EP1444698A2 - Halbleiteranordnung mit transistoren auf basis organischer halbleiter und nichtflüchtiger schreib-lese-speicherzellen - Google Patents

Halbleiteranordnung mit transistoren auf basis organischer halbleiter und nichtflüchtiger schreib-lese-speicherzellen

Info

Publication number
EP1444698A2
EP1444698A2 EP02785070A EP02785070A EP1444698A2 EP 1444698 A2 EP1444698 A2 EP 1444698A2 EP 02785070 A EP02785070 A EP 02785070A EP 02785070 A EP02785070 A EP 02785070A EP 1444698 A2 EP1444698 A2 EP 1444698A2
Authority
EP
European Patent Office
Prior art keywords
semiconductor
semiconductor arrangement
ferroelectric
organic
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02785070A
Other languages
English (en)
French (fr)
Inventor
Günter Schmid
Marcus Halik
Hagen Klauk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1444698A2 publication Critical patent/EP1444698A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/80Interconnections, e.g. terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics

Definitions

  • the invention relates to a semiconductor arrangement which has at least one semiconductor device with a semiconductor path made of an organic semiconductor.
  • the transponder technology uses a contactless reading or writing to a memory with a transmitter / receiver unit.
  • the memory is part of a memory unit which is attached, for example, to an object about which certain information is stored in the memory.
  • the circuit comprising the memory does not have its own power supply, but is instead supplied via an alternating electromagnetic field, via which the integrated circuit simultaneously communicates with the transmitter / receiver unit.
  • Carrier frequencies of 125 kHz and 13.56 MHz are usually used for this. This technology is used to find and
  • Identify buried and therefore inaccessible pipelines used to identify animals in large herds or also in access cards that allow their owners, for example, access to certain restricted areas.
  • the microchips used in such systems are based on silicon as a semiconductor material.
  • the manufacture of the memory unit which can be read out and possibly written with a transmitter / receiver, is therefore still comparatively complex and expensive, despite the advanced manufacturing methods.
  • In the above mentioned application areas such costs do not fall into the weight Ge ⁇ because the storage unit remains or generally for a long time the object is used for high-priced goods.
  • a whole range of application areas for transponder technology are conceivable, in which only a small amount of information is processed, etc., on the other hand, there is strong cost pressure, i.e. the storage units used hitherto for everyday use are being eliminated for cost reasons.
  • RF-ID labels Radio Frequency Identification Tags
  • the goods are provided with RF-ID labels on which information about the goods is stored. This information can be, for example, the price, the expiry date or the point of sale at which the goods are to be sold to the customer.
  • the manufacturer can already provide the goods with all the necessary information based on an electronically incoming order, e.g. the price and the point of sale to which the goods are assigned. This further simplifies the logistics, since the goods e.g. can be assembled automatically and assigned to a retail outlet. In the retail outlet, savings can be made, for example in the checkout area.
  • the information about the goods is transmitted to the cash register without contact.
  • the cash register determines the price, automatically creates an invoice and balances the inventory.
  • customers lose any time lost in the checkout area.
  • the manufacturer can automatically report the need for new goods electronically.
  • the price of an RF-ID label for the applications described above must not exceed that of a conventional barcode (barcode) label.
  • the manufacturing costs must therefore be in the range of cents fractions. This results in the requirement that the RF-ID labels can be produced in a short amount of time and in large quantities.
  • the label can be put.
  • the label must have properties such as high robustness or low weight in order to be able to be processed without problems or great flexibility in order to be able to be attached to curved surfaces such as the surface of a bottle. Silicon chips can indeed be produced in very thin layers, so that they become flexible. However, these methods are also very complex and expensive, so that they are eliminated for the applications described.
  • the requirements placed on the RF-ID label with regard to the storage quantity and storage density are comparatively low for the applications described above.
  • a semiconductor arrangement which comprises at least one semiconductor device with a semiconductor path composed of at least one organic semiconductor and which has at least one rewritable memory cell based on a ferroelectric effect in a memory material.
  • the solution according to the invention uses organic semiconductor technology, which enables the manufacture of integrated circuits in an extremely cost-effective manner, for example with the aid of printing techniques.
  • organic semiconductor technology currently does not allow the integration density to be as high as is possible with silicon semiconductor technology, this integration density is also not necessary for the applications described above, since only small amounts of information have to be processed and a comparatively large area for the circuit arrangement to Is available, for example on the back of a bottle label.
  • Organic semiconductor technology is combined with a storage medium that is based on a ferroelectric effect. After the memory has been written with the necessary information, no further power supply is required for information retention.
  • the information is also retained over the periods of time required for the applications described above, that is to say, for example, a period between a description of the store by the manufacturer of the goods and a reading out of the information at the cash register of the retail outlet.
  • Organic semiconductors have charge carrier mobilities in the range of approximately 0.1-1 cm 2 / Vs. This allows the construction of all components and circuits necessary for RF-ID systems with semiconductor devices based on organic semiconductors.
  • the information to be stored can be written into or read from the memory without contact.
  • the transmission of information from and to the memory is basically the same way.
  • programming can advantageously also be carried out only after the label has been applied to an object to be identified.
  • a product at the end of the production line can already be assigned to a specific retail outlet for the incoming orders and thus the further sales channels can be determined with the highest possible topicality, without the need for large-scale storage, for example.
  • the memory cells are based on a ferroelectric effect, the memory cells can preferably be designed as read-write memories. The stored information can then be changed and updated at any time.
  • Storage materials suitable for the semiconductor arrangement according to the invention are those in which a ferroelectric effect is sufficiently pronounced to be able to detect two different polarization states without great effort.
  • An organic polymer with ferroelectric properties is particularly preferably used as the storage material.
  • Ferroelectric polymers can be processed using the simple and inexpensive processes that are usually used in organic semiconductor technology and can also be applied to a substrate, for example, by printing processes. In particular on flexible substrates, these materials prove to be robust against bending and twisting of the substrate.
  • the inertia with which the polarization of the ferroelectric polymer follows the programming voltage is generally sufficiently low for the intended applications.
  • ferroelectric effect required for the memory cell is largely independent of the material used for the electrodes with which the programming voltage is conveyed to the ferroelectric polymer.
  • the use of ferroelectric organic polymers as the storage medium of a storage cell therefore hardly restricts the choice of materials for the electrodes. So far, all investigations of the ferroelectric behavior of polymers have been carried out on simple, mostly isolated layer systems.
  • a memory cell based on a ferroelectric effect in connection with a control and addressing circuit implemented with transistors, which have a semiconductor path made of an organic semiconductor, has not previously been demonstrated.
  • the electrical conductivity of the polymer is influenced by the state of polarization.
  • the two states of conductivity can be used to define a binary data content of a memory cell.
  • Such organic polymers with ferroelectric properties are, for example, fluorinated polyenes.
  • Switching of the polarization and thus a change in the conductivity of the polymer is achieved by switching the polarity of a programming voltage which generates an electric field in the polymer. After the programming voltage has decayed, the conductivity previously set by the programming voltage is retained. Only by applying a programming voltage (coercive voltage) which is opposite in polarity to the first programming voltage, which is in the polymer generated electric field, which is greater in magnitude than the coercive field strength of the polymer, the conductivity of the polymer changes its state.
  • a programming voltage coercive voltage
  • the stored information is preferably read out in such a way that a charge, or a quantity derived therefrom, is measured, which is required in order to bring about a polarization reversal of the ferroelectric.
  • This charge depends on the pre-polarization of the ferroelectric. This means that the reading process is destructive.
  • all the memory cells or ferro capacitors have the same polarization. If the information is to be retained, the memory content must be written back into the ferro capacitor after the reading process. This can be done immediately after the reading process or at a later time.
  • the memory content can be buffered, for example in a normal capacitor memory or a flip-flop, or two ferroelectric memory areas are used alternately. This is particularly advantageous in the RF-ID case, in which the information is read out without contact, since the information is not lost in the event of a voltage drop.
  • fluorinated polyenes those based on PVDF (polyvinylidene difluoride) and in particular the copolymer with trifluoroethylene (PVDF-PTrFE; 70:30) have proven to be particularly suitable.
  • PVDF polyvinylidene difluoride
  • PVDF-PTrFE copolymer with trifluoroethylene
  • Other suitable polyenes are described, for example, in T.T. Wang, J.M. Herbst, A.M. Glass, "The Applications of Ferroelectric Polymers", ISBN 0-412-01261-8.
  • the inertia with which the polarization follows the programming voltage is sufficiently low at 10 - 100 ⁇ s for PVDF polymers for the intended applications. PVDF polymers are robust against bending and twisting and are therefore also suitable for application to flexible substrates.
  • inorganic ferroelectric materials can also be used as storage material.
  • a class of suitable ferroelectric inorganic materials that can be used as storage materials are ferroelectric tantalates and titanates, such as strontium bismuth tantalate (SBT) or lead zirconium titanates (PZT, PbZr x Ti ⁇ - x 0 3 ).
  • the semiconductor arrangement has semiconductor devices which functionally supplement the semiconductor arrangement to form an RF-ID label.
  • Semiconductor arrangements with organic active semiconductor devices and memory cells are preferably applied to flexible substrates. If the active and passive semiconductor devices, memory cells and conductor tracks built up in thin layers on the substrate are also made of flexible, robust materials, a mechanical structure is created which in turn can be easily applied to curved surfaces.
  • Flexible foils made of metals and metal alloys, such as copper, nickel, gold and iron alloy, are suitable as substrates. gene, from cellulose, such as paper, and from plastics such as polystyrene, polyethylene, polyurethane, polycarbonates, polyacrylates, polyimides, polyethers and polybenzoxazoles.
  • inexpensive substrates such as paper
  • the size and space requirement of a memory cell are not critical. Since essential properties of the memory cell can be influenced via the area of the memory cell, an additional degree of freedom for the design of the memory cell is obtained by using inexpensive substrates.
  • P-Halbles are preferably suitable as the material for the semiconductor path in the semiconductor devices based on organic semiconductors . Iter based on condensed aromatics, such as anthracene, tetrazene, pentazene, polythiopenes, such as poly-3-alkylthiopenes, polyvinylthiopene, and polypyrroles. Organometallic complexes of phthalocyanine or porphyrin can also be used.
  • the semiconductor device used in the semiconductor arrangement according to the invention is, for example, an organic transistor, in particular an organic field effect transistor, with which, for example, the memory cell can be switched between two states.
  • the semiconductor path is the layer of an organic semiconductor arranged between the source and drain electrodes, the electrical conductivity of which is controlled by the field of a gate electrode.
  • the semiconductor arrangement itself and / or the active and passive semiconductor devices based on organic semiconductors have, due to their function, insulator layers made of a dielectric. Both inorganic and organic dielectrics are possible. Dielectrics, which due to their stability and robustness are particularly suitable for arrangements on substrates, are silicon dioxide and silicon nitride. Both materials can be used as in MG Kane, H. Klauk et al; "Analog and Digital Circuits Using Organic Thin-Film Transistors on Polyester Substrates "IEEE Electron Device Letters Vol. 21 No. 11 534 (2000) and DJ Gundlach, H. Klauk et al.” High-Mobility, Low Voltage Organic Thin Film Transistors "International Electron Devices Meeting, December (1999) shown, integrate in semiconductor devices of the type according to the invention.
  • polystyrene, polyethylene, polyester, polyurethane, polycarbonate, polyacrylate, polyimide, polyether and polybenzoxazole are also particularly suitable.
  • organic semiconductors doped for cost-critical applications such as polyaniline doped with camphor sulfonic acid or polythiophenes doped with polystyrene sulfonic acid, which can be deposited using simple and inexpensive printing processes, can be provided.
  • metals or metal alloys with a low specific resistance are preferred, i.e. palladium, gold, platinum, nickel, copper, titanium and aluminum.
  • the electrical field strengths or programming voltages required for switching the polarization lie in a range which overlaps with a working range of transistors based on organic semiconductors.
  • a necessary signal swing for write and read voltages is scalable over the area of the memory cell and can thus be adapted to the properties of addressing and control transistors.
  • the memory cells in a memory are addressed by selection transistors. This type of addressing can be used Realize faster, more specific and interference-free access to the memory cell.
  • the addressing takes place via a passive matrix, as is e.g. is described in the patent US 6055180.
  • the selection transistor otherwise assigned to each memory cell is omitted. This leads to a particularly simple construction of a memory.
  • the semiconductor arrangement according to the invention can be produced from comparatively easily accessible materials with the aid of inexpensive processes, for example printing techniques.
  • the semiconductor arrangement according to the invention is therefore particularly suitable for applications in which information is stored inexpensively over a period of up to several months.
  • the invention therefore also relates to a label comprising a substrate, an attachment layer and at least one semiconductor arrangement provided on the substrate, as described above.
  • Suitable substrates are, for example, paper or a thin flexible plastic film, on one side of which the semiconductor arrangement according to the invention is applied, for example by printing.
  • An adhesive layer can then be applied to the semiconductor arrangement according to the invention, optionally separated by a protective layer, as an attachment layer, with the aid of which the label is attached to an object.
  • the semiconductor arrangement according to the invention is shielded against mechanical influences which could cause destruction.
  • Areas of application for such labels are, for example, the labels already mentioned at the beginning for the labeling of goods or, for example, also electronic stamps, the value of which is stored on the stamp when sold.
  • the memory content is advantageously read destructively, ie the memory content is no longer written back after reading. In this way, for example, stamps can be canceled at the same time as their value is read out.
  • chip cards comprising a substrate and at least one semiconductor arrangement provided on the substrate, as described above.
  • Such chip cards are independently marketable and can be used, for example, as telephone cards or discount cards. With phone cards, a certain value is saved when purchasing, which is then gradually canceled by the readout process.
  • a material which has a higher mechanical strength than is required for the label described above is suitably used as the substrate.
  • a substrate made of cardboard or a plastic laminate is suitable.
  • the semiconductor arrangement according to the invention is then suitably embedded between two paper or plastic layers in order to protect it from mechanical influences. Alternatively, protection by a layer of lacquer is also conceivable.
  • the chip card described is particularly suitable for applications which are under very high cost pressure and in which only a limited period of use is required, but it is also possible to have a design which enables use over longer periods of time, for example as a bank card, credit card or health insurance card ,
  • the label described above and the chip card described above are preferably designed in such a way that the stored information can be written in or read out without contact.
  • a contact for writing and reading out the memory is provided, which is contacted for writing / reading out with a corresponding contact of a read / write device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

Die Erfindung betrifft eine Halbleiteranordnung, aufgebaut aus Transistoren, bei denen die Halbleiterstrecke aus einem organischem Halbleiter besteht, und auf einen ferroelektrischen Effekt vorzugsweise in einem Polymer beruhenden Speicherzellen zum Einsatz beispielsweise in RF-ID-Etiketten.

Description

Beschreibung
Halbleiteranordnung mit Transistoren auf Basis organischer Halbleiter und nichtflüchtiger Schreib-Lese-Speicherzellen
Die Erfindung betrifft eine Halbleiteranordnung, die mindestens eine Halbleitereinrichtung mit einer Halbleiterstrecke aus einem organischen Halbleiter aufweist.
Die Transponder-Technologie verwendet ein kontaktloses Auslesen bzw. Beschreiben eines Speichers mit einer Sender/Empfängereinheit. Der Speicher ist Teil einer Speichereinheit, die beispielsweise an einem Gegenstand befestigt ist, über den bestimmte Informationen im Speicher gespeichert sind. Meist weist die den Speicher umfassende Schaltung keine eigene Stromversorgung auf, sondern wird stattdessen über ein elektromagnetisches Wechselfeld versorgt, über das die integrierte Schaltung zugleich mit der Sender/Empfängereinheit kommuniziert. Üblicherweise werden dazu Trägerfrequenzen von 125 kHz und 13.56 MHz verwendet. Diese Technologie wird beispielsweise zum Auffinden und
Identifizieren von im Erdboden vergrabenen und daher nicht zugänglichen Pipelines, zum Identifizieren von Tieren in großen Herden oder auch in Zugangskarten verwendet, die ihren Besitzern beispielsweise den Zugang zu bestimmten zugangsbeschränkten Bereichen ermöglichen. Die in derartigen Systemen verwendeten Mikrochips beruhen auf Silizium als Halbleitermaterial. Die Herstellung der Speichereinheit, welche mit einem Sender/Empfänger ausgelesen und ggf. beschrieben werden kann, ist daher trotz der fortgeschrittenen Herstellungsmethoden noch vergleichsweise aufwendig und teuer. Bei den oben genannten Einsatzbereichen fallen diese Kosten nicht ins Ge¬ wicht, da die Speichereinheit meist über längere Zeit am Gegenstand verbleibt oder für hochpreisige Güter verwendet wird. Es sind jedoch eine ganze Reihe von Anwendungsgebieten für die Transponder-Technologie denkbar, in denen zwar nur eine geringe Informationsmenge verarbeitet werden uss, ande- rerseits aber ein starker Kostendruck herrscht, also die bisher verwendeten Speichereinheiten für eine Anwendung in der täglichen Praxis aus Kostengründen ausscheiden.
Eine erhebliche Kostenreduktion und Zeitersparnis könnte beispielsweise durch einen Einsatz von RF-ID-Etiketten (Radio Frequency Identification Tags) im Einzelhandel erzielt werden. So können z.B. die Waren mit RF-ID-Etiketten versehen werden, auf welchen Informationen zur Ware gespeichert sind. Diese Informationen kann beispielsweise der Preis, das Verfallsdatum oder auch die Endverkaufsstätte sein, in welcher die Ware an den Kunden verkauft werden soll. Lässt sich das RF-ID-Etikett auch mit Informationen beschreiben, kann bereits beim Hersteller die Ware aufgrund einer elektronisch eingehenden Bestellung mit allen notwendigen Informationen versehen werden, z.B. dem Preis und der Endverkaufsstätte, der die Ware zugewiesen wird. Dadurch lässt sich die Logistik weiter vereinfachen, da die Ware z.B. automatisiert konfektioniert und einer Endverkaufsstätte zugewiesen werden kann. In der Endverkaufsstätte lassen sich Einsparungen beispielsweise im Kassenbereich verwirklichen. Beim Passieren einer Kasse wird die Information zur Ware kontaktlos an die Kasse übertragen. Die Kasse ermittelt den Preis, erstellt automatisch eine Rechnung und saldiert den Warenbestand. In Verbindung mit einem bargeldlosen elektronischen Zahlungsverkehr entfällt für Kunden jeglicher Zeitverlust im Kassenbereich. Gleichzeitig kann automatisch beim Hersteller der Bedarf an neuer Ware elektronisch gemeldet werden.
Um solche Vertriebssysteme konkurrenzfähig in die Praxis umsetzen zu können, darf der Preis einer RF-ID Etikette für die oben beschriebenen Anwendungen den einer herkömmlichen Strichcode (Barcode) -Etikette nicht überschreiten. Die Herstellungskosten müssen also im Bereich von Cent-Bruchteilen liegen. Daraus ergibt sich die Anforderung, dass die RF-ID Etiketten mit wenig Zeitaufwand und in großen Mengen hergestellt werden können. Ferner muss das Etikett stellt werden können. Ferner muss das Etikett Eigenschaften aufweisen, wie eine hohe Robustheit, oder ein geringes Gewicht, um problemlos verarbeitet werden zu können oder auch eine große Flexibilität, um auch auf gekrümmten Flächen, wie der Oberfläche einer Flasche befestigt werden zu können. Siliziumchips lassen sich zwar in sehr geringen Schichtdicken herstellen, so dass sie flexibel werden. Diese Verfahren sind jedoch ebenfalls sehr aufwändig und teuer, so dass sie für die beschriebenen Anwendungen ausscheiden. Andererseits sind jedoch die Anforderungen, die an das RF-ID Etikett bezüglich Speichermenge und Speicherdichte gestellt werden, für die o- ben beschriebenen Anwendungen vergleichsweise gering.
Es ist daher Aufgabe der Erfindung, eine Vorrichtung zur Verfügung zu stellen, in der auf einfachste Weise und relativ 'zu herkömmlichen Lösungen äußerst preiswert eine Information begrenzten Umfangs zumindest für eine nach Monaten begrenzte Zeitdauer abgespeichert und ausgelesen werden kann.
Diese Aufgabe wird gelöst mit einer Halbleiteranordnung, welche mindestens eine Halbleitereinrichtung mit einer Halbleiterstrecke aus mindestens einem organischen Halbleiter um- fasst, und welche mindestens eine auf einem ferroelektrischen Effekt in einem Speichermaterial beruhende wiederbeschreibba- re Speicherzelle aufweist.
Die erfindungsgemäße Lösung nutzt zum einen die organische Halbleitertechnologie, welche auf äußerst kostengünstige Weise die Herstellung integrierter Schaltungen ermöglicht, z.B. mit Hilfe von Drucktechniken. Die organische Halbleitertechnologie erlaubt zwar zur Zeit noch keine so hohe Integrationsdichte, wie sie mit der Silizium-Halbleitertechnologie möglich ist, diese Integrationsdichte ist für die oben beschriebenen Anwendungen jedoch auch nicht erforderlich, da nur geringe Informationsmengen verarbeitet werden müssen und vergleichsweise viel Fläche für die Schaltungsanordnung zur Verfügung steht, z.B. auf der Rückseite eines Flaschenetti- kets. Die organische Halbleitertechnologie wird kombiniert mit einem Speichermedium, dass auf einem ferroelektrischen Effekt beruht. Nachdem der Speicher mit der erforderlichen Information beschrieben wurde, ist für die Informationserhaltung keine weitere Spannungsversorgung erforderlich. Durch das auf einem ferroelektrischen Effekt beruhende Speichermedium bleibt die Information auch über die für die oben beschriebenen Anwendungen erforderlichen Zeiträume erhalten, also beispielsweise einen Zeitraum zwischen einem Beschreiben des Speichers beim Hersteller der Ware und einem Auslesen der Information an der Kasse der Endverkaufsstätte.
Organische Halbleiter weisen Ladungsträgerbeweglichkeiten im Bereich von etwa 0,1 - 1 cm2/Vs auf. Dies erlaubt den Aufbau aller für RF-ID - Systeme notwendigen Bauelemente und Schaltungen mit auf organischen Halbleitern basierenden Halbleitereinrichtungen.
Durch die Kombination einer organischen Halbleitertechnologie mit geeigneten Speichermaterialien wird also eine Anordnung geschaffen, die Information zu speichern vermag und dabei zur Gänze aus Materialien besteht, die auf einfachste Art beispielsweise auch mit kostengünstigen Tischgeräten bei normalen Umgebungstemperaturen verarbeitet werden können.
Die zu speichernden Information lässt sich kontaktlos in den Speicher einschreiben bzw. aus diesem auslesen. Die Informationsübermittlung von und zum Speicher erfolgt prinzipiell auf dem selben Weg. Ist die erfindungsgemäße Halbleiteranordnung zum Beispiel in einem Etikett enthalten, kann eine Programmierung vorteilhaft auch erst nach einem Aufbringen des Etiketts auf einen zu kennzeichnenden Gegenstand vorgenommen werden. So kann beispielsweise eine Ware am Ende der Produktionslinie aktuell zu den eingehenden Bestellungen bereits einer bestimmten Endverkaufsstätte zugeordnet und damit der weitere Vertriebsweg mit höchst möglicher Aktualität bestimmt werden, ohne dass dazu z.B. eine groß dimensionierte Lagerhaltung erforderlich ist.
Da die Speicherzellen auf einem ferroelektrischen Effekt beruhen, können die Speicherzellen bevorzugt als Schreib-Lese- Speicher ausgelegt werden. Die abgespeicherte Information kann dann jederzeit verändert und aktualisiert werden.
Für die erfindungsgemäße Halbleiteranordnung geeignete Speichermaterialien sind solche, bei denen ein ferroelektrischer Effekt ausreichend deutlich ausgeprägt ist, um zwei verschiedene Polarisationszustände ohne großen Aufwand detektieren zu können.
Besonders bevorzugt wird als Speichermaterial ein organisches Polymer mit ferroelektrischen Eigenschaften verwendet. Ferro- elektrische Polymere lassen sich mit den einfachen und kostengünstigen Verfahren verarbeiten, die üblicherweise in der organischen Halbleitertechnologie verwendet werden und lassen sich beispielsweise ebenfalls durch Druckverfahren auf ein Substrat aufbringen. Insbesondere auf flexiblen Substraten erweisen sich diese Materialien als robust gegen ein Biegen und Verwinden des Substrats. Die Trägheit, mit der die Polarisation des ferroelektrischen Polymers der Programmierspannung folgt ist im Allgemeinen ausreichend gering für die angestrebten Anwendungen.
Der für die Speicherzelle notwendige ferroelektrische Effekt ist weitgehend unabhängig vom Material, das für die Elektroden verwendet wird, mit welchen die Programmierspannung zum ferroelektrischen Polymer vermittelt wird. Die Verwendung ferroelektrischer organischer Polymere als Speichermedium einer Speicherzelle schränkt daher die Materialwahl für die E- lektroden kaum ein. Bisher erfolgten alle Untersuchungen zum ferroelektrischen Verhalten von Polymeren an einfachen, meist isolierten Schichtsystemen. Eine Speicherzelle auf Basis eines ferroelektrischen Effekts in Verbindung mit einer mit Transistoren, die eine Halbleiterstrecke aus einem organischen Halbleiter aufweisen, ausgeführten Steuer- und Adressierungsschaltung wurde bisher nicht demonstriert.
Bei einer bevorzugten Gruppe ferroelektrischer Polymere wird die elektrische Leitfähigkeit des Polymers durch den Polarisationszustand beeinflusst. Die beiden Zustände der Leitfähigkeit können genutzt werden, um einen binären Dateninhalt einer Speicherzelle .festzulegen. Solche organischen Polymere mit ferroelektrischen Eigenschaften sind beispielsweise fluorierte Polyene.
Wie A. Bune, S. Ducharme, V. Fridkin, L.Blinov, S. Palto, N. Petukhova, S.Yudin, "Novel Switching Phenomena in Ferroelectric Langmuir-Blodgett Films", Appl . Phys . Lett. 67 (26), (1995) und A. Bune, S. Ducharme, V. Fridkin, L.Blinov, S. Palto, A.V. Sorokin, S.Yudin, A. Zlatkin, "Two-dimensional Ferroelectric Films", Nature Vol .391- (1998 ) zeigen konnten, können sich die beiden Polarisationszustände in ihrer Leitfähigkeit um einen Faktor im Bereich von 100 unterscheiden. Dies ermöglicht eine zuverlässige Unterscheidung zwischen den beiden Zuständen der Leitfähigkeit und damit ein sicheres Auslesen der im Speicher enthaltenen Information.
Ein Umschalten der Polarisation und damit ein Wechsel in der Leitfähigkeit des Polymers wird durch ein Umschalten der Polarität einer Programmierspannung erzielt, welche ein elektrisches Feld im Polymer erzeugt. Nach Abklingen der Programmierspannung bleibt der durch die Programmierspannung zuvor eingestellte Zustand der Leitfähigkeit erhalten. Erst durch Anlegen einer zur ersten Programmierspannung gegenpoligen Programmierspannung (Koerzitivspannung) , die im Polymer ein elektrisches Feld erzeugt, das betragsmäßig größer als die Koerzitivfeidstärke des Polymers ist, wechselt die Leitfähigkeit des Polymers ihren Zustand.
Bevorzugt erfolgt das Auslesen der gespeicherten Information jedoch in der Weise, dass eine Ladung, oder eine daraus abgeleitete Größe gemessen wird, die benötigt wird, um eine Umpolarisierung des Ferroelektrikums zu bewirken. Diese Ladung ist abhängig von der Vorpolarisation des Ferroelektrikums. Dies bedeutet, dass der Lesevorgang destruktiv erfolgt. Nach dem Auslesen der Information weisen also alle Speicherzellen bzw. Ferrokondensatoren die gleiche Polarisation auf. Soll die Information erhalten bleiben, muss nach dem Lesevorgang der Speicherinhalt wieder in den Ferrokondensator zurückgeschrieben werden. Dies kann unmittelbar nach dem Lesevorgang oder auch zu einem späteren Zeitpunkt erfolgen. Man kann dazu den Speicherinhalt Zwischenspeichern, beispielsweise in einem normalen Kondensatorspeicher oder einem FlipFlop, oder man verwendet zwei ferroelektrische Speicherbereiche abwechselnd. Dies ist besonders vorteilhaft im RF-ID-Fall, bei dem die Information berührungslos ausgelesen wird, da im Fall eines Spannungsabfalls die Information nicht verloren geht.
Unter den fluorierten Polyenen erweisen sich insbesondere solche auf der Basis von PVDF (Polyvinylidendifluorid) und hier wieder insbesondere das Copolymer mit Trifluorethylen (PVDF-PTrFE; 70:30) als bevorzugt geeignet. Weitere geeignete Polyene sind beispielsweise in T.T. Wang, J. M. Herbst, A. M. Glass, " The Applications of Ferroelectric Polymers", ISBN 0- 412-01261-8 beschrieben.
Die Trägheit, mit der die Polarisation der Programmierspannung folgt, ist mit 10 - 100 μs für PVDF-Poly ere ausreichend gering für die angestrebten Anwendungen. PVDF-Polymere sind robust gegen Biegen und Verwinden und eignen sich daher auch für ein Auftragen auf flexible Substrate.
Als Alternative zu den oben beschriebenen organischen Polymeren mit ferroelektrischen Eigenschaften können auch anorganische Ferroelektrika als Speichermaterial verwendet werden. Eine Klasse geeigneter ferroelektrischer anorganischer Mate- rialen, die als Speichermaterialien verwendet werden können, sind ferroelektrische Tantalate und Titanate, wie Strontium- Wismut-Tantalat (SBT) oder Blei-Zirkon-Titanate (PZT, PbZrxTiι-x03) .
Eine Integration von. aktiven Halbleitereinrichtungen und Speicherzellen aus Materialien, die in gleichen oder ähnlichen Fertigungsprozessen an gleichen Anlagen, also mit den relativ zur Silizium-Technologie einfachen und kostengünstigen Prozessen und Hilfsmitteln der organischen Halbleitertechnologie, geschaffen werden können, erweitert das Anwendungsspektrum für integrierte Schaltungen.
In einer besonders bevorzugten Ausführungsform der Erfindung weist die Halbleiteranordnung Halbleitereinrichtungen auf, die die Halbleiteranordung funktioneil zu einem RF-ID-Etikett ergänzen.
In bevorzugter Weise werden Halbleiteranordnungen mit organischen aktiven Halbleitereinrichtungen und Speicherzellen auf flexiblen Substraten aufgebracht. Werden auch die in dünnen Schichten auf dem Substrat aufgebauten aktiven und passiven Halbleitereinrichtungen, Speicherzellen und Leiterbahnen aus flexiblen, robusten Materialien aufgebaut, entsteht ein mechanischer Aufbau, der seinerseits leicht auf gekrümmte Oberflächen aufgebracht werden kann.
Als Substrat eignen sich flexible Folien aus Metallen und Metalllegierungen, wie Kupfer, Nickel, Gold und Eisenlegierun- gen, aus Zellstoffen, wie Papier, sowie aus Kunststoffen wie Polystyrol, Polyethylen, Polyurethane, Polycarbonaten, Poly- acrylaten, Polyimiden, Polyethern und Polybenzoxazolen. Bei kostengünstigen Substraten, etwa Papier, sind die Größe und der Flächenbedarf einer Speicherzelle unkritisch. Da sich ü- ber die Fläche der Speicherzelle wesentliche Eigenschaften der Speicherzelle beeinflussen lassen, wird durch einen Rückgriff auf kostengünstige Substrate ein zusätzlicher Freiheitsgrad für das Design der Speicherzelle gewonnen.
Als Material für die Halbleiterstrecke in den auf organischen Halbleitern beruhenden Halbleitereinrichtungen eignen bevorzugterweise p-Halble.iter auf Basis kondensierter Aromate, wie Anthrazen, Tetrazen, Pentazen, Polythiopene, wie Poly-3- alkylthiopene, Polyvinylthiopen, sowie Polypyrrole. Weiter können metallorganische Komplexe des Phthalocyanins oder des Porphyrins eingesetzt werden. Die in der erfindungsgemäßen Halbleiteranordnung verwendete Halbleitereinrichtung ist beispielsweise ein organischer Transistor, insbesondere ein organischer Feldeffekttransistor, mit welchem beispielsweise die Speicherzelle zwischen zwei Zuständen geschaltet werden kann. Die Halbleiterstrecke ist dabei die zwischen Source- und Drainelektrode angeordnete Schicht eines organischen Halbleiters, dessen elektrische Leitfähigkeit durch das Feld einer Gate-Elektrode gesteuert wird.
Die Halbleiteranordnung selbst und/oder die aktiven und passiven auf organischen Halbleitern basierenden Halbleitereinrichtungen (Feldeffekt-Transistoren, Kondensatoren) weisen funktionsbedingt Isolatorschichten aus einem Dielektrikum auf. Dabei kommen sowohl anorganische wie auch organische Dielektrika in Frage. Dielektrika, die sich infolge ihrer Stabilität und Robustheit insbesondere für Anordnungen auf Substraten eignen, sind etwa Siliziumdioxid und Siliziumnitrid. Beide Materialien lassen sich wie in M.G. Kane, H. Klauk et al; "Analog and Digital Circuits Using Organic Thin-Film Transistors on Polyester Substrates" IEEE Electron Device Letters Vol. 21 No. 11 534 (2000) und D. J. Gundlach, H. Klauk et al. "High-Mobility, Low Voltage Organic Thin Film Transistors" International Electron Devices Meeting, December (1999) gezeigt, in Halbleiteranordnungen der erfindungsgemäßen Art integrieren.
Wegen der Möglichkeit, über einfache Druckverfahren abgeschieden zu werden, sind darüber hinaus insbesondere Polystyrol, Polyethylen, Polyester, Polyurethan, Polycarbonat, Poly- acrylat, Polyimid, Polyether, und Polybenzoxazol geeignet.
Zur Ausformung von Leiterbahnen der Halbleiteranordnung und der Elektroden in den Halbleitereinrichtungen können für kostenkritische Anwendungen dotierte organische Halbleiter, wie mit Kampfersulfonsäure dotiertes Polyanilin oder mit Polysty- rolsulfonsäure dotierte Polythiophene vorgesehen werden, die über einfache und kostengünstige Druckverfahren abgeschieden werden können. Werden geringere Verlustleistungen in den Leiterbahnen angestrebt, so werden Metalle oder Metalllegierungen mit niedrigem spezifischen Widerstand vorgezogen, also etwa Palladium, Gold, Platin, Nickel, Kupfer, Titan und Aluminium.
Die für das Umschalten der Polarisierung benötigten elektrischen Feldstärken bzw. Programmierspannungen liegen in einem Bereich, der sich mit einem Arbeitsbereich von auf organischen Halbleitern basierenden Transistoren überschneidet. Ein notwendiger Signalhub für Schreib- und Lesespannungen ist ü- ber die Fläche der Speicherzelle skalierbar und lässt sich damit an die Eigenschaften von Adressierungs- und Steuertransistoren anpassen.
Ein Adressieren der Speicherzellen in einem Speicher erfolgt in einer ersten Ausführungsform der Erfindung durch Auswahltransistoren. Durch diese Art der Adressierung lässt sich ein schneller, spezifischer und störsicherer Zugriff auf die Speicherzelle realisieren.
Nach einer zweiten Ausführungsform erfolgt die Adressierung über eine passive Matrix, wie sie z.B. im Patent US 6055180 beschrieben wird. Bei dieser Art der Adressierung entfällt der sonst jeder Speicherzelle zugeordnete Auswahltransistor. Dies führt zu einem besonders einfachen Aufbau eines Speichers .
Nach einer dritten Ausführungsform erfolgt keine selektive Adressierung einzelner Speicherzellen. Stattdessen erfolgt ein serielles Abspeichern in einem Schieberegister. Durch den Verzicht auf eine selektive Adressierung ergibt sich wieder eine vereinfachte Speicherstruktur.
Die erfindungsgemäße Halbleiteranordnung lässt sich aus vergleichsweise einfach zugänglichen Materialien mit Hilfe kostengünstiger Verfahren, beispielsweise Drucktechniken, herstellen. Die erfindungsgemäße Halbleiteranordnung eignet sich daher besonders für Anwendungen, bei welchen Informationen kostengünstig über einen Zeitraum von bis zu mehreren Monaten gespeichert werden. Gegenstand der Erfindung ist daher auch ein Etikett, umfassend ein Substrat, eine Befestigungsschicht und zumindest eine auf dem Substrat vorgesehene Halbleiteranordnung, wie sie oben beschrieben wurde. Als Substrat eignen sich dabei beispielsweise Papier oder eine dünne flexible Kunststofffolie, auf deren einer Seite die erfindungsgemäße Halbleiteranordnung, beispielsweise durch Aufdrucken, aufgebracht ist. Auf der erfindungsgemäßen Halbleiteranordnung kann dann, ggf. durch eine Schutzschicht getrennt, eine Klebeschicht als Befestigungsschicht aufgebracht sein, mit deren Hilfe das Etikett auf einem Gegenstand befestigt wird. In diesem Fall ist die erfindungsgemäße Halbleiteranordnung gegen mechanische Einflüsse abgeschirmt, die eine Zerstörung bewirken könnten. Anwendungsgebiete für derartige Etiketten sind beispielsweise die bereits eingangs erwähnten Etiketten zur Auszeichnung von Waren oder beispielsweise auch elektronische Briefmarken, deren Wert beim Verkauf auf die Briefmarke gespeichert wird. Vorteilhaft wird bei diesen Etiketten der Speicherinhalt destruktiv ausgelesen, d.h. der Speicherinhalt nach dem Auslesen nicht mehr zurückgeschrieben. Auf diese Weise lassen sich beispielsweise Briefmarken gleichzeitig mit dem Auslesen ihres Wertes entwerten.
Ein weiteres Anwendungsgebiet für die erfindungsgemäße Halbleiteranordnung sind Chipkarten, umfassend ein Substrat und zumindest eine auf dem Substrat vorgesehene Halbleiteranordnung, wie sie oben beschrieben wurde. Derartige Chipkarten sind selbständig verkehrsfähig und können beispielsweise als Telefonkarten oder Rabattkarten verwendet werden. Bei Telefonkarten wird beim Kauf ein bestimmter Wert gespeichert, der dann beim Gebrauch schrittweise durch den Auslesevorgang entwertet wird. Als Substrat wird dabei geeignet ein Material verwendet, das eine höhere mechanische Festigkeit aufweist als sie beim oben beschriebenen Etikett erforderlich ist. Geeignet ist beispielsweise ein Substrat aus Pappe oder einem Kunststofflaminat. Die erfindungsgemäße Halbleiteranordnung wird dann geeignet zwischen zwei Papier- oder Kunststofflagen eingebettet, um sie von mechanischen Einflüssen zu schützen. Alternativ ist auch ein Schutz durch eine Lackschicht denkbar. Die beschriebene Chipkarte eignet sich zwar insbesondere für Anwendungen, die unter einem sehr starken Kostendruck stehen und bei denen nur eine beschränkte Gebrauchsdauer gefordert ist, es ist aber auch eine Ausführung möglich, die einen Gebrauch über längere Zeiträume ermöglicht, beispielsweise als Bankkarte, Kreditkarte oder Krankenkassenkarte.
Das oben beschriebene Etikett und die oben beschriebene Chipkarte wird bevorzugt in der Weise gestaltet, dass die gespeicherte Information kontaktlos eingeschrieben oder ausgelesen werden kann. Es ist jedoch auch eine Ausführungsform möglich, bei welcher ein Kontakt zum Beschreiben und Auslesen des Speichers vorgesehen ist, der zum Beschreiben/Auslesen mit einem entsprechenden Kontakt einer Schreib/Lesevorrichtung kontaktiert wird.

Claims

Patentansprüche
1. Halbleiteranordnung mit mindestens einer Halbleitereinrichtung mit einer Halbleiterstrecke aus mindestens einem organischen Halbleiter, g e k e n n z e i c h n e t d u r c h mindestens eine auf einem ferroelektrischen Effekt in einem Speichermaterial beruhende wiederbeschreibbare Speicherzelle.
2. Halbleiteranordnung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a s s das Speichermaterial ein organisches Polymer mit ferroelektrischen Eigenschaften ist.
3. Halbleiteranordnung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , d a s s das organische Polymer mit ferroelektrischen Eigenschaften ein fluoriertes Polyen ist.
4. Halbleiteranordnung nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , d a s s das fluorierte Polyen ein Polyvinylidendif luorid ist.
5. Halbleiteranordnung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a s s das Speichermaterial ein anorganisches Material mit ferroelektrischen Eigenschaften ist.
6. Halbleiteranordnung nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , d a s s das anorganische Material ein ferroelektrisches Titanat oder Tantalat ist.
7. Halbleiteranordnung nach einem der Ansprüche 1 bis 6, g e k e n n z e i c h n e t d u r c h passive und aktive Halbleitereinrichtungen mit Halbleiterstrecken aus organischen Halbleitern, Leiterbahnen und Isolatorschichten, die die Halbleiteranordnung zu einem RF-ID- Etikett ergänzen.
8. Halbleiteranordnung nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , d a s s eine Koerzitivspannung der Speicherzelle einem Arbeitsbereich der Halbleitereinrichtungen angepasst ist.
9. Halbleiteranordnung nach einem der Ansprüche 1 bis 8, g e k e n n z e i c h n e t d u r c h organische Auswahltransistoren zur Adressierung der Speicherzellen.
10. Halbleiteranordnung nach einem der Ansprüche 1 bis 8, g e k e n n z e i c h n e t d u r c h eine passive Matrix zur Adressierung der Speicherzellen.
11. Halbleiteranordnung nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , d a s s die Speicherzellen zu einem Schieberegister konfiguriert sind.
12. Etikett, umfassend einen Träger, eine Befestigungsschicht und zumindest eine auf dem Träger vorgesehene Halbleiteranordnung gemäß einem der Ansprüche 1 bis 11.
13. Chipkarte, umfassend einen Träger und zumindest eine auf dem Träger vorgesehene Halbleiteranordnung gemäß einem der Ansprüche 1 bis 11.
EP02785070A 2001-11-16 2002-11-15 Halbleiteranordnung mit transistoren auf basis organischer halbleiter und nichtflüchtiger schreib-lese-speicherzellen Withdrawn EP1444698A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10156470A DE10156470B4 (de) 2001-11-16 2001-11-16 RF-ID-Etikett mit einer Halbleiteranordnung mit Transistoren auf Basis organischer Halbleiter und nichtflüchtiger Schreib-Lese-Speicherzellen
DE10156470 2001-11-16
PCT/DE2002/004235 WO2003046922A2 (de) 2001-11-16 2002-11-15 Halbleiteranordnung mit transistoren auf basis organischer halbleiter und nichtflüchtiger schreib-lese-speicherzellen

Publications (1)

Publication Number Publication Date
EP1444698A2 true EP1444698A2 (de) 2004-08-11

Family

ID=7706068

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02785070A Withdrawn EP1444698A2 (de) 2001-11-16 2002-11-15 Halbleiteranordnung mit transistoren auf basis organischer halbleiter und nichtflüchtiger schreib-lese-speicherzellen

Country Status (8)

Country Link
US (1) US7208823B2 (de)
EP (1) EP1444698A2 (de)
JP (1) JP2005510865A (de)
KR (1) KR100633943B1 (de)
CN (1) CN1636249A (de)
DE (1) DE10156470B4 (de)
TW (1) TWI223462B (de)
WO (1) WO2003046922A2 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10200475A1 (de) * 2002-01-09 2003-07-24 Samsung Sdi Co Nichtflüchtiges Speicherelement und Anzeigematrizen daraus
CN1742343B (zh) * 2003-01-29 2011-10-19 波尔伊克两合公司 有机存储单元及其驱动电路
DE102004025676B4 (de) * 2004-05-26 2008-09-04 Qimonda Ag Integrierter Halbleiterspeicher mit organischem Auswahltransistor
DE102004025675B4 (de) * 2004-05-26 2008-02-14 Qimonda Ag Integrierter Halbleiterspeicher mit organischem Auswahltransistor
NO321381B1 (no) * 2004-07-22 2006-05-02 Thin Film Electronics Asa Elektrisk viaforbindelse og tilknyttet kontaktanordning samt fremgangsmate til deres fremstilling
CN101943667B (zh) * 2005-02-10 2013-06-19 株式会社半导体能源研究所 半导体器件
DE102005009511B3 (de) * 2005-02-24 2006-12-14 Infineon Technologies Ag Halbleiterspeichervorrichtung und Verfahren zur Herstellung einer Halbleiterspeichervorrichtung
KR100966302B1 (ko) * 2005-11-15 2010-06-28 서울시립대학교 산학협력단 메모리 장치
WO2007058436A1 (en) * 2005-11-15 2007-05-24 Iferro Co., Ltd. Memory device
KR100732294B1 (ko) * 2005-11-17 2007-06-25 주식회사 하이닉스반도체 불휘발성 강유전체 메모리를 포함하는 rfid에서의 복조장치
JPWO2008007664A1 (ja) * 2006-07-11 2009-12-10 武田薬品工業株式会社 二環性複素環化合物およびその用途
DE102006039927A1 (de) * 2006-08-25 2008-03-06 Printed Systems Gmbh Navigationsgerät
KR101201891B1 (ko) 2009-03-26 2012-11-16 한국전자통신연구원 투명 비휘발성 메모리 박막 트랜지스터 및 그의 제조 방법
US8558295B2 (en) * 2009-08-25 2013-10-15 Electronics And Telecommunications Research Institute Nonvolatile memory cell and method of manufacturing the same
CN109980014B (zh) * 2019-03-26 2023-04-18 湘潭大学 一种后栅极铁电栅场效应晶体管及其制备方法
KR102273336B1 (ko) 2019-08-26 2021-07-06 충북대학교 산학협력단 Rf-id용 전자파 흡수체 및 이를 포함하는 장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105792A (ja) * 1985-10-04 1986-05-23 Toray Ind Inc 強誘電性高分子メモリ
JP2788265B2 (ja) * 1988-07-08 1998-08-20 オリンパス光学工業株式会社 強誘電体メモリ及びその駆動方法,製造方法
US5206525A (en) * 1989-12-27 1993-04-27 Nippon Petrochemicals Co., Ltd. Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials
JP3307928B2 (ja) * 1991-01-09 2002-07-29 シーメンス アクチエンゲゼルシヤフト メモリセル装置およびその作動方法
JPH0722669A (ja) * 1993-07-01 1995-01-24 Mitsubishi Electric Corp 可塑性機能素子
US5608246A (en) * 1994-02-10 1997-03-04 Ramtron International Corporation Integration of high value capacitor with ferroelectric memory
JPH1098162A (ja) 1996-09-20 1998-04-14 Hitachi Ltd 半導体集積回路装置の製造方法
US5858843A (en) * 1996-09-27 1999-01-12 Intel Corporation Low temperature method of forming gate electrode and gate dielectric
DE19640239A1 (de) 1996-09-30 1998-04-02 Siemens Ag Speicherzelle mit Polymerkondensator
US5981970A (en) 1997-03-25 1999-11-09 International Business Machines Corporation Thin-film field-effect transistor with organic semiconductor requiring low operating voltages
NO972803D0 (no) * 1997-06-17 1997-06-17 Opticom As Elektrisk adresserbar logisk innretning, fremgangsmåte til elektrisk adressering av samme og anvendelse av innretning og fremgangsmåte
DE19935527A1 (de) * 1999-07-28 2001-02-08 Giesecke & Devrient Gmbh Aktive Folie für Chipkarten mit Display
US20050032226A1 (en) * 1999-10-01 2005-02-10 Natan Michael J. Encoded nanoparticles in paper manufacture
EP1103916A1 (de) * 1999-11-24 2001-05-30 Infineon Technologies AG Chipkarte
DE10012204A1 (de) * 2000-03-13 2001-09-20 Siemens Ag Einrichtung zum Kennzeichnen von Stückgut
CN1181546C (zh) * 2000-03-28 2004-12-22 皇家菲利浦电子有限公司 带可编程存储器单元的集成电路
US6774578B2 (en) * 2000-09-19 2004-08-10 Semiconductor Energy Laboratory Co., Ltd. Self light emitting device and method of driving thereof
US7025277B2 (en) * 2000-09-25 2006-04-11 The Trustees Of Princeton University Smart card composed of organic processing elements
NO20005980L (no) * 2000-11-27 2002-05-28 Thin Film Electronics Ab Ferroelektrisk minnekrets og fremgangsmåte ved dens fremstilling
US6646903B2 (en) * 2001-12-03 2003-11-11 Intel Corporation Ferroelectric memory input/output apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03046922A2 *

Also Published As

Publication number Publication date
JP2005510865A (ja) 2005-04-21
US20050077606A1 (en) 2005-04-14
CN1636249A (zh) 2005-07-06
TW200301974A (en) 2003-07-16
KR100633943B1 (ko) 2006-10-13
WO2003046922A3 (de) 2003-08-14
DE10156470A1 (de) 2003-05-28
TWI223462B (en) 2004-11-01
US7208823B2 (en) 2007-04-24
DE10156470B4 (de) 2006-06-08
WO2003046922A2 (de) 2003-06-05
KR20040053315A (ko) 2004-06-23

Similar Documents

Publication Publication Date Title
DE10156470B4 (de) RF-ID-Etikett mit einer Halbleiteranordnung mit Transistoren auf Basis organischer Halbleiter und nichtflüchtiger Schreib-Lese-Speicherzellen
EP1375131B1 (de) Laminat mit einer als Antennenstruktur ausgebildeten elektrisch leitfähigen Schicht
DE102004016155B3 (de) Kraftsensor mit organischen Feldeffekttransistoren, darauf beruhender Drucksensor, Positionssensor und Fingerabdrucksensor
EP2353124B1 (de) Identifikationssystem sowie anwendungen
EP1899901B1 (de) Mehrschichtkörper mit elektrisch steuerbaren, optisch wirksamen schichtsystemen
CN106575702B (zh) 具有多级操作的非易失性铁电存储器单元
EP1328943A1 (de) Organischer datenspeicher, identifizierungsmarke (rfid-tag) mit organischem datenspeicher, verwendungen eines organischen datenspeichers
CN101073125A (zh) 半导体器件及其制造方法
CN107077966A (zh) 掺杂石墨烯的电极作为用于铁电电容器的互连体
EP1436839A2 (de) Elektronikbauteil, schaltungskonzept dafür und herstellungsverfahren
DE10126578A1 (de) Verwendung von Molekül- bzw. Polymerschichten als Speicherelemente
DE10212962B4 (de) Halbleiterspeicherzelle mit Zugriffstransistor auf der Grundlage eines organischen Halbleitermaterials und Halbleiterspeichereinrichtung
EP1943613B1 (de) Dokument mit einem elektronischen gerät
WO2009132773A1 (de) Deckel- und/oder verschlussfolie für eine verpackung sowie verfahren und system zur ermittlung des öffnungszustands einer verpackung
CN101257088B (zh) 存储元件及半导体装置以及其制造方法
DE10212926A1 (de) Halbleiterspeicherzelle und Halbleiterspeichereinrichtung
DE10335284A1 (de) Vorrichtung zur Aufbewahrung von festen und/oder flüssigen und/oder gasförmigen Gegenständen
DE19945708C2 (de) Chipkarte und Vorstufe hierfür
EP1999757B1 (de) Verfahren zum programmieren einer elektronischen schaltung sowie elektronische schaltung
DE102007028357A1 (de) Transponderkarte
DE102004025675B4 (de) Integrierter Halbleiterspeicher mit organischem Auswahltransistor
DE10111454A1 (de) Speicheranordnung und Computer mit Speicheranordnung
WO2002022359A1 (de) Maschinenlesbares selbstklebendes etikett
WO2011003594A1 (de) Organisch-elektronische schaltung
AT519053A1 (de) Produkt mit gedruckter elektronischer Schaltung zur Funkkommunikation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040510

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IE IT NL

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KLAUK, HAGEN

Inventor name: SCHMID, GUENTER

Inventor name: HALIK, MARCUS

17Q First examination report despatched

Effective date: 20060607

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 27/28 20060101ALI20080915BHEP

Ipc: G11C 11/22 20060101AFI20080915BHEP

Ipc: H01L 51/05 20060101ALI20080915BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090211