziermittel, und
    • 0,5 - 3 Gew.-% Nitrocellulose,
    gemischt wird, bis sich eine Gelatine bildet und anschließend in diese Gelatine
    • 50 - 80 Gew.-% Pentaerythrittetranitrat (Nitropenta) und/oder Hexogen und/oder Octogen als hochbrisantem Explosivstoff, und
    • bis zu 10 Gew.-% anorganische Nitrate, wie Natrium- und/oder Kalciumnitrat, und
    • geringe Mengen an Farb- und Inertstoffen
  • zugegeben werden bis sich durch Vermischung eine plastische homogene Masse bildet, unterstützt insbesondere die Mechanisierung der Ladearbeiten vor Ort, gewährleistet einen hohen Sicherheitsstandard und führt zu einer langzeitstabilen
    Sprengstoffzusammensetzung, neben den Vorteilen, die bereits im Zusammenhang mit der Zusammensetzung beschrieben worden sind.
  • Die Aufgabe hinsichtlich des Boosters für eine anmeldungsgemäße plastische Sprengstoffzusammensetzung wird erfindungsgemäß dadurch gelöst, dass die Stopfen die Hülse fest und dicht verschließen und mindestens ein Stopfen eine zentrale, individuell zu öffnende Durchgangsöffnung für einen Zünder hat, die den Zünder zentriert, arretiert und dichtend umschließt.
  • Überraschenderweise hat sich gezeigt, dass der Zünder trotz zunächst verschlossenem Stopfen besonders leicht und präzise in eine plastische Sprengstoffmasse eingeführt werden kann. Eine Kombination der plastischen Sprengstoffmasse mit dem erfindungsgemäßen Booster gewährleistet quasi automatisch den sicheren und zentrischen Sitz des Zünders in der Hülse bei weitgehender Dichtigkeit auch mit eingefügtem Zünder. D. h., die plastische Sprengstoffmasse ist in der Hülse aufgrund der beiderseitigen Stopfen sicher und dicht verpackt, so dass weder Sprengstoff bzw. Sprengstoffbestandteile nach außen und Luftfeuchtigkeit nach innen gelangen können. Wie bereits ausgeführt, weisen bekannte Stopfen Öffnungen auf, z. B. Schlitze zum leichteren Einfügen des Zünders, aus denen Sprengstoff und/oder Flüssigkeit austreten/eintreten kann und die Umgebung dabei verschmutzt wird. Dies führt auch zu sicherheitstechnischen Problemen.
  • Vorteilhaft ist vorgesehen, dass die Sprengstoffmischung das innere Volumen der verschlossenen Hülse nur unvollständig ausfüllt. Hierdurch ist auf einfache Weise ein Herausquellen von plastischer Sprengstoffmasse beim Einfügen des zweiten Stopfens und auch des Zünders sicher ausgeschlossen.
  • Vorteilhaft ist ferner vorgesehen, dass das freibleibende Volumen in der verschlossenen Hülse mindestens dem Volumen des einzuführenden Zünders und eines Stopfens entspricht. Hierdurch kann verschiedenen Effekten vorgebeugt werden. Es hat sich gezeigt, dass dadurch ein Herausdrücken des gegenüberliegenden Stopfens beim Einfügen des zweiten Stopfens ebenso verhindert werden kann, wie beim Einfügen des Zünders in einen der Stopfen. Erfahrungsgemäß genügen bereits einige Prozent des Füllvolumens als freibleibender Hohlraum.
  • Anmeldungsgemäß ist ferner vorgesehen, dass die Hülse starr und kreiszylindrisch ist und die Stopfen dicht und fest mit einem Abschnitt ins Innere der Hülse ragen und einen außen verbleibenden Flansch haben, deren äußerer Durchmesser dem der Hülse entspricht. Hierdurch ist eine sichere und planbare Handhabung der Stopfen auch im robusten Betrieb vor Ort möglich. Denn durch den Flansch kann jeder Stopfen nur bis zu einer vorgegebenen Tiefe in die Hülse gedrückt werden. Die Stopfen sind entweder leicht einzupressen o. dgl. und/oder mit Klebstoff o. dgl. versehen und dichten somit quasi automatisch die Hülse ab. Da der Flansch den gleichen Außendurchmesser wie die Hülse hat, ist auch die Beweglichkeit des Boosters im Ladeschlauch nicht eingeschränkt.
  • Anmeldungsgemäß ist ferner vorgesehen, daß jeder Stopfen elastisch und kreissymmetrisch ist und der äußere Flansch zusammen mit einem zentralen, in die Hülse ragenden Abschnitt eine Ausformung ähnlich einem Fingerhut hat, mit einem in die Hülse ragenden Boden, der die Durchgangsöffnung für den Zünder bildet. Mit dieser einfachen Maßnahme wird die Handhabbarkeit besonders beim Einfügen eines Zünders wesentlich erleichtert. Der Fingerhut bildet sozusagen einen Zieltrichter für den Zünder, der den Zünder sicher zur Durchgangsöffnung führt.
  • Vorteilhaft ist ferner vorgesehen, dass der Boden des Stopfens orthogonal zur Längserstreckung der Hülse ausgerichtet ist und eine geringere Wandstärke mit einer aus der Mitte strahlenförmig angelegten Sollbruchstelle hat. Die ansich verschlossene Durchgangsöffnung kann hierdurch immer im Zentrum beginnend aufgebrochen werden, ohne dass dazu eine besondere Fingerfertigkeit oder Kraftaufwendung nötig ist. Anmeldungsgemäß ist ferner vorgesehen, dass eine oder beide Oberflächen des Bodens strahlenförmig mit geraden Linien verringerten Querschnittes versehen sind, die die Sollbruchstelle(n) und ähnlich einem Kuchen mindestens drei gleiche Laschen (Stücke) bilden. Hierdurch ist der fertigungstechnische Aufwand gering zu halten, da die Sollbruchstelle selbst aus radial verlaufenden Linien geringeren Querschnittes zu fertigen sind und bereits drei kuchenstückförmige Laschen genügen, um eine sternförmige Durchgangsöffnung zu bilden und alle anmeldungsgemäßen Vorteile erzielen zu können.
  • Anmeldungsgemäß ist ferner vorgesehen, dass die Laschen der sternförmigen Durchgangsöffnung den eingeschobenen Zünder aufgrund ihrer vorgebbaren Elastizität zentrieren, festsetzen und die Hülse gleichzeitig abdichten. Hierdurch wird der eingefügte Zünder immer mittig in die Hülse eingefügt und gleichzeitig durch die sich bildenden Laschen gegen Herausziehen gesichert. Die sternförmige Durchgangsöffnung wird auch nur so weit wie nötig, also entsprechend dem Durchmesser des Zünders aufgebrochen. Die sich bildenden Laschen schmiegen sich eng anliegend und damit dicht an den Zünder an. Die Hülse ist anmeldungsgemäß mit und ohne Zünder dicht verschlossen. Auch kann ein versehentlich eingefügter Zünder wieder entnommen werden, weil die Elastizität der Laschen dies zulassen und sie sich nach Entnahme entspannen und die Durchgangsöffnung wieder verschließen.
  • Ferner ist vorteilhaft vorgesehen, dass die Hülse und die Stopfen aus Polyethylen oder Polypropylen bestehen. Hierdurch können die Materialien zum Einsatz kommen, die gut zu verarbeiten sind, ein sicheres Zusammenspiel miteinander gewährleisten und die Gleiterfordernisse im Ladeschlauch optimal erfüllen, bei einem äußeren Durchmesser entsprechend dem kritischen Durchmesser und erforderlichenfalls kleiner als der innere Ladeschlauchdurchmesser.
  • Vorteilhaft ist ferner vorgesehen, dass die Hülse den Anforderungen eines Extrusionsverfahrens und der Stopfen denen eines Spritz-Gieß-Verfahrens genügt. Hierdurch ist es möglich, den anmeldungsgemäßen Booster wirtschaftlich attraktiv zu fertigen.
  • Beispiel 1
  • Es werden bei veranschlagten 100 Gewichtsteilen 28, 3 % Dibutylphtalat und 1,7 % Nitrocellulose gemischt bis sich eine Gelatine bildet. Nun werden 65 % Nitropenta, 5 % Kaliumnitrat und geringe Mengen an Farb- und Inertstoffen zugegeben, bis sich eine homogene plastische Masse bildet.
    Sprengtechnische Parameter:
    Initiierfähigkeit: Prüfzünder PETN 0,450 g
    (Durchmesser: 15 mm)
    Detonationsgeschwindigkeit: 6400 m/s
    (Durchmesser: 15 mm)
    Schlagenergie: 20 J
    Reibenergie: 360 N
  • Beispiel 2
  • Es werden bei veranschlagten 100 Gewichtsanteilen 25 % Dibutylphtalat und 1 % Nitrocellulose gemischt bis sich eine Gelatine bildet. Nun werden 65 % Nitropenta, 9 % Kaliumnitrat und geringe Mengen an Farb- und Inertstoffen zugegeben bis sich eine homogene plastische Masse bildet.
    Sprengtechnische Parameter:
    Initiierfähigkeit: Prüfzünder PETN 0,250 g
    (Durchmesser: 15 mm)
    Detonationsgeschwindigkeit: 6260 m/s
    (Durchmesser: 15 mm)
    Schlagenergie: 20 J
    Reibenergie: 360 N
  • Beispiel 3
  • Es werden bei veranschlagten 100 Gewichtsanteilen 20 % Dibutylphtalat und 1 % Nitrocellulose gemischt bis sich eine Gelatine bildet. Nun werden 75 % Nitropenta, 4 % Kaliumnitrat und geringe Mengen an Farb- und Inertstoffen zugegeben bis sich eine homogene plastische Masse bildet.
    Sprengtechnische Parameter:
    Initiierfähigkeit: Prüfzünder PETN 0,250 g
    (Durchmesser: 15 mm)
    Detonationsgeschwindigkeit: 6430 m/s
    (Durchmesser: 15 mm)
    Schlagenergie: 15 J
    Reibenergie: >360 N
  • Vergleichsbeispiel 4
  • Es werden bei veranschlagten 100 Gewichtsteilen 20 % Dibutylphtalat und 1 % Nitrocellulose gemischt bis sich eine Gelatine bildet. Nun werden 79 % Nitropenta, 0 % Kaliumnitrat und geringe Mengen an Farb- und Inertstoffen zugegeben bis sich eine homogene plastische Masse bildet.
    Sprengtechnische Parameter:
    Initiierfähigkeit: Prüfzünder PETN 0,250 g
    (Durchmesser: 15 mm)
    Detonationsgeschwindigkeit: 6900 m/s
    (Durchmesser: 15 mm)
    Schlagenergie: 17,5 J
    Reibenergie: >360 N
  • Beispiel 5
  • Es werden bei veranschlagten 100 Gewichtsteilen 21 % Dibutylphtalat und 1,5 % Nitrocellulose gemischt bis sich eine Gelatine bildet. Nun werden 68,5 % Nitropenta, 9 % Kaliumnitrat und geringe Mengen an Farb- und Inertstoffen zugegeben bis sich eine homogene plastische Masse bildet.
    Sprengtechnische Parameter:
    Initiierfähigkeit: Prüfzünder PETN 0,250 g
    (Durchmesser: 15 mm)
    Detonationsgeschwindigkeit: 6475 m/s
    (Durchmesser: 15 mm)
    Schlagenergie: 15 J
    Reibenergie: 360 N
  • Beispiel 6
  • Es werden bei veranschlagten 100 Gewichtsteilen 21 % Dibutylphtalat und 1,0 % Nitrocellulose gemischt bis sich eine Gelatine bildet. Nun werden 70,0 % Nitropenta, 8 % Kaliumnitrat und geringe Mengen an Farb- und Inertstoffen zugegeben bis sich eine homogene plastische Masse bildet.
    Sprengtechnische Parameter:
    Initiierfähigkeit: Prüfzünder PETN 0,250 g
    (Durchmesser: 15 mm)
    Detonationsgeschwindigkeit: 6750 m/s
    (Durchmesser: 15 mm)
    Schlagenergie: 17,5 J
    Reibenergie: >360 N
  • Die Rezepturen zeichnen sich bei sprengtechnischen Eigenschaften, die denen der mit giftigen Stoffen gebildeten, entsprechen, durch eine äußerst hohe Schlagenergie und die weiteren bereits genannten Vorteile aus.
  • Ein Ausführungsbeispiel der vorliegenden Erfindung, insbesondere hinsichtlich des Boosters für eine plastische Sprengstoffzusammensetzung, insbesondere für Ladeschläuche für Bohrlöcher und eine kleinkalibrige Initialzündung für den Tunnelbau wird anhand einer Zeichnung nachfolgend näher erläutert. Darin zeigt:
  • Fig. 1
    eine Ansicht eines erfindungsgemäßen Booster, teilweise geschnitten,
    Fig. 2
    eine Draufsicht des Boosters gem. Fig. 1 entsprechend der Linie A-A,
    Fig. 3
    einen schematisch dargestellten Stopfen des Boosters in Seitenansicht, und
    Fig. 4
    eine Draufsicht des Boosters gem. Fig. 1 entsprechend der Linie B-B mit aufgebrochener Durchgangsöffnung.
  • Fig. 1 zeigt teilweise geschnitten eine Ansicht eines anmeldungsgemäßen Boosters 10, der eine Hülse 11 aus Kunststoff und zwei Stopfen 12, ebenfalls aus Kunststoff hat. Die Stopfen 12 haben einen äußeren Flansch 13 mit einem äußeren Durchmesser, der dem der Hülse 11 entspricht. Die Hülse 11 und die Stopfen 12 haben eine kreiszylindrische Grundform und sind miteinander fest und dicht verbunden. Diese Verbindung erfolgt über einen kreiszylindrischen Abschnitt 14, der einstückig mit dem Flansch 13 des Stopfens 12 verbunden ist und z. B. einige Millimeter in die Hülse 11 hineinragt und mit der Innenwandung 15 der Hülse 11 fest und dicht in Eingriff steht. Diese Verbindung kann kraftschlüssig erfolgen und/oder durch Zuhilfenahme von Klebstoff oder Hitze. Wenngleich dies die bevorzugten Verbindungen sind, so sind selbstverständlich auch geschraubte oder sonstige Verbindungen, wie Schnapp- und Rastverbindungen möglich. Hinsichtlich des in Fig. 1 unten geschnitten dargestellten Stopfens 12 hat der Flansch 13 einen zentral angeordneten, in die Hülse 11 hineinragenden fingerhutförmigen (zylindrischen) Abschnitt 16 mit einem Boden 17 und einer in der Fig. 1 angedeuteten strahlenförmigen Sollbruchstelle 18. Der Flansch 13 ist im Bereich des fingerhutförmigen Abschnittes 16 offen, so dass ein nur als Querschnittsfläche in Fig. 4 dargestellter Zünder 21 mit seiner Stirnseite gegen den Boden 17 und damit gegen die Sollbruchstelle 18 gepresst werden kann und diese in vorgebbarer Weise durchbricht. Der Zünder kann auch die ganze sternförmig dargestellte Durchgangsöffnung 19, also den Boden 17 ausfüllen. Die Sollbruchstelle(n) 18 werden durch vom Zentrum radial (strahlenförmig) verlaufende Linien mit Querschnittsverringerung gebildet, die in eine der Oberflächen, z. B. die äußere Oberfläche des Bodens 17 eingebracht ist. Der Flansch 13 verhindert überdies ein Hereindrücken des Stopfens 12 während des Durchbrechens der Durchgangsöffnung 19.
  • Fig. 2 zeigt eine Draufsicht entsprechend Linie A-A in Fig. 1. Ersichtlich sind die kreissymmetrische Form des Stopfens 12 und der Flansch 13 wie auch der Boden 17 mit strahlenförmig, radial verlaufenden Sollbruchstellen 18 versehen, von denen zwei dargestellt sind. Diese bilden insgesamt sechs kuchenstückförmige Abschnitte, besser Laschen 20 genannt. Die so gebildete, sternförmige Durchgangsöffnung 19 ist tief im fingerhutförmigen Abschnitt 16 angeordnet und erleichtert somit quasi trichterförmig das Einfädeln des Zünders 21. Im übrigen wird auf die Beschreibung zu Fig. 1 verwiesen.
  • Fig. 3 zeigt schematisch eine Seitenansicht eines Stopfens 12 mit Flansch 13, zylindrischem Abschnitt 14 zur Befestigung des Stopfens 12 in der Hülse 11 und dem gestrichelt dargestellten fingerhutförmigen Abschnitt 16. Um diesen Stopfen 12 mit noch verschlossener Durchgangsöffnung 19 in die Hülse 11 einfügen zu können, ohne dass der, das anderen Ende der Hülse 11 verschließende, weitere Stopfen 12 wieder herausgedrückt wird, ist anmeldungsgemäß vorgesehen, dass die Hülse 11 nur zum Teil mit plastischem Sprengstoff gefüllt ist. Erfindungsgemäß ist die Hülse 11 auch nur so weit mit plastischem Sprengstoff aufzufüllen, dass auch ein Herausdrücken von Sprengstoff während des Einführens des Zünders 21 sicher ausbleibt. Versuche haben ergeben, dass bei normalem Zünder das freibleibende Volumen etwa 1 cm bei einem z. B. 15 mm durchmessenden Booster 10 entspricht, oder etwa einer Füllung von nur 90 bis 95 % des Boosters 10.
  • Fig. 4 zeigt eine Draufsicht von Fig. 3 entlang der Linie B-B. Die Darstellung entspricht ansich der gem. Fig. 2 auf deren Beschreibung insoweit auch Bezug genommen wird. Allerdings ist die Durchgangsöffnung 19 aufgebrochen und deshalb sternförmig dargestellt, mit einem inneren Querschnitt, der dem eines Zünders 21 entsprechen kann. Der Zünder 21 kann größeren und kleineren Querschnitt haben. Die strahlenförmig angeordneten Linien der Sollbruchstellen 18 haben elastische Laschen 20 gebildet, die mit ihren kantigen Spitzen den zur Verfügung stehenden freien Durchmesser der Durchgangsöffnung 19 bestimmen und aufgrund ihrer elastischen Materialspannung den Zünder 21 mittig halten und gegen Herausziehen sichern. Bei geeigneter Wahl des Materials reißen die Sollbruchstellen kaum weiter auf, als unbedingt nötig und die Laschen 20 schmiegen sich an den Zünder 21 an, so dass auch im Fall des eingefügten Zünders 21 die Durchgangsöffnung 19 quasi dicht verschlossen ist.
  • Zusammengefasst kann festgestellt werden, dass die strahlenförmige Sollbruchstelle 18 des Stopfens 12 so ausgeführt ist, dass sie einerseits dicht ist und somit ein Austreten von Sprengstoff bzw. Bestandteilen davon verhindert, andererseits dünn ist und eine besondere Konstruktion aufweist, die ein leichtes Einführen des Zünders 21 ermöglicht. Beim Einführen des Zünders 21 werden die Sollbruchstellen 18, Laschen 20 bildend, aufgebrochen. Der Zünder 21 kann leicht in die erfindungsgemäß plastische Sprengstoffmasse eingeführt werden und wird somit durch die Kombination der elastischen Sprengstoffmasse mit den Kunststofflaschen 20 sicher und zentrisch in der Hülse 11 fixiert. Durch die Laschen 20 ist weiterhin ein Herausrutschen des Zünders 21 erschwert. Da der Stopfen 12 an beiden Seiten baugleich ist, kann der Zünder 21 von jeder Seite in die Hülse 11 eingeführt werden. Der Booster 10 muss vom Sprengberechtigten also nicht in einer bestimmten Richtung in die Hand genommen werden, um den Zünder 21 einführen zu können.
  • Der Vorteil einer plastischen Sprengstoffmasse bei einem solchen Booster 12 gegenüber einer gegossenen, festen Sprengstoffmischung besteht weiterhin darin, dass für das Einführen des Zünders 21 kein vorgeformter Hohlraum im Sprengstoff vorhanden sein muss. Ein vorgeformter Hohlraum bietet immer die Gefahr, dass der Zünder 21 zu lose sitzt, oder es kommt zum Klemmen beim Einführen des Zünders 21. Das Volumen der Hülse 11 wird nur zu 90 bis 95 % mit der plastischen Sprengstoffmasse gefüllt (an einer Seite der Hülse 11 bleiben ca. 10 Millimeter leer, bei einem Durchmesser der Hülse 11 im Zentimeterbereich). Dieser Hohlraum ist u. a. für das Einführen des Zünders 21 ausreichend, ohne dass der auf der gegenüberliegenden Seite der Hülse 11 angeordnete Stopfen 12 aus der Hülse 11 herausgerückt wird. Die Hülse 11 und der Stopfen 12 werden aus Kunststoffen, wie Polyethylen und Polypropylen hergestellt. Die Hülse 11 vorzugsweise im Extrusionsverfahren und der Stopfen 12 im Spritz-Gieß-Verfahren, was zu einem guten wirtschaftlichen Preis-Leistungsverhältnis führt.
  • Die in der vorstehenden Beschreibung, in den Fig. 1, 2, 3 und 4 sowie den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.

Claims (19)

  1. Plastische Sprengstoffzusammensetzung, insbesondere für eine kleinkalibrige Initialzündung für den Tunnelbau und/oder untertägige Sprengarbeiten, mit Substanzen, die nicht giftig sind, gute Handhabungssicherheit und Detonationsfähigkeit haben, mit mindestens einem hochbrisanten Explosivstoff und einem Plastifiziermittel, dadurch gekennzeichnet, dass die Zusammensetzung aus
    - 50-80 Gew.-% Pentaerythrittetranitrat und/oder Hexogen und/oder Octogen als hochbrisantem Explosivstoff,
    - 15-30 Gew.-% Dibutylphtalat und/oder Diamylphtalat als Plastifiziermittel,
    - 0,5 - 3 Gew.-% Nitrocellulose,
    - bis zu 10 Gew.-% anorganischen Nitraten, wie Natrium- und/oder Kaliumnitrat, und
    - geringen Beimengungen an Farb- und Inertstoffen besteht,
    die Bestandteile von Dibutylphtalat und/oder Diamylphtalat durch Vermischung eine Gelatine mit Nitrocellulose bilden, die zusammen mit Nitropenta und/oder Hexogen und/oder Octogen und Natriumnitrat und/oder Kaliumnitrat und den Farb- und Inertstoffen eine plastische homogene Masse ist.
  2. Sprengstoffzusammensetzung nach Anspruch 1, gekennzeichnet durch einen kritischen Durchmesser von mindestens 15 mm, eine Detonationsgeschwindigkeit von mindestens 6260 m/s, eine Schlagenergie von mindestens 15 J und eine Reibenergie von mindestens 360 N.
  3. Sprengstoffzusammensetzung nach Anspruch 2,
    gekennzeichnet durch
    - 65 Gew. -% Nitropenta und/oder Hexogen und/oder Octogen,
    - 28,3 Gew.-% Dibutylphtalat und/oder Diamylphtalat,
    - 1,7 Gew.-% Nitrocellulose,
    - 5 Gew. -% Natrium-und/oder Kaliumnitrat, und
    - geringen Beimengungen an Farb-und Inertstoffen.
  4. Sprengstoffzusammensetzung nach Anspruch 2,
    gekennzeichnet durch
    - 65 Gew.-% Nitropenta und/oder Hexogen und/oder Octogen,
    - 25 Gew.-% Dibutylphtalat und/oder Diamylphtalat,
    - 1,0 Gew.-% Nitrocellulose,
    - 9 Gew. -% Natrium-und/oder Kaliumnitrat, und
    - geringen Beimengungen an Farb-und Inertstoffen.
  5. Sprengstoffzusammensetzung nach Anspruch 2,
    gekennzeichnet durch
    - 75 Gew.-% Nitropenta und/oder Hexogen und/oder Octogen,
    - 20 Gew.-% Dibutylphtalat und/oder Diamylphtalat,
    - 1,0 Gew.-% Nitrocellulose,
    - 4 Gew. -% Natrium-und/oder Kaliumnitrat, und
    - geringen Beimengungen an Farb-und Inertstoffen.
  6. Sprengstoffzusammensetzung nach Anspruch 2,
    gekennzeichnet durch
    - 68, 5Gew.-% Nitropenta und/oder Hexogen und/oder Octogen,
    - 21 Gew.-% Dibutylphtalat und/oder Diamylphtalat,
    - 1, 5 Gew.-% Nitrocellulose,
    - 9 Gew. -% Natrium-und/oder Kaliumnitrat, und
    - geringen Beimengungen an Farb- und Inertstoffen.
  7. Sprengstoffzusammensetzung nach Anspruch 2,
    gekennzeichnet durch
    - 70 Gew.-% Nitropenta und/oder Hexogen und/oder Octogen,
    - 21 Gew.-% Dibutylphtalat und/oder Diamylphtalat,
    - 1, 0Gew.-% Nitrocellulose,
    - 8 Gew.-% Natrium-und/oder Kaliumnitrat, und
    - geringen Beimengungen an Farb-und Inertstoffen.
  8. Sprengstoffzusammensetzung nach einem oder mehreren der vorhergehenden Ansprüche, gekennzeichnet durch eine Konsistenz mit einer Plastizität, die ein einfaches Einführen in beidseitig verschliessbare Kunststoffhülsen bewirkt, wie auch das Einführen eines Zünders in diesen Zündverstärker erleichtert und den Halt des Zünders darin sicherstellt.
  9. Verfahren zur Herstellung der plastischen Sprengstoffzusammensetzung nach Anspruch 1, insbesondere für eine kleinkalibrige Inititalzündung für den Tunnelbau, mit Substanzen, die nicht giftig sind, gute Handhabungssicherheit und Detonationsfähigkeit haben, mit mindestens einem hochbrisanten Explosivstoff und einem Plastifiziermittel, dadurch gekennzeichnet, dass eine Zusammensetzung aus
    - 15-30 Gew. -% Dibutylphtalat und/oder Diamylphtalat als Plastifiziermittel, und
    - 0,5 - 3 Gew.-% Nitrocellulose gemischt wird, bis sich eine Gelatine bildet und anschliessend in diese Gelatine
    - 50-80 Gew.-% Pentaerythrittetranitrat (Nitropenta) und/oder Hexogen und/oder Octogen als hochbrisantem Explosivstoff, und
    - bis zu 10 Gew.-% anorganische Nitrate, wie Natrium- und/oder Kalciumnitrat, und
    - geringe Mengen an Farb-und Inertstoffen zugegeben werden bis sich durch Vermischung eine plastische homogene Masse bildet.
  10. Booster, der eine plastische Sprengstoffzusammensetzung nach Anspruch 1 enthält, insbesondere für Ladeschläuche für Bohrlöcher und eine kleinkalibrige Initialzündung, also Verstärkungsladung für den Tunnelbau, mit einer rohrförmigen Hülse (11) mit Stopfen (12) aus Kunststoff an beiden Endabschnitten, von denen mindestens einer durchlässig für einen Zünder (21) des Sprengstoffes in der Hülse (11) ist, dadurch gekennzeichnet, dass die Stopfen (12) die Hülse (11) fest und dicht verschliessen und mindestens ein Stopfen (12) eine zentrale, individuell zu öffnende Durchgangs- öffnung (19) für einen Zünder (21) hat, die den Zünder (21) zentriert, arretiert und dichtend umschliesst.
  11. Booster nach Anspruch 10, dadurch gekennzeichnet, dass die Sprengstoffmischung das innere Volumen der verschlossenen Hülse (11) mit einem Durchmesser entsprechend dem kritischen Durchmesser nur unvollständig ausfüllt.
  12. Booster nach Anspruch 11, dadurch gekennzeichnet, dass das freibleibende Volumen in der verschlossenen Hülse (11) mindestens dem Volumen des einzuführenden Zünders (21) und eines Stopfens (12) entspricht.
  13. Booster nach Anspruch 12, dadurch gekennzeichnet, dass die Hülse (11) starr und kreiszylindrisch ist und die Stopfen (12) dicht und fest mit einem Ab- schnitt (14) ins Innere der Hülse (11) ragen und einen aussen verbleibenden Flansch (13) haben, deren äusserer Durchmesser dem der Hülse (11) entspricht.
  14. Booster nach Anspruch 13, dadurch gekennzeichnet, dass jeder Stopfen (12) elastisch und kreissymmetrisch ist und der äussere Flansch (13) zusammen mit einem zentralen, in die Hülse (11) ragenden Abschnitt (16) eine Ausformung ähnlich einem Fingerhut hat, mit einem in die Hülse (11) ragenden Boden (17), der die Durchgangsöffnung (19) für den Zünder (21) bildet.
  15. Booster nach Anspruch 14, dadurch gekennzeichnet, dass der Boden (17) des Stopfens (12) orthogonal zur Längserstreckung der Hülse (11) ausgerichtet ist und eine geringere Wandstärke mit einer aus der Mitte strahlenförmig angelegten Sollbruchstelle (18) hat.
  16. Booster nach Anspurch 15, dadurch gekennzeichnet, dass eine oder beide Oberflächen des Bodens (17) strahlenförmig mit geraden Linien verringerten Querschnittes versehen sind, die die Sollbruchstelle (n) (18) und ähnlich einem Kuchen, mindestens drei gleiche Laschen (20) (Stücke) bilden.
  17. Booster nach Anspruch 16, dadurch gekennzeichnet, dass die Laschen (20) der sternförmigen Durchgangsöffnung (19) den eingeschobenen Zünder (21) aufgrund ihrer vorgebbaren Elastizität zentrieren, festsetzen und die Hülse (11) gleichzeitig abdichten.
  18. Booster nach einem oder mehreren der vorhergehenden Ansprüche 10 bis 17, dadurch gekennzeichnet, dass die Hülse (11) und die Stopfen (12) aus Polyethylen oder Polypropylen bestehen.
  19. Booster nach einem oder mehreren der vorhergehenden Ansprüche 10 bis 17, dadurch gekennzeichnet, dass die Hülse (11) den Anforderungen eines Extrusionsverfahrens und der Stopfen (12) denen eines Spritzgiess-Verfahrens genügt.
EP02740286A 2002-01-31 2002-04-22 Plastische sprengstoffzusammensetzung, insbondere für eine kleinkalibrige initialzündung für den tunnelbau, und ein verfahren zu dessen herstellung und einen booster zu dessen anwendung Expired - Lifetime EP1478608B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10204279 2002-01-31
DE10204279 2002-01-31
PCT/DE2002/001490 WO2003064352A1 (de) 2002-01-31 2002-04-22 Plastische sprengstoffzusammensetzung, insbondere für eine kleinkalibrige initialzündung für den tunnelbau, und ein verfahren zu dessen herstellung und einen booster zu dessen anwendung

Publications (2)

Publication Number Publication Date
EP1478608A1 EP1478608A1 (de) 2004-11-24
EP1478608B1 true EP1478608B1 (de) 2010-09-29

Family

ID=27634767

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02740286A Expired - Lifetime EP1478608B1 (de) 2002-01-31 2002-04-22 Plastische sprengstoffzusammensetzung, insbondere für eine kleinkalibrige initialzündung für den tunnelbau, und ein verfahren zu dessen herstellung und einen booster zu dessen anwendung

Country Status (7)

Country Link
EP (1) EP1478608B1 (de)
AT (1) ATE482917T1 (de)
DE (2) DE10218222A1 (de)
ES (1) ES2353738T3 (de)
HR (1) HRP20040650A2 (de)
NO (1) NO333107B1 (de)
WO (1) WO2003064352A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108844508A (zh) * 2018-07-04 2018-11-20 中北大学 一种炸药临界直径测试装置及其测试方法
EP4296253A1 (de) * 2022-06-23 2023-12-27 AEEG Applied Explosives & Energetics GmbH Plastische sprengstoff-zusammensetzung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE536821C2 (sv) 2011-12-23 2014-09-23 Power Tools Spräckutrustning I Herrljunga Ab Ett stenspräckningsaggregat, en apterad stenspräckpatron ochen icke-apterad stenspräckpatron samt en tändkapsel vilka ingår i aggregatet
CN112525024A (zh) * 2021-01-07 2021-03-19 中铁十八局集团有限公司 一种隧道钻爆施工周边眼控制超欠挖的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR947052A (fr) * 1947-05-14 1949-06-22 Perfectionnements aux explosifs plastiques
FR1424216A (fr) * 1964-02-27 1966-01-07 Bombrini Parodi Delfino S P A Procédé pour la fabrication d'explosifs plastiques à grande puissance
US3311513A (en) * 1965-03-05 1967-03-28 Du Pont Nitramine, nitrocellulose explosive with ester plasticizer
US3317361A (en) * 1965-10-27 1967-05-02 John D Hopper Flexible plasticized explosive of cyclonitramine and nitrocellose and process therefor
US3400025A (en) * 1966-04-19 1968-09-03 Army Usa Flexible explosive comprising rdx, hmx or petn and mixed plasticizer
GB9712748D0 (en) * 1997-06-17 1997-08-20 Dimitrov Stokyo I Plastic explosive

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108844508A (zh) * 2018-07-04 2018-11-20 中北大学 一种炸药临界直径测试装置及其测试方法
CN108844508B (zh) * 2018-07-04 2020-04-14 中北大学 一种炸药临界直径测试装置及其测试方法
EP4296253A1 (de) * 2022-06-23 2023-12-27 AEEG Applied Explosives & Energetics GmbH Plastische sprengstoff-zusammensetzung

Also Published As

Publication number Publication date
NO20042674L (no) 2004-06-25
EP1478608A1 (de) 2004-11-24
HRP20040650A2 (en) 2005-12-31
DE50214691D1 (de) 2010-11-11
ES2353738T3 (es) 2011-03-04
DE10218222A1 (de) 2003-08-28
ATE482917T1 (de) 2010-10-15
WO2003064352A1 (de) 2003-08-07
NO333107B1 (no) 2013-03-04

Similar Documents

Publication Publication Date Title
DE3321943C2 (de)
DE2604435A1 (de) Nicht-elektrische, zweifach verzoegernde sprengloch-ausfahrleitung
DE2604506C3 (de) Verfahren zur Zündverzögerung und Zündverzögerungselement für Sprengladungen
DE2005161A1 (de) Mittel zur Verankerung von Stützbolzen
DE1228541B (de) Verzoegerungszuendsystem
DE2263626A1 (de) Verfahren und vorrichtung zum laden von borloechern mit sprengstoff
DE69816046T2 (de) Zusammensetzung auf basis von hexanitrohexaazaisowurtizitan und hexanitrohexaazaisowurtizitan enthaltende sprengstoffzusammensetzung
EP1478608B1 (de) Plastische sprengstoffzusammensetzung, insbondere für eine kleinkalibrige initialzündung für den tunnelbau, und ein verfahren zu dessen herstellung und einen booster zu dessen anwendung
EP3872054B1 (de) Bindemittel für einen sprengstoff
DE2754966A1 (de) Nichtelektrisch zuendbare sprengkapsel und sprengsystem unter verwendung der sprengkapsel sowie zuendverfahren
DE2546953C3 (de) Sprengstoffmasse mit verzögernder selbst-sterilisierender Wirkung
DE2911595A1 (de) Anordnung an einer sprengkapsel einer niedrigenergiezuendschnur
DE942319C (de) Blaslochfreie elektrische Sprengkapsel mit kurzer Verzoegerung
DE642465C (de) Verfahren zur Herstellung von Sprengkapseln
DE20206451U1 (de) Plastische Sprengstoffzusammensetzung, insbesondere für eine kleinkalibrige Initialzündung für den Tunnelbau, und einen Booster zu dessen Anwendung
DE1571212A1 (de) Explosivstoffe
DE69106994T2 (de) Zündvorrichtung für unempfindliche Sprengladungen.
DE1087955B (de) Verfahren zur Herstellung von schockunempfindlichen Ladungen fuer Brisanzgranaten
DE1153307B (de) Sprengschnurverbinder
DE1232506B (de) Stabilisierte Sprengstoffzusammensetzung vom Slurry-Typ
DE19507807C2 (de) Verfahren zum Herstellen eines gelatinösen Sprengstoffes
AT251462B (de) Unpatronierte Sprengmasse und Einrichtung zur Auslösung der Detonation dieser Sprengmasse
DE4211821B3 (de) Wenig detonationsempfindliches Explosivstoff-Munitionselement mit neuartiger Übertragungsladung, Übertragungsladung sowie ihre Verwendung zur Zündung geringempfindlicher Verbundsprengstoffe
DE2814598A1 (de) Sprengkapsel, insbesondere fuer die zuendung von pioniersprengmitteln
DE4316603C2 (de) Zündempfindliche elektrische Zündsätze mit sehr kurzen Zündverzugszeiten sowie Verfahren zu deren Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HEINZE, CHRISTIAN

Inventor name: MANN, THOMAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WESTSPRENG GMBH SPRENGSTOFFE + SPRENGTECHNIK

17Q First examination report despatched

Effective date: 20071121

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAXAM DEUTSCHLAND GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MAXAMCORP HOLDING, S.L.

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50214691

Country of ref document: DE

Date of ref document: 20101111

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100929

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101230

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110131

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

26N No opposition filed

Effective date: 20110630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50214691

Country of ref document: DE

Effective date: 20110630

BERE Be: lapsed

Owner name: MAXAM DEUTSCHLAND G.M.B.H.

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110422

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200528

Year of fee payment: 19

Ref country code: DE

Payment date: 20200429

Year of fee payment: 19

Ref country code: TR

Payment date: 20200401

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200429

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200401

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214691

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 482917

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210422

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210423

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210423