EP1443298A1 - Heizelement zum Zünden pyrotechnischer Ladungen - Google Patents

Heizelement zum Zünden pyrotechnischer Ladungen Download PDF

Info

Publication number
EP1443298A1
EP1443298A1 EP04100151A EP04100151A EP1443298A1 EP 1443298 A1 EP1443298 A1 EP 1443298A1 EP 04100151 A EP04100151 A EP 04100151A EP 04100151 A EP04100151 A EP 04100151A EP 1443298 A1 EP1443298 A1 EP 1443298A1
Authority
EP
European Patent Office
Prior art keywords
heating element
sintered
glass
base body
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04100151A
Other languages
English (en)
French (fr)
Other versions
EP1443298B1 (de
Inventor
Markus Ing. Forsthuber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirtenberger Schaffler Automotive Zunder GmbH
Original Assignee
Hirtenberger Schaffler Automotive Zunder GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirtenberger Schaffler Automotive Zunder GmbH filed Critical Hirtenberger Schaffler Automotive Zunder GmbH
Publication of EP1443298A1 publication Critical patent/EP1443298A1/de
Application granted granted Critical
Publication of EP1443298B1 publication Critical patent/EP1443298B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/12Bridge initiators
    • F42B3/124Bridge initiators characterised by the configuration or material of the bridge

Definitions

  • the present invention relates to a heating element for Igniting pyrotechnic charges consisting of a Basic body, a textured resistive layer, on the main body is arranged, and contact fields, the overlapping on the two ends of the resistor track are arranged. It further relates to a method for Production of a heating element, where appropriate first glass or glass ceramic by screen printing process is printed on a base body and then dried and is sintered, these steps being repeated until the desired total layer thickness has been reached; after that the resistance paste by screen printing on the Glass ceramic substrate or coating is printed and then dried and sintered; and after that the Conductor paste as contacting by screen printing process overlapping over the resistor track is printed and after dried and sintered.
  • the company Dynamit Nobel AG has been providing for many years Heating elements in layer technology (thin layer, sputtered on) for detonators in military use and mining (DE 2020016 A1). This type of heating element can be used in the automotive sector only with additional expenditure (external Wiring).
  • the specifications to be met are e.g. the USCAR (Chrysler, General Motors and Ford) and the VW80150 (Volkswagen).
  • USCAR Chorysler, General Motors and Ford
  • VW80150 Volkswagen
  • In addition to the demands of environmental simulation (Climate change tests and mechanical load) are for the Heating element the electrical requirements (sensitivity during ignition and resistance to interference pulses) of highest importance. These tests are on detonators to carry out (heating element with pyrotechnic composition according to Requirements of the automotive industry installed).
  • the sensitivity during ignition is called by Determined "all-fire” and "no-fire” tests (e.g., Bruceton, Logit, run-down).
  • all-fire and "no-fire” tests (e.g., Bruceton, Logit, run-down).
  • the detonator with Ignite a constant current pulse of 1.2 A for 2 ms (with a certain statistical probability).
  • the igniter may be used with a constant current pulse of 0.5 A. do not ignite over 10 s (with a given statistical Probability).
  • Interference pulses are predetermined amounts of energy which are within a defined time and with a specific time Refresh rate can be introduced.
  • Example ESD interference pulse according to USCAR capacitor with 150 pF charged to 25 kV via a series resistor with 500 ⁇ across discharge the igniter with the heating element (2 ⁇ ) installed.
  • Example transient pulse according to USCAR current pulses with 5.3 A, a pulse duration of 4 ⁇ s (rise time 1 ⁇ s, cooldown) 3 ⁇ s) and a duty cycle of 1: 1000 over 24 h on the Igniter with installed heating element (2 ⁇ ) introduced.
  • a heating element of the type mentioned in the present invention characterized in that the mass of the heating element of 1.0 ⁇ 10 -9 kg to 4.0 ⁇ 10 -9 kg, the resistivity of 1 ⁇ 10 -6 ⁇ m to 2 ⁇ 10 -6 ⁇ m and the specific heat capacity of the heating element is from 100 W / (kg ⁇ K) to 400 W / (kg ⁇ K).
  • the main difference to the heating element according to the AT 405591 B is that the mass is much larger (more than 10 times) and the resistivity also substantially is much higher (more than 20 times). In this way results in a similar total resistance (the of the Automotive industry is given), but due to the higher mass increases the temperature of the heating element less, if by interference energy in the heating element is released so that the pyrotechnic charge is not can ignite or the heating element can not be destroyed can.
  • the cross section of the heating element is preferably 3.5 ⁇ 10 -10 m 2 to 7.0 ⁇ 10 -10 m 2 .
  • This cross section is favorable in order to achieve usual resistance values, eg 2 ⁇ .
  • These materials are particularly suitable in the inventive composition to provide suitable resistance values.
  • the rest contains oxidic additives and glass phase.
  • the resistor paste contains usually also an organikum before sintering.
  • Preferred material for the contact pads is sintered AgPd or AgPt thick film conductor paste with a Pd or Pt content between 1 and 10 mass%.
  • the rest contains oxidic additives and glass phase.
  • the conductor paste contains before sintering usually also an organic.
  • the resistance layer after the Applying the contact by means of programmable Laser source is structured.
  • appropriate shaping the resistance path by means of programmable laser source is by individual shaping the heating rate (Energy transfer) individually adjustable. This Structuring can affect both the basic form of Glow bridge by cutting out the appropriate geometry as well as the height by area-related removal relate. Compared to the etching is the shaping with a Laser source much more flexible. A change in the Production is in a very short time only by one Program change possible, while etching a new Etch mask must be created.
  • the present invention provides a heating element and a Method with corresponding material combinations, which have not yet been realized in layering technology and the Specifications of the automotive industry without additional Electronics is fair.
  • the proof of the resistance to ESD interference pulses and Transient pulse to USCAR can be by means of thermodynamic Calculation and subsequent numerical simulation be performed.
  • thermodynamic Heat equation Due to the analogy of the thermodynamic Heat equation with the differential equations of an electrical conductor (telegraph equation) can after Transformation of the thermodynamic quantities into electrical ones Sizes an exact one-dimensional simulation of the thermal Conditions (temperature and heat quantities) over time be performed.
  • the temperature of the heating element is T (in ° C) as a function of time t (in s).
  • the solid line refers to the heating element "so far", the dashed line on the heating element "new”.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Air Bags (AREA)
  • Surface Heating Bodies (AREA)

Abstract

Das Heizelement zum Zünden pyrotechnischer Ladungen besteht aus einem Grundkörper, einer strukturierten Widerstandsschicht, die auf dem Grundkörper angeordnet ist, und Kontaktfeldern, die überlappend auf den beiden Enden der Widerstandsbahn angeordnet sind. Erfindungsgemäß beträgt die Masse 1,0·10<-9> kg bis 4,0·10<-9> kg, der spezifische Widerstand von 1·10<-6> Ohm·m bis 2·10<-6> Ohm·m und die spezifische Wärmekapazität des Heizelements von 100 W/(kg·K) bis 400 W/(kg·K). Das Heizelement hat relativ große Masse und relativ hohen spezifischen Widerstand, was die Empfindlichkeit auf elektromagnetische Störungen verringert. Die Widerstandsschicht kann aus gesinterter Ag/Pd-Widerstandspaste oder gesinterter Ag/Au/Pd-Widerstandspaste oder aus gesinterter Pt/W-Widerstandspaste bestehen. Die Kontaktfelder können aus gesinterter AgPdoder AgPt-Dickschichtleiterpaste bestehen. <IMAGE>

Description

Die vorliegende Erfindung betrifft ein Heizelement zum Zünden pyrotechnischer Ladungen bestehend aus einem Grundkörper, einer strukturierten Widerstandsschicht, die auf dem Grundkörper angeordnet ist, und Kontaktfeldern, die überlappend auf den beiden Enden der Widerstandsbahn angeordnet sind. Sie betrifft weiters ein Verfahren zur Herstellung eines Heizelements, bei dem gegebenenfalls zunächst Glas oder Glaskeramik mittels Siebdruckverfahrens auf einen Grundkörper gedruckt wird und danach getrocknet und gesintert wird, wobei diese Schritte wiederholt werden, bis die gewünschte Gesamtschichtstärke erreicht ist; wobei danach die Widerstandspaste mittels Siebdruckverfahrens auf das Glaskeramiksubstrat bzw. Beschichtung gedruckt wird und danach getrocknet und gesintert wird; und wobei danach die Leiterpaste als Kontaktierung mittels Siebdruckverfahrens überlappend über die Widerstandsbahn gedruckt wird und danach getrocknet und gesintert wird.
Die Fa. Dynamit Nobel AG stellt seit vielen Jahren Heizelemente in Schichttechnik (Dünnschicht, aufgesputtert) für Zünder im militärischen Einsatz und den Bergbau her (DE 2020016 A1). Diese Art von Heizelement kann im automotiven Bereich nur mit Zusatzaufwand (externe Beschaltung) eingesetzt werden.
Von der Fa. LifeSparc Inc. und der Auburn University wurde ebenfalls ein Heizelement in Schichttechnik (Dünnschicht, aufgesputtert) auf einem Halbleitersubstrat vorgestellt (US 4708060 A und US 4976200 A). Auch hier muss ein Zusatzaufwand (externe Beschaltung mit Dioden im Halbleitersubstrat) das Heizelement gegen äußere Einflüsse schützen, will man es im automotiven Bereich einsetzen.
In dem gattungsbildenden Patent der Fa. Schaffler & Co. (AT 405591 B) wird ein Heizelement in Dickschichttechnik vorgestellt. Dieses kann bei entsprechender Anwendung zum Anzünden pyrotechnischer Sätze verwendet werden, erfüllt aber ohne Zusatzaufwand (externe Beschaltung) ebenfalls nicht die geforderten Spezifikationen der Automobilindustrie in Hinblick auf ESD (Elektrostatic Discharge) und Transient Puls bei gleichzeitiger Einhaltung des geforderten elektrischen Widerstandes (z.B. 2 Ω) sowie der Zündverzugszeit (z.B. höchstens 2 ms).
Die zu erfüllenden Spezifikationen sind z.B. die USCAR (Chrysler, General Motors und Ford) sowie die VW80150 (Volkswagen). Neben den Forderungen der Umweltsimulation (Klima-Wechseltests und mechanische Belastung) sind für das Heizelement die elektrischen Anforderungen (Empfindlichkeit beim Zünden und Widerstandsfähigkeit gegenüber Störpulsen) von größter Bedeutung. Diese Prüfungen sind an Zündern durchzuführen (Heizelement mit pyrotechnischem Satz gemäß Anforderungen der Automobilindustrie verbaut).
Die Empfindlichkeit beim Zünden wird durch sogenannte "All-Fire"- und "No-Fire"-Tests bestimmt (z.B. Bruceton, Logit, Run-Down). Beim "All-Fire"-Test muß der Zünder mit einem Konstantstrompuls von 1,2 A über 2 ms zünden (mit einer bestimmten statistischen Wahrscheinlichkeit). Beim "No-Fire"-Test darf der Zünder mit einem Konstantstrompuls von 0,5 A über 10 s nicht zünden (mit einer bestimmten statistischen Wahrscheinlichkeit).
Wenn der Zünder mit den vorgeschriebenen Störpulsen beaufschlagt wird, darf es zu keiner Zündung kommen. Störpulse sind vorgegebene Energiemengen, welche innerhalb einer definierten Zeit und mit einer bestimmten Wiederholfrequenz eingebracht werden.
Beispiel ESD-Störpuls nach USCAR: Kondensator mit 150 pF auf 25 kV geladen über einen Vorwiderstand mit 500 Ω über den Zünder mit verbautem Heizelement (2 Ω) entladen.
Beispiel Transient Puls nach USCAR: Strompulse mit 5,3 A, einer Pulsdauer von 4 µs (Anstiegszeit 1 µs, Abklingzeit 3 µs) und einem Tastverhältnis 1:1000 über 24 h auf den Zünder mit verbautem Heizelement (2 Ω) eingebracht.
Das Problem bei Zündern mit all diesen bekannten Heizelementen ist, dass sie diese Spezifikationen nur mit zusätzlicher Elektronik erfüllen. Bisher gibt es noch kein Heizelement in Schichttechnik (Dickschicht, Dünnschicht, Halbleiter), welches die Anforderungen der Automobilindustrie gemäß Spezifikation ohne Zusatzaufwand (externe Beschaltung) erfüllt.
Es ist Aufgabe der vorliegenden Erfindung, ein Heizelement in Schichttechnik zu schaffen, sodass ein damit ausgestatteter Zünder ohne zusätzliche Elektronik im automotiven Bereich eingesetzt werden kann.
Diese Aufgabe wird durch ein Heizelement der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass die Masse des Heizelements von 1,0·10-9 kg bis 4,0·10-9 kg, der spezifische Widerstand von 1·10-6 Ωm bis 2·10-6 Ωm und die spezifische Wärmekapazität des Heizelements von 100 W/(kg·K) bis 400 W/(kg·K) beträgt.
Der wesentliche Unterschied zu dem Heizelement gemäß der AT 405591 B ist, dass die Masse wesentlich größer (mehr als 10 Mal) und der spezifische Widerstand wesentlich ebenfalls wesentlich höher ist (mehr als 20 Mal). Auf diese Weise ergibt sich ein ähnlicher Gesamtwiderstand (der von der Automobilindustrie vorgegeben ist), aber auf Grund der höheren Masse erhöht sich die Temperatur des Heizelements weniger, wenn durch Einstreuungen Energie im Heizelement freigesetzt wird, sodass sich die pyrotechnische Ladung nicht entzünden kann bzw. das Heizelement nicht zerstört werden kann.
Vorzugsweise beträgt der Querschnitt des Heizelements 3,5·10-10 m2 bis 7,0·10-10 m2. Dieser Querschnitt ist günstig, um übliche Widerstandswerte, z.B. 2 Ω, zu erzielen.
Es ist zweckmäßig, wenn die Widerstandsschicht aus gesinterter Ag/Pd-Widerstandspaste oder gesinterter Ag/Au/Pd-Widerstandspaste mit 30-50 Masse-% Ag und 35-50 Masse-% Pd oder aus gesinterter Pt/W-Widerstandspaste mit 70-90 Masse-% Pt und 5-20 Masse-% W besteht. Diese Materialien sind besonders geeignet, bei der erfindungsgemäß Masse geeignete Widerstandswerte zu liefern. Der Rest enthält oxidische Zusätze und Glasphase. Die Widerstandspaste enthält vor dem Sintern normalerweise auch noch ein Organikum.
Es ist weiters für eine zuverlässige Zündung wichtig, dass nicht zu viel Wärme abgeleitet werden kann. Es ist deshalb günstig, wenn der Grundkörper aus einem hochtemperaturfesten Glas oder einer Glaskeramik oder einer Keramik mit thermischer Wärmeleitfähigkeit von höchstens 2 W/(m·K) besteht; oder wenn der Grundkörper aus einem hochtemperaturfesten Glas oder einer Glaskeramik oder einer Keramik mit thermischer Wärmeleitfähigkeit von höchstens 3 W/(m·K) besteht und auf dem Grundkörper eine Wärmebarriere aufgebracht ist, bestehend aus Glas- oder Glaskeramikbeschichtung mit 20-80µm Dicke und mit einer thermischen Wärmeleitfähigkeit von höchstens 1,5 W/(m·K).
Bevorzugtes Material für die Kontaktfelder ist gesinterte AgPd- oder AgPt-Dickschichtleiterpaste mit einem Pd- bzw. Pt-Anteil zwischen 1 und 10 Masse-%. Der Rest enthält oxidische Zusätze und Glasphase. Die Leiterpaste enthält vor dem Sintern normalerweise auch noch ein Organikum.
Herstellen kann man das erfindungsgemäße Heizelement analog wie in der AT 405591 B beschrieben. Es wird jedoch bevorzugt, dass die Widerstandsschicht erst nach dem Aufbringen der Kontaktierung mittels programmierbarer Laserquelle strukturiert wird. Durch entsprechende Formgebung der Widerstandsbahn mittels programmierbarer Laserquelle ist durch individuelle Formgebung die Aufheizrate (Energieübertragung) individuell einstellbar. Diese Strukturierung kann sich sowohl auf die Grundform der Glühbrücke durch Ausschneiden der entsprechenden Geometrie als auch auf die Höhe durch flächenhaftes Abtragen beziehen. Im Vergleich zum Ätzen ist die Formgebung mit einer Laserquelle wesentlich flexibler. Eine Änderung der Produktion ist in kürzester Zeit lediglich durch eine Programmänderung möglich, wogegen beim Ätzen eine neue Ätzmaske erstellt werden muss.
Vorzugsweise wird durch Nachsintern mit 800°C-900°C Spitzentemperatur über 10-20 min nach dem Sintern der Widerstandsbahn oder nach dem Sintern der Leiterbahn oder nach der Strukturierung das Zündelement in seiner Stabilität gegenüber hohen elektrischen und thermischen Belastungen verbessert. Überraschender Weise steigt durch das Nachsintern die Geschwindigkeit des Zündens. Dadurch ist es möglich, ein größeres Volumen zu verwenden (wodurch die Zündgeschwindigkeit an sich verringert wird), sodass auf diese Weise die Empfindlichkeit gegen elektrische Einstreuungen verringert werden kann.
Die vorliegende Erfindung schafft ein Heizelement und ein Verfahren mit entsprechenden Materialkombinationen, welche bisher in Schichttechnik noch nicht realisiert wurden und den Spezifikationen der Automobilindustrie ohne zusätzliche Elektronik gerecht wird.
Berechnungen und Simulation:
Der Nachweis der Festigkeit gegenüber ESD-Störpulsen und Transient Puls nach USCAR kann mittels thermodynamischer Berechnung und nachfolgender numerischer Simulation durchgeführt werden.
Aufgrund der Analogie der thermodynamischen Wärmeleitungsgleichungen mit den Differentialgleichungen eines elektrischen Leiters (Telegrafengleichung) kann nach Transformation der thermodynamischen Größen in elektrische Größen eine exakte eindimensionale Simulation der thermischen Verhältnisse (Temperatur und Wärmemengen) über die Zeit durchgeführt werden.
Begleitende Versuche und Messungen mit entsprechender Rückführung der Testergebnisse in die Rechnersimulation ergaben im Rahmen der Meßgenauigkeiten und der idealisierten Randparameter (eindimensional) Übereinstimmung.
Vergleich eines Heizelements gemäß AT 405591 B ("bisher") mit einem erfindungsgemäßen Heizelement ("neu") am Beispiel der ESD-Störpulsfestigkeit nach USCAR:
Thermische Abschätzung des Heizelements ohne Wärmeableitung über Q = m·Cp·ΔT   bzw.   ΔT = Q/( m·cp)
  • Q ... eingebrachte Energiemenge in J (Störpuls)
  • m ... Masse Heizelement in kg
  • cp . ... spezifische Wärmekapazität Heizelement in W/(kg·K)
  • ΔT ... Temperaturänderung durch eingebrachte Energiemenge in °C
  • Die Geometrie und damit die Masse der Heizelemente wurde so gewählt, dass Bedingungen wie Widerstandswert, "All-Fire"und "No-Fire"-Werte gemäß Spezifikation der Automobilindustrie erfüllt werden. Daraus errechnet sich die für die Berechnung zu betrachtende Energiemenge, die aufgrund der verwendeten Materialien und im Hinblick auf die Erfüllung notwendiger Spezifikationen folgende Werte annimmt:
  • "bisher": wirksames Volumen 5,74 10-15 m3, mit spezifischem elektrischen Widerstand von 4,3 10-8 Ω·m.
  • "neu": wirksames Volumen 1,92 10-13 m3, mit spezifischem elektrischen Widerstand von 1,4 10-6 Ω·m.
  • Material Q [J] Masse [kg] cp
    [W/(kg·K)]
    ΔT [°C]
    "bisher": Au/Pd-Resinat 7,48 10-5 1,09 10-10 129 5319
    "neu": Ag/Pd-Widerstand 1,40 10-4 1,92 10-9 337 217
    Die oben angeführte Temperaturänderung bei Beaufschlagung des Heizelements mit ESD-Störpulsen zeigt, dass aufgrund der Schmelztemperatur von Au (1063°C) das Heizelement "bisher" zerstört wird. Dies wurde nicht nur theoretisch, sondern auch durch eine Versuchsreihe bestätigt.
    In der einzigen Fig. ist die Temperatur des Heizelements T (in °C) in Abhängigkeit von der Zeit t (in s) dargestellt. Die durchgezogene Linie bezieht sich auf das Heizelement "bisher", die strichlierte Linie auf das Heizelement "neu".
    Unter Berücksichtigung der Wärmeleitung der einzelnen Materialien ergeben sich durch Simulation annähernd identische Werte, da es sich hier um einen nahezu adiabatischen Vorgang handelt.
    Bei der Beaufschlagung des Heizelements mit Transient Puls nach USCAR zeigt sich sowohl theoretisch als auch in praktischen Versuchen ein ähnliches Verhalten, welches auch zur Zerstörung des Heizelements "bisher" führt.

    Claims (8)

    1. Heizelement zum Zünden pyrotechnischer Ladungen bestehend aus einem Grundkörper, einer strukturierten Widerstandsschicht, die auf dem Grundkörper angeordnet ist, und Kontaktfeldern, die überlappend auf den beiden Enden der Widerstandsbahn angeordnet sind, dadurch gekennzeichnet, dass die Masse des Heizelements von 1,0·10-9 kg bis 4,0·10-9 kg, der spezifische Widerstand von 1·10-6 Ωm bis 2·10-6 Ωm und die spezifische Wärmekapazität des Heizelements von 100 W/(kg·K) bis 400 W/(kg·K) beträgt.
    2. Heizelement nach Anspruch 1, dadurch gekennzeichnet, dass der Querschnitt des Heizelements 3,5·10-10 m2 bis 7,0·10-10 m2 beträgt.
    3. Heizelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Widerstandsschicht aus gesinterter Ag/Pd-Widerstandspaste oder gesinterter Ag/Au/Pd-Widerstandspaste mit 30-50 Masse-% Ag und 35-50 Masse-% Pd oder aus gesinterter Pt/W-Widerstandspaste mit 70-90 Masse-% Pt und 5-20 Masse-% W besteht.
    4. Heizelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Grundkörper aus einem hochtemperaturfesten Glas oder einer Glaskeramik oder einer Keramik mit thermischer Wärmeleitfähigkeit von höchstens 2 W/(m·K) besteht.
    5. Heizelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Grundkörper aus einem hochtemperaturfesten Glas oder einer Glaskeramik oder einer Keramik mit thermischer Wärmeleitfähigkeit von höchstens 3 W/(m·K) besteht und auf dem Grundkörper eine Wärmebarriere aufgebracht ist, bestehend aus Glas- oder Glaskeramikbeschichtung mit 20-80 µm Dicke und mit einer thermischen Wärmeleitfähigkeit von höchstens 1,5 W/(m·K).
    6. Heizelement nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Kontaktfelder aus gesinterter AgPd- oder AgPt-Dickschichtleiterpaste mit einem Pd- bzw. Pt-Anteil zwischen 1 und 10 Masse-% bestehen.
    7. Verfahren zur Herstellung eines Heizelements nach einem der Ansprüche 1 bis 6, bei dem gegebenenfalls zunächst Glas oder Glaskeramik mittels Siebdruckverfahrens auf einen Grundkörper gedruckt wird und danach getrocknet und gesintert wird, wobei diese Schritte wiederholt werden, bis die gewünschte Gesamtschichtstärke erreicht ist; wobei danach die Widerstandspaste mittels Siebdruckverfahrens auf das Glaskeramiksubstrat bzw. Beschichtung gedruckt wird und danach getrocknet und gesintert wird; und wobei danach die Leiterpaste als Kontaktierung mittels Siebdruckverfahrens überlappend über die Widerstandsbahn gedruckt wird und danach getrocknet und gesintert wird, dadurch gekennzeichnet, dass danach die Widerstandsschicht mittels einer programmierbaren Laserquelle strukturiert wird.
    8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass durch Nachsintern mit 800°C-900°C Spitzentemperatur über 10 bis 20 min nach dem Sintern der Widerstandsbahn oder nach dem Sintern der Leiterbahn oder nach der Strukturierung das Zündelement in seiner Stabilität gegenüber hohen elektrischen und thermischen Belastungen verbessert wird.
    EP04100151A 2003-01-28 2004-01-19 Heizelement zum Zünden pyrotechnischer Ladungen Expired - Lifetime EP1443298B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    AT0011703A AT413150B (de) 2003-01-28 2003-01-28 Heizelement zum zünden pyrotechnischer ladungen
    AT1172003 2003-01-28

    Publications (2)

    Publication Number Publication Date
    EP1443298A1 true EP1443298A1 (de) 2004-08-04
    EP1443298B1 EP1443298B1 (de) 2007-10-10

    Family

    ID=32601373

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP04100151A Expired - Lifetime EP1443298B1 (de) 2003-01-28 2004-01-19 Heizelement zum Zünden pyrotechnischer Ladungen

    Country Status (4)

    Country Link
    US (1) US7089861B2 (de)
    EP (1) EP1443298B1 (de)
    AT (2) AT413150B (de)
    DE (1) DE502004005169D1 (de)

    Families Citing this family (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    IL176454A0 (en) * 2006-06-21 2007-06-03 Benjamin Keren Explosive material sensitivity control
    CN109222685B (zh) * 2018-09-27 2022-03-18 九阳股份有限公司 一种豆浆机的控制方法
    CN111521070A (zh) * 2020-04-29 2020-08-11 西安工业大学 一种碳基低压点火开关制备方法
    CN113140381A (zh) * 2021-04-07 2021-07-20 深圳顺络电子股份有限公司 一种点火电阻的制作方法

    Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2020016A1 (de) 1970-04-24 1971-11-11 Dynamit Nobel Ag Metallschichtzuendmittel
    US4708060A (en) 1985-02-19 1987-11-24 The United States Of America As Represented By The United States Department Of Energy Semiconductor bridge (SCB) igniter
    US4976200A (en) 1988-12-30 1990-12-11 The United States Of America As Represented By The United States Department Of Energy Tungsten bridge for the low energy ignition of explosive and energetic materials
    AT405591B (de) 1997-10-03 1999-09-27 Schaffler & Co Heizelement und verfahren zu dessen herstellung
    US6230624B1 (en) * 1999-08-13 2001-05-15 Trw Inc. Igniter having a hot melt ignition droplet
    US20020069780A1 (en) * 2000-12-07 2002-06-13 Bos Laurence W. Thin film resistor fabricated on header

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE405591C (de) 1921-07-08 1924-11-04 Siemens Schuckertwerke G M B H Einrichtung zum Betriebe von Kraftwerken mit mehreren Einheiten
    US3753403A (en) * 1968-09-19 1973-08-21 Us Navy Static discharge for electro-explosive devices
    DE2002016A1 (de) 1970-01-17 1971-07-22 Messerschmitt Boelkow Blohm Doppeltwirkende Fluegelzellenpumpe
    FR2538099B1 (fr) * 1982-12-15 1986-10-03 France Etat Amorce electrique a element resistif
    US4522665A (en) * 1984-03-08 1985-06-11 Geo Vann, Inc. Primer mix, percussion primer and method for initiating combustion
    US4893563A (en) * 1988-12-05 1990-01-16 The United States Of America As Represented By The Secretary Of The Navy Monolithic RF/EMI desensitized electroexplosive device
    JP2971439B2 (ja) * 1998-04-21 1999-11-08 東芝ホクト電子株式会社 着火装置およびその製造方法
    FR2790078B1 (fr) * 1999-02-18 2004-11-26 Livbag Snc Allumeur electropyrotechnique a securite d'allumage renforcee
    FR2800865B1 (fr) * 1999-11-05 2001-12-07 Livbag Snc Initiateur pyrotechnique a filament photograve protege contre les decharges electrostatiques
    US6324979B1 (en) * 1999-12-20 2001-12-04 Vishay Intertechnology, Inc. Electro-pyrotechnic initiator
    US6341562B1 (en) * 2000-02-22 2002-01-29 Autoliv Asp, Inc. Initiator assembly with activation circuitry
    FR2827377B1 (fr) * 2001-07-13 2003-12-05 Poudres & Explosifs Ste Nale Dispositif d'allumage pour microcharges pyrotechniques

    Patent Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2020016A1 (de) 1970-04-24 1971-11-11 Dynamit Nobel Ag Metallschichtzuendmittel
    US4708060A (en) 1985-02-19 1987-11-24 The United States Of America As Represented By The United States Department Of Energy Semiconductor bridge (SCB) igniter
    US4976200A (en) 1988-12-30 1990-12-11 The United States Of America As Represented By The United States Department Of Energy Tungsten bridge for the low energy ignition of explosive and energetic materials
    AT405591B (de) 1997-10-03 1999-09-27 Schaffler & Co Heizelement und verfahren zu dessen herstellung
    US6230624B1 (en) * 1999-08-13 2001-05-15 Trw Inc. Igniter having a hot melt ignition droplet
    US20020069780A1 (en) * 2000-12-07 2002-06-13 Bos Laurence W. Thin film resistor fabricated on header

    Also Published As

    Publication number Publication date
    DE502004005169D1 (de) 2007-11-22
    ATE375494T1 (de) 2007-10-15
    US20040200371A1 (en) 2004-10-14
    US7089861B2 (en) 2006-08-15
    ATA1172003A (de) 2005-04-15
    EP1443298B1 (de) 2007-10-10
    AT413150B (de) 2005-11-15

    Similar Documents

    Publication Publication Date Title
    DE60212905T2 (de) Anzündvorrichtung für kleine Treibladungen
    DE19629009C2 (de) Gegenüber Hochfrequenz und elektrostatischer Entladung unempfindlicher Elektrozündsatz mit nichtlinearem Widerstand
    DE19581065C2 (de) Elektronischer Verzögerungszünder und elektrischer Initialzünder
    DE2020016C3 (de) Metallschichtzündmittel
    DE960787C (de) Elektrische Zuendvorrichtung und Verfahren zum Herstellen derselben
    CH635673A5 (de) Elektrisches anzuendelement.
    DE3717149A1 (de) Sprengzuender-zuendelement
    DE1221947B (de) Sicherheits-Brueckenzuender
    DE3119924A1 (de) Elektrischer zuender
    DE102009020558A1 (de) Aktivierungseinheit für munitionsfreie Scheinziele
    DE973070C (de) Verfahren zur Herstellung eines Funkenerzeugers
    EP1443298B1 (de) Heizelement zum Zünden pyrotechnischer Ladungen
    DE2104273C3 (de) Anwendung des Explosivschweißens mit Initialexplosivstoff auf die Her stellung von Mikro Bauelementen
    DE2206468A1 (de) Huelsenlose patrone fuer elektrische zuendung
    DE112013006659B4 (de) Plasmaspaltzündvorrichtung mit neuartigem Zündsystem
    EP2549220A1 (de) EFI-Zündmodul
    DE1005884B (de) Elektrische Zuendpille und Verfahren zur Herstellung derselben
    DE2937373A1 (de) Widerstandsmaterial
    EP0185875B1 (de) Kraftelement
    EP1148313A2 (de) Elektrothermische Anzündvorrichtung und Verfahren zu ihrer Herstellung
    DE2655886A1 (de) Elektrischer zuender fuer geschosse
    DE2506055A1 (de) Elektrisches anzuendelement
    DE60104754T2 (de) Widerstandselement für einen pyrotechnischen Zünder
    DE2259378C3 (de) Schutzschaltung für elektrische Zunder
    EP4056944B1 (de) Parametrische zündung von eed mittels pwm-ansteuerung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK

    17P Request for examination filed

    Effective date: 20050120

    AKX Designation fees paid

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    17Q First examination report despatched

    Effective date: 20050608

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 502004005169

    Country of ref document: DE

    Date of ref document: 20071122

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20080114

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20071010

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20080121

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BG

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20080110

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20080310

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    BERE Be: lapsed

    Owner name: HIRTENBERGER-SCHAFFLER AUTOMOTIVE ZUNDER GESMBH

    Effective date: 20080131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CZ

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20071010

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20071010

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080131

    Ref country code: SK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20071010

    Ref country code: RO

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20071010

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    26N No opposition filed

    Effective date: 20080711

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080131

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080131

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20071010

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: EE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20071010

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20080111

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080131

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20071010

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080119

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20071010

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20071010

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20090128

    Year of fee payment: 6

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: HU

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20080411

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080119

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20071010

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100119

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20181217

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20181217

    Year of fee payment: 16

    Ref country code: FR

    Payment date: 20181219

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20181214

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 502004005169

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20200119

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200131

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200801

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200119

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200120