EP1415359A2 - Bei normaltemperatur betreibbare, wiederaufladbare batteriezelle - Google Patents

Bei normaltemperatur betreibbare, wiederaufladbare batteriezelle

Info

Publication number
EP1415359A2
EP1415359A2 EP02745133A EP02745133A EP1415359A2 EP 1415359 A2 EP1415359 A2 EP 1415359A2 EP 02745133 A EP02745133 A EP 02745133A EP 02745133 A EP02745133 A EP 02745133A EP 1415359 A2 EP1415359 A2 EP 1415359A2
Authority
EP
European Patent Office
Prior art keywords
battery cell
cell according
chromium
metal
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02745133A
Other languages
English (en)
French (fr)
Inventor
Günther Hambitzer
Christiane Ripp
Ingo Stassen
Laurent Zinck
Franziska JÄGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAMBITZER, GUENTHER, DR.
Original Assignee
Hambitzer Guenther Dr
Fortu Bat Batterien GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hambitzer Guenther Dr, Fortu Bat Batterien GmbH filed Critical Hambitzer Guenther Dr
Publication of EP1415359A2 publication Critical patent/EP1415359A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/10Battery-grid making

Definitions

  • Rechargeable battery cell that can be operated at normal temperature
  • the invention relates to a rechargeable battery cell that can be operated at normal temperature and has an electrolyte system based on SO 2 .
  • the electrolyte system of rechargeable battery cells usually contains a salt, the ions of which form the charge carriers of the electrolytic line (conductive salt) and a transport medium which ensures the required mobility of the ions of the conductive salt in the electrolyte system.
  • the invention is particularly directed to cells whose electrolyte system contains a conductive salt that contains halide ions. Chloride-containing conductive salts are particularly common.
  • the transport medium which ensures the required mobility of the ions of the conductive salt in the electrolyte system, is often organic (as is usual in particular with lithium-ion cells).
  • the invention relates specifically to cells in which the electrolyte system is based on sulfur dioxide.
  • S0 2 rendes electrolyte system (S0 2 -based electrolyte system) "are systems in which the mobility of the ions of the conductive salt is at least partially guaranteed by the S0 2 ', S0 2 is therefore a functionally essential component of the transport medium of the electrolyte system.
  • S0 2 electrolyte system suitable with the present invention is described in German patent application 10110716.1, filed on March 7, 2001 or the corresponding international patent application PCT / DE02 / 00789.
  • a fundamental problem with rechargeable batteries is their limited lifespan. Therefore, an important goal of battery development is to develop batteries that are available for as large a number of charge and discharge cycles as possible without their usable capacity decreasing significantly. This property is commonly referred to as cycle stability.
  • the capacity and thus the usability of rechargeable batteries does not only deteriorate due to repeated charging and discharging, but also if the battery is stored in an unused state. This problem is particularly pronounced in the case of the lithium-ion cells that have recently become more common, particularly for portable telephones and video cameras, the capacity of which has usually decreased significantly after just one year.
  • the internal resistance of the cell is another parameter that deteriorates over the course of the battery life.
  • the increase in internal resistance means that the maximum current that can be drawn decreases or the battery voltage assumes inadmissibly low values when connecting relatively low-resistance consumers.
  • the active material when the batteries are in operation, the active material can disintegrate into relatively small, mechanically non-interconnected particles which detach from the electrode surface and are therefore no longer available for the electrochemical process required to operate the battery cell.
  • the electrical or electrochemical connection of parts of the active material to one of the electrode conductor elements can be lost.
  • the mechanical connection between the electrode discharge element and the active mass can be lost, so that the active mass falls off the discharge element.
  • the object of the invention is to achieve an increase in the service life of rechargeable battery cells with an electrolyte system based on SO 2 .
  • a battery cell in which an electronically conductive discharge element of at least one electrode in a surface layer serves as a reaction protection material to protect the discharge element against undesired reactions, an alloy of chromium with another metal and / or a protection metal selected from the Group consisting of rhodium, tungsten, rhenium, tantalum, platinum, iridium, osmium and technetium in pure form, as a component of an alloy or as a component of a compound and / or a carbide, nitride or phosphide of titanium, nickel, cobalt, molybdenum , Contains iron, vanadium, zircon or manganese.
  • an electronically conductive discharge element of at least one electrode in a surface layer serves as a reaction protection material to protect the discharge element against undesired reactions
  • an alloy of chromium with another metal and / or a protection metal selected from the Group consisting of rhodium, tungsten, rhenium, tantalum
  • the discharge element is the part of the electrodes of battery cells that is usually made of metal and serves to enable the required electronically conductive connection.
  • the discharge element is in contact with an active material which is involved in the electrode reaction of the respective electrode and which can in principle be solid, gaseous or liquid.
  • the electrode reaction with the participation of the active material leads to the formation or consumption of free electrons, which are discharged via the discharge element during discharge (negative electrode) or supplied (positive electrode).
  • the discharge element consists of a metal (for example nickel, cobalt, copper, stainless steel or aluminum).
  • Discharge elements made of carbon or conductive plastics are also used.
  • Use- Surface structures with a very large surface area compared to their thickness are preferred, with perforated structures (grids, perforated sheets) and in particular highly porous materials such as expanded metals or metal foam materials being preferred.
  • a particulate active material can be mixed with a suitable binder (e.g. polytetrafluoroethylene) and connected to the discharge element by pressing (see U.S. Patent 5,213,914).
  • a suitable binder e.g. polytetrafluoroethylene
  • methods are also known in which the required connection of the active material to the discharge element is produced without the use of organic binders (cf. US Pat. No. 5,656,391).
  • the invention is partly based on a proposal published in 1990 in US Pat. No. 4,892,796. It describes an alkali metal cell with an electrolyte based on S0 2 and a CuCl 2 cathode.
  • the lead element of the cathode referred to there as the “current collector”, contains a chromium foil plated onto a nickel core.
  • the chrome foil is preferably applied to the nickel core by hard chrome plating in a thickness of 2.5 ⁇ m to 50 ⁇ m (0.1 to 2 mil). This is intended to inactivate the surface of the current collector. It is reported that the battery capacity of the cells remains largely stable over a larger number of charge and discharge cycles when the cathode drain element is coated with the chrome foil.
  • Chromium diffusion layer within which the concentration of chromium decreases in the direction leading away from the surface.
  • this additional chrome layer is not a relatively thick hard chrome layer, but rather a very thin shiny chrome layer (decorative plate) with a layer thickness of less than 5 ⁇ m, preferably at most 2.5 ⁇ m and particularly preferably at most 1 ⁇ m.
  • a protective metal selected from rhodium, tungsten,
  • C a carbide, nitride or phosphide of titanium, nickel, cobalt, molybdenum, iron, vanadium, zircon or manganese.
  • reaction protection materials can also be combined with one another.
  • surface layer is not to be understood as restrictive in that it must be a discrete layer with a homogeneous composition.
  • a lot of- This term more specifically denotes that region of the discharge element which is close to the surface and which determines its reaction behavior (in particular with regard to reactions with the electrolyte) and in which at least one of the reaction protection materials mentioned must be localized in order to achieve the desired protective effect.
  • the surface layer is defined by the
  • the measures according to the invention achieve a substantial improvement in the life of the battery cells.
  • the invention is of very special importance in connection with cells which reach very high cell voltages (more than 4 volts) during charging. This applies in particular to lithium cells. Overcharge reactions can take place in such cells at relatively high charging voltages, which are very advantageous for the function of the cell. Further details are described in international patent application WO 00/79631 AI. However, according to the inventors' findings, the high cell voltages of more than 5 volts associated with these advantageous overcharging reactions lead to reaction conditions with regard to the discharge element of the positive electrode, which are particularly problematic (for example because of the formation of reactive chlorine).
  • the present invention makes it possible to charge these cells in the above-mentioned high potential range without impairing their service life. It is therefore particularly in connection with the battery cell described in WO 00/79631 AI applicable.
  • the content of this publication is made by reference to the content of the present application.
  • Another advantage of the invention is the increased mechanical resilience (especially compared to US Pat. No. 4,892,796).
  • the invention is particularly directed to cells whose negative electrode contains an active metal A in the charged state, which is selected from the group consisting of the alkali metals, the alkaline earth metals and the metals of the second subgroup of the periodic table.
  • active metals are lithium, sodium, calcium and zinc.
  • alkali metal cells whose active metal preferably sodium and particularly preferably lithium are distinguished by particularly advantageous for practical application properties, especially .a low weight and - in conjunction with conventional appropriate positive electrodes - a high 'cell voltage (hence a very high Energy density), off.
  • the high cell voltage leads to the special corrosion problems mentioned.
  • the reaction protection material is present in a surface layer of the discharge element.
  • the inside of the discharge element can. consist of another material, which is referred to below as the core material. Materials based on nickel, copper, stainless steel, aluminum or carbon are suitable, for example.
  • a relatively thin surface layer is sufficient, which preferably encloses the entire surface of the discharge element that is in contact with the electrolyte system. loading it should preferably be designed such that it is impermeable to the components of the electrolyte system (in particular halide ions contained therein).
  • a few atomic layers are sufficient, depending on the reaction protective material used, so that it may suffice if the protective protective material is present on the surface in a layer thickness of 0.5 nm.
  • a somewhat larger layer thickness of at least 10 nm, preferably at least 100 nm and particularly preferably at least 0.5 ⁇ m is advantageous.
  • the protective metals can be contained in the surface layer in pure form, as a component of an alloy or as a component of a compound.
  • alloys of the protective metals with one another and with other metals are suitable.
  • a particularly advantageous protective effect has been observed for a surface layer which is an oxide of one of the named
  • Carbides, nitrides and phosphides of the protective metals or the compounds of the reaction protection material type C can be used as further examples of compounds.
  • the surface layer consists entirely of one or more of the reaction protection materials of types B and C mentioned.
  • the content of reaction protection materials of these types should in any case be higher than 20 mol%.
  • reaction protection material The choice of a suitable manufacturing process depends on the choice of the reaction protection material. Provided that a galvanic separation of the reaction protective material is possible, this method is open to the invention 'suitability net.
  • the used for the reaction protection material of type A Chromium that is used can be applied well to a conductor element, the interior of which consists of a different metal, in particular nickel, using galvanic chromium plating methods which are customary for other purposes.
  • galvanic order is also possible for rhodium and platinum, although these materials are currently less preferred due to their high price.
  • reaction protection materials mentioned cannot be applied or can be applied only with great difficulty in a thin surface layer on a core material. They are preferably used in constructions in which the discharge element consists entirely (ie not only of its surface layer) of a uniform material (for example one of the protective metals). In many cases, however, such materials, in particular protective metals of type B, can also be used to produce thin layers by means of deposition from the gas phase (for example by sputtering). A surface layer with a type A reaction protection material can also be advantageously produced in this way.
  • the manufacturing process includes a step in which a sheet Ableitelementmaterial containing at least on its surface already chromium or one of the protective metals of type B, is additionally annealed in a preferably inert or reducing gas atmosphere.
  • a chromium diffusion layer can also be produced in another way, for example by depositing chromium on the surface of the diverter element material by a method associated with heating the surface, in particular by sputtering. The chromium atoms diffuse into the surface without the need for special annealing.
  • the above-mentioned formation of the oxide of the protective metal in the reducing atmosphere should be due to the fact that nickel oxide present on the surface of the nickel material is reacted with the chromium (with reduction to metallic nickel) to form chromium oxide. It is particularly surprising that the formation of a metal oxide Layer, which in its pure form is less conductive than the pure metal, does not contribute to deterioration, but rather improves the properties of the discharge element.
  • the desired protective reaction effect can also be achieved by tempering an alloy containing one of the metals mentioned at elevated temperature in order to increase the concentration of the metal on the surface by the heat treatment process to such an extent that a sufficient protective effect is ensured.
  • a metal composite can be produced mechanically.
  • a surface layer containing a reaction protection material which contains an organic or inorganic binder, to the core material by means of the binder in such a way that a protective layer having the properties required in the context of the present invention is formed.
  • the discharge element with the surface layer containing the reaction protection material is preferably used for the positive electrode of the cell because, according to the inventors' observations, the risk here is more disruptive Surface reactions due to the electrochemical conditions prevailing at the positive electrode is particularly large. However, it can also make sense to provide the negative electrode discharge element with a surface layer that contains one of the reaction protection materials mentioned. For example, it has been observed that in batteries consisting of several cells, when the cells are charged together in a series connection, operating states can occur in which a disturbing surface reaction takes place predominantly on the positive electrode on the negative electrode lead-off element in a manner similar to what is otherwise the case.
  • the positive electrode of which is a composite electrode, in which - as described above - the conductor element forms a substrate for an active mass firmly connected to it.
  • An intercalation compound consisting of an alkali metal (as active metal A of the cell), a transition metal M with the atomic number 22 to 28 and oxygen is particularly preferred.
  • the alkali metal is preferably lithium.
  • cobalt and nickel are particularly preferred.
  • Binary and ternary metal-oxide intercalation compounds which contain two or three different transition metals in the lattice structure, such as, for example, lithium-nickel-cobalt oxide (cf.
  • FIG. 2 shows a cyclic voltamogram when using a deflecting element, in the surface layer of which rhodium is contained; 3 shows a cyclic voltamogram when using a discharge element with a chromium diffusion layer; 4 shows a cyclic voltamogram when using a tungsten conductor element; Fig. 5 shows the course of the discharge capacity and the internal resistance depending on the number of
  • FIG. 6 shows the variation of the discharge capacity and the internal resistance as a function of the number of charge and discharge cycles at a Inventions' proper cell according to the prior art
  • 7 shows an EDX line scan of a surface cross section of a diverter element with an electroplated chrome plating
  • 8 shows an EDX line scan of a surface cross section of a diverter element with a chromium diffusion layer.
  • the effect of the invention was examined with the aid of cyclic voltamograms.
  • a three-electrode arrangement with lithium as the reference and counter electrode and the respective investigated discharge element as the working electrode was used.
  • the test cell was filled with an electrolyte system that contained iAlCl4 as a conducting salt and • S0 2 as a transport medium (in a ratio of 1: 1.5).
  • the potential was between 3.5 volts and 5.5 volts vs. Li / Li + varies with a potential forward speed of 20 mV / s.
  • Figure 1 shows a cyclic voltamogram when using a diverter element of untreated nickel '.
  • Curve A shows the first cycle in which a current flows from about 5 volts, which is caused by a reaction on the surface of the discharge element.
  • B the current flow is considerably lower because a disturbing reaction (according to the inventors' knowledge, above all a formation of nickel chloride) has taken place on the surface of the discharge element. The surface layer thus formed prevents the desired overloading reaction.
  • Curve C shows the fifth cycle in which practically no current flows.
  • FIG. 2 shows a cyclic voltamogram with a diverting element based on a nickel sheet, which was galvanically coated with a protective layer of rhodium approximately 2 ⁇ m thick.
  • the thick curve A is the voltamogram of the first cycle
  • the thin curve B is the voltamogram of the hundredth cycle. It can be clearly seen that the two cycles practically do not differ. From this result it can be deduced that the desired overloading reaction takes place in practically unchanged form even after several hundred cycles.
  • FIG. 3 shows corresponding results for a discharge element based on a nickel sheet, on which chromium was first deposited galvanically with a thickness of approx. 0.5 ⁇ m (bright chrome plating). The discharge element was then heated under protective gas with slightly reducing properties (argon / hydrogen) to 800 ° C within about six hours, this temperature a Held for an hour and then cooled. The figure shows the first cycle (thin line A) and the three hundredth cycle (thick line B). Here, too, there is almost complete agreement, ie the surface properties of the diverter element have remained practically unchanged over the three hundred cycles.
  • FIG. 4 shows a corresponding test result for a diverter element, which overall consists of a uniform material, in the case shown of solid tungsten.
  • the voltamogram of the first cycle is shown as a thick curve A, the hundredth cycle as a thin curve B.
  • the result shows that even massive metals, e.g. Tungsten, can be used as a conductor element, the electrochemical properties of which remain stable. In this case, the reaction current not only does not decrease after more than a hundred cycles, but actually increases.
  • FIGS. 5 and 6 show the typical course of the discharge capacity C (curve A in each case) and the internal resistance R (curve B in each case) as a function of the number n of charge and discharge cycles.
  • FIG. 5 shows that, in the case of cells designed according to the prior art, the capacity initially remains largely stable, but then rapidly drops to values at which the cell is practically no longer usable. The resistance increases accordingly. This rapid deterioration in the Zeil parameters can be explained by the fact that the increase in resistance leads to an increase in the necessary charging voltage, which in turn leads to an increase in disturbing surface reactions of the discharge element.
  • FIG. 6 shows that this effect does not occur with a cell designed according to the invention and both the capacity and the internal resistance remain largely stable over a large number of cycles.
  • the EDX line scans shown in FIGS. 7 and 8 show the distribution of the metals chromium (Cr) and nickel (Ni) and the content of oxygen atoms (O) i in the surface layer of a discharge element.
  • the concentration is plotted in arbitrary units depending on the depth below the surface in ⁇ m, the zero point of the abscissa being chosen arbitrarily.
  • the carbon concentration (C) also shown is due to the fact that epoxy resin was used to embed the investigated fine sanding.
  • FIG. 7 shows that an electroplated chrome plating creates a discrete chrome layer which is practically completely separated from the nickel base material.
  • the slight overlap of the curves is due to the limited depth resolution of the investigation method (spot width approx. 1 ⁇ m).
  • a look at the cross section in a scanning electron microscope shows that the galvanic bright chrome plating is not crack-free, but has cracks that extend to the nickel base material. _.
  • FIG. 8 shows the corresponding results after the material has been annealed (as described in connection with FIG. 3).
  • the result is a transition region that is several ⁇ m wide, in which the concentration of chromium gradually decreases away from the surface and the concentration of nickel increases accordingly.
  • the layer thickness of the chromium has decreased significantly due to the material migrating into the chromium diffusion layer, but the cracks are largely closed.
  • the experimental results presented illustrate a total that one, excellent improving the quality of electrochemical 'cells can be achieved with a bright chrome, as has been commonly used for decorative purposes only, if the surface layer of the discharge is generated, a chromium diffusion layer •.
  • the surface layer which is effective to protect against unwanted reactions, is only a few ⁇ m thick.
  • the invention can therefore be used particularly advantageously in the above-mentioned discharge elements made of highly porous materials such as expanded metals and in particular metal foams, in which the reaction-protecting surface layer not only protects the outer surface, but the entire inner surface of the porous material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Bei Normaltemperatur betreibbare, wiederaufladbare Batteriezelle mit einem auf SO2 basierenden Elektrolytsystem, einer negativen Elektrode und einer positiven Elektrode, wobei eine der Elektroden ein elektronisch leitendes Ableitelement aufweist. Eine verbesserte Zyklenstabilität und infolgedessen eine längere Lebensdauer wird dadurch erreicht, dass mindestens eine Oberflächenschicht des elektronisch leitenden Ableitelementes als Reaktionsschutzmaterial zum Schutz des Ableitelementes gegen unerwünschte Reaktionen mit Bestandteilen des auf SO2 basierenden Elektrolytsystems eine Legierung von Chrom mit einem anderen Metall und/oder ein Schutzmetall, ausgewählt aus Rhodium, Wolfram, Rhenium, Tantal, Platin, Iridium, Osmium oder Technetium in reiner Form, als Legierung oder als Bestandteil einer Verbindung und/oder ein Carbid, Nitrid oder Phosphid von Titan, Nickel, Kobalt, Molybdän, Eisen, Vanadium, Zirkon oder Mangan enthält.

Description

Bei Normaltemperatur betreibbare, wiederaufladbare Batteriezelle
Die Erfindung betrifft eine bei Normaltemperatur betreibbare wiederaufladbare Batteriezelle mit einem auf S02 basierenden Elektrolytsystem.
Das Elektrolytsystem wiederaufladbarer Batteriezellen enthält üblicherweise ein Salz, dessen Ionen die Ladungsträger der elektrolytischen Leitung bilden (Leitsalz) und ein Transportmedium, das die erforderliche Beweglichkeit der Ionen des Leitsalzes in dem Elektrolytsystem gewähr- leistet. Die Erfindung richtet sich insbesondere auf Zellen, deren Elektrolytsystem ein Leitsalz enthält, das Halogenidionen enthält. Gebräuchlich sind insbesondere chloridhaltige Leitsalze.
Das Transportmedium, das die erforderliche Beweglichkeit der Ionen des Leitsalzes in dem Elektrolytsystem gewährleistet, ist vielfach (wie insbesondere bei Lithium- Ionen-Zellen üblich) organisch. Die Erfindung hingegen bezieht sich speziell auf Zellen, bei denen das Elektro- lytSystem auf Schwefeldioxid basiert. Als "auf S02 basie- rendes Elektrolytsystem (S02-based electrolyte system) " werden Systeme bezeichnet, bei denen die Beweglichkeit der Ionen des Leitsalzes zumindest teilweise durch das S02' gewährleistet wird, S02 also ein funktionswesentlicher Bestandteil des Transportmediums des Elektrolytsystems ist. Ein besonderes ebenfalls zu Verwendung mit der vorliegenden Erfindung geeignetes S02-ElektrolytSystem ist in der deutschen Patentanmeldung 10110716.1, angemeldet am 7. März 2001 bzw. der entsprechenden inter- nationalen Patentanmeldung PCT/DE02/00789, beschrieben.
Ein grundlegendes Problem aufladbarer Batterien ist ihre beschränkte Lebensdauer. Deshalb besteht ein wichtiges Ziel der Batterieentwicklung darin, Batterien zu entwik- kein, die für eine möglichst große Zahl von Lade- und Entladezyklen zur Verfügung stehen, ohne daß ihre nutzbare Kapazität wesentlich abnimmt. Diese Eigenschaft wird üblicherweise als Zykelstabilität bezeichnet.
Die Kapazität und damit die Nutzbarkeit aufladbarer Batterien verschlechtert sich jedoch nicht nur durch wiederholtes Laden und Entladen, sondern auch, wenn die Batterie in unbenutztem Zustand gelagert wird. Dieses Problem ist besonders ausgeprägt bei den in neuerer Zeit insbe- sondere für tragbare Telefone und Videokameras gebräuchlichen Lithium-Ionen-Zellen, deren Kapazität meist schon nach einem Jahr wesentlich abgenommen hat. Neben der Kapazität ist der Innenwiderstand der Zelle eine weitere Kenngröße, die sich im Laufe der Batterielebensdauer ver- schlechtert. Die Zunahme des Innenwiderstands führt dazu, daß die maximal entnehmbare Stromstärke abnimmt bzw. beim Anschluß relativ niederohmiger Verbraucher die Batteriespannung unzulässig niedrige Werte annimmt . Als Ursache dieser Probleme werden in der Fachwelt unter anderem folgende Effekte diskutiert :
Ein Verlust von elektrochemisch aktivem Material an mindestens einer der Batterieelektroden, der aus e- chanischen Veränderungen des Materials resultiert.
Insbesondere kann das aktive Material im Betrieb der Batterien in relativ kleine mechanisch nicht miteinander verbundene Partikel zerfallen, die sich von der Elektrodenoberfläche lösen und damit für den zum Be- trieb der Batteriezelle erforderlichen elektrochemischen Prozeß nicht mehr zur Verfügung stehen.
Die elektrische oder elektrochemische Anbindung von Teilen des aktiven Materials an eines der Elektroden- Ableitelemente kann verlorengehen. - Die mechanische Verbindung zwischen dem Elektroden-Ableitelement und der aktiven Masse kann verlorengehen, so daß die aktive Masse von dem Ableitelement abfällt.
Bei porösen Materialien, die aus Partikeln bestehen, sind zwischen den Partikeln Brücken vorhanden, die den erforderlichen elektrisch leitenden Kontakt zwischen den Partikeln ermöglichen. Bei der Benutzung solcher Batterien kann es zu Veränderungen kommen, durch die der elektrische Widerstand dieser Brücken erhöht und schließlich die elektrische Verbindung ganz unterbro- chen wird.
Schließlich können in der Zelle Nebenreaktionen (insbesondere Selbstentlade- oder Überladereaktionen) stattfinden, die zu einer irreversiblen Zerstörung von aktivem Material und infolgedessen zu einer Abnahme der Kapazität und/oder einer Zunahme des elektrischen Widerstandes führen. Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, bei wiederaufladbaren Batteriezellen mit einem auf S02 basierenden ElektrolytSystem eine Erhöhung der Lebensdauer zu erreichen.
Die Aufgabe wird gelöst durch eine Batteriezelle, bei der ein elektronisch leitendes Ableitelement mindestens einer Elektrode in einer Oberflächenschicht als Reaktions- schutzmaterial zum Schutz des Ableitelementes gegen un- erwünschte Reaktionen eine Legierung von Chrom mit einem anderen Metall und/oder ein Schutzmetall, ausgewählt aus der Gruppe bestehend aus Rhodium, Wolfram, Rhenium, Tantal, Platin, Iridium, Osmium und Technetium in reiner Form, als Bestandteil einer Legierung oder als Bestand- teil einer Verbindung und/oder ein Carbid, Nitrid oder Phosphid von Titan, Nickel, Kobalt, Molybdän, Eisen, Vanadium, Zirkon oder Mangan enthält.
Als Ableitelement bezeichnet man den üblicherweise aus Metall bestehenden Bestandteil der Elektroden von Batteriezellen, der dazu dient, den erforderlichen elektronisch leitenden Anschluß zu ermöglichen. Das Ableitelement steht in Kontakt zu einem an der Elektrodenreaktion der jeweiligen Elektrode beteiligten aktiven Material, das grundsätzlich fest, gasförmig oder flüssig sein kann. Die Elektrodenreaktion unter Beteiligung des aktiven Materials führt zur Bildung oder zum Verbrauch freier Elektronen, die über das Ableitelement beim Entladen abgeführt (negative Elektrode) oder zugeführt (positive Elek- trode) werden.
In der Regel besteht das Ableitelement aus einem Metall (beispielsweise Nickel, Kobalt, Kupfer, Edelstahl oder Aluminium) . Daneben werden auch Ableitelemente aus Koh- lenstoff oder leitenden Kunststoffen verwendet. Gebrauch- lieh sind insbesondere flächige Strukturen mit einer im Vergleich zu ihrer Dicke sehr großen Flächenausdehnung, wobei perforierte Strukturen (Gitter, Lochbleche) und insbesondere hochporöse Materialien, wie beispielsweise Streckmetalle oder Metallschaum-Materialien, bevorzugt sind.
Soweit das aktive Material der jeweiligen Elektrode im festen Zustand vorliegt, ist es gebräuchlich, es unmit- telbar mit dem Ableitelement zu einer Verbundelektrode zu verbinden. Beispielsweise kann man ein partikelförmiges aktives Material mit einem geeigneten Bindemittel (z.B. Polytetrafluorethylen) mischen und mit dem Ableitelement durch Aufpressen verbinden (vgl. US-Patent 5,213,914). Es sind aber auch Verfahren bekannt, bei denen die erforderliche Verbindung des aktiven Materials mit dem Ableitelement ohne Verwendung organischer Bindemittel hergestellt wird (vgl. US-Patent 5,656,391).
Im Rahmen der Erfindung wurde festgestellt, daß die Lebensdauer von Batteriezellen mit einem auf S02 basierenden Elektrolytsystem wesentlich verbessert wird, wenn (mindestens) eine Oberflächenschicht des Ableitelementes ein Reaktionsschutzmaterial enthält, durch das uner- wünschte Reaktionen der Bestandteile des Ableitelementes mit Bestandteilen des Elektrolytsystems, unter Umständen auch mit Bestandteilen der aktiven Masse der betreffenden Elektrode, verhindert werden. Dies gilt insbesondere für Elektrolytsysteme mit chloridhaltigen Leitsalzen, die für verschiedene wiederaufladbare Zellen gut geeignet sind, aber den Nachteil haben, daß die Halogenidionen mit dem Metall des Ableitelementes zu Verbindungen (z.B. Metall- Chloriden) reagieren, deren Bildung an der Oberfläche des Ableitelementes zu einer Abnahme der Kapazität und/oder einer Erhöhung des Innenwiderstandes der Zelle führt. Insoweit knüpft die Erfindung teilweise an einen bereits 1990 in dem US-Patent 4,892,796 publizierten Vorschlag an. Darin wird eine Alkalimetallzelle mit einem auf S02 basierenden Elektrolyt und einer CuCl2-Kathode beschrieben. Das dort als "Stromkollektor" bezeichnete Αbleitele- ment der Kathode enthält eine auf einen Kern aus Nickel aufplatierte Chromfolie. Die Chromfolie wird vorzugsweise durch Hartverchromen in einer Dicke von 2,5 μm bis 50 μm (0,1 bis 2 mil) auf den Nickelkern aufgebracht. Dadurch soll eine Inaktivierung der Oberfläche des Stromkollektors erreicht werden. Es wird berichtet, daß die Batteriekapazität der Zellen über eine größere Zahl von Lade- und Entladezyklen weitgehend stabil bleibt, wenn das Ableitelement der Kathode mit der Chromfolie beschichtet ist.
Bei der experimentellen Erprobung der vorliegenden Erfindung wurde bestätigt, daß die Lebensdauer von- Batterie- zellen mit einem auf S02 basierenden Elektrolyt wesentlich davon abhängt, daß das Elektrodenableitelement gegen unerwünschte Reaktionen geschützt ist. Der Schutz durch das in dem US-Patent 4,892,796 beschriebene Verfahren ist jedoch unzureichend. Erfindungsgemäß wird deshalb vorge- schlagen, mindestens eines der folgenden Reaktionsschutzmaterialien in einer Oberflächenschicht des elektronisch leitenden Ableitelementes zu verwenden.-
A) Eine Legierung von Chrom mit einem anderen Metall
Bei dem in dem US-Patent 4,892,796 beschriebenen Verfahren wird die Chromfolie als diskrete Schicht auf die Nickelunterlage aufgebracht, wobei eine scharfe Phasengrenze entsteht. Erfindungsgemäß wird hingegen ein Herstellungsverfahren verwendet, bei dem in der Oberflächenschicht eine Legierung von Chrom und einem anderen Metall, insbesondere Nickel, gebildet wird. Bevorzugt wird dies durch Diffusion von Chromatomen von der Oberfläche her in Richtung auf das Innere des Ableitelementes erreicht. Dabei bildet sich eine
Chromdiffusionsschicht, innerhalb der die Konzentration des Chroms in der von der Oberfläche wegführenden Richtung abnimmt.
Besonders gute Ergebnisse werden erreicht, wenn die Chromdiffusionsschicht von einer sehr dünnen reinen Chromschicht bedeckt ist. Im Gegensatz zu dem US-Patent 4,892,796 ist diese zusätzliche Chromschicht keine relativ dicke Hartchromschicht, sondern eine sehr dünne Glanzchromschicht (decorative plate) mit einer Schichtdicke von weniger als 5 μm, vorzugsweise höchstens 2 , 5 μm und besonders bevorzugt höchstens 1 μm.
B) ein Schutzmetall, ausgewählt aus Rhodium, Wolfram,
Rhenium, Tantal, Platin, Iridium, Osmium oder Technetium in reiner Form, als Bestandteil einer Legierung oder als Bestandteil einer Verbindung.
C) . ein Carbid, Nitrid oder Phosphid von Titan, Nickel, Kobalt, Molybdän, Eisen, Vanadium, Zirkon oder Mangan.
Diese drei Typen A, B, C von Reaktionsschutzmaterialien können auch miteinander kombiniert werden.
Aus den vorstehenden Erläuterungen ergibt sich, daß der Begriff "Oberflächenschicht" nicht einschränkend dahingehend zu verstehen ist, daß es sich um eine, diskrete Schicht mit homogener Zusammensetzung handeln muß. Viel- mehr bezeichnet dieser Begriff denjenigen oberflächennahen Bereich des Ableitelementes, der für dessen Reaktionsverhalten (insbesondere hinsichtlich Reaktionen mit dem Elektrolyt) bestimmend ist und in dem mindestens ei- nes der genannten Reaktionsschutzmaterialien lokalisiert sein muß, um die gewünschte Schutzwirkung zu erzielen.
Wenn im Falle des Typs A) eine zusätzliche dünne Schicht aus reinem Chrom vorgesehen ist, wird die Oberflächen- schicht im Sinne der vorstehenden Definition durch die
Kombination zweier Teilschichten, nämlich die Chromlegierungsschicht (insbesondere Chromdiffusionsschicht) und die diese bedeckende Chromschicht gebildet.
Durch die erfindungsgemäßen Maßnahmen wird eine wesentliche Verbesserung der Lebensdauer der Batteriezellen erreicht .
Von ganz besonderer Bedeutung ist die Erfindung in Ver- bindung mit Zellen, die beim Laden sehr hohe Zellspannungen (mehr als 4 Volt) erreichen. Dies gilt insbesondere für Lithiumzellen. In derartigen Zellen können bei verhältnismäßig hohen LadeSpannungen Überladereaktionen ab-' laufen, die für die Funktion der Zelle sehr vorteilhaft sind. Näheres hierzu wird in der internationalen Patentanmeldung WO 00/79631 AI beschrieben. Die mit diesen vorteilhaften Überladereaktionen verbundenen hohen Zell- spannungen von mehr als 5 Volt führen jedoch gemäß den Feststellungen der Erfinder zu Reaktionsbedingungen hin- sichtlich des Ableitelementes der positiven Elektrode, die (z.B. wegen der Bildung von reaktivem Chlor) besonders problematisch sind. Die vorliegende Erfindung ermöglicht es, diese Zellen in dem genannten hohen Potential- bereich zu laden, ohne daß ihre Lebensdauer beeinträch- tigt wird. Sie ist deshalb insbesondere in Verbindung mit der in der WO 00/79631 AI beschriebenen Batteriezelle anwendbar. Der Inhalt dieser Publikation wird durch Bezugnahme zum Inhalt der vorliegenden Anmeldung gemacht.
Ein weiterer Vorteil der Erfindung, insbesondere bei Verwendung eines Schutzmaterials vom Typ A, ist die (vor allem im Vergleich zu dem US-Patent 4,892,796) erhöhte mechanische Belastbarkeit ,
Die Erfindung richtet sich insbesondere auf Zellen, deren negative Elektrode im geladenen Zustand ein aktives Metall A enthält, das ausgewählt ist aus der Gruppe bestehend aus den Alkalimetallen, den Erdalkalimetallen und den Metallen der zweiten Nebengruppe des Periodensystems . Bevorzugte aktive Metalle sind Lithium, Natrium, Kalzium und Zink. Insbesondere Alkalimetallzellen, deren aktives Metall vorzugsweise Natrium und besonders bevorzugt Lithium ist, zeichnen sich durch für die praktische Anwendung besonders vorteilhafte Eigenschaften, vor allem .ein geringes Gewicht und - in Verbindung mit üblichen geeigneten positiven Elektroden - eine hohe' Zellspannung (somit eine sehr hohe Energiedichte), aus. Die hohe Zellspannung führt jedoch zu den erwähnten besonderen Korrosionsproblemen.
Für die erfindungsgemäße Schutzwirkung ist es ausreichend, wenn das Reaktionsschutzmaterial in einer Oberflächenschicht- des Ableitelementes vorhanden ist. Das Innere des Ableitelementes kann. aus einem anderen Material be- stehen, das nachfolgend als Kernmaterial bezeichnet wird. Geeignet sind beispielsweise Materialien auf Basis von Nickel, Kupfer, Edelstahl, Aluminium oder Kohlenstoff. Es genügt eine relativ dünne Oberflächenschicht, die vorzugsweise die gesamte mit dem Elektrolytsystem in Kontakt stehende Oberfläche des Ableitelementes umschließt. Be- vorzugt sollte sie so ausgebildet sein, daß sie für die Bestandteile des ElektrolytSystems (insbesondere darin enthaltene Halogenidionen) undurchlässig is . Vorliegenden experimentellen Untersuchungen zufolge genügen, ab- hängig von dem verwendeten ReaktionsSchutzmaterial, wenige Atomlagen, so daß es ausreichen kann, wenn das Reaktionsschutzmaterial in einer Schichtstärke von 0,5 nm an der Oberfläche vorhanden ist. In der Regel ist jedoch eine etwas größere Schichtstärke von mindestens 10 nm, bevorzugt mindestens 100 nm und besonders bevorzugt mindestens 0,5 μm vorteilhaft.
Die Schutzmetalle (Reaktionsschutzmaterialtyp B) können, wie erwähnt, in reiner Form, als Bestandteil einer Legie- rung oder als Bestandteil einer Verbindung in der Oberflächenschicht enthalten sein. Im Falle einer Legierung sind sowohl Legierungen der Schutzmetalle untereinander als auch mit anderen Metallen geeignet. Eine besonders vorteilhafte Schutzwirkung wurde bei einer Oberflächen- schicht beobachtet, die ein Oxid eines der genannten
Schutzmetalle enthält. Als weitere Beispiele für Verbindungen können Carbide, Nitride und Phosphide der Schutzmetalle oder die Verbindungen des Reaktionsschutzmate- rialtyps C verwendet werden. In vielen Fällen ist es vor- teilhaft, wenn die Oberflächenschicht vollständig aus einem oder mehreren der genannten Reaktionsschutzmaterialien der Typen B und C besteht. Der Gehalt an Reaktionsschutzmaterialien dieser Typen sollte jedenfalls höher als 20 Mol% liegen.
Die Wahl eines geeigneten Herstellungsverfahrens hängt von der Wahl des Reaktionsschutzmaterials ab. Sofern eine galvanische Abscheidung des Reaktionsschutzmaterials möglich ist, ist dieses Verfahren für die Erfindung ge'eig- net. Das für das Reaktionsschutzmaterial des Typs A ver- wendete Chrom läßt sich mit für andere Anwendungszwecke gebräuchlichen galvanischen VerChromungsverfahren gut auf ein Ableitelement auftragen, dessen Inneres aus einem anderen Metall, insbesondere Nickel, besteht. Ein galva- nischer Auftrag ist auch bei Rhodium und Platin möglich, wobei diese Materialien wegen ihres hohen- Preises gegenwärtig weniger bevorzugt sind.
Einige der genannten Reaktionsschutzmaterialien lassen sich wegen ihrer hohen Schmelzpunkte oder aus anderen Gründen nicht oder nur sehr aufwendig in einer dünnen Oberflächenschicht auf einem Kernmaterial aufbringen. Sie werden vorzugsweise in Konstruktionen eingesetzt, bei denen das Ableitelement vollständig (also nicht nur des- sen Oberflächenschicht) aus einem einheitlichen Material (zum Beispiel einem der Schutzmetalle) besteht. Vielfach lassen sich jedoch auch mit solchen Materialien, insbesondere Schutzmetallen des Typs B, dünne Schichten mittels einer Ablagerung aus der Gasphase (beispielsweise durch Sputtern) erzeugen. Auch eine Oberflächenschicht mit einem Reaktionsschutzmaterial des Typs A läßt sich auf diese Weise vorteilhaft herstellen.
Überraschenderweise hat sich bei der experimentellen Er- probung der Erfindung ergeben, daß besonders gute Ergebnisse erzielt werden, wenn das Herstellungsverfahren einen Verfahrensschritt einschließt, bei dem ein flächiges Ableitelementmaterial, das zumindest an seiner Oberfläche bereits Chrom oder eines der Schutzmetalle des Typs B enthält, zusätzlich in einer vorzugsweise inerten oder reduzierenden Gasatmosphäre getempert wird.
Dies wurde beispielsweise mit einem Ableitelement auf Basis eines Nickelschaummaterials (RETEC® von dem Herstel- 1er RPM Ventures L.L.C.) erprobt, auf das galvanisch eine Glanzverchromung aufgebracht worden war. Dieses Ableit- elementmaterial wurde für mehrere Stunden in einer leicht reduzierend eingestellten Schutzgasatmosphäre (Mischung aus Argon und Wasserstoff) langsam auf 800°C aufgeheizt und bei dieser Temperatur etwa eine Stunde gehalten. Daraus resultierte eine grünliche Verfärbung der Oberfläche, die auf die Bildung von Chromoxid hinweist.
Die Verwendung eines Ableitelementes mit einer derartig thermisch nachbehandelten Schutzschicht führt zu einer zusätzlichen Verbesserung der Langzeitstabilität. Nach den Erkenntnissen der Erfinder ist dies vor allem darauf zurückzuführen,, daß durch das Tempern Chromatome von der Oberfläche weg in Richtung auf das Innere des Ableitele- mentes diffundieren und sich dadurch eine Diffusionsschicht mit einem in Richtung von der Oberfläche weg abnehmenden Konzentrationsgradienten bildet. Wie erwähnt, wurde überraschenderweise festgestellt, daß als eine solche Chromdiffusionsschicht einen besonders guten Schutz gegen unerwünschte Reaktionen darstellt.
Eine Chromdiffusionsschicht läßt sich auch auf andere Weise erzeugen, beispielsweise dadurch, daß man Chrom durch ein mit einer Erhitzung der Oberfläche verbundenes Verfahren, insbesondere durch Sputtern, auf der Oberfläche des Ableitelementmaterials ablagert. Dabei diffundieren die Chromatome in die Oberfläche ein, ohne daß ein besonderes Tempern erforderlich ist.
Die erwähnte Bildung des Oxids des Schutzmetalls in der reduzierenden Atmosphäre dürfte darauf zurückzuführen sein, daß an der Oberfläche des Nickelmaterials vorhandenes Nickeloxid mit dem Chrom (unter Reduktion zu metallischem Nickel) zu Chromoxid umgesetzt wird. Besonders überraschend ist, daß die Ausbildung einer Metalloxid- Schicht, die in reiner Form schlechter leitfähig ist als das reine Metall, nicht zu einer Verschlechterung, sondern eher zu einer Verbesserung der Eigenschaften des Ableitelementes beiträgt .
Die gewünschte Reaktionsschutzwirkung läßt sich auch dadurch erreichen, daß man eine Legierung, die eines der genannten Metalle enthält, bei erhöhter Temperatur tempert, um durch den Wärmebehandlungsvorgang die Konzentra- tion des Metalles an der Oberfläche soweit zu erhöhen, daß eine ausreichende Schutzwirkung gewährleistet ist. Dies wurde beispielsweise mit einer Nickel-Chrom-Legierung erprobt, die einen Anteil von 20 % Chrom enthielt und bei 800° für 1 Stunde getempert wurde. Bei diesem Wärmebehandlungsprozeß findet eine Festkörper-Diffusion statt, die zu einer Anreicherung von Chromatomen an der Oberfläche führt, bei der also ein Konzentrationsgradient des Chroms entsteht.
Neben diesen Verfahren sind für die Erfindung auch andere Verfahren zur Herstellung einer Schutzschicht an der Oberfläche eines Ableitelementes geeignet. Beispielsweise kann auf mechanische Weise ein Metallverbund (metal com- posite) hergestellt werden. Grundsätzlich besteht auch die Möglichkeit, eine ein Reaktionsschutzmaterial enthaltende Oberflächenschicht, die ein organisches oder anorganisches Bindemittel enthält, mittels des Bindemittels .derartig mit dem Kernmaterial zu verbinden, daß eine Schutzschicht mit den im Rahmen der vorliegenden Erfin- düng erforderlichen Eigenschaften gebildet wird.
Das Ableitelement mit der das Reaktionsschutzmaterial enthaltenden Oberflächenschicht wird vorzugsweise für die positive Elektrode der Zelle verwendet, weil nach den Beobachtungen der Erfinder hier das Risiko störender Oberflächenreaktionen infolge der an der positiven Elektrode herrschenden elektrochemischen Bedingungen besonders groß ist. Es kann jedoch auch sinnvoll sein, das Ableitelement der negativen Elektrode mit einer Oberflä- chenschicht zu versehen, die eines der genannten Reaktionsschutzmaterialien enthält. Beispielsweise wurde beobachtet, daß in aus mehreren Zellen bestehenden Batterien, wenn die Zellen in einer Reihenschaltung gemeinsam geladen werden, Betriebszustände auftreten können, bei denen auf dem Ableitelement der negativen Elektrode in ähnlicher Weise wie sonst überwiegend an der positiven Elektrode eine störende Oberflächenreaktion stattfindet.
Von besonderer Bedeutung ist die Anwendung der Erfindung bei Zellen, deren positive Elektrode eine Verbundelektrode ist, bei der - wie oben beschrieben - das Ableit- element ein Substrat für eine mit ihm fest verbundene aktive Masse bildet. Dies gilt insbesondere für Zellen, bei denen die aktive Masse ein Metalloxid oder ein Me- tallhalogenid enthält. Besonders bevorzugt ist eine In- terkalationsverbindung aus einem Alkalimetall (als aktives Metall A der Zelle) , einem Übergangsmetall M mit der Ordnungszahl 22 bis 28 und Sauerstoff. Das Alkalimetall ist bevorzugt Lithium. Unter den genannten Metallen M sind Kobalt und Nickel besonders bevorzugt. Praktische Bedeutung haben insbesondere auch binäre und ternäre me- tall-oxidische Interkalationsverbindungen, die zwei oder drei unterschiedliche Übergangsmetalle in der Gitterstruktur enthalten, wie beispielsweise Lithium-Nickel-Ko- balt-Oxid (vgl. US-Patent Nr. 4,567,031). Soweit hier von "einem" Übergangsmetall als Bestandteil der Interkala- tionsverbindung gesprochen wird, bedeutet dies selbstverständlich nicht, daß die Verbindung nur ein einziges Übergangsmetall enthält. Nachfolgend wird die Erfindung anhand der Figuren näher erläutert, es zeigen:
Fig. 1 ein zyklisches Voltamogramm bei Verwendung ei- nes Ableitelementes aus unbehandeltem Nickel;
Fig. 2 ein zyklisches Voltamogramm bei Verwendung eines Ableitelementes, in dessen Oberflächenschicht Rhodium enthalten ist; Fig. 3 ein zyklisches Voltamogramm bei Verwendung ei- nes Ableitelementes mit einer Chro diffusions- schicht; Fig. 4 ein zyklisches Voltamogramm bei Verwendung eines Ableitelementes aus Wolfram; Fig. 5 den Verlauf der Entladekapazität und des Innen- Widerstandes in Abhängigkeit von der Zahl der
Lade- und Entladezyklen bei einer Zelle nach dem Stand der Technik; Fig. 6 den Verlauf der Entladekapazität und des Innenwiderstandes in Abhängigkeit von der Zahl der Lade- und Entladezyklen bei einer erfindungs-' gemäßen Zelle nach dem Stand der Technik; Fig. 7 einen EDX-Linescan eines Oberflächen-Querschnitts eines Ableitelementes mit einer galvanisch aufgebrachten Verchromung; Fig. 8 einen EDX-Linescan eines Oberflächen-Querschnitts eines Ableitelementes mit einer Chromdiffusionsschicht .
Die Wirkung der Erfindung wurde mit Hilfe zyklischer Vol- tamogramme untersucht. Dabei wurde eine Drei-Elektroden- Anordnung mit Lithium als Bezugs- und Gegenelektrode und dem jeweils untersuchten Ableitelement als Arbeitselektrode verwendet. Die Untersuchungszelle war mit einem Elektrolytsystem gefüllt, das iAlCl4 als Leitsalz und S02 als Transportmedium (im Verhältnis 1:1,5) enthielt. Das Potential wurde zwischen 3,5 Volt und 5,5 Volt vs . Li/Li+ mit einer Potentialvorlaufgeschwindigkeit von 20 mV/s variiert.
Figur 1 zeigt ein zyklisches Voltamogramm bei Verwendung eines Ableitelementes aus unbehandeltem Nickel'. Die Kurve A zeigt den ersten Zyklus, bei dem ab etwa 5 Volt ein Strom fließt, der durch eine Reaktion an der Oberfläche des Ableitelementes verursacht ist. Schon in dem mit B bezeichneten zweiten Zyklus ist der Stromfluß wesentlich geringer, weil an der Oberfläche des Ableitelementes eine störende Reaktion (nach den Erkenntnissen der Erfinder vor allem eine Bildung von Nickelchlorid) stattgefunden hat. Die dabei gebildete Oberflächenschicht verhindert die gewünschte Überladereaktion. Die Kurve C zeigt den fünften Zyklus, in dem praktisch kein Strom mehr fließt.
Figur 2 zeigt ein zyklisches Voltamogramm mit einem Ableitelement auf Basis eines Nickelblechs, das galvanisch mit einer Schutzschicht aus Rhodium von etwa 2 μm Dicke beschichtet war. Die dicke Kurve A ist das Voltamogramm des ersten Zyklus, die dünne Kurve B ist das Voltamogramm des hundertsten Zyklus. Es ist deutlich zu sehen, daß sich beide Zyklen praktisch nicht unterscheiden. Aus die- sem Ergebnis läßt sich ableiten, daß die gewünschte Überladereaktion auch nach mehreren hundert Zyklen in praktisch unveränderter Weise stattfindet.
Figur 3 zeigt entsprechende Ergebnisse für ein Ableit- element auf Basis eines Nickelbleches, auf dem zunächst galvanisch Chrom mit einer Dicke von ca. 0,5 μm abgeschieden wurde (Glanzverchromung) . Danach wurde das Ableitelement unter Schutzgas mit leicht reduzierenden Eigenschaften (Argon/Wasserstoff) innerhalb von ca. sechs Stunden auf 800°C hochgeheizt, diese Temperatur eine Stunde gehalten und danach abgekühlt . In der Figur ist der erste Zyklus (dünne Linie A) und der dreihundertste Zyklus (dicke Linie B) dargestellt. Auch hier zeigt sich eine nahezu vollständige Übereinstimmung, d.h. die Ober- flächeneigenschaften des Ableitelementes sind während der dreihundert Zyklen praktisch unverändert geblieben.
Figur 4 zeigt ein entsprechendes Untersuchungsergebnis für ein Ableitelement, das insgesamt aus einem einheitli- chen Material, im dargestellten Fall aus massivem Wolfram, besteht. Das Voltamogramm des ersten Zyklus ist als dicke Kurve A, der hundertste Zyklus als dünne Kurve B dargestellt. Das Ergebnis zeigt, daß auch massive Metalle, wie z.B. Wolfram, als Ableitelement eingesetzt werden können, dessen elekrochemische Eigenschaften stabil bleiben. Der Reaktionsstrom nimmt in diesem Fall nach über hundert Zyklen nicht nur nicht ab, sondern wird sogar größer.
In den Figuren 5 und 6 ist der typische Verlauf der Ent- ladekapazität C (jeweils Kurve A) und des Innenwiderstandes R (jeweils Kurve B) in Abhängigkeit von der Zahl n der Lade- und Entladezyklen dargestellt. Figur 5 zeigt, daß bei nach dem Stand der Technik ausgebildeten Zellen die Kapazität zunächst weitgehend stabil bleibt, dann aber rasch auf Werte abfällt, bei denen die Zelle praktisch nicht mehr brauchbar ist. Entsprechend steigt der Widerstand stark an. Dieser raschen Verschlechterung der Zeil-Kenngrößen läßt sich dadurch erklären, daß die Zu- nähme des Widerstandes zu einer Erhöhung der notwendigen Ladespannung führt, die wiederum zu einer Verstärkung störender Oberflächenreaktionen des Ableitelementes führt. Figur 6 zeigt, daß dieser Effekt bei einer erfindungsgemäß ausgebildeten Zelle nicht eintritt und sowohl die Kapazität als auch der Innenwiderstand über eine große Zahl von Zyklen weitgehend stabil bleibt.
Die in den Figuren 7 und 8 wiedergegebenen EDX-Linescans zeigen die Verteilung der Metalle Chrom (Cr) und Nickel (Ni) sowie den Gehalt an Sauerstoffatomen (O) i -der Oberflächenschicht eines Ableitelementes . Aufgetragen ist jeweils die Konzentration in willkürlichen Einheiten in Abhängigkeit von der Tiefe unterhalb der Oberfläche in μm, wobei der Nullpunkt der Abszisse willkürlich gewählt ist. Die ebenfalls dargestellte Kohlenstoffkonzentration (C) ist darauf zurückzuführen, daß zum Einbetten des un- ' tersuchten Feinschliffes Epoxidharz verwendet wurde.
Figur 7 zeigt, daß eine galvanisch aufgebrachte Verchromung eine diskrete Chromschicht erzeugt, die praktisch vollständig von dem Nickel-Grundmaterial getrennt ist. Die geringfügige Überlappung der Kurven ist auf die begrenzte Tiefenauflösung der Untersuchungsmethode (Spot- breite ca . 1 μm) zurückzuführen. Betrachtet man den Querschnitt im Rasterelektronenmikroskop so zeigt sich, daß die galvanische Glanzverchromung nicht rißfrei ist, sondern Risse aufweist, die bis auf das Nickel-Grundmaterial reichen. _ .
Figur 8 zeigt die entsprechenden Ergebnisse, nachdem das Material (wie im Zusammenhang mit Figur 3 beschrieben) getempert wurde. Es resultiert ein mehrere μm breiter Übergangsbereich, in dem die Konzentration des Chrom von der Oberfläche weg allmählich abnimmt und die Konzentration des Nickel entsprechend zunimmt. Unter dem Raster- elektronenmikrpskop ist zu erkennen, daß die Schichtstärke des Chroms durch das in die Chromdiffusionsschicht eingewanderte Material deutlich abgenommen hat, die Risse jedoch weitgehend geschlossen sind. Die dargestellten experimentellen Ergebnisse verdeutlichen insgesamt, daß mit einer Glanzverchromung, wie sie bisher üblicherweise nur für dekorative Zwecke verwendet wurde, eine, ausgezeichnete Verbesserung der Qualität elektrochemischer' Zellen erreicht werden kann, wenn in der Oberflächenschicht des Ableitelementes eine Chromdiffusionsschicht erzeugt wird. Dabei ist die zum Schutz gegen unerwünschte Reaktionen wirksame Oberflächenschicht nur wenige μm dick. Die Erfindung kann deswegen besonders vorteilhaft auch bei den einleitend erwähnten Ableitelementen aus hochporösen Materialen wie beispielsweise Streckmetallen und insbesondere Metallschäumen vorteilhaft verwendet werden, bei denen die reaktionsschützende Oberflächenschicht nicht etwa nur die äußere Oberfläche, sondern die gesamte innere Oberfläche des porösen Materials schützt.

Claims

Ansprüche
1. Bei Normaltemperatur betreibbare, wiederaufladbare Batteriezelle mit einem auf S02 basierenden Elektrolytsystem, einer negativen Elektrode und einer positiven Elektrode wobei eine der Elektroden ein elektronisch leitendes Ableitelement aufweist, das in einer Oberflächenschicht ein Reaktionsschutzmaterial zum Schutz des Ableitelements gegen unerwünschte Reaktionen enthält dadurch gekennzeichnet, daß die Oberflächenschicht des elektronisch leitenden Ableitelementes als Reaktionsschutzmaterial eine Legierung von Chrom mit einem anderen Metall und/oder ein Schutzmetall, ausgewählt aus Rhodium, Wolfram, Rhenium, Tantal, Platin, Iridium, Osmium oder Technetium in reiner Form, als Bestandteil einer Legierung oder als Bestandteil einer Verbindung und/oder ein Carbid, Nitrid oder Phosphid von Titan, Nickel, Kobalt, Molybdän, Eisen, Vanadium, Zirk'on oder Mangan enthält .
2. Batteriezelle nach Anspruch 1, dadurch gekennzeichnet, daß die Oberflächenschicht als Reaktionsschutzmaterial eine Legierung von Chrom mit einem anderen Metall in Form einer Chromdiffusionsschicht enthält, innerhalb der die Konzentration des Chroms in der von der Oberfläche wegführenden Richtung abnimmt .
3. Batteriezelle nach Anspruch 2, dadurch gekennzeichnet, daß die Oberflächenschicht eine die Chromdiffu- sionsschicht bedeckende Chromschicht einschließt.
4. Batteriezelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Oberflächenschicht eine Legierung des Chroms mit Nickel enthält .
5. Batteriezelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Oberflächenschicht ein Oxid des Chroms enthält.
6. Batteriezelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Ableitelement unter der Oberflächenschicht ein von deren Material verschiedenes Kernmaterial enthält .
7. Batteriezelle nach Anspruch 6, dadurch gekennzeichnet, daß das Kernmaterial Nickel, Kupfer, Aluminium, Edelstahl oder Kohlenstoff enthält .
8. Batteriezelle nach einem der vorhergehenden Ansprü- ehe, dadurch gekennzeichnet, daß mindestens eine Komponente der Oberflächenschicht durch Ablagerung aus der Gasphase aufgebracht ist.
9. Batteriezelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mindestens eine Komponente der Oberflächenschicht galvanisch aufgebracht ist .
10. Batteriezelle nach Anspruch 9, dadurch gekennzeichnet, daß die galvanisch aufgebrachte Komponente Chrom ist .
11. Batteriezelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Ableitelement Bestandteil einer Verbundelektrode ist, in der das Ableitelement als Substrat für eine mit ihm fest verbundene aktive Masse dient .
12. Batteriezelle nach Anspruch 11, dadurch gekennzeichnet, daß die Verbundelektrode die positive Elektrode der Zelle ist.
13. Batteriezelle nach Anspruch 12, dadurch gekennzeichnet, daß die aktive Masse der positiven Elektrode ein Metalloxid oder ein Metallhalogenid enthält.
14. Batteriezelle nach Anspruch 12, dadurch gekennzeich- net, daß die negative Elektrode im geladenen Zustand ein aktives Metall enthält, das ausgewählt ist aus der Gruppe bestehend aus den Alkalimetallen, den Erdalkalimetallen und den Metallen der zweiten Nebengruppe des Periodensystems .
15. Batteriezelle nach Anspruch 14, dadurch gekennzeichnet, daß das aktive Metall Lithium, Natrium, Kalzium oder Zink ist.
16. Batteriezelle nach Anspruch 15, dadurch gekennzeichnet, daß das Metalloxid eine Interkalationsverbindung ist.
17. Batteriezelle nach einem der vorhergehenden Ansprüche,, dadurch gekennzeichnet, daß das Elektrolytsystem Halogenidionen enthält .
18. Verfahren zum Herstellen einer Batteriezelle nach ei- nem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es einen Verfahrensschritt einschließt, bei dem ein flächiges Ableitelement-Material, das zumindest an seiner Oberfläche ein Metall ausgewählt aus Chrom, Rhodium, Wolfram, Rhenium, Tantal, Platin, Iridium, Osmium oder Technetium enthält, getempert wird.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß Temperatur und Dauer des Temperns so gewählt sind, daß Atome des Metalls von der Oberfläche weg in das benachbarte Material des Ableitelementes diffundieren, so daß eine Diffusionsschicht entsteht, innerhalb der die Konzentration des Metalls in der von der Oberfläche wegführenden Richtung abnimmt.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß das Metall Chrom ist.
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß das Material, in das das Chrom diffundiert,
Nickel ist.
22. Verfahren nach einem der Ansprüche 18 bis 21, dadurch gekennzeichnet, daß der Tempervorgang- in einer iner- ten oder reduzierenden Gasatmosphäre stattfindet.
EP02745133A 2001-06-15 2002-06-10 Bei normaltemperatur betreibbare, wiederaufladbare batteriezelle Withdrawn EP1415359A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10128970A DE10128970A1 (de) 2001-06-15 2001-06-15 Bei Normaltemperatur betreibbare, wiederaufladbare Batteriezelle
DE10128970 2001-06-15
PCT/DE2002/002112 WO2002103827A2 (de) 2001-06-15 2002-06-10 Bei normaltemperatur betreibbare, wiederaufladbare batteriezelle

Publications (1)

Publication Number Publication Date
EP1415359A2 true EP1415359A2 (de) 2004-05-06

Family

ID=7688340

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02745133A Withdrawn EP1415359A2 (de) 2001-06-15 2002-06-10 Bei normaltemperatur betreibbare, wiederaufladbare batteriezelle

Country Status (6)

Country Link
US (1) US7244530B2 (de)
EP (1) EP1415359A2 (de)
JP (1) JP4518791B2 (de)
AU (1) AU2002316775A1 (de)
DE (2) DE10128970A1 (de)
WO (1) WO2002103827A2 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
JP4752372B2 (ja) * 2004-12-13 2011-08-17 パナソニック株式会社 正極活物質およびその製造法ならびに非水電解質二次電池
JP4919225B2 (ja) * 2007-02-02 2012-04-18 住友電気工業株式会社 電気二重層キャパシタ用電極
JP4919226B2 (ja) * 2007-03-15 2012-04-18 住友電気工業株式会社 電気二重層キャパシタ用分極性電極及びその製造方法
KR20090125256A (ko) * 2007-03-26 2009-12-04 사임베트 코퍼레이션 리튬 막박 전지용 기재
US20100239914A1 (en) * 2009-03-19 2010-09-23 Sion Power Corporation Cathode for lithium battery
EP2071658A1 (de) * 2007-12-14 2009-06-17 Fortu Intellectual Property AG Elektrolyt für eine elektrochemische Batteriezelle
EP2669975A1 (de) 2008-08-05 2013-12-04 Sion Power Corporation Kraftanwendung in elektrochemischen Zellen
EP2360772A1 (de) * 2010-02-12 2011-08-24 Fortu Intellectual Property AG Wiederaufladbare elektrochemische Zelle
US9209458B2 (en) 2010-02-10 2015-12-08 Alevo Research Ag Rechargeable electrochemical battery cell
KR101807911B1 (ko) 2011-06-17 2017-12-11 시온 파워 코퍼레이션 전극 도금 기술
KR101905233B1 (ko) 2011-10-13 2018-10-05 시온 파워 코퍼레이션 전극 구조물 및 그의 제조 방법
WO2014095483A1 (en) 2012-12-19 2014-06-26 Basf Se Electrode structure and method for making same
KR101520606B1 (ko) * 2013-10-08 2015-05-15 전자부품연구원 나트륨-이산화황계 이차 전지 및 이의 제조 방법
KR101542880B1 (ko) * 2013-10-08 2015-08-07 전자부품연구원 나트륨-금속염화물계 이차 전지 및 그의 제조 방법
EP3138144B1 (de) 2014-05-01 2018-07-25 Basf Se Verfahren zur herstellung von elektroden, sowie hergestellte artikel
KR101664812B1 (ko) * 2015-09-08 2016-10-13 전자부품연구원 선충전 이산화황 이차전지 및 그의 제조 방법
DE102016125177A1 (de) 2016-12-21 2018-06-21 Fortu New Battery Technology Gmbh Elektrode-Separator-Element mit einer keramischen Separatorschicht
DE102016125168A1 (de) 2016-12-21 2018-06-21 Fortu New Battery Technology Gmbh Wiederaufladbare elektrochemische Zelle mit keramischer Separatorschicht und Indikatorelektrode
US10868306B2 (en) 2017-05-19 2020-12-15 Sion Power Corporation Passivating agents for electrochemical cells
KR102664549B1 (ko) 2017-05-19 2024-05-09 시온 파워 코퍼레이션 전기화학 전지용 부동태화제
WO2019002116A1 (en) 2017-06-28 2019-01-03 Basf Se METHOD FOR MANUFACTURING CATHODE ACTIVE MATERIAL FOR LITHIUM ION BATTERY
FI129573B (en) * 2017-08-04 2022-05-13 Broadbit Batteries Oy Improved electrochemical cells for high energy battery use
DE102018128902A1 (de) * 2018-08-08 2020-02-13 VON ARDENNE Asset GmbH & Co. KG Verfahren
CN109775675B (zh) * 2018-12-27 2021-03-23 西安交通大学 一种Re6P13、制备方法及其与碳材料的复合负极材料的制备方法
WO2021102071A1 (en) 2019-11-19 2021-05-27 Sion Power Corporation Batteries, and associated systems and methods
US11978917B2 (en) 2019-11-19 2024-05-07 Sion Power Corporation Batteries with components including carbon fiber, and associated systems and methods
US11984575B2 (en) 2019-11-19 2024-05-14 Sion Power Corporation Battery alignment, and associated systems and methods
US11791511B2 (en) 2019-11-19 2023-10-17 Sion Power Corporation Thermally insulating compressible components for battery packs
US20210194096A1 (en) * 2019-12-20 2021-06-24 The Board Of Trustees Of The Leland Stanford Junior University Ionic compound-based electrocatalyst for the electrochemical oxidation of hypophosphite
WO2021183858A1 (en) 2020-03-13 2021-09-16 Sion Power Corporation Application of pressure to electrochemical devices including deformable solids, and related systems
EP4037051A1 (de) 2021-01-29 2022-08-03 Innolith Technology AG Wiederaufladbare batteriezelle

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1071788B (de) * 1920-09-16 1959-12-24 AcouimiuHatorien - Fabrik Aktoeneselilschafit, Hagen. Erlf.: Dr.-Ing. Lutz lorn, Hagen, Dipl.-Chem. Dr. Rolf Dieberg, Dorflmundl-Aplerbeck, Fritz Philipp, Hagen-Hasipe und Siegfried Dicklfeldt, Bmnepetall-Milspe (Wesfif.) Poröses Metalflivlies1, insbesondere für die Elektroden elektrischer Zellen und Verfahren zu seiner Herstellung
NL86185C (de) * 1951-06-08 1900-01-01
US3486940A (en) * 1968-07-30 1969-12-30 Samuel Ruben Storage battery having a positive electrode comprising a supporting base of titanium nitride having a surface film of non-polarizing material
IT981700B (it) * 1973-03-28 1974-10-10 Magneti Marelli Spa Perfezionamento ai generatori elettrochimici del tipo a me tallo alogeno
US3945852A (en) * 1974-09-06 1976-03-23 P. R. Mallory & Co. Inc. Current collector for organic electrolyte batteries
US4096318A (en) * 1974-10-26 1978-06-20 Basf Aktiengesellschaft Rechargeable accumulator having a manganese dioxide electrode and an acid electrolyte
GB1491905A (en) 1974-11-06 1977-11-16 Chloride Silent Power Ltd Galvanic cells
US4011374A (en) * 1975-12-02 1977-03-08 The United States Of America As Represented By The United States Energy Research And Development Administration Porous carbonaceous electrode structure and method for secondary electrochemical cell
US4037032A (en) * 1976-05-05 1977-07-19 Diamond Shamrock Technologies S.A. Electric storage battery with valve metal electrodes
GB1552304A (en) * 1977-01-21 1979-09-12 Diamond Shamrock Techn Secondary batteries and electrodes for such batteries
DE2720726C3 (de) * 1977-05-07 1980-12-18 Brown, Boveri & Cie Ag, 6800 Mannheim Elektrochemische Alkali-Schwefel-Speicherzelle bzw. -Batterie
JPS53139872A (en) * 1977-05-10 1978-12-06 Toray Industries Porous body comprising metal coated carbon fiber
US4248943A (en) * 1980-04-21 1981-02-03 Ford Motor Company Sodium sulfur container with chromium/chromium oxide coating
DE3230410A1 (de) * 1982-08-16 1984-02-16 Varta Batterie Ag, 3000 Hannover Stuetz- und ableitergerueste mit intermetallischen haftvermittlern fuer lithium enthaltende batterieelektroden
US4513067A (en) * 1983-06-30 1985-04-23 Duracell Inc. Inorganic non-aqueous cell
US4567031A (en) * 1983-12-27 1986-01-28 Combustion Engineering, Inc. Process for preparing mixed metal oxides
WO1989005526A1 (en) 1987-12-10 1989-06-15 Unisearch Limited All-vanadium redox battery and additives
DE3826812A1 (de) * 1988-08-06 1990-02-08 Heitbaum Joachim Nichtwaessriges, wiederaufladbares galvanisches lithiumelement mit anorganischer elektrolytloesung
US4892796A (en) * 1988-08-26 1990-01-09 Altus Corporation Positive current collector for lithium secondary system
DE4241276A1 (de) * 1992-12-08 1994-06-09 Hambitzer Guenther Dr Rer Nat Verfahren zum Herstellen einer Elektrode für elektrochemische Zellen, Elektrode und wiederaufladbares Element auf Basis einer solchen Elektrode
US5928483A (en) * 1997-11-12 1999-07-27 The United States Of America As Represented By The Secretary Of The Navy Electrochemical cell having a beryllium compound coated electrode
US6730441B1 (en) * 1999-06-18 2004-05-04 Gunther Hambitzer Rechargeable electrochemical cell
DE10110716A1 (de) 2001-03-07 2002-09-12 Fortu Bat Batterien Gmbh Wiederaufladbare nichtwässrige Batteriezelle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02103827A2 *

Also Published As

Publication number Publication date
WO2002103827A3 (de) 2004-02-19
WO2002103827A2 (de) 2002-12-27
DE10292678D2 (de) 2004-04-29
DE10128970A1 (de) 2002-12-19
US7244530B2 (en) 2007-07-17
US20040157129A1 (en) 2004-08-12
JP2004536427A (ja) 2004-12-02
JP4518791B2 (ja) 2010-08-04
AU2002316775A1 (en) 2003-01-02

Similar Documents

Publication Publication Date Title
EP1415359A2 (de) Bei normaltemperatur betreibbare, wiederaufladbare batteriezelle
DE69707622T2 (de) Aufladbare lithiumbatterie mit umkehrbarer kapazität
DE69936706T2 (de) Lithiumspeicherbatterie
DE69529206T2 (de) Nickelelektrode aktives Material; Nickelelektrode und alkalische Nickelspeicherzelle die solches aktives Material verwendet, und solchen Material, Elektrode und Zelle Herstellungsverfahren
EP1665447A2 (de) Elektrochemische batteriezelle
DE10242911A1 (de) Elektrodenkatalysator für Brennstoffzelle und Verfahren zu dessen Herstellung
DE112012002904T5 (de) Aktives Material für eine wiederaufladbare Batterie
EP0974564B1 (de) Perowskit für eine Beschichtung von Interkonnektoren
DE102018221828A1 (de) Beschichtung von Anoden- und Kathodenaktivmaterialien mit hochvoltstabilen Festelektrolyten und einem Elektronenleiter im Mehrschichtsystem und Lithium-Ionen-Batteriezelle
DE4235514C2 (de) Poröse sauerstoffverzehrende Elektrode, Verfahren zu deren Herstellung und deren Verwendung
WO2015140049A1 (de) Elektrode für eine lithium-zelle
DE102018221164A1 (de) Schutzschicht für eine Lithium-Metall-Anode einer Festkörperbatterie
DE3543455A1 (de) Stromableiter fuer eine mit alkalischem elektrolyten in verbindung stehende metalloxidelektrode
EP1235286A2 (de) Galvanisches Element mit mindestens einer lithiuminterkalierenden Elektrode
DE102018219586A1 (de) Beschichtung von Anoden- und Kathodenaktivmaterialien mit hochvoltstabilen Festelektrolyten und einem Elektronenleiter im Mehrschichtsystem und Lithium-Ionen-Batteriezelle
DE60021931T2 (de) Elektrode aus wasserstoffspeichernder Legierung und Verfahren zu ihrer Herstellung
DE102018112642A1 (de) Lithium-Ionen-Zelle und Verfahren zu deren Herstellung
DE60035252T2 (de) Alkalische Speicherbatterie
DE102021127929A1 (de) Kathode sowie eine Lithiumionen-Festkörperbatterie mit der Kathode
DE19620504C2 (de) Elektrode für eine Schmelzkarbonatbrennstoffzelle und Verfahren zur Herstellung einer solchen sowie deren Verwendung
DE102011053782A1 (de) Lithium-Luft-Batterie
DE19523635C2 (de) Stromkollektor für eine Hochtemperaturbrennstoffzelle mit vermindertem Oberflächenwiderstand, sowie Verfahren zur Herstellung eines solchen und dessen Verwendung
DE102018112639A1 (de) Kathodenanordnung und Verfahren zu deren Herstellung
DE102018207722A1 (de) Elektrochemische Festkörperzelle mit Wasserstoff-absorbierendem Material
DE10039464A1 (de) Nickel-Metallhydrid-Zelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031220

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JAEGER, FRANZISKA

Inventor name: ZINCK, LAURENT

Inventor name: STASSEN, INGO

Inventor name: RIPP, CHRISTIANE

Inventor name: HAMBITZER, GUENTHER

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HAMBITZER, GUENTHER, DR.

17Q First examination report despatched

Effective date: 20110408

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150106