EP1436839A2 - Elektronikbauteil, schaltungskonzept dafür und herstellungsverfahren - Google Patents
Elektronikbauteil, schaltungskonzept dafür und herstellungsverfahrenInfo
- Publication number
- EP1436839A2 EP1436839A2 EP02769914A EP02769914A EP1436839A2 EP 1436839 A2 EP1436839 A2 EP 1436839A2 EP 02769914 A EP02769914 A EP 02769914A EP 02769914 A EP02769914 A EP 02769914A EP 1436839 A2 EP1436839 A2 EP 1436839A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- components
- organic
- grouping
- circuit
- active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 238000005538 encapsulation Methods 0.000 claims abstract description 19
- 239000003990 capacitor Substances 0.000 claims description 33
- 238000004026 adhesive bonding Methods 0.000 claims description 4
- 238000001465 metallisation Methods 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 230000005669 field effect Effects 0.000 claims description 3
- 229920001940 conductive polymer Polymers 0.000 claims description 2
- 238000000034 method Methods 0.000 description 25
- 239000011368 organic material Substances 0.000 description 10
- 239000011888 foil Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 229920001002 functional polymer Polymers 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 238000010292 electrical insulation Methods 0.000 description 3
- -1 Alloys Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000013086 organic photovoltaic Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K19/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K19/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
- H10K19/80—Interconnections, e.g. terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/58—Structural electrical arrangements for semiconductor devices not otherwise provided for
- H01L2223/64—Impedance arrangements
- H01L2223/66—High-frequency adaptations
- H01L2223/6661—High-frequency adaptations for passive devices
- H01L2223/6677—High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
Definitions
- the invention relates to a new concept for the realization of an encapsulated and at least partially organic electronic component.
- This includes a new concept for combining various electrical components to form an electronic component, such as an antenna, diode (rectifier and / or light-emitting diode), transistor, etc., and a circuit optimized for this.
- RFID radio frequency identification
- Photovoltaic cell and the like based on conventional silicon technology.
- These electronic components are used, for example, as an electronic bar code for consumer goods, as an electronic watermark, as an electronic stamp, as a luggage tag and / or as a ticket.
- Such electronic components can be manufactured significantly cheaper if they are at least partially constructed from components that are based on organic electronics (plastic electronics).
- organic electronics plastic electronics
- the rectifier diode 3 makes only half of the radiated electrical power usable as a supply for the RFID tag, because only one half-wave of the AC voltage can be rectified with a diode. This is particularly serious because the power radiated for an RFID tag, for example, is limited by law and the halving of the radiated power considerably limits the working range and thus the areas of application of the electronic components.
- a typical electronic component such as the RFID tag comprises several components, for example an antenna, capacitors, diodes (light-emitting diodes and / or rectifier diodes), possibly photovoltaic cells and at least one integrated circuit with transistors.
- These individual components require different manufacturing processes because they require different materials and processing techniques.
- For the manufacture of the transistors one needs particularly high-resolution application techniques for the structuring and works with materials that are relatively easy to handle, whereas the manufacture of the diode and / or the capacitor on an organic basis requires the handling of difficult materials and, in return, sufficient structuring is sufficient Quality delivers.
- Metal is usually used in the manufacture of the antenna, which in turn is completely different processing machines and
- the object of the invention is therefore to provide an at least partially organic electronic component and / or a circuit which, by selecting and arranging the components, enables inexpensive production and encapsulation.
- the focus here is on optimizing the known circuits with regard to power transmission and (load) modulation and thereby realizing rational mass production processes.
- the invention relates to an organic electronic component, comprising at least three groupings of components: a grouping of essentially inorganic components (for example antenna), a grouping of passive, preferably organic components, a grouping of active, preferably organic components, the grouping of the passive components contains no active components or components and the grouping of the active components essentially contains organic field-effect transistors and generally does not contain any passive components which can be produced three groups separately from one another, via electrical contacts on a substrate and / or are interconnected via an encapsulation and implement a circuit through which electrical contacts between passive and active components run from one grouping to another.
- a grouping is one or more component (s) which are combined on a (piece of) substrate (s) and / or under an encapsulation and which can be produced in process steps that are easy to process and / or comparable in terms of conditions ,
- the invention also relates to a circuit for an electronic component based at least in part on organic functional polymers, comprising the following components: - an antenna (1), a capacitor (2), a diode (3) and a modulation transistor (4) in front of an integrated circuit (5), two capacitors (7, 8) and a further diode (6) being connected in such a way that the integrated circuit (5) is supplied via a capacitor (7) and at the same time prevented via a diode (6) the modulation transistor (4) can extract energy from this capacitor (7).
- the invention relates to a method for producing an organic electronic component at least one inorganic component (antenna), a passive, preferably organically based, and comprising an active, preferably organically based component, the antenna, passive and active component being prefabricated separately and then using simple electrical contacts of the individual elements the circuit is realized.
- An electronic transponder such as an RFID tag
- an electronic component in any case a part comprising several components, one component being the smaller unit but also made up of a large number of components.
- Components such as transistors, capacitors, photovoltaic cells, etc. can exist.
- a “passive component” is a diode (rectifier and / or light-emitting diode), a coupler such as an optocoupler, a capacitor, a resistor and / or the like.
- a transistor, a photovoltaic cell, a sensor and / or the like is, for example, an “active component”.
- passive components such as resistors can also be contained in an integrated active circuit.
- Passive and / or active components are preferably used within the scope of the invention which at least partially contain organic functional polymers (or generally electrically conductive or semiconducting organic materials).
- organic functional polymers or generally electrically conductive or semiconducting organic materials.
- these are then referred to as "organic components", although non-organic parts may also be present in the component, but at least one organic part, preferably an organic functional polymer, is in a component which is referred to here as an "organic component” , contain.
- the circuit is particularly advantageous for use in RFID tags.
- an antenna which can be a coil, for example, either made of metal, a metal-containing compound such as Alloys, copper, aluminum and / or an organic functional polymer, which may also contain metal, such as Conductive silver and / or only organic material, e.g. Polyaniline, Pedot, soot or mixtures thereof.
- the antenna is, like the other components and / or components of the organic electronic component, on one
- a substrate e.g. a flexible film (such as polyester) is used.
- a flexible film such as polyester
- these barrier properties can either be given by the film material itself, by additives in the film, by coating (s) (such as silicates and / or metallizations) and / or by several of the individual measures mentioned.
- the substrate film should be stable against damage due to the conditions of the production steps (temperature, mechanical loads, process media, ).
- the corresponding components are applied to the substrate and / or the encapsulation, preferably flexible foils, e.g. an integrated circuit consisting of organic transistors, passive components, organic diodes (both light-emitting diodes and rectifier diodes), organic photovoltaic cells and similar components.
- flexible foils e.g. an integrated circuit consisting of organic transistors, passive components, organic diodes (both light-emitting diodes and rectifier diodes), organic photovoltaic cells and similar components.
- a combination of organic and inorganic components is also possible (e.g. a largely metallic antenna combined with an organic transponder chip circuit).
- an insulation layer is applied at least to the surface of a foil (e.g. by screen printing, spraying, curtain casting, laminating another, possibly pre-punched foil ).
- the individual components are provided with electrically conductive contacts. Two or more of these components are now connected to one another by connecting these electrical contacts to one another, advantageously with an electrically conductive adhesive or an electrically conductive compound.
- the required electrical through-plating or conductor tracks for through-plating can be introduced at the same time, or are subsequently opened by opening the insulation layer, e.g. generated by laser.
- the vias can now be filled conductive, e.g. by screen printing a conductive adhesive or by electroless metallization. In the simplest case, only a thin insulation layer is chosen so that the vias do not have to be filled.
- the components are again preferably encapsulated with a film which has a similar structure and properties to those described above for the substrate. This can e.g. done by gluing or welding.
- the encapsulation is preferably applied in a gastight manner. If the individual components were encapsulated before the assembly and contacting to the finished electronic component, the electrical connections can be led out of this encapsulation, e.g. for power supply, signal transmission or for sensory purposes. An encapsulated component with combined polymer-electronic components is thus obtained. If the different components have to be manufactured in different processes or if this is economically more favorable, the different components can also be applied separately on the substrate film and / or on the encapsulation film and electrically brought together in the connection process described above. On the one hand, attention must be paid to electrical insulation and, on the other hand, to a defined through-connection.
- the manufacturing process of the respective component or of the electronic component is optimized in such a way that the two foils (substrate and encapsulation) are used equally for arranging components by as little as possible to need individual manufacturing steps for overall production.
- organic material or “organic functional poly er” here encompasses all types of organic, organometallic and / or organic-inorganic plastics (hybrids), in particular those which are described in English e.g. be called "plastics". These are all types of substances with the exception of the semiconductors that form the classic diodes (germanium, silicon) and the typical metallic conductors. A restriction in the dogmatic sense to organic material as carbon-containing material is therefore not provided, but rather is also due to the widespread use of e.g. Silicones thought. Furthermore, the term should not be subject to any restriction with regard to the molecular size, in particular to polymeric and / or oligomeric materials, but the use of "small molecules” is also entirely possible.
- the word component "polymer" in the functional polymer is historical and therefore contains no information about the presence of an actually polymeric compound.
- the circuit is particularly advantageous for RFID tags based on organic material.
- the circuit enables cost-effective production and encapsulation by means of a small number of different components.
- the manufacturing method takes into account the fact that the individual components of an electronic component, such as a capacitor and transistor, for example, have different manufacturing conditions and requirements. In this way, all components of a "type" are combined on one component, so that the component can be produced in the shortest possible production line.
- the components are then encapsulated either individually or together on the substrate and connected to one another. It can still be a Component with components on an organic basis in connection with conventional, ie silicon-containing components.
- Figure 1 shows the state of the art as published by Hart, C.M .; De Leeuw, D.M. et al., Philips Res. Lab., ESSCIRC '98, ISBN 2-86332-235-4, 1998.
- FIGS. 2-4 show schematically different embodiments of the circuit
- FIG. 5 shows the circuit from FIG. 4 divided into three components
- FIGS. 6 and 7 show possibilities for realizing the circuit as finished electronic components.
- the circuit 1 shows a circuit for an RFID tag as it is state of the art.
- the transistor 4 and the integrated circuit 5 are made of organic material.
- the antenna 1, the capacitor 2 and the silicon diode 3 are made of inorganic materials.
- the OFET 4 after the rectifier diode 3 the problem of the inadequate switching speed and the AC voltage unsuitability of the OFETs compared to conventional transistors is solved because of the property of organic materials to act as charge accumulators and not through charge invasion.
- the modulation transistor 4 can only switch a small part of the electrical power, since otherwise the power supply for the logic circuit 5 would break down.
- the diode 3 can only use half of the radiated electrical power as a supply for the RFID tag.
- Simple circuit variations of the Philips publication consist in integrating the transistor 4 into the logic circuit 5 or omitting it entirely and using the load change in the logic circuit 5 directly as a modulation signal.
- An example of this is a ring oscillator, which is connected as the only logic circuit to the rectifier output. The oscillation changes the power consumption periodically, this can be read out directly as load modulation. This enables simple electronic watermarks to be implemented, since, depending on the manufacture of the ring oscillators, they oscillate at a very specific frequency.
- Figure 2 shows an embodiment
- An antenna 1 forms, together with the capacitor 2, an oscillating circuit which is adapted to the transmission frequency of a reading device.
- the organic diode 3 forms, together with the capacitor 8, a rectifier which outputs a smoothed DC voltage.
- the organic modulation transistor 4 is connected to the output of the rectifier.
- the organic capacitor 7 forms an energy store for the logic circuit 5, the organic diode 6 prevents the capacitor 7 from being discharged via the modulation transistor 4.
- the logic circuit 8 contains circuits which read out a memory and serialize the information bit by bit to the Pass on output. This is connected to the gate of the modulation transistor 4. The speed of the logic circuit 5 is independent of the transmission frequency of the reader.
- FIG. 3 shows a similar embodiment, but the rectifying diode 3 is replaced by a bridge rectifier 3.
- This rectifier includes four integrated organic diodes. If positive and negative voltages are required for the logic circuit (IC), this can be achieved by means of two rectifier units connected in parallel with simple diodes or diode bridge circuits. A further possibility for this is the construction of a voltage divider behind a simple rectifier circuit, for example with resistors connected in series.
- FIG. 4 again shows an embodiment of a circuit which is similar to that of Figures 2 and 3, but all capacitors are each by one or two org. Diodes have been replaced.
- Capacitor 2 is operated with AC voltage, so it is replaced by two diodes 2, 2 ⁇ connected in series with opposite poles.
- the capacitors 7 and 8 are supplied with direct voltage, so they can be powered by one diode each
- the logic circuit is supplied via an energy store (for example an organic capacitor 7), with an organic diode 6 preventing the modulation transistor 4 from storing this Can withdraw energy (see embodiments of Figures 2 to 4).
- This energy store is then charged when the modulation transistor 4 is in the blocking state.
- the energy store is discharged when the bit sequence 1 1 1 1 ... (or 0 0 0 0, depending on the coding of the logic) occurs. This is prevented if the logic circuit 5 of the RFID tag outputs the information bits in such a way that the modulation transistor 4 is switched off for a very short time between each bit. This can be carried out in such a way that the energy store cannot fall below a certain charge state, regardless of the bit sequence.
- the main advantage of energy storage is that the modulation transistor 4 can switch the electrical power 100% without the voltage supply for the logic circuit 5 breaking down.
- Another problem that is solved with the circuit is the transmission of higher electrical power through the use of organic integrable diodes as are known from DE 100 44 842.9. This enables the use of a diode bridge circuit for rectification. As a result, twice the power is transmitted, since both half-waves of the AC voltage can be used (see exemplary embodiments in FIGS. 3 and 4). With the approach known from the prior art, the hybrid use of a Si diode, such a bridge circuit can practically not be used, since the production of RFID tags with hybrid Si diodes becomes too complex and expensive.
- FIG. 4 A particularly advantageous embodiment of the invention (FIG. 4) is based on the fact that organic diodes behave like a capacitor in the reverse direction. With two diodes connected in series with reversed polarity, capacitors that work with AC voltage are also obtained.
- One advantage of this circuit is the greatly simplified structure of the polymer RFID tags, since there is no need for capacitors, that is to say several layers of functional polymer and the associated process steps.
- FIG. 5 shows the circuit from FIG. 4 divided into different components 1, 2 and 3.
- component 11 which is a substrate 14 (flexible film with barrier properties), which is provided with an electrically conductive track 1, which functions as an antenna, and with electrically conductive contacts 15.
- component 12 which contains all components that function as a diode or capacitor (2, 3, 6, 7 and 8) and also electrically conductive contacts 15.
- component 13 in which all components 4, 5 are assembled, which contain an organic transistor, and likewise electrically conductive contacts 15. Only individual components need to be based on organic material, for example an organic chip with an inorganic diode can also be built up or the antenna can be made of metal or metal-containing connections.
- FIG. 6 shows how the individual components 11, 12 and 13 can advantageously be built up to form an overall system.
- FIG. 6E shows the assembled electronic component and 6D the encapsulation film lying above it.
- FIG. 6F a cross section through an electronic component is shown in FIG. 6F.
- an antenna (1) and electrical contacts (15) are applied to the substrate film (14) using appropriate methods (for example by methods such as sputtering, vapor deposition, galvanic or currentless deposition, printing, micro-punching, photolithography, etching methods or combinations) , this is component 11.
- One possibility for constructing capacitors is, for example, that a metallization or conductive polymer surface is produced for the capacitor on the substrate side, which is arranged in such a way that a capacitance is created by this surface and conductive surfaces of the transponder antenna after the two foils have been joined.
- the encapsulation film 16 which, like the substrate 14, should have barrier properties for external influences such as oxygen and / or water vapor and can be applied to the other components 11, 12 and 13 by appropriate methods such as gluing or laminating.
- the individual components or components 11, 12 and / or 13 are thus applied to the substrate or to the encapsulation film and coated with an insulation layer for electrical insulation.
- the foils prepared in this way are now adjusted and added to the overall system e.g. put together the transponder.
- the adhesive could also correspond to the above-mentioned insulation layer at the same time, or could be applied in a further process step, for example by printing, spraying, curtain casting.
- the two foils are adjusted and pressed (autoclave, vacuum press or the like).
- the adhesive application and / or the pressing process ensures that the adhesive in the edge area of the two foils Over-thickness is minimized, so that there is also a lateral barrier against gases and moisture.
- electrical contact with the vias must also be made possible.
- the adhesive is cured thermally and / or by UV light.
- This principle of construction is also advantageous for many other products with polymer electronic components, for example a photovoltaic sensor structure with integrated evaluation circuit or OLEDs with integrated control circuit.
- the photovoltaic or OLED cells can be applied to one film and the polymer circuits to the other film. It is of course also possible in this way to connect organic components with conventional, inorganic components.
- FIG. 7 now describes how these components can be advantageously constructed in a different way to form an overall system.
- the figure is again divided into sub-figures 7A to 7E, which show the following:
- an antenna 1 and electrical contacts 15 are applied to the substrate film 14 using appropriate methods (for example by methods such as sputtering, vapor deposition, galvanic or electroless deposition, printing, micro-punching, photolithography, etching methods or combinations), this is component 11.
- the component 12 is applied directly to the encapsulation film 14, which reduces the total number of components and eliminates one work step.
- the method for producing the electronic components can not only be used for the production of RFID tags, but there are many other application examples which contain at least one organic electronic component and are built on a flexible substrate, such as Example:
- OLED Active organic displays
- Advertising labels for example with flashing and / or luminous and / or acoustic displays.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Credit Cards Or The Like (AREA)
- Thin Film Transistor (AREA)
- Combinations Of Printed Boards (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10151440 | 2001-10-18 | ||
DE10151440A DE10151440C1 (de) | 2001-10-18 | 2001-10-18 | Organisches Elektronikbauteil, Verfahren zu seiner Herstellung und seine Verwendung |
PCT/DE2002/003296 WO2003038897A2 (de) | 2001-10-18 | 2002-09-06 | Elektronikbauteil, schaltungskonzept dafür und herstellungsverfahren |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1436839A2 true EP1436839A2 (de) | 2004-07-14 |
Family
ID=7702918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02769914A Withdrawn EP1436839A2 (de) | 2001-10-18 | 2002-09-06 | Elektronikbauteil, schaltungskonzept dafür und herstellungsverfahren |
Country Status (5)
Country | Link |
---|---|
US (1) | US7483275B2 (de) |
EP (1) | EP1436839A2 (de) |
JP (1) | JP4360910B2 (de) |
DE (1) | DE10151440C1 (de) |
WO (1) | WO2003038897A2 (de) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6924781B1 (en) * | 1998-09-11 | 2005-08-02 | Visible Tech-Knowledgy, Inc. | Smart electronic label employing electronic ink |
DE10043204A1 (de) * | 2000-09-01 | 2002-04-04 | Siemens Ag | Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung |
WO2004066197A1 (de) * | 2003-01-21 | 2004-08-05 | Siemens Aktiengesellschaft | Kunststoffprodukt mit integriertem low-cost-chip |
US6989697B2 (en) * | 2004-01-15 | 2006-01-24 | Organicid, Inc. | Non-quasistatic phase lock loop frequency divider circuit |
US10499465B2 (en) | 2004-02-25 | 2019-12-03 | Lynk Labs, Inc. | High frequency multi-voltage and multi-brightness LED lighting devices and systems and methods of using same |
US10575376B2 (en) | 2004-02-25 | 2020-02-25 | Lynk Labs, Inc. | AC light emitting diode and AC LED drive methods and apparatus |
DE102004040831A1 (de) | 2004-08-23 | 2006-03-09 | Polyic Gmbh & Co. Kg | Funketikettfähige Umverpackung |
DE102004059464A1 (de) * | 2004-12-10 | 2006-06-29 | Polyic Gmbh & Co. Kg | Elektronikbauteil mit Modulator |
DE102004059465A1 (de) | 2004-12-10 | 2006-06-14 | Polyic Gmbh & Co. Kg | Erkennungssystem |
DE102004063435A1 (de) | 2004-12-23 | 2006-07-27 | Polyic Gmbh & Co. Kg | Organischer Gleichrichter |
DE102005009819A1 (de) * | 2005-03-01 | 2006-09-07 | Polyic Gmbh & Co. Kg | Elektronikbaugruppe |
DE102005017655B4 (de) * | 2005-04-15 | 2008-12-11 | Polyic Gmbh & Co. Kg | Mehrschichtiger Verbundkörper mit elektronischer Funktion |
DE102005031448A1 (de) | 2005-07-04 | 2007-01-11 | Polyic Gmbh & Co. Kg | Aktivierbare optische Schicht |
DE102005035589A1 (de) | 2005-07-29 | 2007-02-01 | Polyic Gmbh & Co. Kg | Verfahren zur Herstellung eines elektronischen Bauelements |
DE102005044306A1 (de) | 2005-09-16 | 2007-03-22 | Polyic Gmbh & Co. Kg | Elektronische Schaltung und Verfahren zur Herstellung einer solchen |
WO2007038450A2 (en) * | 2005-09-23 | 2007-04-05 | Futurelogic, Inc. | Method and apparatus for the randomized storage of printouts |
US7642918B2 (en) * | 2005-10-21 | 2010-01-05 | Georgia Tech Research Corporation | Thin flexible radio frequency identification tags and subsystems thereof |
DE102006012708A1 (de) * | 2006-03-17 | 2007-09-20 | Polyic Gmbh & Co. Kg | Verfahren zur Herstellung eines aktiven oder passiven elektrischen Bauteils sowie elektrisches Bauteil |
FR2900752B1 (fr) * | 2006-05-05 | 2008-10-10 | Inside Contactless Sa | Procede et dispositif de transmission de donnees par modulation de charge |
DE102006039929A1 (de) * | 2006-08-25 | 2008-03-06 | Printed Systems Gmbh | Verfahren und System zur elektrischen Kopplung eines Informationsträgers mit einem Kontaktelement |
DE102007000875A1 (de) | 2007-11-12 | 2009-05-14 | Bundesdruckerei Gmbh | Dokument mit einer integrierten Anzeigevorrichtung |
DE102007000885A1 (de) * | 2007-11-12 | 2009-05-14 | Bundesdruckerei Gmbh | Dokument mit einer integrierten Anzeigevorrichtung |
DE102008026216B4 (de) | 2008-05-30 | 2010-07-29 | Polyic Gmbh & Co. Kg | Elektronische Schaltung |
US8463116B2 (en) | 2008-07-01 | 2013-06-11 | Tap Development Limited Liability Company | Systems for curing deposited material using feedback control |
US8292178B2 (en) * | 2009-09-17 | 2012-10-23 | Sap Ag | Integrated smart label |
CN103699928B (zh) * | 2014-01-08 | 2017-01-04 | 卓捷创芯科技(深圳)有限公司 | 一种可连续调整整流信号幅度的限幅电路与无源射频标签 |
DE102015204360A1 (de) * | 2015-03-11 | 2016-09-15 | Osram Oled Gmbh | Optoelektronisches Bauteil und Verfahren zum Austausch eines optoelektronischen Bauteils |
CN105303229B (zh) * | 2015-11-13 | 2020-05-22 | 捷德(中国)科技有限公司 | 一种可穿戴设备 |
Family Cites Families (111)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1052869A (en) * | 1912-05-20 | 1913-02-11 | Edwin M Wheelock | Automatic steering device for traction-engines. |
US3512052A (en) * | 1968-01-11 | 1970-05-12 | Gen Motors Corp | Metal-insulator-semiconductor voltage variable capacitor with controlled resistivity dielectric |
US3769096A (en) | 1971-03-12 | 1973-10-30 | Bell Telephone Labor Inc | Pyroelectric devices |
JPS543594B2 (de) * | 1973-10-12 | 1979-02-24 | ||
JPS54101176A (en) * | 1978-01-26 | 1979-08-09 | Shinetsu Polymer Co | Contact member for push switch |
US4442019A (en) * | 1978-05-26 | 1984-04-10 | Marks Alvin M | Electroordered dipole suspension |
US4340657A (en) * | 1980-02-19 | 1982-07-20 | Polychrome Corporation | Novel radiation-sensitive articles |
DE3338597A1 (de) | 1983-10-24 | 1985-05-02 | GAO Gesellschaft für Automation und Organisation mbH, 8000 München | Datentraeger mit integriertem schaltkreis und verfahren zur herstellung desselben |
JPS60117769A (ja) | 1983-11-30 | 1985-06-25 | Fujitsu Ltd | 半導体メモリ装置 |
US4926052A (en) | 1986-03-03 | 1990-05-15 | Kabushiki Kaisha Toshiba | Radiation detecting device |
JP2728412B2 (ja) | 1987-12-25 | 1998-03-18 | 株式会社日立製作所 | 半導体装置 |
GB2215307B (en) * | 1988-03-04 | 1991-10-09 | Unisys Corp | Electronic component transportation container |
US5364735A (en) * | 1988-07-01 | 1994-11-15 | Sony Corporation | Multiple layer optical record medium with protective layers and method for producing same |
US4937119A (en) * | 1988-12-15 | 1990-06-26 | Hoechst Celanese Corp. | Textured organic optical data storage media and methods of preparation |
US5892244A (en) * | 1989-01-10 | 1999-04-06 | Mitsubishi Denki Kabushiki Kaisha | Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor |
US6331356B1 (en) * | 1989-05-26 | 2001-12-18 | International Business Machines Corporation | Patterns of electrically conducting polymers and their application as electrodes or electrical contacts |
US5206525A (en) * | 1989-12-27 | 1993-04-27 | Nippon Petrochemicals Co., Ltd. | Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials |
FR2664430B1 (fr) * | 1990-07-04 | 1992-09-18 | Centre Nat Rech Scient | Transistor a effet de champ en couche mince de structure mis, dont l'isolant et le semiconducteur sont realises en materiaux organiques. |
FR2673041A1 (fr) * | 1991-02-19 | 1992-08-21 | Gemplus Card Int | Procede de fabrication de micromodules de circuit integre et micromodule correspondant. |
US5408109A (en) | 1991-02-27 | 1995-04-18 | The Regents Of The University Of California | Visible light emitting diodes fabricated from soluble semiconducting polymers |
US5170139A (en) * | 1991-03-28 | 1992-12-08 | Texas Instruments Incorporated | PIN diode switch |
US5159296A (en) * | 1991-03-28 | 1992-10-27 | Texas Instruments Incorporated | Four port monolithic gaas pin diode switch |
JPH0580530A (ja) * | 1991-09-24 | 1993-04-02 | Hitachi Ltd | 薄膜パターン製造方法 |
US5173835A (en) * | 1991-10-15 | 1992-12-22 | Motorola, Inc. | Voltage variable capacitor |
WO1993009469A1 (de) * | 1991-10-30 | 1993-05-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Belichtungsvorrichtung |
JP2709223B2 (ja) * | 1992-01-30 | 1998-02-04 | 三菱電機株式会社 | 非接触形携帯記憶装置 |
DE4243832A1 (de) | 1992-12-23 | 1994-06-30 | Daimler Benz Ag | Tastsensoranordnung |
JP3457348B2 (ja) * | 1993-01-15 | 2003-10-14 | 株式会社東芝 | 半導体装置の製造方法 |
FR2701117B1 (fr) | 1993-02-04 | 1995-03-10 | Asulab Sa | Système de mesures électrochimiques à capteur multizones, et son application au dosage du glucose. |
US5567550A (en) | 1993-03-25 | 1996-10-22 | Texas Instruments Incorporated | Method of making a mask for making integrated circuits |
JPH0722669A (ja) * | 1993-07-01 | 1995-01-24 | Mitsubishi Electric Corp | 可塑性機能素子 |
AU7563294A (en) * | 1993-08-24 | 1995-03-21 | Metrika Laboratories, Inc. | Novel disposable electronic assay device |
JP3460863B2 (ja) | 1993-09-17 | 2003-10-27 | 三菱電機株式会社 | 半導体装置の製造方法 |
FR2710413B1 (fr) | 1993-09-21 | 1995-11-03 | Asulab Sa | Dispositif de mesure pour capteurs amovibles. |
US5556706A (en) * | 1993-10-06 | 1996-09-17 | Matsushita Electric Industrial Co., Ltd. | Conductive layered product and method of manufacturing the same |
JP3246189B2 (ja) * | 1994-06-28 | 2002-01-15 | 株式会社日立製作所 | 半導体表示装置 |
US5792428A (en) * | 1994-07-18 | 1998-08-11 | Chemical Research & Licensing Company | Apparatus for conducting exothermic reactions |
JP3141692B2 (ja) * | 1994-08-11 | 2001-03-05 | 松下電器産業株式会社 | ミリ波用検波器 |
US5574291A (en) * | 1994-12-09 | 1996-11-12 | Lucent Technologies Inc. | Article comprising a thin film transistor with low conductivity organic layer |
US5630986A (en) | 1995-01-13 | 1997-05-20 | Bayer Corporation | Dispensing instrument for fluid monitoring sensors |
US5691069A (en) * | 1995-02-14 | 1997-11-25 | Avery Dennison Corporation | Acrylic emulsion coatings for rubber articles |
JP3068430B2 (ja) | 1995-04-25 | 2000-07-24 | 富山日本電気株式会社 | 固体電解コンデンサ及びその製造方法 |
US5652645A (en) * | 1995-07-24 | 1997-07-29 | Anvik Corporation | High-throughput, high-resolution, projection patterning system for large, flexible, roll-fed, electronic-module substrates |
US5625199A (en) * | 1996-01-16 | 1997-04-29 | Lucent Technologies Inc. | Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors |
GB2310493B (en) * | 1996-02-26 | 2000-08-02 | Unilever Plc | Determination of the characteristics of fluid |
JP3080579B2 (ja) * | 1996-03-06 | 2000-08-28 | 富士機工電子株式会社 | エアリア・グリッド・アレイ・パッケージの製造方法 |
DE19629656A1 (de) | 1996-07-23 | 1998-01-29 | Boehringer Mannheim Gmbh | Diagnostischer Testträger mit mehrschichtigem Testfeld und Verfahren zur Bestimmung von Analyt mit dessen Hilfe |
US6466131B1 (en) * | 1996-07-30 | 2002-10-15 | Micron Technology, Inc. | Radio frequency data communications device with adjustable receiver sensitivity and method |
EP0966775A4 (de) * | 1997-03-10 | 2004-09-22 | Prec Dynamics Corp | Reaktanzgekoppelte elemente in schaltungen auf flexiblen substraten |
US6344662B1 (en) * | 1997-03-25 | 2002-02-05 | International Business Machines Corporation | Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages |
KR100248392B1 (ko) * | 1997-05-15 | 2000-09-01 | 정선종 | 유기물전계효과트랜지스터와결합된유기물능동구동전기발광소자및그소자의제작방법 |
JP4509228B2 (ja) | 1997-08-22 | 2010-07-21 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 有機材料から成る電界効果トランジスタ及びその製造方法 |
BR9811636A (pt) * | 1997-09-11 | 2000-08-08 | Precision Dynamics Corp | Etiqueta de identificação de rádio freqâência em substrato flexìvel |
US6251513B1 (en) * | 1997-11-08 | 2001-06-26 | Littlefuse, Inc. | Polymer composites for overvoltage protection |
JPH11142810A (ja) | 1997-11-12 | 1999-05-28 | Nintendo Co Ltd | 携帯型情報処理装置 |
EP0958663A1 (de) * | 1997-12-05 | 1999-11-24 | Koninklijke Philips Electronics N.V. | Zwischenverstärker zur identifikation |
US5997817A (en) | 1997-12-05 | 1999-12-07 | Roche Diagnostics Corporation | Electrochemical biosensor test strip |
US5998805A (en) * | 1997-12-11 | 1999-12-07 | Motorola, Inc. | Active matrix OED array with improved OED cathode |
US6083104A (en) | 1998-01-16 | 2000-07-04 | Silverlit Toys (U.S.A.), Inc. | Programmable toy with an independent game cartridge |
JP2002515641A (ja) | 1998-01-28 | 2002-05-28 | シン フイルム エレクトロニクス エイエスエイ | 三次元の導電性または半導電性構造体を生成する方法およびこの構造体を消去する方法 |
US6087196A (en) * | 1998-01-30 | 2000-07-11 | The Trustees Of Princeton University | Fabrication of organic semiconductor devices using ink jet printing |
US6045977A (en) * | 1998-02-19 | 2000-04-04 | Lucent Technologies Inc. | Process for patterning conductive polyaniline films |
DE19816860A1 (de) | 1998-03-06 | 1999-11-18 | Deutsche Telekom Ag | Chipkarte, insbesondere Guthabenkarte |
US6033202A (en) * | 1998-03-27 | 2000-03-07 | Lucent Technologies Inc. | Mold for non - photolithographic fabrication of microstructures |
GB9808061D0 (en) * | 1998-04-16 | 1998-06-17 | Cambridge Display Tech Ltd | Polymer devices |
TW410478B (en) * | 1998-05-29 | 2000-11-01 | Lucent Technologies Inc | Thin-film transistor monolithically integrated with an organic light-emitting diode |
US5967048A (en) | 1998-06-12 | 1999-10-19 | Howard A. Fromson | Method and apparatus for the multiple imaging of a continuous web |
US6215130B1 (en) | 1998-08-20 | 2001-04-10 | Lucent Technologies Inc. | Thin film transistors |
CA2340005C (en) * | 1998-08-26 | 2014-05-06 | Sensors For Medicine And Science, Inc. | Optical-based sensing devices |
DE69831243T2 (de) * | 1998-10-13 | 2006-08-10 | Sony Deutschland Gmbh | Herstellungsverfahren einer Licht emittierenden Anzeigevorrichtung mit aktiver Matrix |
US6384804B1 (en) * | 1998-11-25 | 2002-05-07 | Lucent Techonologies Inc. | Display comprising organic smart pixels |
US6506438B2 (en) * | 1998-12-15 | 2003-01-14 | E Ink Corporation | Method for printing of transistor arrays on plastic substrates |
US6321571B1 (en) * | 1998-12-21 | 2001-11-27 | Corning Incorporated | Method of making glass structures for flat panel displays |
US6114088A (en) * | 1999-01-15 | 2000-09-05 | 3M Innovative Properties Company | Thermal transfer element for forming multilayer devices |
GB2347013A (en) * | 1999-02-16 | 2000-08-23 | Sharp Kk | Charge-transport structures |
US6300141B1 (en) | 1999-03-02 | 2001-10-09 | Helix Biopharma Corporation | Card-based biosensor device |
US6207472B1 (en) * | 1999-03-09 | 2001-03-27 | International Business Machines Corporation | Low temperature thin film transistor fabrication |
US6498114B1 (en) * | 1999-04-09 | 2002-12-24 | E Ink Corporation | Method for forming a patterned semiconductor film |
US6072716A (en) * | 1999-04-14 | 2000-06-06 | Massachusetts Institute Of Technology | Memory structures and methods of making same |
FR2793089B3 (fr) * | 1999-04-28 | 2001-06-08 | Rene Liger | Transpondeur a antenne integree |
US6383664B2 (en) | 1999-05-11 | 2002-05-07 | The Dow Chemical Company | Electroluminescent or photocell device having protective packaging |
DE19933757A1 (de) * | 1999-07-19 | 2001-01-25 | Giesecke & Devrient Gmbh | Chipkarte mit integrierter Batterie |
US6593690B1 (en) * | 1999-09-03 | 2003-07-15 | 3M Innovative Properties Company | Large area organic electronic devices having conducting polymer buffer layers and methods of making same |
US6517995B1 (en) * | 1999-09-14 | 2003-02-11 | Massachusetts Institute Of Technology | Fabrication of finely featured devices by liquid embossing |
US6340822B1 (en) * | 1999-10-05 | 2002-01-22 | Agere Systems Guardian Corp. | Article comprising vertically nano-interconnected circuit devices and method for making the same |
EP1149420B1 (de) * | 1999-10-11 | 2015-03-04 | Creator Technology B.V. | Integrierter schaltkreis |
US6335539B1 (en) | 1999-11-05 | 2002-01-01 | International Business Machines Corporation | Method for improving performance of organic semiconductors in bottom electrode structure |
US6284562B1 (en) | 1999-11-17 | 2001-09-04 | Agere Systems Guardian Corp. | Thin film transistors |
JP2001147659A (ja) * | 1999-11-18 | 2001-05-29 | Sony Corp | 表示装置 |
EP1103916A1 (de) * | 1999-11-24 | 2001-05-30 | Infineon Technologies AG | Chipkarte |
US6621098B1 (en) * | 1999-11-29 | 2003-09-16 | The Penn State Research Foundation | Thin-film transistor and methods of manufacturing and incorporating a semiconducting organic material |
US6197663B1 (en) * | 1999-12-07 | 2001-03-06 | Lucent Technologies Inc. | Process for fabricating integrated circuit devices having thin film transistors |
EP1243032B1 (de) | 1999-12-21 | 2019-11-20 | Flexenable Limited | Mit tintenstrahldruck erzeugte integrierte schaltungen |
US6706159B2 (en) | 2000-03-02 | 2004-03-16 | Diabetes Diagnostics | Combined lancet and electrochemical analyte-testing apparatus |
DE10012204A1 (de) * | 2000-03-13 | 2001-09-20 | Siemens Ag | Einrichtung zum Kennzeichnen von Stückgut |
EP1134694A1 (de) * | 2000-03-16 | 2001-09-19 | Infineon Technologies AG | Dokument mit integrierter elektronischer Schaltung |
JP2001267578A (ja) * | 2000-03-17 | 2001-09-28 | Sony Corp | 薄膜半導体装置及びその製造方法 |
US6329226B1 (en) * | 2000-06-01 | 2001-12-11 | Agere Systems Guardian Corp. | Method for fabricating a thin-film transistor |
DE10033112C2 (de) * | 2000-07-07 | 2002-11-14 | Siemens Ag | Verfahren zur Herstellung und Strukturierung organischer Feldeffekt-Transistoren (OFET), hiernach gefertigter OFET und seine Verwendung |
US7875975B2 (en) * | 2000-08-18 | 2011-01-25 | Polyic Gmbh & Co. Kg | Organic integrated circuit completely encapsulated by multi-layered barrier and included in RFID tag |
DE10043204A1 (de) * | 2000-09-01 | 2002-04-04 | Siemens Ag | Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung |
KR20020036916A (ko) * | 2000-11-11 | 2002-05-17 | 주승기 | 실리콘 박막의 결정화 방법 및 이에 의해 제조된 반도체소자 |
KR100390522B1 (ko) * | 2000-12-01 | 2003-07-07 | 피티플러스(주) | 결정질 실리콘 활성층을 포함하는 박막트랜지스터 제조 방법 |
US20020170897A1 (en) * | 2001-05-21 | 2002-11-21 | Hall Frank L. | Methods for preparing ball grid array substrates via use of a laser |
US6870180B2 (en) * | 2001-06-08 | 2005-03-22 | Lucent Technologies Inc. | Organic polarizable gate transistor apparatus and method |
JP2003089259A (ja) * | 2001-09-18 | 2003-03-25 | Hitachi Ltd | パターン形成方法およびパターン形成装置 |
US7351660B2 (en) * | 2001-09-28 | 2008-04-01 | Hrl Laboratories, Llc | Process for producing high performance interconnects |
US6946332B2 (en) * | 2002-03-15 | 2005-09-20 | Lucent Technologies Inc. | Forming nanoscale patterned thin film metal layers |
US7204425B2 (en) * | 2002-03-18 | 2007-04-17 | Precision Dynamics Corporation | Enhanced identification appliance |
US6812509B2 (en) * | 2002-06-28 | 2004-11-02 | Palo Alto Research Center Inc. | Organic ferroelectric memory cells |
US6870183B2 (en) * | 2002-11-04 | 2005-03-22 | Advanced Micro Devices, Inc. | Stacked organic memory devices and methods of operating and fabricating |
-
2001
- 2001-10-18 DE DE10151440A patent/DE10151440C1/de not_active Expired - Fee Related
-
2002
- 2002-09-06 WO PCT/DE2002/003296 patent/WO2003038897A2/de active Application Filing
- 2002-09-06 US US10/492,923 patent/US7483275B2/en not_active Expired - Fee Related
- 2002-09-06 EP EP02769914A patent/EP1436839A2/de not_active Withdrawn
- 2002-09-06 JP JP2003541053A patent/JP4360910B2/ja not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
FINKENZELLER K: "RFID-Handbuch, passage", RFID HANDBOOK: GRUNDLAGEN UND PRAKTISCHE ANWENDUNGEN, XX, XX, 1 January 1998 (1998-01-01), pages 36 - 44 * |
Also Published As
Publication number | Publication date |
---|---|
US20040256467A1 (en) | 2004-12-23 |
JP4360910B2 (ja) | 2009-11-11 |
JP2005508572A (ja) | 2005-03-31 |
DE10151440C1 (de) | 2003-02-06 |
WO2003038897A3 (de) | 2003-08-28 |
US7483275B2 (en) | 2009-01-27 |
WO2003038897A2 (de) | 2003-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10151440C1 (de) | Organisches Elektronikbauteil, Verfahren zu seiner Herstellung und seine Verwendung | |
DE102007046679B4 (de) | RFID-Transponder | |
Steckl | Circuits on cellulose | |
DE102010028444B4 (de) | Dokument mit einem Chip und Verfahren zur Herstellung eines Dokuments | |
WO2002015264A2 (de) | Verkapseltes organisch-elektronisches bauteil, verfahren zu seiner herstellung und seine verwendung | |
EP1836655A1 (de) | Organischer gleichrichter | |
EP1375131A1 (de) | Laminat mit einer als Antennenstruktur ausgebildeten elektrisch leitfähigen Schicht | |
EP1825516A2 (de) | Gatter aus organischen feldeffekttransistoren | |
DE19805282A1 (de) | Flächiger Träger mit einer Anzeigeeinrichtung | |
WO2002021612A1 (de) | Organischer gleichrichter, schaltung, rfid-tag und verwendung eines organischen gleichrichters | |
EP1825423B1 (de) | Elektronikbauteil mit modulator | |
DE602004003498T2 (de) | Flexibles halbleiter-bauelement und identifikationsetikett | |
JP4977126B2 (ja) | 電子機能を備える多層複合体 | |
EP1586004B1 (de) | Platine oder substrat für ein organisches elektronikgerät, sowie verwendung dazu | |
DE102010028868B4 (de) | Halbleitersubstratbasierte Anordnung für eine RFID-Einrichtung, RFID-Einrichtung und Verfahren zur Herstellung einer solchen halbleitersubstratbasierten Anordnung | |
DE102007028357A1 (de) | Transponderkarte | |
DE102008039473A1 (de) | Mehrschichtiges Folienelement | |
DE10229972B4 (de) | Tragbarer Datenträger mit einer polymerbasierten integrierten Schaltung | |
WO2007082798A1 (de) | Display mit energiespeicher, sowie herstellungsverfahren dazu | |
WO2015135829A1 (de) | Verfahren zum austauschen von daten zwischen einem wert- oder sicherheitsdokument und einer datenaustausch-vorrichtung und wert- oder sicherheitsdokument | |
DE102012203265B4 (de) | Kontaktlose Datenübertragungseinrichtung und diese enthaltendes Wert- und/oder Sicherheitsdokument | |
JPWO2019159614A1 (ja) | 無線通信半導体装置およびその製造方法 | |
AT519053A1 (de) | Produkt mit gedruckter elektronischer Schaltung zur Funkkommunikation | |
DE102006013606A1 (de) | Verfahren zum Programmieren einer elektronischen Schaltung sowie elektronische Schaltung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040303 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ZAPF, JOERG Inventor name: CLEMENS, WOLFGANG Inventor name: FIX, WALTER |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: POLYIC GMBH & CO. KG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: POLYIC GMBH & CO. KG |
|
17Q | First examination report despatched |
Effective date: 20090430 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150401 |