EP1456117A1 - Stockage reversible d'hydrogene a l'aide d'hydrures dopes d'aluminium et de metaux alcalins - Google Patents

Stockage reversible d'hydrogene a l'aide d'hydrures dopes d'aluminium et de metaux alcalins

Info

Publication number
EP1456117A1
EP1456117A1 EP02793042A EP02793042A EP1456117A1 EP 1456117 A1 EP1456117 A1 EP 1456117A1 EP 02793042 A EP02793042 A EP 02793042A EP 02793042 A EP02793042 A EP 02793042A EP 1456117 A1 EP1456117 A1 EP 1456117A1
Authority
EP
European Patent Office
Prior art keywords
hydrogen storage
storage materials
doped
materials according
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02793042A
Other languages
German (de)
English (en)
Inventor
Borislav Bogdanovic
Michael Felderhoff
Stefan Kaskel
Andre Pommerin
Klaus Schlichte
Ferdi SCHÜTH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Studiengesellschaft Kohle gGmbH
Original Assignee
Studiengesellschaft Kohle gGmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle gGmbH filed Critical Studiengesellschaft Kohle gGmbH
Publication of EP1456117A1 publication Critical patent/EP1456117A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to improved materials for the reversible storage of hydrogen using alkali metal aluminum hydrides (alkali metal alanates) or mixtures of aluminum metal with alkali metal (hydrides) by doping these materials with catalysts having a high degree of distribution or a large specific surface area.
  • the alkali metal alanates are doped with transition metal and rare metal compounds or their combinations in catalytic amounts.
  • the alanates NaAlH 4 , Na 3 AlH 6 and Na 2 LiAlH 6 are particularly useful.
  • the properties of the substances mentioned as hydrogen storage materials can be significantly improved if the catalysts used for doping, namely transition metals of groups 3, 4, 5, 6, 7, 8, 9, 10, 11, or Alloys or mixtures of these metals with each other or with aluminum, or compounds of these metals in the form of very small particles with a high degree of distribution (e.g. particle size 0.5 to 1000 nm) or large specific surfaces (e.g. 50 to 1000 m Ig) can be used.
  • the improvements in storage properties refer to
  • titanium, iron, cobalt and nickel have been found to be suitable transition metals, for example in the form of titanium, titanium-iron and titanium-aluminum catalysts.
  • the metals titanium, iron and aluminum can be used in elemental form, in the form of Ti-Fe or Ti-Al alloys, or in the form of their compounds for doping. Suitable metal compounds for this purpose are, for example, hydrides, carbides, nitrides, oxides, fluorides and alcoholates of titanium, iron and aluminum.
  • alkali metal and aluminum are preferably present in a molar ratio of 3.5: 1 to 1: 1.5, the catalysts used for doping in amounts of 0.2 to 10 mol%, based on the alkali alanates, particularly preferably in amounts of 1 to 5 mol%.
  • An excess of aluminum based on Formula I has an advantageous effect.
  • the hydrogenation can be carried out at pressures between 0.5 and 15 MPascal (5 and 150 bar) and at temperatures between 20 and 200 ° C, and the dehydrogenation at temperatures between 20 and 250 ° C.
  • Sodium alanate (example la) doped by grinding with the conventional, technical titanium nitride (TiN) with a specific surface area of 2 m 2 / g provides only 0.5% by weight of hydrogen after a dehydrogenation-rehydration cycle.
  • sodium alanate (Example 1) is ground in the same way with a titanium nitride, which has a specific surface area of 150 m 2 / g and a grain size in the nanometer range (according to TEM), a storage material is obtained which is tested in a cycle test ( Table 1) has a reversible storage capacity of up to 5% by weight H 2 .
  • Comparably high reversible hydrogen storage capacities (4.9% by weight, example 2) also shows NaAlH 4 , which is doped with colloidal titanium nanoparticles (H. Bönnemann et al, J. Am. Chem. Soc. 118 (1996) 12090).
  • Table 1 Comparably high reversible hydrogen storage capacities (4.9% by weight, example 2) also shows NaAlH 4 , which is doped with colloidal titanium nanoparticles (H. Bönnemann et al, J. Am. Chem. Soc. 118 (1996) 12090).
  • the rate of hydrogen charging and discharging of the reversible alanate systems can be increased many times over by doping them with finely divided titanium-iron catalysts instead of just such titanium catalysts.
  • hydrogenation is required of the dehydrated sodium malanate ground with 2 mol% titanium tetrabutylate (Ti (OBu n ) 4 ) at 115-105 ° C / 134-118 bar (Example 3a, FIG. 2) ⁇ 15 h.
  • the reduction in the weight of the hydrogen tank amounts to an increase in the weight-related hydrogen storage capacity of the hydrogen store, which increases the range of the vehicles in the case of hydrogen-powered vehicles.
  • the decisive criteria for assessing the suitability of metal hydrides for hydrogen storage purposes also include the level of the hydrogen desorption temperature. This applies in particular to those applications in which the waste heat from the hydrogen-consuming unit (gasoline engine, fuel cell) is to be used to desorb the hydrogen from the hydride. In general, the lowest possible hydrogen desorption temperature, at the same time as high as possible desorption rate of the hydrogen, is desired.
  • example 3a shows, the hydrogen desorption of the Ti-doped alanate at normal pressure up to the first stage (Eq. La) at> 80-85 ° C and up to the second (Eq. Lb) at> 130- 150 ° C possible.
  • Example 4 shows, when using titanium metal nanoparticles as dopants in direct synthesis, reversible hydrogen storage capacities of 4.6% H 2 are achieved after only 2 cycles, which is in relation to the previous process (SGK, PCT / EP01 / 02363) means a significant improvement.
  • aluminum can optionally be used in excess or inferior amounts based on Gl, 1 or 2.
  • Example 1 NaAlH 4 doped with titanium nitride with a large specific surface area as a reversible hydrogen storage
  • TiN titanium nitride
  • TiN titanium nitride
  • Elemental analysis Ti 60.13, N 13.76, C 12.86, H 1.24, Cl ⁇ 1%.
  • the determination of the specific surface area according to the BET method on a 0.17 g sample of the TiN resulted in 152.4 m 2 / g.
  • the isothermal shape indicates the presence of nanoparticles.
  • the width of the reflections indicates particle size in the nanometer range.
  • NaAlH 4 is doped in the same way as in Example 1, but with 2 mol% of a commercial TiN (from Aldrich, specific surface area 2 m 2 / g).
  • a commercial TiN from Aldrich, specific surface area 2 m 2 / g.
  • H 2 was desorbed.
  • the sample provided only 0.5% by weight H 2 within 3 h when dehydrated at 180 ° C.
  • Example 2 (NaAlH 4 doped with Ti nanoparticles as reversible hydrogen storage)
  • Example 2 The test was carried out analogously to Example 2, with commercially available titanium powder (325 mesh) being used for doping the NaAlH. In the first dehydrogenation, a sample (-1.1 g) gave 3.6% by weight H within 8 h at 160 ° C.
  • Example 3 NaAlH doped by milling with 2 mol% of Ti (OBu n ) 4 and Fe (OEt) 2 as a reversible hydrogen storage
  • the grinding vessel was provided with 2 steel balls (6.97 g, 12 mm diameter) and then the mixture was ground for 3 hours at 30 s "1 in a vibratory mill (Retsch, MM 200, Haan, Germany). After the grinding process was complete Grinding vessel hot and the originally colorless mixture dark brown.
  • the representation of the Ti-Fe-doped NaAlH was repeated, starting from 1.70 g NaAlH 4 , in the same way as described above.
  • a mixed sample (1.72 g) of the Ti-Fe-doped alanate from the two batches was subjected to a 17-cycle test (see Example 1).
  • Table 3 contains the data on the cycle test carried out.
  • a comparison of the hydrogenation rates of the Ti-Fe-doped NaAlH 4 with a corresponding Ti-doped sample (example 3a) at 104 ° C./134-135 bar is given in FIG. 1.
  • the temperature was first raised to 84-86 and then to 150-152 ° C. in order to bring about the dehydration up to the first (Eq. La) and second (Eq. Lb) dissociation stage.
  • the sample was rehydrated at 100 ° C / 10 MPascal (100 bar) / 12 h.
  • FIG. 2 shows, the dehydrogenations in the 1st and 2nd stages proceed at almost constant speeds; the 2nd dehydration is faster than the 1st and the same as the 3rd .. dehydration.
  • cycles 2 and 3 the dehydrogenation is completed in the 1st stage after -1 h and in the 2nd stage after 20-30 min.
  • the dehydrogenation of a corresponding Ti-doped sample is also shown in FIG.
  • NaAlH 4 was made in the same manner as in the example . 3, but doped using Ti (OBu n ) 4 .
  • the hydrogenation or dehydrogenation behavior of the sample of the Ti-doped alanate in comparison to the Ti-Fe-doped sample is shown in FIGS. 1 and 2.
  • Example 4 directly synthesis of the Ti-doped NaAlH 4 from NaH, Al powder and Ti nanoparticles
  • a 2 g sample of NaAlH 4 doped with 2.0 mol% of colloidal titanium (as in Example 2) was subjected to a 25 cycle hydrogen discharge and loading test. Cycle test conditions: dehydration, 120/180 ° C, normal pressure; Hydrogenation: 100 ° C / 100-85 bar. After the first cycles 2-5, with a storage capacity of 4.8% by weight H 2 , the capacity remained constant at 4.5-4.6% by weight H 2 until the end of the test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

L'invention concerne des matériaux améliorés destinés au stockage réversible d'hydrogène à l'aide d'hydrures d'aluminium et de métaux alcalins (alanates de métaux alcalins) ou de mélanges d'aluminium et de métaux alcalins ou d'hydrures de métaux alcalins, par dopage desdits matériaux au moyen de catalyseurs présentant un degré de dispersion élevé ou une surface spécifique élevée.
EP02793042A 2001-12-21 2002-12-17 Stockage reversible d'hydrogene a l'aide d'hydrures dopes d'aluminium et de metaux alcalins Withdrawn EP1456117A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10163697 2001-12-21
DE10163697A DE10163697A1 (de) 2001-12-21 2001-12-21 Reversible Speicherung von Wasserstoff mit Hilfe von dotierten Alkalimetallaluminiumhydriden
PCT/EP2002/014383 WO2003053848A1 (fr) 2001-12-21 2002-12-17 Stockage reversible d'hydrogene a l'aide d'hydrures dopes d'aluminium et de metaux alcalins

Publications (1)

Publication Number Publication Date
EP1456117A1 true EP1456117A1 (fr) 2004-09-15

Family

ID=7710680

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02793042A Withdrawn EP1456117A1 (fr) 2001-12-21 2002-12-17 Stockage reversible d'hydrogene a l'aide d'hydrures dopes d'aluminium et de metaux alcalins

Country Status (7)

Country Link
US (1) US20040247521A1 (fr)
EP (1) EP1456117A1 (fr)
JP (1) JP2005512793A (fr)
AU (1) AU2002358732A1 (fr)
CA (1) CA2471362A1 (fr)
DE (1) DE10163697A1 (fr)
WO (1) WO2003053848A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7011768B2 (en) * 2002-07-10 2006-03-14 Fuelsell Technologies, Inc. Methods for hydrogen storage using doped alanate compositions
EP1551032A4 (fr) * 2002-10-11 2008-03-26 Yoshiaki Arata Condensat d'hydrogene et procede de production de chaleur a l'aide de celui-ci
US7004993B2 (en) * 2003-06-13 2006-02-28 Philip Morris Usa Inc. Nanoscale particles of iron aluminide and iron aluminum carbide by the reduction of iron salts
DE10332438A1 (de) * 2003-07-16 2005-04-14 Studiengesellschaft Kohle Mbh In porösen Matrizen eingekapselte Materialien für die reversible Wasserstoffspeicherung
US7175826B2 (en) * 2003-12-29 2007-02-13 General Electric Company Compositions and methods for hydrogen storage and recovery
KR20060120033A (ko) * 2003-09-30 2006-11-24 제너럴 일렉트릭 캄파니 수소 저장 조성물 및 이것의 제조 방법
DE102004002120A1 (de) * 2004-01-14 2005-08-18 Gkss-Forschungszentrum Geesthacht Gmbh Metallhaltiger, wasserstoffspeichernder Werkstoff und Verfahren zu seiner Herstellung
US20060067878A1 (en) * 2004-09-27 2006-03-30 Xia Tang Metal alanates doped with oxygen
DE102005003623A1 (de) * 2005-01-26 2006-07-27 Studiengesellschaft Kohle Mbh Verfahren zur reversiblen Speicherung von Wasserstoff
US7837976B2 (en) * 2005-07-29 2010-11-23 Brookhaven Science Associates, Llc Activated aluminum hydride hydrogen storage compositions and uses thereof
DE102005037772B3 (de) * 2005-08-10 2006-11-23 Forschungszentrum Karlsruhe Gmbh Verfahren zur Herstellung eines Wasserstoff-Speichermaterials
US20070092395A1 (en) * 2005-10-03 2007-04-26 General Electric Company Hydrogen storage material and method for making
US20070178042A1 (en) * 2005-12-14 2007-08-02 Gm Global Technology Operations, Inc. Sodium Alanate Hydrogen Storage Material
NO330070B1 (no) * 2006-01-26 2011-02-14 Inst Energiteknik Hydrogenlagringssystem, fremgangsmate for reversibel hydrogenlagring og fremstilling av materiale derfor samt anvendelse
EP1829820A1 (fr) * 2006-02-16 2007-09-05 Sociedad española de carburos metalicos, S.A. Méthode pour l'obtention d'hydrogène
US8673436B2 (en) * 2006-12-22 2014-03-18 Southwest Research Institute Nanoengineered material for hydrogen storage
US8784771B2 (en) * 2007-05-15 2014-07-22 Shell Oil Company Process for preparing Ti-doped hydrides
WO2009132036A1 (fr) * 2008-04-21 2009-10-29 Quantumsphere, Inc. Composition et procédé d'utilisation de matériaux d'échelle nanométrique dans des applications de stockage d'hydrogène
US8418841B2 (en) 2010-05-14 2013-04-16 Ford Global Technologies, Llc Method of enhancing thermal conductivity in hydrogen storage systems
DE102019211379A1 (de) * 2019-07-30 2021-02-04 Studiengesellschaft Kohle Mbh Verfahren zur Entfernung von Kohlenmonoxid und/oder gasförmigen Schwefelverbindungen aus Wasserstoffgas und/oder aliphatischen Kohlenwasserstoffen

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529580A (en) * 1982-12-15 1985-07-16 Ethyl Corporation Alkali metal aluminum hydride production
DE19526434A1 (de) * 1995-07-19 1997-01-23 Studiengesellschaft Kohle Mbh Verfahren zur reversilben Speicherung von Wasserstoff
US6106802A (en) * 1997-01-31 2000-08-22 Intevep, S.A. Stable synthetic material and method for preparing same
CA2218271A1 (fr) * 1997-10-10 1999-04-10 Mcgill University Methode de fabrication d'hydrures complexes de metaux alcalins
WO2000007930A1 (fr) * 1998-08-06 2000-02-17 University Of Hawaii Nouveaux materiaux de stockage de l'hydrogene et leur procede de fabrication par homogeneisation a sec
US6471935B2 (en) * 1998-08-06 2002-10-29 University Of Hawaii Hydrogen storage materials and method of making by dry homogenation
ES2178264T3 (es) * 1998-10-07 2002-12-16 Univ Mcgill Composicion reversible para almacenamiento de hidrogeno.
US6716525B1 (en) * 1998-11-06 2004-04-06 Tapesh Yadav Nano-dispersed catalysts particles
US6521212B1 (en) * 1999-03-18 2003-02-18 United Therapeutics Corporation Method for treating peripheral vascular disease by administering benzindene prostaglandins by inhalation
DE10012794A1 (de) * 2000-03-16 2001-09-20 Studiengesellschaft Kohle Mbh Verfahren zur reversiblen Speicherung von Wasserstoff auf der Basis von Alkalimetallen und Aluminium
US6680042B1 (en) * 2000-11-07 2004-01-20 Hydro-Quebec Method of rapidly carrying out a hydrogenation of a hydrogen storage material
US6680043B2 (en) * 2001-11-29 2004-01-20 General Motors Corporation Process for enhancing the kinetics of hydrogenation/dehydrogenation of MAIH4 and MBH4 metal hydrides for reversible hydrogen storage
US6793909B2 (en) * 2002-01-29 2004-09-21 Sandia National Laboratories Direct synthesis of catalyzed hydride compounds
US20040065171A1 (en) * 2002-10-02 2004-04-08 Hearley Andrew K. Soild-state hydrogen storage systems
WO2004041717A1 (fr) * 2002-11-01 2004-05-21 Westinghouse Savannah River Company, Llc Hydrures complexes pour stockage d'hydrogene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03053848A1 *

Also Published As

Publication number Publication date
DE10163697A1 (de) 2003-07-03
US20040247521A1 (en) 2004-12-09
AU2002358732A1 (en) 2003-07-09
CA2471362A1 (fr) 2003-07-03
JP2005512793A (ja) 2005-05-12
WO2003053848A1 (fr) 2003-07-03

Similar Documents

Publication Publication Date Title
EP1456117A1 (fr) Stockage reversible d'hydrogene a l'aide d'hydrures dopes d'aluminium et de metaux alcalins
EP0840707B1 (fr) Procede de stockage reversible d'hydrogene
Yartys et al. Magnesium based materials for hydrogen based energy storage: Past, present and future
DE112005000442B4 (de) Verfahren zur Freisetzung von Wasserstoff aus wenigstens einem Wasserstoff-Speichermaterial
EP0490156B1 (fr) Procédé de préparation d'un système de stockage hydrure de magnésium-magnésium-hydrogène, accepteur d'hydrogène, actif et réversible
DE112005000461B4 (de) Wasserstoff-Speichermaterialien und -verfahren enthaltend Hydride und Hydroxide
EP1042218B1 (fr) Procede pour la production d'hydrures metalliques nanocristallins
EP1824780B1 (fr) Materiau composite stockant de l'hydrogene et son utilisation dans un dispositif permettant le stockage reversible d'hydrogene
WO2001068515A1 (fr) Procede d'accumulation reversible d'hydrogene fonde sur l'utilisation de metaux alcalins et d'aluminium
DE10297458B4 (de) Verfahren zur Steigerung der Kinetik bei einer Hydrierung bzw. Dehydrierung von MAlH4- und MJH4-Metallhydriden zur reversiblen Wasserstoffspeicherung
DE102008056824A1 (de) Anorganische Verbindungen
EP0112548A2 (fr) Procédé pour la production de systèmes actifs pour l'emmagasinage de l'hydrogène par hydrures de magnésium
DE69929782T2 (de) Mechanische magnesiumlegierung für wasserstoff-wärmespeicherung
DE69917178T2 (de) Ternäre Wasserstoffspeichernde Legierung und Verfahren zu deren Herstellung
WO2001053195A1 (fr) Catalyse de la cinetique de sorption d'hydrogene d'hydrures par nitrures et carbures
DE69630034T2 (de) Elektrochemische wasserstoffeinlagerungslegierungen und batterien, die mit mg-basislegierungen hergestellt sind
WO2000058206A1 (fr) Materiau metallifere accumulateur d'hydrogene et son procede de fabrication
DE102005037772B3 (de) Verfahren zur Herstellung eines Wasserstoff-Speichermaterials
WO2006079312A1 (fr) Procede d'emmagasinage reversible d'hydrogene
DE3613532A1 (de) Intermetallische verbindungen, deren hydride und verfahren zu ihrer herstellung
EP0316968B1 (fr) Procédé pour la production de systèmes actifs pour l'emmagasinage de l'hydrogène par hydrures de magnésium
DE60127823T2 (de) Verfahren zur Herstellung gasförmigen Wasserstoff durch chemische Reaktion von mit intensiven mechanischen Verformungen behandelten Metallen oder Metallhydriden
DE102015216901A1 (de) Mit einer Hülle umgebenes Lithium und Mangan enthaltendes Mischoxid
WO2010029407A1 (fr) Accumulateur d'hydrogène

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060601