EP1413640A1 - Ferritischer nichtrostender stahl für ein element einer abgasstrompassage - Google Patents

Ferritischer nichtrostender stahl für ein element einer abgasstrompassage Download PDF

Info

Publication number
EP1413640A1
EP1413640A1 EP02743819A EP02743819A EP1413640A1 EP 1413640 A1 EP1413640 A1 EP 1413640A1 EP 02743819 A EP02743819 A EP 02743819A EP 02743819 A EP02743819 A EP 02743819A EP 1413640 A1 EP1413640 A1 EP 1413640A1
Authority
EP
European Patent Office
Prior art keywords
mass
steel
temperature
stainless steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02743819A
Other languages
English (en)
French (fr)
Other versions
EP1413640B1 (de
EP1413640A4 (de
Inventor
Manabu c/o Stainless Steel Business Div. OKU
Yoshitomo Stainless Steel Business Div. FUJIMURA
Toshirou Stainless Steel Business Div. Nagoya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Publication of EP1413640A1 publication Critical patent/EP1413640A1/de
Publication of EP1413640A4 publication Critical patent/EP1413640A4/de
Application granted granted Critical
Publication of EP1413640B1 publication Critical patent/EP1413640B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • F01N2530/04Steel alloys, e.g. stainless steel

Definitions

  • the present invention relates to a ferritic stainless steel, which is excellent in heat-resistance, low-temperature toughness and weldability, useful as conduit members, e.g. exhaust manifolds, front pipes, center pipes and outer casings of catalytic converters in internal combustion engines of automobiles or the like, for emission of exhaust gas.
  • conduit members e.g. exhaust manifolds, front pipes, center pipes and outer casings of catalytic converters in internal combustion engines of automobiles or the like, for emission of exhaust gas.
  • Conduit members of automobiles for emission of exhaust gas are directly exposed to a high-temperature atmosphere containing exhaust gas during driving automobiles, and subjected to thermal stress caused by repetition of driving and stopping as well as vibration during driving. Mechanical stress is also applied to conduit members at a low temperature, when automobiles are started in winter in cold districts. Therefore, a material for use as the conduit members shall have durability in severe environments.
  • conduit members are fabricated by welding or forming steel sheets or pipes to product shapes, steels necessarily have excellent heat-resistance, weldability and formability for the purpose.
  • Toughness especially low-temperature toughness, is also an important property, in order to secondarily form a stainless steel sheet or pipe without cracks and to render conduit members resistant to mechanical stress at a low temperature.
  • a ferritic stainless steel is often used as a material for such conduit members, due to its small thermal expansion coefficient, thermal fatigue strength and scale spalling resistance in comparison with an austenitic stainless steel. A low price is also an advantage of the ferritic stainless steel.
  • JP3-274245A discloses Nb-alloyed steel and Nb, Si-alloyed steel as new SUS430J1 stainless steels
  • JP5-125491A discloses Nb, Mo-alloyed steel.
  • the Nb, Mo-alloyed steel is useful as parts or members exposed to severe high-temperature atmosphere due to its excellent high-temperature strength and thermal fatigue-resistance.
  • poor formability and inferior low-temperature toughness are disadvantages of the Nb, Mo-alloyed steel.
  • a few reports are published on improvement of formability and low-temperature toughness, the improvement is still insufficient for the purpose. Consumption of expensive Mo at a high ratio is also an disadvantage of the Nb, Mo-alloyed steel.
  • high-temperature strength e.g. resistance to thermal fatigue failure
  • high-temperature oxidation-resistance evaluated as a critical temperature of abnormal oxidation
  • high-temperature strength is more important than high-temperature oxidation-resistance
  • formability and low-temperature toughness are also important factors so as to form a stainless steel sheet or pipe to the complicate profile.
  • the Nb, Mo-alloyed steel is necessarily used for such a part or member with emphasis on heat-resistance regardless poor formability, inferior low-temperature toughness and expensiveness.
  • the present invention aims at provision of a ferritic stainless steel useful as conduit members for emission of exhaust gas.
  • An object of the present invention is to bestow a ferritic stainless steel, which does not contain expensive Mo, with heat-resistance similar to that of Nb, Mo-alloyed steel in addition to excellent formability, low-temperature toughness and weldability.
  • the present invention proposes a ferritic stainless steel, which consists of C up to 0.03 mass %, Si up to 1.0 mass %, Mn up to 1.5 mass %, Ni up to 0.6 mass %, 10-20 mass % of Cr, Nb up to 0.50 mass %, 0.8-2.0 mass % of Cu, Al up to 0.03 mass %, 0.03-0.20 mass % of V, N up to 0.03 mass % and the balance being Fe except inevitable impurities with a provision of Nb ⁇ 8(C+N).
  • the ferritic stainless steel does not contain Mo as an alloying element, but optionally contains 0.05-0.30 mass % of Ti for further improvement of formability and/or 0.0005-0.02 mass % of B for further improvement of secondary formability.
  • Such stainless steels as SUH409, SUS430J1l and SUS429 have been used as materials good of heat-resistance in an atmosphere, to which conduit members are exposed.
  • Such a part or member ordinarily has a complicate profile, so that it shall be made of a stainless steel good of formability and low-temperature toughness, which are never estimated from Mo-alloyed steel.
  • the part or member is likely to break down due to thermal fatigue, since thermal stress is repeatedly applied to the complicate profile.
  • the inventors have researched and examined effects of various alloying elements on properties of such a part or member, and discovered that a ferritic stainless steel is improved in all of high-temperature strength below 900°C, formability and low-temperature toughness by addition of both V and Cu to the same level of Nb, Mo-alloyed steel.
  • Nb-alloyed ferritic stainless steels which contained V at a small ratio and Cu at various ratios, were examined by high-temperature tensile test at 700°C and 800°C for measurement of 0.2%-proof stress. Test results prove that high-temperature strength below 900°C is remarkably raised to a level similar to Nb, Mo-alloyed steel by addition of V at a small ratio and Cu at a controlled ratio.
  • Fig. 1 shows test results of ferritic stainless steels with a basic composition of 17Cr-0.4Nb-0.1V, to which Cu is added at various ratios.
  • Fig. 1 also shows strength of SUS444 steel with basic composition of 18Cr-2Mo-0.4Nb as a comparative example of Nb, Mo-alloyed steel.
  • Values of 0.2%-proof stress at 700°C and 800°C are remarkably raised in response to increase of a Cu content, as noted in Fig. 1.
  • the value of 0.2%-proof stress at 0.8 mass % or more of Cu is similar or superior to that of SUS444 steel, which contains approximately 2 mass % of Mo.
  • the inventors have already confirmed from another test results that a value of 0.2%-proof stress at 900°C is not raised to a level of SUS444 but higher than Nb-containing ferritic stainless steel by increase of V and Cu contents.
  • addition of both V and Cu is effective for improvement of high-temperature strength in a hot zone below 900°C without significant troubles at a temperature higher than 900°C.
  • a ratio of dissolved Nb for improvement of high-temperature strength is also kept at a higher value by presence of V, which converts free C and N to carbonitrides, than V-free steels containing Nb at the same ratio.
  • Increase of dissolved Nb assures that high-temperature strength necessary for the purpose is attained by saved consumption of Nb in comparison with the V-free steels, resulting in improvement of formability and low-temperature toughness.
  • Carbonitrides of Nb and V increase in an annealed matrix of the inventive ferritic stainless steel. Increase of the carbonitrides suppresses crystal growth to coarse grains at a weld heat-affected zone, resulting in improvement of toughness. Formation of chromium carbide, which is harmful on intergranular corrosion-resistance, is also suppressed by increase of the carbonitrides.
  • C and N are generally regarded as elements effective for high-temperature strength, e.g. creep strength, but excess C and N unfavorably degrade oxidation-resistance, formability, low-temperature toughness and weldability.
  • V and Nb are necessarily added at ratios corresponding to concentrations of C and N. Therefore, each of C and N contents is controlled to 0.03 mass % or less (preferably 0.015 mass % or less), in order to avoid increase of V and Nb, which causes a rise of material expense. Si up to 1.0 mass %
  • Si is an element effective for high-temperature oxidation-resistance, but not so effective on high-temperature strength below 900°C. Excess Si hardens a ferritic stainless steel, resulting in degradation of formability and low-temperature toughness. In this sense, a Si content is determined at 1.0 mass % or less (preferably 0.1-0.5 mass %). Mn up to 1.5 mass %
  • Mn is an alloying element, which improves high-temperature oxidation-resistance, especially scale spalling resistance property, of a ferritic stainless steel, but excess Mn degrades formability and weldability.
  • a Mn content is determined at 1.5 mass % or less (preferably 0.5 mass % or less). Ni up to 0.6 mass %
  • Ni is an austenite-stabilizing element. Excess addition of Ni to a steel containing Cr at a relatively small ratio promotes formation of a martensitic phase harmful on thermal fatigue strength and formability, as the same as Mn. Excess Ni also raises a steel cost. Therefore, a Ni content is determined at 0.6 mass % or less (preferably 0.5 mass % or less). 10-20 mass% of Cr
  • Cr is an essential element for stabilization of a ferritic phase and improvement of oxidation-resistance as an important property for high-temperature use. Oxidation-resistance becomes better as increase of a Cr content, but excess Cr causes embrittlement of a stainless steel, resulting in increase of hardness and degradation of formability. In this sense, a Cr content is determined within a range of 10-20 mass %. Cr is preferably controlled to a proper value in response to a temperature on use. For instance, 16-19 mass % of Cr is favorable for oxidation-resistance at a temperature not higher than 950°C, and 12-16 mass % of Cr is favorable for oxidation-resistance at a temperature not higher than 900°C. From 8(C+N) to 0.50 mass % of Nb
  • Nb fixes C and N as carbonitrides, and also improves high-temperature strength in a state dissolved in a steel matrix. However, excess Nb is unfavorable for formability, low-temperature toughness and to welding hot crack-resistance. Nb not less than 8(C+N) is necessary for fixation of C and N, but an upper limit of Nb is determined at 0.5 mass % in order to maintain proper formability, low-temperature toughness and tensile type hot-cracking resistance. A Nb content is preferably controlled within a range of from 8(C+N)+0.10 to 0.45 mass %. 0.8-2.0 mass % of Cu
  • Cu is the most important element in the inventive alloy system. Within a temperature range which the inventors have researched and examined, most of Cu is dissolved in an annealed steel matrix and precipitated during heat-treatment. Cu precipitates exhibits the same strengthening effect as Mo at the beginning of heating, but the strengthening effect gradually becomes weaker as the lapse of heating time. At least 0.8 mass % of Cu is necessary in order to gain high-temperature strength suitable for the purpose, as noted in Fig. 1. However, formability, low-temperature toughness and weldability are degraded as increase of a Cu content. The unfavorable effect of Cu on formability, low-temperature toughness and weldability is suppressed by controlling an upper limit of the Cu content at 2.0 mass %. The Cu content is preferably determined within a range of 1.0-1.7 mass %. Al up to 0.03 mass %
  • Al is added as a deoxidizing element in a steel making process. But, excess Al degrades an external appearance of a stainless steel sheet and also puts harmful effects on formability, low-temperature toughness and weldability. In this sense, an Al content is preferably controlled at a lowest possible level, so that its upper limit is determined at 0.03 mass %. 0.03-0.20 mass % of V
  • the additive V improves high-temperature strength of a ferritic stainless steel in co-presence of Nb and Cu. Addition of V together with Nb is also effective for formability, low-temperature toughness, intergranular corrosion-resistance and toughness at a weld heat affected-zone. These effects are noted at 0.03 mass % or more of V, but excess V above 0.20 mass % is rather unfavorable for formability and low-temperature toughness. In this sense, a V content is determined within a range of 0.03-0.20 mass % (preferably 0.04-0.15 mass %). 0.05-0.30 mass % of Ti
  • Ti is an optional element, which raises Lankford value (r) and improves formability of a ferritic stainless steel, and its effect is noted at 0.05 mass % or more of Ti.
  • excess Ti promotes formation of TiN harmful on external appearance of a stainless steel and also degrades formability and low-temperature toughness.
  • Ti shall be held at a smallest possible ratio, even when Ti is added for improvement of formability. Therefore, an upper limit of a Ti content is determined at 0.30 mass % (preferably 0.20 mass %). 0.0005-0.02 mass % of B
  • B is another optional element for improving secondary formability of a stainless steel and suppressing cracking during multi-stepped forming.
  • the effect on formability is noted at 0.0005 mass % or more of B, but excess B causes degradation of productivity and weldability.
  • a B content is determined within a range of 0.0005-0.02 mass % (preferably 0.001-0.01 mass %).
  • the inventive alloy system is designed on the assumption that expensive Mo is not added as an alloying element, but Mo is likely to be included as an impurity during steel making. Since inclusion of Mo at a relatively high ratio is harmful on formability, low-temperature toughness and weldability, it shall be controlled at a ratio less than 0.10 mass %.
  • P, S and O are preferably controlled at lowest possible levels. Accounting hot-workability, oxidation-resistance and so on, upper limits of P, S and O are preferably determined at 0.04 mass %, 0.03 mass % and 0.02 mass %, respectively. At least one of W, Zr, Y and REM (rare earth metals) may be added for heat-resistance, or at least one of Ca, Mg and Co may be added for hot-workability.
  • W, Zr, Y and REM rare earth metals
  • Table 1 Each ferritic stainless steel with chemical composition shown in Table 1 or 2 was melted in a vacuum furnace and cast to a 30 kg ingot. The ingot was forged, hot-rolled, annealed, cold-rolled to thickness of 2.0 mm or 1.2 mm, and finish-annealed.
  • Table 1 shows compositions according to the present invention, while Table 2 shows comparative compositions.
  • a steel No. 11 corresponds to SUS430J1l
  • a steel No. 15 corresponds to SUH409L
  • a steel No. 16 corresponds to a 14Cr-Si-Nb steel
  • a steel No. 17 corresponds to SUS444. Any of these steels has been used so far as a material for an exhaust manifold.
  • Each annealed cold-rolled steel sheet of 2.0 mm in thickness was examined by a high-temperature tensile test, a high-temperature oxidation test, a room-temperature tensile test and Charpy impact test.
  • Each annealed cold-rolled steel sheet of 1.2 mm in thickness was examined by a tensile type hot-cracking test.
  • a test piece was heated at each temperature of 850°C, 900°C, 950°C, 1000°C and 1100°C for 200 hours under conditions regulated in JIS Z2281.
  • the heated test piece was observed by naked eyes to detect occurrence of abnormal oxidation (i.e. growth of knobby thick oxide through a steel sheet).
  • a critical temperature, at which the test piece was heated without abnormal oxidation, was determined from the observation results.
  • each annealed cold-rolled steel sheet of 2.0 mm in thickness was shaped to a test piece No. 13B and stretched under conditions regulated in JIS Z2241 to measure its elongation after fracture.
  • any of the inventive steels Nos. 1-10 has 0.2%-proof stress at 800°C, fairly higher than the Nb, Si-alloyed steel No. 16 and similar or superior to the Nb, Mo-alloyed steel No. 17.
  • Values of elongation by the room-temperature tensile test, a ductile-brittle transition temperature by Charpy impact test and a critical strain by the tensile type hot-cracking test were also similar or superior to the Nb, Mo-alloyed steel No. 17.
  • the Mo-containing comparative steel No. 17 had the same properties as the inventive steels Nos. 1-10, but its low-temperature toughness was relatively inferior. A cost of the steel No. 17 is inevitably higher than the inventive steels Nos. 1-10, due to consumption of Mo at approximately 2 mass %.
  • a ferritic stainless steel is improved in formability, low-temperature toughness and weldability without degradation of heat-resistant by specified alloying design, especially control of V and Cu contents, without necessity of expensive Mo.
  • the newly proposed stainless steel is useful as members or parts for automotive engines or conduit members, e.g. exhaust manifolds, front pipes, center pipes, outer casings of catalytic converters for emission of exhaust gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
EP02743819A 2001-07-05 2002-07-04 Ferritischer nichtrostender stahl für ein element einer abgasstrompassage Expired - Lifetime EP1413640B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001204444 2001-07-05
JP2001204444 2001-07-05
PCT/JP2002/006768 WO2003004714A1 (fr) 2001-07-05 2002-07-04 Acier inoxydable ferritique pour element de debit de gaz d'echappement

Publications (3)

Publication Number Publication Date
EP1413640A1 true EP1413640A1 (de) 2004-04-28
EP1413640A4 EP1413640A4 (de) 2004-12-15
EP1413640B1 EP1413640B1 (de) 2005-05-25

Family

ID=19040911

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02743819A Expired - Lifetime EP1413640B1 (de) 2001-07-05 2002-07-04 Ferritischer nichtrostender stahl für ein element einer abgasstrompassage

Country Status (8)

Country Link
US (4) US20040170518A1 (de)
EP (1) EP1413640B1 (de)
JP (2) JP4197492B2 (de)
KR (1) KR20040007764A (de)
CN (1) CN1225566C (de)
DE (1) DE60204323T2 (de)
ES (1) ES2240764T3 (de)
WO (1) WO2003004714A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930461A1 (de) * 2006-12-07 2008-06-11 Nisshin Steel Co., Ltd. Ferritischer Edelstahl für Abgasleitungskomponenten eines Fahrzeuges und geschweißtes Stahlrohr
EP2767605A4 (de) * 2011-10-14 2015-06-03 Jfe Steel Corp Ferritischer edelstahl
EP2058413A4 (de) * 2007-02-26 2016-04-20 Nippon Steel & Sumikin Sst Ferretisches edelstahlblech mit hervorragender hitzeresistenz
US9365915B2 (en) 2011-10-14 2016-06-14 Jfe Steel Corporation Ferritic stainless steel
US9399809B2 (en) 2011-02-08 2016-07-26 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
EP2351868A4 (de) * 2008-10-24 2016-11-30 Nippon Steel & Sumikin Sst Ferritisches edelstahlblech für agr-kühlgeräte
EP3231883A4 (de) * 2014-12-11 2017-10-18 JFE Steel Corporation Ferritischer edelstahl und verfahren zur herstellung davon
EP2617854A4 (de) * 2010-09-16 2018-01-10 Nippon Steel & Sumikin Stainless Steel Corporation Hitzebeständige ferrit-edelstahlplatte mit hervorragender oxidierungsfestigkeit
EP3508598A4 (de) * 2016-09-02 2019-08-28 JFE Steel Corporation Ferritischer edelstahl
EP3572544A4 (de) * 2017-01-19 2020-05-20 Nippon Steel Stainless Steel Corporation Ferritischer edelstahl und ferritischer edelstahl für autogaswegelemente

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
KR101179408B1 (ko) 2006-05-09 2012-09-04 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내간극 부식성이 우수한 페라이트계 스테인리스 강
JP5000281B2 (ja) * 2006-12-05 2012-08-15 新日鐵住金ステンレス株式会社 加工性に優れた高強度ステンレス鋼板およびその製造方法
JP5010301B2 (ja) 2007-02-02 2012-08-29 日新製鋼株式会社 排ガス経路部材用フェライト系ステンレス鋼および排ガス経路部材
JP5390175B2 (ja) * 2007-12-28 2014-01-15 新日鐵住金ステンレス株式会社 ろう付け性に優れたフェライト系ステンレス鋼
JP4386144B2 (ja) 2008-03-07 2009-12-16 Jfeスチール株式会社 耐熱性に優れるフェライト系ステンレス鋼
JP5387057B2 (ja) * 2008-03-07 2014-01-15 Jfeスチール株式会社 耐熱性と靭性に優れるフェライト系ステンレス鋼
JP5274074B2 (ja) * 2008-03-28 2013-08-28 新日鐵住金ステンレス株式会社 耐酸化性に優れた耐熱性フェライト系ステンレス鋼板
JP5239643B2 (ja) * 2008-08-29 2013-07-17 Jfeスチール株式会社 熱疲労特性、高温疲労特性、耐酸化性および加工性に優れるフェライト系ステンレス鋼
JP5239644B2 (ja) * 2008-08-29 2013-07-17 Jfeスチール株式会社 熱疲労特性、高温疲労特性、耐酸化性および靭性に優れるフェライト系ステンレス鋼
JP5239642B2 (ja) * 2008-08-29 2013-07-17 Jfeスチール株式会社 熱疲労特性、高温疲労特性および耐酸化性に優れるフェライト系ステンレス鋼
JP2010116622A (ja) * 2008-11-14 2010-05-27 Nisshin Steel Co Ltd ヒートパイプ用フェライト系ステンレス鋼および鋼板並びにヒートパイプおよび高温排熱回収装置
JP5546911B2 (ja) 2009-03-24 2014-07-09 新日鐵住金ステンレス株式会社 耐熱性と加工性に優れたフェライト系ステンレス鋼板
JP2010236001A (ja) * 2009-03-31 2010-10-21 Nisshin Steel Co Ltd フェライト系ステンレス鋼
JP4702493B1 (ja) 2009-08-31 2011-06-15 Jfeスチール株式会社 耐熱性に優れるフェライト系ステンレス鋼
CN102791895B (zh) * 2009-12-04 2014-12-24 Posco公司 具有优异耐热性的加工用冷轧钢板及其制造方法
JP5546922B2 (ja) 2010-03-26 2014-07-09 新日鐵住金ステンレス株式会社 耐熱性と加工性に優れたフェライト系ステンレス鋼板およびその製造方法
JP5822439B2 (ja) * 2010-06-22 2015-11-24 日新製鋼株式会社 耐熱性および時効硬化特性に優れた低Crステンレス鋼およびその鋼からなる自動車排ガス経路部材
CN103140595B (zh) * 2010-10-01 2015-05-20 日立金属株式会社 具有优异的流动性、耐气体缺陷性、韧性和被削性的铁素体系耐热铸钢和由其构成的排气系统零件
JP5152387B2 (ja) 2010-10-14 2013-02-27 Jfeスチール株式会社 耐熱性と加工性に優れるフェライト系ステンレス鋼
JP5609571B2 (ja) 2010-11-11 2014-10-22 Jfeスチール株式会社 耐酸化性に優れたフェライト系ステンレス鋼
JP5659061B2 (ja) 2011-03-29 2015-01-28 新日鐵住金ステンレス株式会社 耐熱性と加工性に優れたフェライト系ステンレス鋼板及びその製造方法
JP6037882B2 (ja) * 2012-02-15 2016-12-07 新日鐵住金ステンレス株式会社 耐スケール剥離性に優れたフェライト系ステンレス鋼板及びその製造方法
JP6071608B2 (ja) 2012-03-09 2017-02-01 新日鐵住金ステンレス株式会社 耐酸化性に優れたフェライト系ステンレス鋼板
JP6196453B2 (ja) * 2012-03-22 2017-09-13 新日鐵住金ステンレス株式会社 耐スケール剥離性に優れたフェライト系ステンレス鋼板及びその製造方法
UA111115C2 (uk) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. Рентабельна феритна нержавіюча сталь
FI125855B (fi) * 2012-06-26 2016-03-15 Outokumpu Oy Ferriittinen ruostumaton teräs
FI124995B (fi) * 2012-11-20 2015-04-15 Outokumpu Oy Ferriittinen ruostumaton teräs
WO2014157576A1 (ja) * 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 フェライト系ステンレス熱延鋼板とその製造方法及び鋼帯
WO2015118855A1 (ja) 2014-02-05 2015-08-13 Jfeスチール株式会社 フェライト系ステンレス熱延焼鈍鋼板、その製造方法およびフェライト系ステンレス冷延焼鈍鋼板
JP5900715B1 (ja) 2014-05-14 2016-04-06 Jfeスチール株式会社 フェライト系ステンレス鋼
EP3118342B1 (de) * 2014-05-14 2018-12-26 JFE Steel Corporation Ferritischer edelstahl
JP6370275B2 (ja) * 2015-08-17 2018-08-08 日新製鋼株式会社 制振性フェライト系ステンレス鋼材および製造方法
CN105537875B (zh) * 2016-01-18 2018-03-09 山西太钢不锈钢股份有限公司 一种铁素体不锈钢焊管的制造方法
JP6744740B2 (ja) * 2016-03-28 2020-08-19 日鉄ステンレス株式会社 排気マニホールド用フェライト系ステンレス鋼板
JP6749808B2 (ja) * 2016-07-29 2020-09-02 日鉄ステンレス株式会社 耐浸炭性及び耐酸化性に優れたフェライト系ステンレス鋼板及びその製造方法
CN108531824A (zh) * 2016-08-16 2018-09-14 刘可 一种微细球形铁素体不锈钢粉体的应用
KR101835021B1 (ko) * 2016-09-28 2018-03-09 주식회사 포스코 카본 슬러지 흡착이 저감된 배기계 열교환기용 페라이트계 스테인리스강 및 이의 제조 방법
WO2018181060A1 (ja) 2017-03-27 2018-10-04 新日鐵住金ステンレス株式会社 フェライト系ステンレス鋼板およびその製造方法、ならびに、排気部品
KR102259806B1 (ko) * 2019-08-05 2021-06-03 주식회사 포스코 고온 내크립 특성이 향상된 페라이트계 스테인리스강 및 그 제조 방법
WO2023170996A1 (ja) * 2022-03-07 2023-09-14 日鉄ステンレス株式会社 フェライト系ステンレス鋼板および排気部品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2696584B2 (ja) * 1990-03-24 1998-01-14 日新製鋼株式会社 低温靭性,溶接性および耐熱性に優れたフエライト系耐熱用ステンレス鋼
JP3485591B2 (ja) * 1993-03-26 2004-01-13 日新製鋼株式会社 排ガス流路構成部材用フェライト系ステンレス鋼及び製造方法
JPH08144021A (ja) * 1994-11-18 1996-06-04 Sumitomo Metal Ind Ltd フェライトステンレス鋼およびその冷延鋼板の製造方法
JP3536568B2 (ja) * 1997-01-24 2004-06-14 Jfeスチール株式会社 耐熱性および溶接部のマフラー耐食性に優れるエンジン排気部材用フェライト系ステンレス鋼
JP3536567B2 (ja) * 1997-01-24 2004-06-14 Jfeスチール株式会社 耐熱性、加工性およびマフラー耐食性に優れるエンジン排気部材用フェライト系ステンレス鋼

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
No further relevant documents disclosed *
See also references of WO03004714A1 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930461A1 (de) * 2006-12-07 2008-06-11 Nisshin Steel Co., Ltd. Ferritischer Edelstahl für Abgasleitungskomponenten eines Fahrzeuges und geschweißtes Stahlrohr
EP2058413A4 (de) * 2007-02-26 2016-04-20 Nippon Steel & Sumikin Sst Ferretisches edelstahlblech mit hervorragender hitzeresistenz
EP2351868A4 (de) * 2008-10-24 2016-11-30 Nippon Steel & Sumikin Sst Ferritisches edelstahlblech für agr-kühlgeräte
EP2617854A4 (de) * 2010-09-16 2018-01-10 Nippon Steel & Sumikin Stainless Steel Corporation Hitzebeständige ferrit-edelstahlplatte mit hervorragender oxidierungsfestigkeit
US9399809B2 (en) 2011-02-08 2016-07-26 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
US10072323B2 (en) 2011-02-08 2018-09-11 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
US9290830B2 (en) 2011-10-14 2016-03-22 Jfe Steel Corporation Ferritic stainless steel
US9365915B2 (en) 2011-10-14 2016-06-14 Jfe Steel Corporation Ferritic stainless steel
EP2767605A4 (de) * 2011-10-14 2015-06-03 Jfe Steel Corp Ferritischer edelstahl
EP3231883A4 (de) * 2014-12-11 2017-10-18 JFE Steel Corporation Ferritischer edelstahl und verfahren zur herstellung davon
US10968499B2 (en) 2014-12-11 2021-04-06 Jfe Steel Corporation Ferritic stainless steel and process for producing same
EP3508598A4 (de) * 2016-09-02 2019-08-28 JFE Steel Corporation Ferritischer edelstahl
US11261512B2 (en) 2016-09-02 2022-03-01 Jfe Steel Corporation Ferritic stainless steel
EP3572544A4 (de) * 2017-01-19 2020-05-20 Nippon Steel Stainless Steel Corporation Ferritischer edelstahl und ferritischer edelstahl für autogaswegelemente

Also Published As

Publication number Publication date
DE60204323T2 (de) 2006-01-26
DE60204323D1 (de) 2005-06-30
CN1225566C (zh) 2005-11-02
US20040170518A1 (en) 2004-09-02
KR20040007764A (ko) 2004-01-24
US20090053093A1 (en) 2009-02-26
CN1524130A (zh) 2004-08-25
ES2240764T3 (es) 2005-10-16
EP1413640B1 (de) 2005-05-25
US20100119404A1 (en) 2010-05-13
JP5138504B2 (ja) 2013-02-06
WO2003004714A1 (fr) 2003-01-16
JP2008297631A (ja) 2008-12-11
JPWO2003004714A1 (ja) 2004-10-28
JP4197492B2 (ja) 2008-12-17
EP1413640A4 (de) 2004-12-15
US20110176954A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
EP1413640B1 (de) Ferritischer nichtrostender stahl für ein element einer abgasstrompassage
EP2060650B1 (de) Ferritischer Edelstahl für Abgasleitungskomponenten eines Fahrzeuges
JP5387057B2 (ja) 耐熱性と靭性に優れるフェライト系ステンレス鋼
JP4468137B2 (ja) 熱疲労特性に優れたフェライト系ステンレス鋼材および自動車排ガス経路部材
EP2824208B1 (de) Blech aus einem ferritischen edelstahl
EP1408132B1 (de) Ferritischer rostfreier Stahl für Auspuffteile mit einer guten Verformbarkeit, einer guten Festigkeit bei hohen Temperaturen, einer guten Oxidationsbeständigkeit und mit einer guten Zähigkeit bei niedrigeren Temperaturen
JP2803538B2 (ja) 自動車排気マニホールド用フェライト系ステンレス鋼
JP5208450B2 (ja) 熱疲労特性に優れたCr含有鋼
JP2000303149A (ja) 自動車排気系部品用フェライト系ステンレス鋼
EP0750051B1 (de) Rostfreier ferritischer stahl mit hervorragenden hochtemperaturkorrosionseigenschaften und zunderadhesion
JPH0860306A (ja) 自動車排気系部材用フェライトステンレス鋼
JP7278079B2 (ja) ステンレス冷延鋼板、ステンレス熱延鋼板及びステンレス熱延鋼板の製造方法
JP2018119196A (ja) 耐熱性に優れた耐熱部材締結部品用フェライト系ステンレス鋼板および締結部品並びに耐熱管状部材用円状クランプ
JP5239642B2 (ja) 熱疲労特性、高温疲労特性および耐酸化性に優れるフェライト系ステンレス鋼
JP4309293B2 (ja) 自動車排気系部材用フェライト系ステンレス鋼
JP3387145B2 (ja) 高温延性および高温強度に優れた高Crフェライト鋼
US20130263979A1 (en) Ferritic Stainless Steel for Use as Conduit Members for Emission of Automotive Exhaust Gas
JP2006016669A (ja) 二重構造エキゾーストマニホールドの内側用オーステナイト系ステンレス鋼
JPH08120417A (ja) 耐熱フェライトステンレス鋼
JP5239644B2 (ja) 熱疲労特性、高温疲労特性、耐酸化性および靭性に優れるフェライト系ステンレス鋼
JPH11256287A (ja) 耐高温酸化性およびスケール密着性に優れたフェライト系ステンレス鋼
JPH0762497A (ja) 高温強度と靱性の優れた高Crフェライト系耐熱鋼
JPH0741905A (ja) 自動車排気系用鋼
JP5239643B2 (ja) 熱疲労特性、高温疲労特性、耐酸化性および加工性に優れるフェライト系ステンレス鋼
KR20190027548A (ko) 성형성과 고온특성이 우수한 스테인리스강

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031230

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

A4 Supplementary search report drawn up and despatched

Effective date: 20041028

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR SE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR SE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60204323

Country of ref document: DE

Date of ref document: 20050630

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2240764

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210727

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210927

Year of fee payment: 20

Ref country code: SE

Payment date: 20210721

Year of fee payment: 20

Ref country code: DE

Payment date: 20210721

Year of fee payment: 20

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: NIPPON STEEL STAINLESS STEEL CORPORATION

Effective date: 20220526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60204323

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220804

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220705