EP1453348A1 - Auto-étalonnage d'un réseau de microphones - Google Patents

Auto-étalonnage d'un réseau de microphones Download PDF

Info

Publication number
EP1453348A1
EP1453348A1 EP03450050A EP03450050A EP1453348A1 EP 1453348 A1 EP1453348 A1 EP 1453348A1 EP 03450050 A EP03450050 A EP 03450050A EP 03450050 A EP03450050 A EP 03450050A EP 1453348 A1 EP1453348 A1 EP 1453348A1
Authority
EP
European Patent Office
Prior art keywords
microphones
test
signal
loudspeaker
microphone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03450050A
Other languages
German (de)
English (en)
Inventor
Martin Dr. Opitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKG Acoustics GmbH
Original Assignee
AKG Acoustics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKG Acoustics GmbH filed Critical AKG Acoustics GmbH
Priority to EP03450050A priority Critical patent/EP1453348A1/fr
Priority to EP04450034A priority patent/EP1453349A3/fr
Priority to JP2004044899A priority patent/JP4181066B2/ja
Priority to US10/786,494 priority patent/US20040165735A1/en
Publication of EP1453348A1 publication Critical patent/EP1453348A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/004Monitoring arrangements; Testing arrangements for microphones
    • H04R29/005Microphone arrays
    • H04R29/006Microphone matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones

Definitions

  • the invention relates to array microphones.
  • Array microphones are used in environments such as Cars, lectern, stage or the like used to sound sources and speakers, in short Signal to selectively record and suppress ambient noise.
  • car Array microphones used on the one hand as a hands-free microphone for calls and on the other hand in systems such as Navigation systems using voice recognition to be served.
  • Array microphones consist of an arrangement of individual microphones that are used for signaling purposes are interconnected. In principle, the arrangement of the microphones distinguish between one, two and three-dimensional array microphones become. In a one-dimensional arrangement, the microphones are positioned along a line, e.g. a straight line or an arc. When using microphones with the orientation of the individual microphones is insignificant, since they only act as pressure receivers and therefore not directional in the room. Using The orientation of the individual microphones of gradient microphones is essential: the Overall directional characteristic and thus the entire bundling of the array microphone is created by combining the directional characteristics of the individual microphones together with the Application of the algorithm described below with which the microphone signals processed together.
  • the signal connection of the individual microphones can be on the analog or digital level.
  • the following is the implementation in the digital area to be viewed as.
  • the individual microphone signals are processed using analog-to-digital converters digitized and fed to a signal processing unit.
  • a suitable algorithm keyword "beamforming" applied to the microphone signals.
  • this algorithm the degree of concentration of the microphone is increased and lateral sound sources are suppressed.
  • filter coefficient sets that are used for the arrangement, type, Sensitivity and characteristics of the microphones used, the acoustic environment and the locations of the sound sources are characteristic.
  • different properties of the individual microphones can be taken into account, such as those caused by production variations, aging effects etc. become.
  • a frequently used filter structure is in the literature under "Filter and Sum Beamformer "(see e.g. [1], page 159) Microphone signals after analog-digital conversion with suitable FIR filters (finite Filter impulse response filters) and then added.
  • An embodiment with 4th Microphones are shown in Fig. 1 reflecting the prior art:
  • FIR filters FIR 1 to FIR 4 shown contain filter coefficient sets which correspond to frequency-dependent amplitude and phase differences. After filtering, the signals are added (filter and sum beamformer). Due to the aforementioned differences in amplitude and phase, sound waves that come from specific directions of incidence are amplified by constructive superimposition and sound waves from other sound incidence directions are weakened by destructive superimposition.
  • the FIR filters FIR 1 to FIR 4 can be thought of as so-called all-pass filters, which all have the same frequency-independent delay.
  • the checking of individual microphones in the array is currently carried out in such a way that during installation or in the event of service, the current consumption of the individual microphones is checked. The value the current consumption is checked to determine whether it is between two predetermined Limits come to lie. This allows you to check the basic functionality of the Detect single microphones. No more is happening.
  • the first problem concerns the failure of a single microphone. That can be the degree of bundling of the entire array microphone and reduce the directional characteristic in unintentionally change.
  • the user notices a deterioration from that Array microphone-controlled function without being able to localize the exact cause e.g. the speech recognizer suddenly works badly, when calling the speaker poorly understood.
  • these deteriorations can have various causes that are not have to hang together with the array microphone.
  • the GSM transmission link used be disturbed while talking on the phone. It is therefore for fault diagnosis essential to know whether at least the array microphone is fully functional as a subsystem is.
  • the current consumption of the microphone can only be in the laboratory or in the event of service.
  • the second problem is rather insidious: by scattering the properties of the Individual microphones in the course of production or different aging processes or different responses to changing environmental conditions the directional and frequency characteristics of the individual microphones differ greatly differ. This allows the above-mentioned algorithms for signal processing no longer work in the desired way.
  • the array microphone for example in a Vehicle cabin
  • the acoustic conditions compared to the laboratory at the Development changed because of reflections, diffractions and interferences Multiple sound paths occur. This allows the directional characteristic of the array microphone disadvantageously changed and the degree of bundling can be reduced.
  • the aim of the invention is to eliminate these problems, or at least theirs To significantly reduce effects without having to remove the array microphone or complicated and therefore expensive retrofitting is necessary.
  • this goal is achieved in that at least one loudspeaker in the Detection range of the array microphone is provided, which is an acoustic test signal emits, and that the signals of the individual microphones from a signal processor (DSP) evaluated and their consistency in relation to the desired signal character and the wanted signal consistency can be checked.
  • DSP signal processor
  • the loudspeaker can either be permanently installed or part of a portable one Test device, the signal processor can be that of the array microphone or also Part of the test fixture. If multiple speakers are provided, next to the Control of the individual microphones and control of the beamforming are particularly accurate possible.
  • Fig. 2 shows an embodiment with 4 microphones 1 to 4.
  • the distances of the Microphones 1-4 are the same in this embodiment.
  • the speaker 5 is from acoustically recorded on all microphones, i.e. a signal that the speaker 5 emits recorded by all microphones.
  • the microphones 1 to 4 can be used as pressure receivers as well as a gradient receiver.
  • FIG. 3 Another exemplary embodiment is shown in FIG. 3. This is in principle the same as in FIG. 2 constructed, but all acoustic transducers are in a common housing 6 accommodated. This housing can also contain electronic components, A / D and D / A converter. Of the microphones 1-4, only the spoken openings are to see.
  • the device according to the invention can be constructed be, the inventive method using the speaker and the signal processor is carried out, for example, as an acoustic self-test of the array microphone, can be as follows:
  • a calibration speaker 5 - is placed in, on or near the array microphone. preferably a small loudspeaker based on the dynamic principle - mounted, the acoustic Connects to the individual microphones 1-4 of the array in the sense that the Speaker signal can be recorded by any of the microphones.
  • the optimal one There is space for the positioning of the (individual) calibration speaker in the middle of the Microphone arrangement where the sum of all paths calibration speaker microphone Minimum results.
  • other speaker positions are also conceivable, e.g. on the edge of the array or somewhat removed, as in the illustrated embodiments.
  • the Calibration speaker 5 is connected to an amplifier.
  • the calibration speaker is checked. there it is determined whether its electrical impedance is within predetermined limits. Only when this condition is met does the acoustic self-test of the microphones began.
  • This speaker impedance check can be done by Loudspeaker signal is applied directly to one of the A / D converters (analog-digital converter).
  • Fig. 4 shows an embodiment for measuring the speaker impedance Loudspeaker is operated in parallel with the input impedance of the A / D converter. should that Ratio of the speaker impedance to the input impedance of the A / D converter too far deviate from the value 1, there can be an additional series resistor in front of the loudspeaker be switched.
  • the loudspeaker impedance is measured using a technique known to the technician Method for measuring complex impedances. For example, a Constant current source placed on the speaker and the voltage on the Speaker terminals measured.
  • a method is described below as a preferred exemplary embodiment.
  • the associated circuit diagram is shown in Fig. 4a.
  • a signal is sent to the power amplifier 2 via the D / A converter 6.
  • This power amplifier has a defined output impedance R a .
  • the amplified signal goes to the loudspeaker 8 with the impedance R LS and further to the input of the A / D converter 9, which has a defined input impedance R i .
  • R a and R LS form a voltage divider.
  • the voltage is measured on the A / D converter and compared with a reference measurement in which a known reference impedance is used instead of the loudspeaker as the impedance.
  • the data of the reference measurement are determined only once and recorded in a non-volatile data memory (eg in a ROM).
  • the unknown loudspeaker impedance R LS can be determined from the two voltage values determined in this way.
  • a measurement without loudspeaker can also be used as the reference measurement, ie the reference impedance is infinite ohms.
  • the microphone signals can be evaluated in various ways.
  • suitable Measurement signals can be sinusoidal signals, stochastic noise signals or periodic ones Noise signals such as Maximum sequence noise can be used. Some procedures are to be described as examples:
  • Method 1 In the simplest case, some sinusoidal signals with different frequencies spent in a row. The levels on the individual microphones will turn up checked their coherence, i.e. whether the measured voltages within preselected There are limits. The results are used to determine whether the microphone is functional or not.
  • the loudspeaker sends a periodic noise signal, e.g. Maximum follow-noise out.
  • a periodic noise signal e.g. Maximum follow-noise out.
  • DFT Discrete Fourier Transformation
  • the measured Amplitude transfer functions are checked whether they are within preselected Tolerance ranges lie. These amplitude transfer functions are a measure of that Microphone sensitivity. The comparison can be made with a reference measurement Change in microphone sensitivity, e.g. caused by aging or Determine environmental influences.
  • the method according to the invention has, apart from the possibility of detection a whole series of previously undetectable defects still have the advantage that the Measurement can be carried out while the microphone is in operation.
  • a successful display can, for example, be an automatic display "Microphone OK".
  • the type of adaptation of the filter coefficients can take place, for example, in that the age-related change in microphone sensitivity determined according to the above procedure is taken into account when calculating the filter coefficient sets. Thereby changes in the microphone properties, especially the sensitivity frequency curve compensated.
  • the process is shown in the block diagram in Fig. 5. shown.

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
EP03450050A 2003-02-25 2003-02-25 Auto-étalonnage d'un réseau de microphones Withdrawn EP1453348A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03450050A EP1453348A1 (fr) 2003-02-25 2003-02-25 Auto-étalonnage d'un réseau de microphones
EP04450034A EP1453349A3 (fr) 2003-02-25 2004-02-18 Auto-étalonnage d'un réseau de microphones
JP2004044899A JP4181066B2 (ja) 2003-02-25 2004-02-20 アレイマイクロホンのセルフキャリブレーション
US10/786,494 US20040165735A1 (en) 2003-02-25 2004-02-25 Self-calibration of array microphones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03450050A EP1453348A1 (fr) 2003-02-25 2003-02-25 Auto-étalonnage d'un réseau de microphones

Publications (1)

Publication Number Publication Date
EP1453348A1 true EP1453348A1 (fr) 2004-09-01

Family

ID=32749073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03450050A Withdrawn EP1453348A1 (fr) 2003-02-25 2003-02-25 Auto-étalonnage d'un réseau de microphones

Country Status (3)

Country Link
US (1) US20040165735A1 (fr)
EP (1) EP1453348A1 (fr)
JP (1) JP4181066B2 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007065779A1 (fr) * 2005-12-05 2007-06-14 Robert Bosch Gmbh Procédé de test fonctionnel d'un capteur à ultrasons
EP2362681A1 (fr) * 2010-02-15 2011-08-31 Dietmar Ruwisch Procédé et dispositif de traitement de signaux acoustiques en fonction de la phase
CN101316460B (zh) * 2007-05-29 2012-03-07 东莞泉声电子有限公司 数字声电传感器的测试仪
DE102016213698A1 (de) * 2016-07-26 2017-08-10 Robert Bosch Gmbh Verfahren zum Betreiben von wenigstens zwei in einer Vorrichtung angeordneten akustischen Sensoren
CN110070868A (zh) * 2019-04-28 2019-07-30 广州小鹏汽车科技有限公司 车载系统的语音交互方法、装置、汽车和机器可读介质
WO2020127432A1 (fr) * 2018-12-21 2020-06-25 Zf Friedrichshafen Ag Étalonnage d'un microphone de véhicule
DE102019205534A1 (de) * 2019-04-17 2020-10-22 Robert Bosch Gmbh Verfahren zum Betreiben eines insbesondere wenigstens teilweise automatisierten Fahrzeugs
DE102019211331A1 (de) * 2019-07-30 2021-02-04 Zf Friedrichshafen Ag Steuergerät, System und Verfahren zur Kalibrierung von Fahrzeug-Akustiksensoren und Überprüfung eines akustischen Warnsystems eines Elektrofahrzeuges und Elektrofahrzeug umfassend ein derartiges Steuergerät
DE102023000763A1 (de) 2023-03-02 2024-03-28 Mercedes-Benz Group AG Verfahren zur Erkennung eineer Degradation eines Mikrofons eines Fahrzeuges

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225430B2 (ja) 2005-08-11 2009-02-18 旭化成株式会社 音源分離装置、音声認識装置、携帯電話機、音源分離方法、及び、プログラム
JP4701931B2 (ja) 2005-09-02 2011-06-15 日本電気株式会社 信号処理の方法及び装置並びにコンピュータプログラム
JP4882338B2 (ja) * 2005-10-27 2012-02-22 ヤマハ株式会社 マルチスピーカシステム
JP4965847B2 (ja) 2005-10-27 2012-07-04 ヤマハ株式会社 音声信号送受信装置
JP4951232B2 (ja) * 2005-11-02 2012-06-13 ヤマハ株式会社 音声信号送受信装置
US8238584B2 (en) 2005-11-02 2012-08-07 Yamaha Corporation Voice signal transmitting/receiving apparatus
JP4665722B2 (ja) * 2005-11-09 2011-04-06 ヤマハ株式会社 スピーカアレイシステムおよび校正方法
WO2007103037A2 (fr) * 2006-03-01 2007-09-13 Softmax, Inc. Système et procédé permettant de produire un signal séparé
JP2008060625A (ja) * 2006-08-29 2008-03-13 Casio Comput Co Ltd ステレオ音声録音装置およびマイクロフォン感度差補正方法
US20080175407A1 (en) * 2007-01-23 2008-07-24 Fortemedia, Inc. System and method for calibrating phase and gain mismatches of an array microphone
US8160273B2 (en) * 2007-02-26 2012-04-17 Erik Visser Systems, methods, and apparatus for signal separation using data driven techniques
JP2010519602A (ja) * 2007-02-26 2010-06-03 クゥアルコム・インコーポレイテッド 信号分離のためのシステム、方法、および装置
DE102007020878B4 (de) * 2007-05-04 2020-06-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Prüfung von Umströmungsgeräuschen
JP5070993B2 (ja) 2007-08-27 2012-11-14 富士通株式会社 音処理装置、位相差補正方法及びコンピュータプログラム
EP2063419B1 (fr) * 2007-11-21 2012-04-18 Nuance Communications, Inc. Localisation d'un locuteur
US8150054B2 (en) * 2007-12-11 2012-04-03 Andrea Electronics Corporation Adaptive filter in a sensor array system
US9392360B2 (en) 2007-12-11 2016-07-12 Andrea Electronics Corporation Steerable sensor array system with video input
WO2009076523A1 (fr) 2007-12-11 2009-06-18 Andrea Electronics Corporation Filtration adaptative dans un système à réseau de détecteurs
US8175291B2 (en) * 2007-12-19 2012-05-08 Qualcomm Incorporated Systems, methods, and apparatus for multi-microphone based speech enhancement
US8374362B2 (en) 2008-01-31 2013-02-12 Qualcomm Incorporated Signaling microphone covering to the user
US20090290729A1 (en) * 2008-05-20 2009-11-26 Fortemedia, Inc. Categorization platform, method for categorization and method for microphone array manufacturing
US8321214B2 (en) * 2008-06-02 2012-11-27 Qualcomm Incorporated Systems, methods, and apparatus for multichannel signal amplitude balancing
US20090304192A1 (en) * 2008-06-05 2009-12-10 Fortemedia, Inc. Method and system for phase difference measurement for microphones
US20100057472A1 (en) * 2008-08-26 2010-03-04 Hanks Zeng Method and system for frequency compensation in an audio codec
WO2010022453A1 (fr) * 2008-08-29 2010-03-04 Dev-Audio Pty Ltd Système de réseau de microphones et méthode d'acquisition de sons
WO2010061506A1 (fr) * 2008-11-27 2010-06-03 日本電気株式会社 Dispositif de correction de signal
DE102009003049A1 (de) * 2009-05-13 2010-11-18 Robert Bosch Gmbh Verfahren zur Funktionsprüfung eines Ultraschallsensors an einem Kraftfahrzeug, Verfahren zum Betrieb eines Ultraschallsensors an einem Kraftfahrzeug und Abstandsmessvorrichtung mit mindestens einem Ultraschallsensor zur Verwendung in einem Kraftfahrzeug
CN102111697B (zh) * 2009-12-28 2015-03-25 歌尔声学股份有限公司 一种麦克风阵列降噪控制方法及装置
US8879749B2 (en) 2010-07-02 2014-11-04 Panasonic Corporation Directional microphone device and directivity control method
US9171551B2 (en) * 2011-01-14 2015-10-27 GM Global Technology Operations LLC Unified microphone pre-processing system and method
US8824692B2 (en) * 2011-04-20 2014-09-02 Vocollect, Inc. Self calibrating multi-element dipole microphone
US9173046B2 (en) * 2012-03-02 2015-10-27 Sennheiser Electronic Gmbh & Co. Kg Microphone and method for modelling microphone characteristics
JP6004707B2 (ja) * 2012-04-05 2016-10-12 キヤノン株式会社 音声処理装置及び撮像装置
EP2891338B1 (fr) * 2012-08-31 2017-10-25 Dolby Laboratories Licensing Corporation Système conçu pour le rendu et la lecture d'un son basé sur un objet dans divers environnements d'écoute
KR101381200B1 (ko) * 2012-12-18 2014-04-04 (주)드림텍 마이크 시험 장치 및 방법
JP2015019341A (ja) * 2013-07-12 2015-01-29 株式会社タムラ製作所 音声調整卓及びこれを用いた音響システム
CN103501375B (zh) 2013-09-16 2017-04-19 华为终端有限公司 音效控制方法及装置
DE102013225643A1 (de) * 2013-12-11 2015-06-11 Robert Bosch Gmbh Verfahren zur kontaktlosen Funktionsprüfung eines Signalwandlers
CN105830152B (zh) 2014-01-28 2019-09-06 三菱电机株式会社 集音装置、集音装置的输入信号校正方法以及移动设备信息系统
US9674626B1 (en) 2014-08-07 2017-06-06 Cirrus Logic, Inc. Apparatus and method for measuring relative frequency response of audio device microphones
US10009676B2 (en) 2014-11-03 2018-06-26 Storz Endoskop Produktions Gmbh Voice control system with multiple microphone arrays
US9865256B2 (en) 2015-02-27 2018-01-09 Storz Endoskop Produktions Gmbh System and method for calibrating a speech recognition system to an operating environment
JP2018007053A (ja) * 2016-07-04 2018-01-11 アルパイン株式会社 車載機器及び車載機器における処理方法
FR3054769B1 (fr) * 2016-08-01 2018-08-31 Aaton Digital Dispositif d'etalonnage de microphones
DE102016117353A1 (de) 2016-09-15 2018-03-15 Sennheiser Electronic Gmbh & Co. Kg Mikrofoneinheit und Verfahren zum Überwachen einer Mikrofoneinheit
CN110447238B (zh) * 2017-01-27 2021-12-03 舒尔获得控股公司 阵列麦克风模块及系统
CN106911996A (zh) * 2017-03-03 2017-06-30 广东欧珀移动通信有限公司 麦克风状态的检测方法、装置及终端设备
EP3776174A4 (fr) * 2018-01-09 2022-03-02 Polk Audio, LLC Système et procédé permettant de générer un signal d'entrée perfectionné d'algorithme d'assistance vocale
EP3780652B1 (fr) * 2018-03-29 2024-02-07 Sony Group Corporation Dispositif de traitement de son, procédé de traitement de son, et programme
US11647330B2 (en) * 2018-08-13 2023-05-09 Audio Zoom Pte Ltd Transducer apparatus embodying non-audio sensors for noise-immunity
CN109121035B (zh) * 2018-08-30 2020-10-09 歌尔科技有限公司 耳机异常处理方法、耳机、系统及存储介质
DE102018132486A1 (de) * 2018-12-17 2020-06-18 Sennheiser Electronic Gmbh & Co. Kg Mikrofonkapsel, Mikrofonanordnung mit mehreren Mikrofonkapseln und Verfahren zum Kalibrieren eines Mikrofonarrays
US10863296B1 (en) * 2019-03-26 2020-12-08 Amazon Technologies, Inc. Microphone failure detection and re-optimization
DE102019115529A1 (de) * 2019-06-07 2020-12-10 Rheinmetall Electronics Gmbh Fahrzeug mit Mikrofon-Anordnung
EP4005241B1 (fr) 2019-07-31 2024-08-21 Starkey Laboratories, Inc. Dispositif électronique porté sur l'oreille incorporant un système et procédé de réduction de défaut de microphone
CN110337055A (zh) * 2019-08-22 2019-10-15 百度在线网络技术(北京)有限公司 音箱的检测方法、装置、电子设备及存储介质
CN113645546B (zh) * 2020-05-11 2023-02-28 阿里巴巴集团控股有限公司 语音信号处理方法和系统及音视频通信设备
CN113963709A (zh) 2020-07-03 2022-01-21 哈曼国际工业有限公司 用于补偿麦克风的频率响应的方法及系统
DE102022113320B3 (de) * 2022-05-25 2023-07-06 Bayerische Motoren Werke Aktiengesellschaft Erfassungsvorrichtung für ein Kraftfahrzeug sowie Anordnung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0268788A2 (fr) * 1986-10-29 1988-06-01 Atlas Elektronik Gmbh Méthode et dispositif pour vérifier le fonctionnement d'un microphone
US5719526A (en) * 1994-11-09 1998-02-17 Crest Audio, Inc. Internal load monitor for amplifier
WO1999039497A1 (fr) * 1998-01-30 1999-08-05 Telefonaktiebolaget Lm Ericsson (Publ) Generation de signaux d'etalonnage destinee a un formateur de faisceaux
US20020146136A1 (en) * 2001-04-05 2002-10-10 Carter Charles H. Method for acoustic transducer calibration

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305307A (en) * 1991-01-04 1994-04-19 Picturetel Corporation Adaptive acoustic echo canceller having means for reducing or eliminating echo in a plurality of signal bandwidths
IT1257164B (it) * 1992-10-23 1996-01-05 Ist Trentino Di Cultura Procedimento per la localizzazione di un parlatore e l'acquisizione diun messaggio vocale, e relativo sistema.
US6760451B1 (en) * 1993-08-03 2004-07-06 Peter Graham Craven Compensating filters
US5402669A (en) * 1994-05-16 1995-04-04 General Electric Company Sensor matching through source modeling and output compensation
US6978159B2 (en) * 1996-06-19 2005-12-20 Board Of Trustees Of The University Of Illinois Binaural signal processing using multiple acoustic sensors and digital filtering
JPH10271595A (ja) * 1997-03-21 1998-10-09 Nec Corp 帰還があるスピーカ装置
US6535609B1 (en) * 1997-06-03 2003-03-18 Lear Automotive Dearborn, Inc. Cabin communication system
JP3541339B2 (ja) * 1997-06-26 2004-07-07 富士通株式会社 マイクロホンアレイ装置
EP1129601B1 (fr) * 1998-11-09 2007-05-02 Widex A/S Procede de mesure in situ et de correction ou d'ajustement d'un signal de sortie de prothese auditive dotee d'un processeur de modeles et prothese auditive con ue pour la mise en oeuvre dudit procede
JP2000187985A (ja) * 1998-12-24 2000-07-04 Hitachi Ltd 半導体記憶装置
DE19927278C1 (de) * 1999-06-15 2000-12-14 Siemens Audiologische Technik Verfahren zum Anpassen eines Hörhilfegeräts sowie Hörhilfegerät
CN100477704C (zh) * 2000-05-26 2009-04-08 皇家菲利浦电子有限公司 用于与自适应波束形成组合的回声抵消的方法和设备
US8090112B2 (en) * 2000-09-08 2012-01-03 Harman International Industries, Incorporated Self-diagnostic system for monitoring electrical equipment
US20020048379A1 (en) * 2000-10-23 2002-04-25 Gunnar Flentje Guitar amplifier with volume control
AT410597B (de) * 2000-12-04 2003-06-25 Vatter Acoustic Technologies V Verfahren, computersystem und computerprodukt zur messung akustischer raumeigenschaften
JP3771812B2 (ja) * 2001-05-28 2006-04-26 インターナショナル・ビジネス・マシーンズ・コーポレーション ロボットおよびその制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0268788A2 (fr) * 1986-10-29 1988-06-01 Atlas Elektronik Gmbh Méthode et dispositif pour vérifier le fonctionnement d'un microphone
US5719526A (en) * 1994-11-09 1998-02-17 Crest Audio, Inc. Internal load monitor for amplifier
WO1999039497A1 (fr) * 1998-01-30 1999-08-05 Telefonaktiebolaget Lm Ericsson (Publ) Generation de signaux d'etalonnage destinee a un formateur de faisceaux
US20020146136A1 (en) * 2001-04-05 2002-10-10 Carter Charles H. Method for acoustic transducer calibration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAHL M ET AL: "Simultaneous echo cancellation and car noise suppression employing a microphone array", ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 1997. ICASSP-97., 1997 IEEE INTERNATIONAL CONFERENCE ON MUNICH, GERMANY 21-24 APRIL 1997, LOS ALAMITOS, CA, USA,IEEE COMPUT. SOC, US, 21 April 1997 (1997-04-21), pages 239 - 242, XP010226179, ISBN: 0-8186-7919-0 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8064285B2 (en) 2005-12-05 2011-11-22 Robert Bosch Gmbh Method for functionally testing an ultrasonic sensor
WO2007065779A1 (fr) * 2005-12-05 2007-06-14 Robert Bosch Gmbh Procédé de test fonctionnel d'un capteur à ultrasons
CN101316460B (zh) * 2007-05-29 2012-03-07 东莞泉声电子有限公司 数字声电传感器的测试仪
EP2362681A1 (fr) * 2010-02-15 2011-08-31 Dietmar Ruwisch Procédé et dispositif de traitement de signaux acoustiques en fonction de la phase
DE102010001935A1 (de) * 2010-02-15 2012-01-26 Dietmar Ruwisch Verfahren und Vorrichtung zum phasenabhängigen Verarbeiten von Schallsignalen
US8340321B2 (en) 2010-02-15 2012-12-25 Dietmar Ruwisch Method and device for phase-sensitive processing of sound signals
US8477964B2 (en) 2010-02-15 2013-07-02 Dietmar Ruwisch Method and device for phase-sensitive processing of sound signals
DE102016213698A1 (de) * 2016-07-26 2017-08-10 Robert Bosch Gmbh Verfahren zum Betreiben von wenigstens zwei in einer Vorrichtung angeordneten akustischen Sensoren
WO2020127432A1 (fr) * 2018-12-21 2020-06-25 Zf Friedrichshafen Ag Étalonnage d'un microphone de véhicule
DE102018222780A1 (de) * 2018-12-21 2020-06-25 Forschungsgesellschaft Kraftfahrwesen Mbh Aachen (Fka) Kalibrierung eines Fahrzeugmikrophons
DE102019205534A1 (de) * 2019-04-17 2020-10-22 Robert Bosch Gmbh Verfahren zum Betreiben eines insbesondere wenigstens teilweise automatisierten Fahrzeugs
CN110070868A (zh) * 2019-04-28 2019-07-30 广州小鹏汽车科技有限公司 车载系统的语音交互方法、装置、汽车和机器可读介质
CN110070868B (zh) * 2019-04-28 2021-10-08 广州小鹏汽车科技有限公司 车载系统的语音交互方法、装置、汽车和机器可读介质
DE102019211331A1 (de) * 2019-07-30 2021-02-04 Zf Friedrichshafen Ag Steuergerät, System und Verfahren zur Kalibrierung von Fahrzeug-Akustiksensoren und Überprüfung eines akustischen Warnsystems eines Elektrofahrzeuges und Elektrofahrzeug umfassend ein derartiges Steuergerät
DE102019211331B4 (de) * 2019-07-30 2021-04-29 Zf Friedrichshafen Ag Steuergerät, System und Verfahren zur Kalibrierung von Fahrzeug-Akustiksensoren und Überprüfung eines akustischen Warnsystems eines Elektrofahrzeuges und Elektrofahrzeug umfassend ein derartiges Steuergerät
DE102023000763A1 (de) 2023-03-02 2024-03-28 Mercedes-Benz Group AG Verfahren zur Erkennung eineer Degradation eines Mikrofons eines Fahrzeuges

Also Published As

Publication number Publication date
US20040165735A1 (en) 2004-08-26
JP4181066B2 (ja) 2008-11-12
JP2004343700A (ja) 2004-12-02

Similar Documents

Publication Publication Date Title
EP1453348A1 (fr) Auto-étalonnage d'un réseau de microphones
EP1977626B1 (fr) Procédé pour enregistrer et reproduire les signaux sonores d'une source sonore présentant des caractéristiques directives variables dans le temps
EP1251493B1 (fr) Procédé pour la réduction du bruit avec fréquence parasite auto-adaptative
DE102013022403B3 (de) Sensorsystem zur akustischen Vermessung der Eigenschaften einer Übertragungsstrecke eines Messsystems zwischen Lautsprecher und Mikrofon
EP3454572B1 (fr) Procédé de reconnaissance d'un défaut dans un appareil auditif
DE102015101729A1 (de) Echoauslöschungsverfahren und echoauslöschungsanordnung für elektroakustische kommunikationsvorrichtungen
EP2441274B1 (fr) Procédé de détermination d'une fonction de transfert à moyenne dépendant de la fréquence pour un système d'invariance de temps linéaire (lti) perturbé, unité d'évaluation et programme d'ordinateur
DE10214407C1 (de) Anordnung und Verfahren zur Messung, Bewertung und Störungserkennung von Systemen
WO2000068703A2 (fr) Procede de localisation de direction et dispositif de localisation
EP1453349A2 (fr) Auto-étalonnage d'un réseau de microphones
EP1316783B1 (fr) Procédé de mesure de l'impédance acoustique
EP1305651B1 (fr) Procede pour la detection acoustique de personnes dans une zone de detection
EP0813350A2 (fr) Dispositif pour mesurer la caractéristique d'un microphone
DE10249495B3 (de) Vorrichtung zum Testen von Lautsprechern auf Funktionsfähigkeit
EP2884774B1 (fr) Procédé de vérification de fonctionnement sans contact d'un convertisseur de signal
DE102013207161A1 (de) Verfahren zur Nutzsignalanpassung in binauralen Hörhilfesystemen
DE112017007051T5 (de) Signalverarbeitungsvorrichtung
EP1307761B1 (fr) Procede de localisation de direction et dispositif de localisation
DE2712534C2 (de) Verfahren und Vorrichtung zur Schalldämpfung
DE102022004472A1 (de) Verfahren zum Kalibrieren eines Multimikrofonsystems
DE102019124533A1 (de) Mikrofon
DE19906572A1 (de) Vorrichtung zum Bestimmen der Einfallsrichtung von zeitlich begrenzt auftretenden Schallwellen
Hoffman et al. Real-time and off-line comparisons of standard array configurations containing three and four microphones
Yu et al. A post-filter for wideband speech beamforming in automotive application
EP4086869A1 (fr) Procédé et dispositif de détection et de localisation d'un point de défaillance d'un logement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050302