EP1400822B1 - Planare optische Wellenleitervorrichtung zur Umwandlung des Modenfeldes und dessen Herstellungsverfahren - Google Patents
Planare optische Wellenleitervorrichtung zur Umwandlung des Modenfeldes und dessen Herstellungsverfahren Download PDFInfo
- Publication number
- EP1400822B1 EP1400822B1 EP03090309A EP03090309A EP1400822B1 EP 1400822 B1 EP1400822 B1 EP 1400822B1 EP 03090309 A EP03090309 A EP 03090309A EP 03090309 A EP03090309 A EP 03090309A EP 1400822 B1 EP1400822 B1 EP 1400822B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- core
- silicon
- optical waveguide
- end portion
- terminal end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/30—Optical coupling means for use between fibre and thin-film device
- G02B6/305—Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/1228—Tapered waveguides, e.g. integrated spot-size transformers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12166—Manufacturing methods
- G02B2006/12176—Etching
Definitions
- the present invention relates to an optical module according to the preamble of claim 1, used in the optoelectronic field and optical communication field, and a manufacturing method for the optical module according to the preamble of claim 12.
- mode field size conversion structures For this purpose, various kinds of mode field size conversion structures have been proposed. For example, on an SOI substrate on which the first optical waveguide formed from a silicon wire is formed, the second optical waveguide made of a quartz-based material or polymer which is to be connected to the first optical waveguide is formed, and the second optical waveguide and the first optical waveguide having a tapered distal end are made to overlap each other, thereby realizing high-efficiency mode field size conversion (for example, T. Shoji et al, "Optical Interconnecting Structure of Si Waveguide on SOI Substrate", 30a-YK-11 Extended No. 3 Abstracts (The 48th Spring Meeting, 2001), The Japan Society of Applied Physics and Related Societies).
- T. Shoji et al "Optical Interconnecting Structure of Si Waveguide on SOI Substrate", 30a-YK-11 Extended No. 3 Abstracts (The 48th Spring Meeting, 2001), The Japan Society of Applied Physics and Related Societies).
- Figs. 25A and 25B show a conventional optical waveguide having a mode field size (spot size) conversion structure.
- reference numeral 10 denotes a first optical waveguide formed from a silicon wire; 11, a mode field size conversion structure; 12, a second optical waveguide connected to the first optical waveguide; 13, a silicon substrate; 14, an under cladding made of silicon oxide and formed on the silicon substrate 13; 16, a wire-like core made of silicon and formed on the under cladding 14; 17, a tapered portion which is made of silicon and extends from the core 16; and 18, a core made of a polymer and placed on the tapered portion 17.
- the core 16, tapered portion 17, and core 18 are arranged on the silicon substrate 13 and under cladding 14 as a common substrate, thereby connecting the first optical waveguide 10 to the second optical waveguide 12 through the mode field size conversion structure 11.
- the height and width of a cross section of the core 17 constituting the first optical waveguide 10 are about 0.3 ⁇ m each.
- the core 18 of the second optical waveguide 12 which is connected to the first optical waveguide 10 has a refractive index higher than the under cladding 14 by few %. Both the height and width of a cross section of the core 18 are about several ⁇ m.
- Reference numeral 16 denotes the core made of silicon and having the tapered portion 17. This core has a length of 200 ⁇ m, and the width of the tapered distal end portion is 0.06 ⁇ m.
- the core 16 and tapered portion 17 are formed by electron beam lithography and etching.
- the core 18 made of a polymer is formed by photolithography.
- mode field diameter F of the second optical waveguide to be connected to the first optical waveguide in the form of a wire is required to be near the mode field diameter (9 ⁇ m) of the optical fiber.
- the core 16 of the optical waveguide 10 tends to be damaged, resulting in an increase in propagation loss.
- the width of the tapered distal end is required to be 0.1 ⁇ m or less, ideally about 0.06 ⁇ m.
- Such micro fabrication demands highly sophisticated lithographic techniques such as electron beam drawing and etching techniques. It is therefore difficult to economically process tapered portions.
- US 6 396 984 B discloses an optical module with first and second waveguide cores made of the same material, and a Silicon substrate.
- WO 02 063347 A relates to an optical module according to the preamble of claim 1.
- the object of the invention to provide an optical module which can realize light propagation between optical waveguides having different mode field sizes with high efficiency, and reduce a connection loss, and a manufacturing method for the optical module.
- an optical module with the features of claim 1.
- Figs. 1A and 1B show an optical module having a mode field size conversion portion according to the invention.
- Reference numeral 10 denotes a first optical waveguide; 11, a mode field size conversion portion; 12, a second optical waveguide connected to the first optical waveguide 10; 13, a silicon substrate; 14, an under cladding formed from a silicon oxide film formed on the silicon substrate; and 15, an over cladding made of a material such as a polymer.
- Reference numeral 16 denotes a first core in the form of a wire which is formed on the under cladding 14; 17, a tapered portion which is made of silicon and serves as a terminal end portion of the first core 16; and 18, a second core which is made of a polymer and at least partly located on the tapered portion 17 of the first core 16.
- the main portion of the second core 18, the over cladding 15, and the under cladding 14 constitute the second optical waveguide.
- the tapered portion 17 is formed such that its cross-sectional area gradually decreases toward the distal end of the first core 16.
- the first optical waveguide 10 and second optical waveguide 12 are formed by using the silicon substrate 13 and under cladding 14 as common substrates and optically connected to each other through the mode field size conversion portion 11.
- the latter is constituted by the under cladding 14, the tapered portion 17, the second core 18 placed on the tapered portion 17, and the over cladding 15 placed on and around the second core.
- the first optical waveguide 10 is constituted by the under cladding 14 and the first core 16 and over cladding 15 which are placed on the under cladding.
- the first optical waveguide 10 does not necessarily require the over cladding 15.
- the height and width of a cross section of the first core 16 of the first optical waveguide 10 are about 0.3 ⁇ m each.
- the second core 18 of the second optical waveguide 12 has a refractive index higher than either of the under cladding 14 and the over cladding 15 by few %. Both the height and width of a cross section of the second core 18 are about several ⁇ m.
- the tapered portion 17 has a length of 300 ⁇ m, and the width of the tapered distal end portion is 0.06 ⁇ m.
- the over cladding 15 common to the first optical waveguide 10, mode field size conversion portion 11, and second optical waveguide 12 has a refractive index almost equal to or higher than that of the under cladding 14.
- the first core 16 and tapered portion 17 are formed by electron beam lithography and etching.
- the second core 18 is formed by photolithography and etching.
- an SOI substrate constituted by the silicon substrate 13, the under cladding 14 which is flat-shaped as a whole, made of a silicon oxide film, and formed on the silicon substrate 13, and a silicon layer 161 formed on the under cladding 14.
- a silicon oxide film 162 serving as an etching mask is formed on the silicon layer 161 by, for example, chemical vapor deposition or sputtering (Fig. 2A).
- the under cladding 14 has a thickness of 3.0 ⁇ m
- the silicon layer 161 has a thickness of 0.2 ⁇ m to 0.5 ⁇ m.
- the resist is processed by electron beam lithography to form a resist mask 163 for the formation of a silicon oxide film pattern (Fig. 2B).
- the resist mask 163 is used to form an etching mask by processing the silicon oxide film 162.
- the silicon layer 161 is processed by using this mask to form the core 16 of the first optical waveguide 10, which has a quadrangular cross section, and the tapered portion 17 serving as the terminal end portion of the core. After this formation, the flat shape of the core 16 of the first optical waveguide and tapered portion 17 is the same as that of the resist mask 163.
- the silicon oxide film 162 is then etched by using the resist mask 163 to form a mask 163 for etching the first core 16 and tapered portion 17. Thereafter, the resist mask 163 is removed by ashing (Fig. 2C).
- the silicon layer 161 is etched by using the mask 164 to form the first core 16 of the wire-like first optical waveguide 10 and the tapered portion 17 (Fig. 2D).
- the mask 164 is then removed by wet etching (Fig. 2E). In this case, if the mask 164 is thin, it may be left without being removed because it has no influence.
- a silicon oxide film or polymer-based material having a higher refractive index than the under cladding 14 by about 2% is deposited to about 3.5 ⁇ m on the SOI substrate on which the first core 16 and tapered portion 17 are formed, by, for example, chemical vapor deposition or spin coating.
- This polymer-based material is processed by photolithography and etching to form the mode field size conversion portion 11 and the core 18 of the optical waveguide 12 (Fig. 2F).
- a silicon oxide film or polymer-based material having the same refractive index as that of the under cladding 14 is deposited to 6 ⁇ m or more on the SOI substrate on which the first core 16, tapered portion 17, and second core 18 are formed, thereby forming the over cladding 15 (Fig. 2G).
- the optical module shown in Figs. 1A and 1B is completed.
- a polymer having a higher refractive index than the under cladding and over cladding by about 2% is used for the core of the second optical waveguide. If a polymer exhibiting a smaller index difference is used, the core size of the second optical waveguide can be further increased.
- the over cladding made of a polymer having a refractive index similar to that of the under cladding is formed on the first core of the first optical waveguide and the second core of the second optical waveguide, the cores are protected from damage.
- the second core of the second optical waveguide can be further increased in size. This makes it possible to use the optical waveguides of this optical module stably for a long period of time and further decrease the connection loss with respect to the optical fiber.
- reference numeral 20 denotes a wire-like first optical waveguide made of silicon; 21, a mode field size conversion portion; 22, a second optical waveguide connected to the first optical waveguide 20; 23, a silicon substrate; 24, an under cladding formed from a silicon oxide film and placed on the silicon substrate 23; 25, an over cladding made of a polymer; 26, a first core which is made of silicon and forms the first optical waveguide 20; 27, a tapered portion which is made of silicon like the first core 26 and formed such that the width dimension decreases toward its distal end while the height of a cross section (thickness) of the core 26 is kept unchanged; 28, a second core which is made of a polymer and formed as the core of the mode field size conversion portion 21 and second optical waveguide 22; and 30, a silicon oxide film.
- the tapered portion 27 is covered with the second core 28, together with the silicon oxide film 30 formed on the surface of the tapered portion 27, while the tapered portion is inserted into the second core 28 from its end face.
- the section where the tapered portion 27 placed along the axis of the first core 26 of the first optical waveguide is in contact with the second core 28 through the silicon oxide film 30 corresponds to the mode field size conversion portion 21.
- the tapered portion 27 is optically coupled to the second core 28 through the silicon oxide film 30.
- the tapered portion 27 and second core 28 are preferably positioned such that their axes coincide with each other. However, they need not be precisely aligned with each other as long as the tapered portion 27 is accommodated within the width of the second core 28. In this case, it suffices if the second core 28 is mounted on part of the tapered portion 27.
- the optical power distribution gradually shifts from the first core 26 of the first optical waveguide 20 to the second core 28 of the second optical waveguide 22.
- an SOI substrate constituted by the silicon substrate 23, the under cladding 24 which is flat-shaped as a whole, made of a silicon oxide film, and formed on the silicon substrate 23, and a silicon layer 31 formed on the under cladding 24.
- a silicon oxide film 32 serving as an etching mask is formed on the silicon layer 31 by, for example, chemical vapor deposition or sputtering (Fig. 4A).
- the under cladding 24 has a thickness of 3.0 ⁇ m
- the silicon layer 31 has a thickness of 0.2 ⁇ m to 0.5 ⁇ m.
- the resist is processed by electron beam lithography to form a resist mask 33 for the formation of a silicon oxide film pattern (Fig. 4B).
- the resist mask 33 is used to form an etching mask by processing the silicon oxide film 32.
- the silicon layer 31 is processed by using this mask to form the core 26 of the first optical waveguide 20, which has a quadrangular cross section, and the tapered portion 27 serving as the terminal end portion of the core. After this formation, the flat shape of the core 26 of the first optical waveguide and tapered portion 27 is the same as that of the resist mask 33.
- the width of the silicon layer is reduced in an oxidation process (to be described later). As shown in Fig. 5, therefore, the widths of the first core 26 and tapered portion 27 (i.e., the width of the resist mask 33) must be set to be larger than the final manufacturing target values after oxidation by amounts of reduction in width upon oxidation.
- the final manufacturing target values of the widths of the core 26 and of the distal end portion of the tapered portion 27 are 0.3 ⁇ m and 0.06 ⁇ m, respectively, and a reduction in the thickness of the silicon layer upon oxidation is 0.05 ⁇ m.
- the resist mask 33 is formed to make the core 26 of the first optical waveguide 20 and the distal end portion of the tapered portion 27 have widths of 0.4 ⁇ m and 0.16 ⁇ m, respectively, before oxidation.
- the distal end portion of the tapered portion 27 is formed to have a trapezoidal shape.
- the thickness of the silicon layer 31 must be increased in advance by an amount corresponding to a reduction in thickness upon oxidation. If, for example, the final manufacturing target value of the thickness of the first core 26a and tapered portion 27 is 0.3 ⁇ m, the thickness of the silicon layer 31 may be set to 0.35 ⁇ m.
- the silicon oxide film 32 is then etched by using the resist mask 33 to form a mask 29 for etching the first core 26 and tapered portion 27. Thereafter, the resist mask 33 is removed by ashing (Fig. 4C).
- the silicon layer 31 is etched by using the mask 29 to form the first core 26 of the wire-like first optical waveguide 20 and the tapered portion 27 (Fig. 4D).
- the mask 29 is then removed by wet etching (Fig. 4E).
- the overall SOI substrate on which the first core 26 of the first optical waveguide 20 and tapered portion 27 are formed is heated at 900°C in an oxygen atmosphere to oxide the first core 26 and tapered portion 27, thereby forming the silicon oxide film 30 (Fig. 4F).
- the silicon is oxidized and changed into the silicon oxide film 30, and hence the widths and thicknesses of the first core 26 and tapered portion 27 decrease with the oxidation time.
- the tapered portion 27 is formed in advance to be tapered from the first core 26 to its distal end, the shape after oxidation becomes also tapered.
- a polymer-based material having a higher refractive index than the under cladding 24 by about 1% is deposited to about 7.0 ⁇ m on the SOI substrate, on which the first core 26, tapered portion 27, and silicon oxide film 30 are formed, by, for example, chemical vapor deposition or spin coating.
- This polymer-based material is then processed by photolithography and etching to form the mode field size conversion portion 21 and the core 28 of the second optical waveguide 22 (Fig. 4G).
- a polymer-based material having the same refractive index as that of the under cladding 24 is deposited to 15.0 ⁇ m or more on the SOI substrate on which the first core 26, tapered portion 27, silicon oxide film 30, and second core 28 are formed, thereby forming the over cladding 25 (Fig. 4H).
- the optical module shown in Figs. 3A to 3B is completed.
- a polymer having a higher refractive index than the under cladding and over cladding by about 1% is used for the core of the second optical waveguide. If a polymer exhibiting a smaller index difference is used, the core size of the second optical waveguide can be further increased.
- the over cladding made of a polymer having a refractive index similar to that of the under cladding is formed on the first core of the first optical waveguide and the second core of the second optical waveguide, the cores are protected from damage.
- the second core of the second optical waveguide can be further increased in size. This makes it possible to use the optical waveguides of this optical module stably for a long period of time and further decrease the connection loss with respect to the optical fiber.
- the tapered portion 27 made of silicon is thinned by oxidation. Even if, therefore, the initial width of the distal end portion of the tapered portion 27 is 0.1 ⁇ m or more, the width of the distal end portion can be finally reduced to 0.06 ⁇ m or less in accordance with the settings of the oxidation amount and the initial width of the distal end portion. According to the method of this embodiment, therefore, a pattern with a resolution of 0.1 ⁇ m or less can be formed beyond the solution limit of lithography.
- the silicon oxide film 30 is fixed to both sides of the tapered portion 27 made of silicon. This makes it possible to prevent the tapered portion 27 from collapsing regardless of the extent to which the silicon width of the distal end portion of the core 27 decreases.
- the width of the distal end portion of the tapered portion 27 is set to about 0.06 ⁇ m.
- the tapered portion 27 made of silicon with a distal end portion having a width of 0 ⁇ m with which the conversion efficiency theoretically becomes highest can be realized by setting D ⁇ L/2 where L is the width of the distal end portion of the tapered portion before oxidation and D is a reduction in the thickness of the silicon layer upon oxidation, i.e., making the reduction D in the thickness of the silicon layer upon oxidation equal to or larger than 1/2 the width L of the distal end portion of the tapered portion before oxidation.
- thermal oxidation process is used to form the silicon oxide film
- another oxidation method can also be used.
- a characteristic feature of this embodiment is that a silicon oxide film 30 is formed to be adjacent to only the side surfaces of a tapered portion 27. This allows the tapered portion 27 to be shaped with high precision.
- FIG. 7A to 7C A manufacturing method for the optical module shown in Figs. 7A to 7C will be described below with reference to Figs. 8A to 8G.
- the steps in Figs. 8A to 8D are the same as those in Figs. 4A to 4D in the first embodiment.
- the first core 26 of the first optical waveguide 20 and the tapered portion 27 continuous with the core 26 are formed by etching the silicon layer 31 by using the mask 29, and an oxidation process is performed after the mask 29 is removed.
- an oxidation process similar to that in the first embodiment is performed without removing the mask 29.
- the first core 26 and tapered portion 27 have quadrangular cross sections, and only their side surfaces are oxidized while their upper surfaces are not oxidized.
- the silicon oxide film 30 is formed on only the side surfaces of the first core 26 and tapered portion 27 (Fig. 8E).
- Figs. 8F and 8G are the same as those in Figs. 4G and 4H in the first embodiment.
- shaping process control can be facilitated by oxidizing only the side surfaces of the first core 26 of the first optical waveguide and the tapered portion 27 without removing the mask 29.
- the tapered portion 27 and the second core 28 placed thereon are in contact with each other through the silicon oxide film 30.
- the silicon oxide film 30 is sufficiently thin relative to the wavelength (e.g., 1.55 ⁇ m) of light used for communication, the silicon oxide film 30 has no influence on the optical connection between the first core 26 and the second core 28.
- the silicon core with the distal end of the tapered portion having a width dimension of about 0.06 ⁇ m or less can be accurately and economically processed by using a lithographic process without a resolution of 0.1 ⁇ m or less.
- the core size of the connection waveguide can be increased. This can reduce the connection loss with respect to an optical fiber. Since the silicon wire waveguide core can be protected against damage, the optical waveguide can be stably used for a long period of time.
- the tapered portion with its distal end having a width dimension of 0 ⁇ m can be realized, with which the conversion efficiency theoretically becomes highest.
- oxidation can be done in consideration of only a reduction in the thickness of the silicon upon oxidation and the width dimension of the tapered portion before oxidation. This makes it possible to facilitate shaping control.
- This embodiment is a modification of the manufacturing method for the optical module shown in Figs. 4A to 4H, and exemplifies only the part of the method, in particular, in which after a silicon layer serving as the first core is formed on an under cladding, a silicon oxide film is formed to cover the first core.
- a silicon oxide film is formed to cover the first core.
- reference numeral 111 denotes a silicon substrate; 112, an under cladding layer formed from a silicon oxide film (SiO 2 ); and 113, a core serving both as the first core of the first optical waveguide and the tapered portion in the first embodiment described above.
- the core 113 is made of silicon and patterned into a thin wire.
- Reference numeral 114 denotes a silicon oxide film placed to cover the core 113. In this case, the width and thickness of the core 113 are different from each other and fall within 0.2 ⁇ m to 0.5 ⁇ m, or are equal to each other and fall within 0.2 ⁇ m to 0.5 ⁇ m.
- Figs. 10A to 10F first of all, there is prepared an SOI substrate constituted by the silicon substrate 111, the under cladding layer 112 which is flat-shaped as a whole, made of silicon oxide, and formed on the silicon substrate 111, and a silicon layer 121 formed on the under cladding layer 112 (Fig. 10A).
- the silicon layer 121 is the core of the first optical waveguide and processed into the terminal end portion of the mode field size conversion portion as is obvious from the above embodiments.
- the surface of the silicon layer 121 of the SOI substrate is coated with a resist 122, and a desired pattern shape is printed into the resist 122 by using lithography such as electron beam lithography or photolithography.
- the pattern shape is then developed to obtain a resist pattern 123 having a desired shape (Fig. 10C).
- the silicon layer 121 is then etched by using the resist pattern 123 as a mask. This etching process is stopped halfway without completely etching the silicon layer 121, as shown in Fig. 10D. On the two sides of the silicon layer on which the resist pattern 123 is placed and left without being etched, a silicon layer thinner than the silicon layer is left.
- an etching mask for etching the silicon layer 121 may be used.
- an etching mask layer is deposited on the silicon layer 121, and the upper surface of the etching mask layer is coated with the resist 122.
- the resist 122 is processed to form the resist pattern 123.
- the etching mask layer is then etched by using the resist pattern 123 as a mask to form an etching mask.
- the silicon layer 121 may be etched by using this etching mask.
- the resist pattern 123 (or the etching mask) is removed (Fig. 10E).
- the overall SOI substrate shown in Fig. 10E is heated in a high-temperature thermal oxidation furnace to oxidize the silicon layer 121.
- the upper surface and side wall portions of the silicon layer 121 are oxidized to form the over cladding layer 114 formed from the silicon oxide film, and the silicon layer 121 left inside the over cladding layer 114 becomes the core 113 of the silicon wire optical waveguide (Fig. 10F).
- an optical module like the one shown in Figs. 9A to 9C is completed.
- the width and thickness of the silicon layer are reduced by the thermal oxidation process.
- the width of the resist pattern 123 etching mask
- the width of the silicon layer 121 before etching must also be set to be larger than the thickness of the core 113 to be formed.
- Fig. 11 is an enlarged view of the main part in Fig. 10E.
- Fig. 12 is an enlarged view of the main part in Fig. 10F in the case of T1 ⁇ T3/2.
- reference numeral 121a denotes the first region, of the silicon layer 121, which becomes the first core 113 of the first optical waveguide and the silicon oxide film 114 placed to cover the core 113 after oxidation; and 121b, the second region which becomes the silicon oxide film 114 placed on the under cladding layer 112 except for the first core 113 after oxidation.
- Reference symbol W1 denotes the width of the first region 121a; T1, the thickness of the second region 121b; and T2, the value obtained by subtracting the thickness T2 of the second region 121b from the thickness of the first region 121a (the initial thickness of the silicon layer 121), i.e., the etching depth.
- reference numeral 114a denotes a portion of the silicon oxide film 114 which was the silicon layer 121 before oxidation; and 114b, a portion formed by expansion accompanying oxidation.
- Reference symbol W2 denotes the width of the first core 113 of the first optical waveguide; T3, the thickness of the first core 113; T4, the thickness of the silicon oxide film 114; and T5, the thickness of the silicon oxide films 114a and 114b.
- the silicon film having the thickness T5 is converted into a silicon oxide film, and hence the thickness (the initial thickness of the silicon layer 121) T2 + T1 of the first region 121a before oxidation must be set to T3 + T5 in advance.
- T2 T3.
- the thickness T1 is preferably set to 1/2 or more the thickness T3 of the first core 113 of the first optical waveguide to be finally manufactured. Making such dimensional settings makes it possible to obtain the silicon oxide film 114 having a sufficient thickness. Even if, therefore, the silicon oxide film 114 is polished to bond an electronic device on the optical module of this embodiment, the core 113 is never exposed.
- the silicon layer 121 having a thickness of 450 nm is left in the first region 121a having a width of 600 nm and is etched to a depth of 300 nm.
- the silicon layer having a thickness of 150 nm is left in the second region 121b.
- An oxide film is formed.
- the silicon oxide film 114 When the silicon oxide film 114 is oxidized to have a thickness of 300 nm, the entire silicon layer in the second region 121b is converted into a silicon oxide film.
- the thickness of the silicon layer decreases by 150 nm, i.e., from 450 nm to 300 nm, and the width of the silicon layer decreases by 150 nm on each side, i.e., from 600 nm to 300 nm.
- the silicon wire optical waveguide core 113 whose width and thickness both are 300 nm is formed. If a silicon layer having a thickness of 1/2 or more that of the first core 113 is left in the second region 121b, the over cladding layer 114 having a thickness equal to or more than that of the core 113 can be formed.
- Thermal oxidation is then performed to entirely convert this silicon layer with the thickness T1 into a silicon oxide film, thereby forming the first core 113 having a desired dimension.
- the core 113 can be covered with a silicon oxide film which is thick enough to function as the silicon oxide film 114 which becomes an over cladding or its portion.
- the silicon oxide film has a refractive index lower than that of silicon, and light can be confined in the silicon portion by using the refractive index difference between silicon and the silicon oxide film.
- the silicon oxide film can be functioned as a silicon waveguide or optical functional element.
- the silicon oxide film 114 there is no need to form the silicon oxide film 114 in a different step, or part of the silicon oxide film 114 can be formed at the same time as an oxidation process in a thermal oxidation step.
- the roughness of the side wall portions of the core 113 can be reduced by oxidation.
- the silicon layer in forming a core by etching a silicon layer, is oxidized such that a silicon layer around the core which is to be removed by etching is left by a predetermined thickness, and the silicon layer to be removed by etching is converted into a silicon oxide film.
- This makes it possible to simultaneously form a core made of silicon and a silicon oxide film placed therearound. As a consequence, there is no need to separately form a silicon oxide film after the formation of a core, thus shortening the manufacturing process as compared with the prior art.
- oxidation can reduce the roughness of the side wall portions of the core.
- the degree of margin for pattern formation can be increased.
- a pattern can be formed by using an inexpensive lithography apparatus with an increased degree of manufacturing margin.
- the silicon layer to be removed by etching is left by a thickness of 1/2 or more, a silicon oxide film having a sufficient thickness can be formed. Even if, therefore, the silicon oxide film is polished to bond an electronic device on the optical module, there is no chance of exposing the core.
- the silicon oxide film formed in the third embodiment described above can also be used as an over cladding covering the first core of the first waveguide.
- Figs. 14A to 14C show an embodiment in which when a tapered portion is used as a terminal end portion, in particular, silicon oxide films are placed on only side surfaces or side walls of the tapered portion.
- Reference numeral 201 denotes a first optical waveguide formed from a silicon wire; 202, a mode field size conversion portion; 203, a second optical waveguide connected to the optical waveguide 201; 211, a silicon substrate; 212, an under cladding layer made of a silicon oxide film and formed on the silicon substrate; 213, a silicon oxide film formed by oxidation; and 214, a first core having a quadrangular cross section which is selectively formed on the under cladding.
- the core 214 is made of silicon, has a wire-like shape, and is an element of the first optical waveguide 201.
- Reference numeral 215 denotes a tapered portion (a terminal end portion of the optical waveguide 201) which is made of silicon and formed on an end portion of the first core 214 such that the width gradually decreases toward the distal end (connection waveguide side) while the height of a cross section (thickness) of the core 214 is kept unchanged; 216, a second core of the second optical waveguide 203 connected to the mode field size conversion portion 202 and first optical waveguide 201; 217, an over cladding layer which is formed from a silicon oxide film and placed to cover the under cladding layer 212, first core 214, tapered portion 215, and second core 216 which are described above.
- the width and thickness of the first core 214 are different from each other and fall within 0.2 ⁇ m to 0.5 ⁇ m, or are equal to each other and fall within 0.2 ⁇ m to 0.5 ⁇ m.
- the tapered portion 215 formed on the under cladding layer 212 is covered with the silicon oxide films 213 formed on its side surfaces and the core 216.
- the section where the tapered portion 215 is covered with the core 216 serves as the mode field size conversion portion 202, in which the tapered portion 215 and second core 216 are optically coupled to each other.
- the tapered portion 215 and core 216 are preferably positioned such that their axes coincide with each other. However, they need not be precisely aligned with each other as long as the tapered portion 215 is accommodated within the width of the second core 216.
- the optical power distribution gradually shifts from the first core 214 of the first optical waveguide 201 to the second core 216 of the second optical waveguide 203.
- a mode field size can be converted with high efficiency by connecting the first core 214 of the first optical waveguide 201 to the second core 216 of the second optical waveguide 203 through the tapered portion 215 in this manner.
- An SOI substrate is prepared, which is constituted by the silicon substrate 211, the flat under cladding layer 212 formed on the silicon substrate 211, and a silicon layer 221 formed on the under cladding layer 212 (Fig. 15A).
- a silicon nitride film 222 is deposited on the surface of the silicon layer 221 of the SOI substrate by using an ECR-CVD (Electro Cyclotron Resonance - Chemical Vapor Deposition) method or an LPCVD (Low Pressure Chemical Vapor Deposition) method (Fig. 15B).
- ECR-CVD Electro Cyclotron Resonance - Chemical Vapor Deposition
- LPCVD Low Pressure Chemical Vapor Deposition
- the silicon nitride film 222 is etched by using the resist pattern 223 as a mask (Fig. 15D). If, for example, the silicon nitride film 222 is etched by using a g-line photoresist as an etching mask and CF 4 /O 2 as an etching gas, a sufficient selectivity can be obtained. No problem arises even if another kind of gas is used.
- an etching mask for etching the silicon nitride film 222 may be used.
- an etching mask layer is deposited on the silicon nitride film 222, and the upper surface of the etching mask layer is coated with a resist. This resist is processed to form the resist pattern 223.
- the etching mask layer is then etched by using the resist pattern 223 as a mask to form an etching mask.
- the silicon nitride film 222 is etched by using this etching mask.
- the silicon layer 221 is etched by using the silicon nitride film 222 as an etching mask to form the first core 214 of the first optical waveguide 201 and the tapered portion 215 of the mode field size conversion portion 202 (Fig. 15E).
- the resist pattern 223 may be removed before etching of the silicon layer 221.
- the silicon layer 221 may be etched without removing the resist pattern 223. If the silicon layer 221 is etched without removing the resist pattern 223, the resist pattern 223 must be removed after etching of the silicon layer 221.
- Fig. 16 shows the first core 214 of the first optical waveguide 201 and the tapered portion 215 of the mode field size conversion portion 202 after the completion of the etching step in Fig. 15E. Note that an illustration of the silicon nitride film 222 is omitted in Fig. 16.
- the overall SOI substrate on which the first core 214 of the first optical waveguide 201 and the tapered portion 215 of the mode field size conversion portion 202 are formed is heated in a high-temperature thermal oxidation furnace to oxidize the first core 214 and tapered portion 215.
- the silicon nitride film 222 exists on the upper surfaces of the first core 214 and tapered portion 215, and no silicon nitride film 222 exists on their side surfaces. Therefore, only the side wall portions of the core 214 and tapered portion 215 are selectively oxidized to form the silicon oxide films 213 on the side wall portions (Fig. 15F).
- the resist pattern 223 is used to form an etching mask by processing the silicon nitride film 222, and the silicon layer 221 is etched by using the processed silicon nitride film 222 to form the first core 214 and the tapered portion 215 which is continuous with the first core 214. Therefore, the plane shape of the core 214 and tapered portion 215 is almost identical to that of the resist pattern 223 (not perfectly identical because of a change in width in the etching step).
- the width of the silicon layer decreases in the thermal oxidation step in Fig. 15F.
- the widths of the first core 214 and tapered portion 215 i.e., the width of the resist pattern 223 must be set in advance to larger widths in consideration of reductions in amount due to oxidation.
- Fig. 17 shows an enlarged section of Fig. 15F.
- reference numeral 213a denotes a portion of the silicon oxide film 213 which has been a silicon layer before oxidation; and 213b, a portion formed upon expansion accompanying oxidation.
- Reference symbol W1 denotes the width of the first core 214 of the first optical waveguide 201 after oxidation; T1, the thickness of the first core 214 after oxidation; T2, the thickness of the silicon oxide film 213; and T3, the thickness of the silicon oxide films 213a and 213b.
- the silicon oxide film 213 having the thickness T2 about twice the thickness T3 of the oxidized silicon layer.
- the silicon layers, each having the thickness T3, on the two sides of the pattern are converted into the silicon oxide films 213, and hence the silicon layers are oxidized to an extent corresponding to the thickness T2 of the silicon oxide films 213 as a whole.
- the width of the first core 214 before the thermal oxidation step must be set to 400 nm.
- the dimensions of the resist pattern 223 must be set in consideration of width changes in an etching step.
- the silicon layer of the tapered portion 215 decreases in width by oxidation as well. Therefore, if the tapered portion 215 before oxidation is tapered such that it gradually narrows from the first waveguide 214 to its distal end, the tapered portion 215 after oxidation has a tapered shape.
- the silicon nitride film 222 is removed by a technique such as etching (Fig. 14G).
- a polymer-based material lower in refractive index than silicon and higher in refractive index than the under cladding layer 212 is deposited on the SOI substrate, on which the first core 214, tapered portion 215, and silicon oxide film 213 are formed, by chemical vapor deposition, spin coating, or the like.
- This polymer-based material is then processed by photolithography and etching to form the core 216 having a larger cross section than the core 214.
- a silicon oxide film or polymer-based material equal in refractive index to the under cladding layer 212 is deposited on the SOI substrate on which the first core 214 of the first optical waveguide 201, the tapered portion 215, the silicon oxide film 213, and the core 216 are formed, thereby forming the over cladding layer 217 (Fig. 15H).
- the optical module shown in Figs. 14A to 14C is completed.
- the silicon nitride film 222 is designed as part of the optical device, the silicon nitride film 222 need not be removed.
- the silicon nitride film 222 deposited before etching of the silicon layer 221 is used as a hard mask at the time of silicon etching, thermal oxidation is performed without removing the silicon nitride film 222. Since silicon nitride is a material resistant to oxidation, i.e., a material exhibiting an anti-oxidation effect, the upper surface of the silicon layer 221 covered with the silicon nitride film 222 is not oxidized, and only the side wall portions of the silicon layer 221 which are not covered with the silicon nitride film 222 are oxidized. As a result, there is no need to increase the thickness of the silicon layer 221 in advance in consideration of the amount of oxidation.
- Fig. 18 shows the relationship between the pattern width and the required pattern aspect ratio in a conventional optical plane circuit type optical device and the optical module of the invention.
- the thickness of a silicon pattern after oxidation is set to 300 nm, and the thickness of a silicon oxide film formed by oxidation is set to 100 nm.
- This embodiment allows a pattern with a lower aspect ratio than that in the prior art to be formed.
- the degree of margin for the manufacture of an optical module, and a pattern can be formed by using an inexpensive lithography system.
- the silicon oxide film 213 is sufficiently thin relative to the wavelength of light (e.g., 1.55 ⁇ m) used in communication, there is little possibility that the silicon oxide film 213 influences optical connection between the first core 214 of the first optical waveguide 201 and the second core 216 of the second optical waveguide 203.
- the refractive index of the silicon oxide film 213 is preferably higher than that of the under cladding layer 212. This is because if the silicon oxide film 213 has a higher refractive index, it can become the second core or its part.
- germanium ions or the like may be implanted into the silicon oxide film 213 before the formation of the second core 216. This makes it possible to increase the refractive index of the silicon oxide film 213 within a smaller range than that of silicon, thus further ensuring optical connection between the first core 214 of the first optical waveguide and the second core 216 of the second optical waveguide.
- silicon nitride is used as an anti-oxidation film.
- a refractory metal such as Ta or W is used not to form any oxide or a metal with low oxide volatility may be used as an anti-oxidation film. It suffices if the melting point of a metal used as an anti-oxidation film is higher than the temperature used in the manufacturing process for the optical module. The melting point is preferably 1,200°C or higher.
- another silicon-based material such as silicon carbide may be used as an anti-oxidation film.
- An anti-oxidation film is formed first on the upper surface of a region of a silicon layer which serves as a core, and the core is then oxidized, thereby preventing the upper surface of the core from being oxidized.
- the silicon layer need not be formed thicker by an amount corresponding to the amount of oxidation in advance. There is therefore no need to use an SOI substrate having an upper silicon layer which is thicker than the core to be formed finally. This facilitates the management of substrates.
- the degree of margin for pattern formation can be increased.
- a pattern can be formed by using an inexpensive lithography system with an increased degree of manufacturing margin.
- an anti-oxidation film is formed first on the upper surface of a region of a silicon layer which serves as a tapered portion, and the tapered portion is then oxidized, thereby preventing the upper surface of the tapered portion from being oxidized.
- the silicon layer need not be formed thicker by an amount corresponding to the amount of oxidation in advance. This facilitates the management of substrates.
- the degree of margin for pattern formation increases, a pattern can be formed by using an inexpensive lithography system with an increased degree of manufacturing margin.
- This embodiment is a modification of the manufacturing method for the optical module shown in Figs. 4A to 4H, and exemplifies only the part of the method, in particular, in which after a silicon layer serving as the first core is formed on an under cladding, the second core and an over cladding that covers it are formed.
- reference numeral 320 denotes a silicon substrate; 321, an under cladding which is flat-shaped as a whole and formed from a silicon oxide film; 322, the second core of the second optical waveguide having an almost quadrangular cross section, which is made of a polymer such as epoxy resin or polyimide; and 323, a polymer film made of epoxy resin, polyimide, or the like.
- Reference symbol w1 denotes the width of the second core 322; and w2, the thickness of the second core 322.
- the under cladding 321 has a thickness of 3 ⁇ m.
- the silicon substrate 320 and under cladding 321 are portions of the SOI substrate.
- the second core 322, under cladding 321, and over cladding 323 have refractive indices of 1.5, 1.46, and 1.49, respectively.
- the specific refractive index differences between the second core 322 and the under cladding 321 and between the second core 322 and the over cladding 323 are 2.7% and 0.7%, respectively. If the specific refractive index difference between the second core 322 and the under cladding 321 is 1% or less as is usual, guided light leaks into the substrate 320 through the under cladding 321. This specific refractive index difference is therefore preferably set to 1% or more or 1.5% or more.
- the problem of the leakage of guided light into the substrate 320 can be avoided by controlling the width and height of a cross section of the second core 322.
- the width w1 and height w2 of a cross section of the second core 322 are preferably set to values within the range of 5.5 to 9 ⁇ m, and more preferably set to the same value.
- Both the width w1 and height w2 of the second core 322 are set to 7 ⁇ m.
- Fig. 20 shows a light intensity distribution in the form of a mode solver after 1.55- ⁇ m TM-polarized light is caused to strike an optical waveguide having the sectional structure of the fifth embodiment and propagate by 100 ⁇ m.
- the above arrangement using the material having a higher refractive index than the under cladding for the over cladding can prevent guided light from leaking into the substrate 320.
- the single mode condition for guided light is satisfied, and a mode field diameter with a size necessary for efficient connection to a single-mode fiber can be realized.
- Figs. 19A to 20 even if a silicon oxide film of an SOI substrate is used as an under cladding, efficient coupling to a single-mode fiber having a mode field diameter of about 9 ⁇ m, which is generally used, can be realized while guided light is kept in the single mode, and irradiation of the silicon substrate with light is prevented.
- the polymer film 323 formed in the fifth embodiment described above can also be used as an over cladding surrounding the first core of the first optical waveguide.
- the optical module shown in Figs. 21A to 21E is comprised of a first optical waveguide 407 formed from a silicon wire, a mode field size (spot size) conversion portion 408 for connecting the optical waveguide 407 to an optical fiber with high efficiency; and a second optical waveguide 409 connected to the optical waveguide 407 through the mode field size conversion portion 408.
- These components are formed on an under cladding layer 405 made of thermal silicon oxide and formed on a silicon substrate 404.
- Figs. 21C to 21E show cross sections of the first optical waveguide 407 formed from a silicon wire, the mode field size conversion portion 408, and the second optical waveguide 409.
- the first optical waveguide 407 is constituted by the under cladding layer 405 made of 3- ⁇ m thick thermal silicon oxide (refractive index: 1.45) and formed on the silicon substrate 404, a first core 401 made of silicon with a width of 0.3 ⁇ m to 0.5 ⁇ m and a thickness of 0.2 ⁇ m to 0.4 ⁇ m and formed on the under cladding layer 405, an over cladding layer 420 which is made of a polymer having a refractive index of 1.50 and covers the core 401, and an over cladding layer 406 which is made of a polymer having a refractive index of 1.46 and formed on the over cladding layer 420.
- the under cladding layer 405 made of 3- ⁇ m thick thermal silicon oxide (refractive index: 1.45) and formed on the silicon substrate 404
- a first core 401 made of silicon with a width of 0.3 ⁇ m to 0.5 ⁇ m and a thickness of 0.2 ⁇ m to 0.4 ⁇ m and formed on the under
- the mode field size conversion portion 408 is constituted by the under cladding layer 405, a tapered portion 402 which is made of silicon and formed on the under cladding layer 405 such that the width of the distal end (on the optical waveguide 409 side) becomes 60 nm while the thicknesses of the under cladding layer 405 and core 401 are maintained, a second core 403 which is made of a polymer having a refractive index of 1.50, has a square cross section 3 to 5 ⁇ m square, and is formed to cover the tapered portion 402, and the over cladding layer 406 covering the second core 403.
- the tapered portion 402 has a length of about 300 ⁇ m.
- the optical waveguide 409 is constituted by the under cladding layer 405, the core 403 which has a refractive index of 1.50 and a square cross section 3 to 5 ⁇ m square, and is formed on the under cladding layer 405, and the over cladding layer 406 covering the core 403.
- the first optical waveguide 407 is made to have the mode field size conversion portion 408 and second optical waveguide 409 for connection to an optical fiber, light can be input/output to/from the first optical waveguide 407 having a small field size with high efficiency.
- the same polymer material is used for the over cladding layer 420 of the first optical waveguide 407, the core 403 of the mode field size conversion portion 408, and the core 403 of the second optical waveguide 409, and hence the tapered portion 402 of the first optical waveguide 407, the core 403 of the mode field size conversion portion 408, and the second core 403 of the second optical waveguide 409 can be formed at the same time. This facilitates the formation of these components.
- the same material as that used for the mode field size conversion portion 408 and the second core 403 of the second optical waveguide 409 is used for the over cladding layer 420 of the first optical waveguide 407. For this reason, in forming the second core 403 by processing the polymer material, it suffices if the polymer material in the region of the first optical waveguide 407 is left without being etched. This prevents the first core 401 from being damaged in the process of forming the second core 403. In addition, since the surface of the core 401 is not exposed to plasma, there is no need to consider the etching selectively ratio between the material for the second core 403 and silicon, thus facilitating etching.
- the over cladding layer 406 on the mode field size conversion portion and second optical waveguide, the size of the second core of the second optical waveguide which satisfies the single mode condition can be increased as compared with the conventional case wherein air serves as an over cladding. As a consequence, the connection loss with respect to an optical fiber can be reduced.
- the side surfaces and upper surface of the first core 401 of the first optical waveguide 407 are surrounded with the over cladding layer 420 higher in refractive index than the under cladding layer 405 by about 3%.
- both the refractive index difference between silicon having a refractive index of 3.5 and the under cladding layer 405 and between silicon and the over cladding layer 420 are large, there is no influence on the light confinement characteristics of the first optical waveguide 407, bend loss, and propagation loss.
- a polymer having a refractive index of 1.50 is used as a material for the over cladding layer 420 of the first optical waveguide 407, the core 403 of the mode field size conversion portion 408, and the second core 403 of the second optical waveguide 409. It, however, suffices if this refractive index is higher than that of thermal silicon oxide (SiO 2 ) used for the under cladding layer 405 and lower than that of silicon used for the tapered portion 402 continuous with the first core 401.
- thermal silicon oxide SiO 2
- An inorganic material such as silicon oxide or silicon-oxynitride (SiON) can be used as a material for the over cladding layer 420 and second core 403 as well as a polymer such as epoxy or polyimide as long as the refractive index can be changed within a certain range by, for example, a technique such as doping.
- a polymer having a refractive index of 1.46 is used as a material for the over cladding layer 406. It, however, suffices if this refractive index is lower than that of a material used for the second core 403 of the second optical waveguide 409.
- An inorganic material such as SiO 2 or SiON can be used as a material for the over cladding layer 406 as well as a polymer such as epoxy or polyimide as long as the refractive index can be changed within a certain range by, for example, a technique such as doping.
- a manufacturing method will be described next by taking an optical waveguide as an example, which is a basic unit of an optical module according to the present invention.
- FIG. 21A to 21E denote the same parts in Fig. 22.
- a region 450 in Fig. 22 corresponds to the optical module described in the sixth embodiment.
- Reference numeral 451 denotes an etching region.
- Figs. 23A to 23H show a manufacturing method for the optical module shown in Fig. 22.
- the optical module using silicon for a core which transmits light uses an SOI (Silicon On Insulator) substrate.
- the SOI substrate is constituted by a silicon substrate 404, a 3 - ⁇ m thick under cladding layer 405 made of silicon oxide and formed on the silicon substrate 404, and a silicon layer 411 which has a thickness of 0.2 ⁇ m to 0.5 ⁇ m and is formed on the under cladding layer 405.
- a mask material 412 made of silicon oxide or the like which serves as an etching mask for the silicon layer 411 is formed on the SOI substrate by using a film formation method such as CVD (Fig. 23A).
- the upper surface of the mask material 412 is then coated with a resist, and a desired resist pattern 413 is formed by using lithography such as electron beam lithography or photolithography (Fig. 23B).
- an etching mask 414 is formed by dry-etching the mask material 412 using the resist pattern 413 as a mask, and the resist pattern 413 is then removed (Fig. 23C).
- the silicon layer 411 is etched by using the etching mask 414 as a mask to form a first core 401 of a first optical waveguide 407, which is made of silicon, and a tapered portion 402 of a mode field size conversion portion 408.
- the etching mask 414 is removed by using an etching solution (Fig. 23D).
- the circuit pattern of the optical module having the first core 401 and tapered portion 402 is formed on the under cladding layer 405.
- the tapered portion 402 at the light input/output portion of an end of this circuit pattern is formed such that the width dimension gradually decreases toward the distal end (corresponding to the optical waveguide 409 side in Fig. 21B) while the height of a cross section (thickness) of the first core 401 is maintained.
- the distal end portion has a width of 50 to 80 nm.
- a 3 - ⁇ m thick silicon oxide film 415 which becomes the core of the mode field size conversion portion 408 and the core of the second optical waveguide 409 is deposited on the SOI substrate, on which the circuit pattern of the optical module is formed, by CVD or the like (Fig. 23E).
- the silicon oxide film 415 is doped with germanium or the like so as to have a refractive index higher than that of the silicon oxide film of the under cladding layer 405 by 2 to 3%.
- the resist is processed by photolithography to form a pyriform resist pattern 416 in Fig. 22 which overlays the core 401 and tapered portion 402 (Fig. 23F).
- the silicon oxide film 415 is then etched by using the resist pattern 416 as a mask to form an over cladding layer 420 of the first optical waveguide 407, the core 403 of the mode field size conversion portion 408, and a core 403 of the second optical waveguide 409. Thereafter, the resist pattern 416 is removed (Fig. 23G).
- an over cladding layer 406 which has a thickness of 3 ⁇ m or more and is formed from a silicon oxide film lower in refractive index than the second core 403 is deposited on the entire surface of the SOI wafer (Fig. 23H).
- the resist pattern 416 is designed in advance such that the two regions which are symmetrical with respect to the traveling direction of light in the second core 403 (the lateral direction in Fig. 22) are set as the etching regions 451 to remove the silicon oxide film 415 while the silicon oxide film 415 in the remaining regions is left without being etched. Since this prevents the first core 401 from being exposed to plasma at the time of etching of the silicon oxide film 415, damage to the first core 401 can be avoided. In addition, since the etching area of the silicon oxide film 415 can be greatly reduced, no special attention needs to be paid to etching of the silicon oxide film 415. This facilitates etching.
- the minimum width of the etching region 451 varies depending on the size of the second core 403 and the thickness of the under cladding layer 405.
- the minimum width of the etching region 451 in Fig. 22 becomes 3 ⁇ m. This is because, if the width of the etching region 451 becomes smaller than 3 ⁇ m, coupling occurs between the second core 403 and the silicon oxide film 415 which are adjacent to each other through the etching region 451, and light leaks from the second core 403.
- silicon oxide is used as a material for the over cladding layer 420 of the first optical waveguide 407, the core 403 of the mode field size conversion portion 408, and the second core 403 of the second optical waveguide 409.
- a polymer such as polyimide or epoxy or silicon-oxynitride may be used.
- the over cladding layer of a first optical waveguide 507 formed from a silicon wire is formed as a single layer using an over cladding layer 420 made of the same material as that for a core 403 of a mode field size conversion portion 408 and a core 403 of a second optical waveguide 409. Since the core 403 has a square cross section 3 to 5 ⁇ m square, the thickness of the over cladding layer 420 becomes 3 to 5 ⁇ m, which is a sufficient thickness for the over cladding of the first optical waveguide.
- the refractive index of the over cladding layer 420 is higher than that of an under cladding layer 405.
- both the refractive index differences between silicon with a refractive index of 3.5 and the under cladding layer 405 and between silicon and the over cladding layer 420 are very large, and hence there is no influence on the light confinement characteristics of the first optical waveguide 507, bend loss, and propagation loss.
- the over cladding layer of the first optical waveguide 507 is formed as a single layer as in the eighth embodiment, the thickness of the over cladding layer can be reduced as compared with a case wherein the over cladding layer is constituted by two layers as in the sixth and seventh embodiments.
- the thermal conductivity to the first core 401 of the first optical waveguide 507 improves, the power consumption can be reduced.
- the optical module shown in Figs. 24A to 24C can be easily manufactured by etching the over cladding layer 406 in the region of the first optical waveguide 507 while an over cladding layer 406 in the regions of the mode field size conversion portion 408 and second optical waveguide 409 is masked or preventing deposition of a film 415 on the first optical waveguide by using a stencil mask or the like when the film 415 serving as the core 403 is formed (Fig. 23E), after the step in Fig. 22H described in the seventh embodiment.
- the first over cladding of the first optical waveguide and the second core of the second optical waveguide can be simultaneously formed, thereby facilitating formation of the components. Since the same material is used for the first over cladding layer of the first optical waveguide and the second core of the second optical waveguide, when the material is processed to form the second core, the material in the region of the first optical waveguide can be left without being etched. This prevents the surface of the first core from being exposed to plasma.
- the core size of the second optical waveguide can be increased. This can reduce the connection loss with respect to an optical fiber.
- the over cladding of the first optical waveguide can be thinned by integrally coupling the over cladding of the first optical waveguide to the second core of the second optical waveguide and using the same material as that for the second core for the over cladding.
- the two regions which are symmetrical with respect to the traveling direction of light in the second core are removed to form the second core.
- the over cladding layer 406 is formed.
- the layer 420 exists as an over cladding layer on the first core of the first optical waveguide 407 or 507, the over cladding layer 406 is not specially required. With such an arrangement, the same effects as those of the sixth to eighth embodiments can be obtained.
- the first core may be surrounded with an oxide film as in the first and second embodiments.
- a silicon on insulator substrate is used as a substrate.
- the first and second cores connected to the input/output side of the mode field size conversion portion differ in mode field size. It, however, should be noticed that in practice, this difference is equivalent to a difference in cross-sectional area or cross-sectional shape between the respective cores.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
- Optical Couplings Of Light Guides (AREA)
Claims (23)
- Optisches Modul, umfassend:einen unteren Mantel (Fig. 1A und 1B: 14, Fig. 3A bis 3C: 24), der insgesamt eine flache Form aufweist, wobei der untere Mantel auf einem Substrat (13; 23) gebildet ist;einen ersten Kern (Fig. 1A und 1B: 16, Fig. 3A bis 3C: 26), der einen rechtwinkligen Querschnitt aufweist und auf dem unteren Mantel angeordnet ist,einen zweiten Kern (Fig. 1A und 1B: 18, Fig. 3A bis 3C: 28), der auf einem Anschlussendabschnitt des ersten Kerns angeordnet ist; undeinen oberen Mantel (Fig. 1A und 1B: 15, Fig. 3A bis 3C: 25), der in einem Bereich umfassend den Anschlussendabschnitt (Fig. 1A und 1B: 17, Fig. 3A bis 3C: 27) des ersten Kerns und den auf dem Anschlussendabschnitt des ersten Kerns angeordneten zweiten Kern (Fig. 1A und 1B: 18, Fig. 3A bis 3C: 28) angeordnet ist,wobei der untere Mantel (Fig. 1A und 1B: 14, Fig. 3A bis 3C: 24) und der darauf angeordnete erste Kern (Fig. 1A und 1B: 16, Fig. 3A bis 3C: 26) einen ersten optischen Wellenleiter (Fig. 1 A und 1B: 10, Fig. 3A bis 3C: 20) bilden,
wobei der untere Mantel (Fig. 1A und 1B: 14, Fig. 3A bis 3C: 24), der Anschlussendabschnitt (Fig. 1A und 1B: 17, Fig. 3A bis 3C: 27) des auf dem unteren Mantel angeordneten ersten Kerns (Fig. 1A und 1B: 16, Fig. 3A bis 3C: 26), der darauf angeordnete zweite Kern (Fig. 1A und 1B: 18, Fig. 3A bis 3C: 28) und der auf dem und um den zweiten Kern angeordnete obere Mantel (Fig. 1A und 1B: 15) einen Modenfeldgrößenkonversionsabschnitt (Fig. 1A und 1B: 11, Fig. 3A bis 3C: 21) bilden,
wobei der untere Mantel (Fig. 1A und 1B: 14, Fig. 3A bis 3C: 24), der auf dem unteren Mantel angeordnete zweite Kern (Fig. 1A und 1B: 18, Fig. 3A bis 3C: 28) und der auf dem und um den zweiten Kern angeordnete obere Mantel (Fig. 1A und 1B: 15, Fig. 3A bis 3C: 25) einen zweiten optischen Wellenleiter (12) bilden,
wobei sich die ersten und zweiten Kerne (Fig. 1A und 1B: 16, 18, Fig. 3A bis 3C: 26, 28) in der Querschnittsform unterscheiden,
wobei der erste Kern (Fig. 1A und 1B: 16, Fig. 3A bis 3C: 26) aus Silizium besteht, der zweite Kern (Fig. 1 A und 1B: 18) aus einem Material besteht, das einen größeren Brechungsindex als der untere Mantel und einen kleineren Brechungsindex als Silizium des ersten Kerns und des Anschlussendabschnitts aufweist,
und der erste Wellenleiter auf dem Substrat (13; 23) aus einem Silizium-Auf-Isolator (SOI)-Substrat (13, 14, 161; 23, 24, 31) gebildet sind, dadurch gekennzeichnet, dass
die Brechungsindexdifferenz zwischen dem oberen Mantel (15; 25) und dem zweiten Kern ungleich null und 2,7 % oder weniger ist und die Brechungsindexdifferenz zwischen dem unteren Mantel (14; 24) und dem zweiten Kern ungleich null und 3,3 % oder weniger ist,
wobei der zweite Kern aus einem homogenen Material besteht und wobei der Anschlussendabschnitt (Fig. 1A und 1B: 17) des ersten Kerns aus einem sich verjüngenden Abschnitt gebildet ist, dessen Querschnittsfläche in der Breite zu einem distalen Ende des ersten Kerns hin allmählich abnimmt, während die Höhe des Querschnitts des sich verjüngenden Abschnitts unverändert bleibt. - Modul nach Anspruch 1, wobei der obere Mantel (Fig. 1 A und 1B: 15) auf dem und um den zweiten Kern auf dem unteren Mantel, die den zweiten optischen Wellenleiter bilden, und den zweiten Kern auf dem Anschlussendabschnitt, die den Modenfeldgrößenkonversionsabschnitt bilden, und auf dem ersten Kern, der den ersten optischen Wellenleiter bildet, angeordnet ist.
- Modul nach Anspruch 1, wobei der untere Mantel (Fig. 1A und 1B: 14) auf einem Siliziumsubstrat (Fig. 1A und 1B: 13) gebildet ist.
- Modul nach Anspruch 1, wobei der erste Kern (Fig. 3A bis 3C: 26, Fig. 16: 214) und mindestens ein Seitenabschnitt des Anschlussendabschnitts (Fig. 3A bis 3C: 27, Fig. 16: 215) mit einem Siliziumoxidfilm (Fig. 3A bis 3C: 30, Fig. 16: 213) bedeckt sind.
- Modul nach Anspruch 4, wobei der zweite Kern (Fig. 3A bis 3C: 28) auf dem Anschlussendabschnitt auf dem Siliziumoxidfilm (Fig. 3A bis 3C: 30) angeordnet ist.
- Modul nach Anspruch 1, wobei der zweite Kern (Fig. 1A und 1B: 18) einen im Wesentlichen vollständigen Bereich der oberen Oberfläche des Anschlussendabschnitts (Fig. 1A und 1B: 17) bedeckt.
- Modul nach Anspruch 1, wobei der untere Mantel (Fig. 1A und 1B: 14) aus einem Siliziumoxidfilm gebildet ist.
- Modul nach Anspruch 1, wobei ein Brechungsindex des oberen Mantels (Fig. 19A und 19B: 323) größer als der des unteren Mantels (Fig. 19A und 19B: 321) ist.
- Modul nach Anspruch 1, wobei eine spezifischer Brechungsindexdifferenz zwischen dem zweiten Kern und dem unteren Mantel größer als die zwischen dem zweiten Kern und dem oberen Mantel ist.
- Modul nach Anspruch 2, wobei ein zweiter oberer Mantel (Fig. 21A bis 21E: 420), der auf dem Kern des ersten optischen Wellenleiters angeordnet ist, mit dem zweiten Kern des zweiten optischen Wellenleiters kontinuierlich verläuft und der zweite obere Mantel (420) und der zweite Kern aus dem gleichen Material hergestellt sind,
wobei der obere Mantel (Fig. 21 A bis 21E: 406) auf dem zweiten oberen Mantel (Fig. 21A bis 21E: 420) angeordnet ist, der auf dem Kern des ersten optischen Wellenleiters und dem zweiten Kern des zweiten optischen Wellenleiters, der mit dem oberen Mantel kontinuierlich verläuft, angeordnet ist und der obere Mantel (Fig. 21a bis 21E: 406) einen kleineren Brechungsindex als der zweite Kern aufweist. - Modul nach Anspruch 10, dadurch gekennzeichnet, dass an zwei Stellen in der Ebene der Vorrichtung, die bezogen auf den sich ausbreitenden optischen Modus seitlich angeordnet und bezogen auf die optische Achse symmetrisch angeordnet sind, Material von der Schicht (420/403) entfernt ist, die sowohl den zweiten Kern als auch den zweiten oberen Mantel bildet.
- Herstellungsverfahren für ein optisches Modul, umfassend folgende Schritte:Bilden eines unteren Mantels (Fig. 1A und 1B: 14) auf einem Substrat (13; 23);selektives Bilden eines ersten Kerns (Fig. 1A und 1B: 16) in Form eines Drahts mit einem rechtwinkligen Querschnitt auf dem unteren Mantel;selektives Bilden eines zweiten Kerns (Fig. 1A und 1B: 18) auf einem Anschlussendabschnitt (17) des ersten Kerns (Fig. 1A und 1B: 16) und dem unteren Mantel, wobei der zweite Kern kontinuierlich mit dem Anschlussendabschnitt (17) verläuft; undBilden eines oberen Mantels auf dem und um den zweiten Kern,so dass der untere Mantel und ein Abschnitt des ersten Kerns, der auf dem unteren Mantel angeordnet ist, einen ersten Wellenleiter bilden,der untere Mantel, der Anschlussendabschnitt des darauf angeordneten ersten Kerns, der auf dem Anschlussendabschnitt angeordnete zweite Kern und der obere Mantel einen Modenfeldgrößenkonversionsabschnitt bilden,der untere Mantel, der darauf angeordnete zweite Kern und der obere Mantel einen zweiten Wellenleiter bilden, unddie ersten und zweiten Kerne unterschiedliche Querschnittsflächen aufweisen,wobei der erste Kern aus Silizium besteht,
der zweite Kern aus einem Material besteht, das einen größeren Brechungsindex als der untere Mantel und einen kleineren Brechungsindex als Silizium des ersten Kerns und des Anschlussendabschnitts aufweist,
und der ersten Wellenleiter auf dem Substrat aus einem Silizium-Auf-Isolator(SOI)-Substrat gebildet ist, gekennzeichnet durch
Bilden der Brechungsindexdifferenz zwischen dem oberen Mantel und dem zweiten Kern, so dass sie ungleich null und 2,7 % oder weniger ist, und der Brechungsindexdifferenz zwischen dem unteren Mantel und dem zweiten Kern, so dass sie ungleich null und 3,3 % oder weniger ist, und Bilden des zweiten Kerns aus einem homogenen Material, so dass der Anschlussendabschnitt des ersten Kerns ein aus Silizium bestehender, sich verjüngender Abschnitt ist, dessen Querschnittsfläche in der Breite zu einem distalen Ende des ersten Kerns hin allmählich abnimmt, während die Höhe des Querschnitts des sich verjüngenden Abschnitt unverändert bleibt. - Verfahren nach Anspruch 12, weiterhin umfassend den Schritt des Oxidierens des ersten Kerns und mindestens einer Seitenfläche des Anschlussendabschnitts des ersten Kerns nach dem Schritt des Bildens des ersten Kerns.
- Verfahren nach Anspruch 13, wobei der Schritt des Oxidierens der Seitenfläche des Anschlussendabschnitts den Schritt des Oxidierens der Seitenfläche umfasst, nachdem der erste Kern und eine obere Fläche des Anschlussendabschnitts des ersten Kerns mit einem Antioxidationsfilm maskiert wurde.
- Verfahren nach Anspruch 13, wobei der Schritt des Oxidierens des ersten Kerns und der Seitenfläche des Anschlussendabschnitts des ersten Kerns den Schritt des Oxidierens zum Bedecken des ersten Kerns und seines Anschlussendabschnitts zusätzlich zur Seitenfläche des Anschlussendabschnitts umfasst.
- Verfahren nach Anspruch 13, wobei der Schritt des Oxidierens des ersten Kerns und der Seitenfläche des Anschlussendabschnitts des ersten Kerns einen thermischen Oxidationsprozesses umfasst.
- Verfahren nach Anspruch 13, wobei der Schritt des Oxidierens des Anschlussendabschnitts den Schritt des Oxidierens des ersten Kerns und des distalen Endes des Anschlussendabschnitts bis zu einer Tiefe in der Ebene der Einrichtung, die nicht weniger als 1/2 der Voroxidationsbreite des distalen Endes des Anschlussendabschnitts ist, umfasst.
- Verfahren nach Anspruch 13, wobei
im Schritt des Bildens des ersten Kerns eine Siliziumschicht um den ersten Kern in einer vorbestimmten Stärke verbleibt und
der Schritt des Oxidierens der Seitenfläche des Anschlussendabschnitts einen Prozess des Umwandelns der um den ersten Kerns verbleibenden Siliziumschicht mit der vorbestimmten Stärke in einen Siliziumoxidfilm umfasst. - Verfahren nach Anspruch 18, wobei die um den ersten Kern verbleibende Siliziumschicht eine Stärke aufweist, die einer Verringerung der Stärke infolge der Oxidation entspricht.
- Verfahren nach Anspruch 13, wobei der Schritt des Oxidierens der Seitenfläche des Anschlussendabschnitts des ersten Kerns den Schritt des Erhöhens des Brechungsindex des gebildeten Siliziumoxidfilms in einem Bereich von Brechungsindizes umfasst, die kleiner als der Brechungsindex von Silizium sind.
- Verfahren nach Anspruch 13, wobei der Schritt des Bildens des zweiten Kerns den Schritt des Bildens des zweiten Kerns (Fig. 21 A bis 21 E: 420) umfasst, um kontinuierlich mit dem Anschlussendabschnitt zu verlaufen.
- Verfahren nach Anspruch 21, weiterhin umfassend den Schritts des weiteren Bildens des oberen Mantels (Fig. 21 A bis 21 E: 406) auf einem zweiten oberen Mantel (Fig. 21 A bis 21 E: 420), der auf dem Kern des ersten optischen Wellenleiters und dem zweiten Kern des zweiten optischen Wellenleiters angeordnet ist, der kontinuierlich mit dem ersten optischen Wellenleiter verläuft,
wobei der obere Mantel (Fig. 21A bis 21E: 406) einen kleineren Brechungsindex als der zweite Kern (Fig. 21 A bis 21E: 403) aufweist. - Verfahren nach Anspruch 21, weiterhin umfassend den Schritt des Entfernens von Material von der Schicht (420/403), die sowohl den zweiten Kern als auch den zweiten oberen Mantel bildet, an zwei Stellen in der Ebene der Vorrichtung, die bezogen auf den sich ausbreitenden optischen Modus seitlich angeordnet und bezogen auf die optische Achse symmetrisch angeordnet sind.
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002275216 | 2002-09-20 | ||
JP2002275216 | 2002-09-20 | ||
JP2002290775 | 2002-10-03 | ||
JP2002290775A JP3795848B2 (ja) | 2002-10-03 | 2002-10-03 | 光平面回路型光学素子の製造方法 |
JP2002293457 | 2002-10-07 | ||
JP2002293457 | 2002-10-07 | ||
JP2002302960 | 2002-10-17 | ||
JP2002302960 | 2002-10-17 | ||
JP2002336135 | 2002-11-20 | ||
JP2002336135 | 2002-11-20 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1400822A2 EP1400822A2 (de) | 2004-03-24 |
EP1400822A3 EP1400822A3 (de) | 2004-04-21 |
EP1400822B1 true EP1400822B1 (de) | 2006-11-22 |
Family
ID=31950855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03090309A Expired - Lifetime EP1400822B1 (de) | 2002-09-20 | 2003-09-19 | Planare optische Wellenleitervorrichtung zur Umwandlung des Modenfeldes und dessen Herstellungsverfahren |
Country Status (4)
Country | Link |
---|---|
US (1) | US7076135B2 (de) |
EP (1) | EP1400822B1 (de) |
CN (1) | CN1238740C (de) |
DE (1) | DE60309800T2 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101359071B (zh) * | 2007-07-31 | 2011-02-02 | 株式会社东芝 | 光耦合器件 |
Families Citing this family (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100667214B1 (ko) * | 1999-09-16 | 2007-01-12 | 한국전자통신연구원 | 상호 테이퍼측면 접합 광도파로를 이용한 광 모드 크기 변환장치 |
FR2836724B1 (fr) * | 2002-03-01 | 2004-07-23 | Silios Technologies | Adaptateur de mode optique pourvu de deux canaux distincts |
US6934427B2 (en) * | 2002-03-12 | 2005-08-23 | Enablence Holdings Llc | High density integrated optical chip with low index difference waveguide functions |
US6870987B2 (en) * | 2002-08-20 | 2005-03-22 | Lnl Technologies, Inc. | Embedded mode converter |
US7013067B2 (en) * | 2004-02-11 | 2006-03-14 | Sioptical, Inc. | Silicon nanotaper couplers and mode-matching devices |
US7563628B2 (en) * | 2004-11-10 | 2009-07-21 | Lehigh University | Fabrication of optical waveguide devices |
KR20060093219A (ko) * | 2005-02-21 | 2006-08-24 | 삼성전자주식회사 | 차단층을 갖는 평면광파회로 및 이를 이용한 광집적회로 |
JP2007072433A (ja) * | 2005-08-11 | 2007-03-22 | Ricoh Co Ltd | 光集積素子及び光制御素子 |
JP4549949B2 (ja) * | 2005-08-12 | 2010-09-22 | 株式会社フジクラ | 光学素子 |
WO2007105393A1 (ja) * | 2006-03-14 | 2007-09-20 | Konica Minolta Opto, Inc. | 記録ヘッド及び記録装置 |
US7630602B2 (en) * | 2006-12-04 | 2009-12-08 | Electronics And Telecommunications Research Institute | Optical filter module and method of manufacturing the same |
US8078020B2 (en) * | 2008-04-08 | 2011-12-13 | Alcatel Lucent | Optical mode-converter structure |
US9498600B2 (en) | 2009-07-01 | 2016-11-22 | Avinger, Inc. | Atherectomy catheter with laterally-displaceable tip |
US9788790B2 (en) | 2009-05-28 | 2017-10-17 | Avinger, Inc. | Optical coherence tomography for biological imaging |
US8062316B2 (en) | 2008-04-23 | 2011-11-22 | Avinger, Inc. | Catheter system and method for boring through blocked vascular passages |
US8696695B2 (en) | 2009-04-28 | 2014-04-15 | Avinger, Inc. | Guidewire positioning catheter |
US9125562B2 (en) | 2009-07-01 | 2015-09-08 | Avinger, Inc. | Catheter-based off-axis optical coherence tomography imaging system |
US8031991B2 (en) * | 2008-05-28 | 2011-10-04 | Lightwire Inc. | Low index, large mode field diameter optical coupler |
US7643710B1 (en) * | 2008-09-17 | 2010-01-05 | Intel Corporation | Method and apparatus for efficient coupling between silicon photonic chip and optical fiber |
FR2936613B1 (fr) * | 2008-09-30 | 2011-03-18 | Commissariat Energie Atomique | Coupleur de lumiere entre une fibre optique et un guide d'onde realise sur un substrat soi. |
KR20100133767A (ko) * | 2009-06-12 | 2010-12-22 | 삼성전기주식회사 | 광도파로용 인쇄회로기판 및 그 제조방법 |
US8385183B2 (en) * | 2009-11-05 | 2013-02-26 | Seagate Technology, Llc | Light delivery waveguide |
SG181770A1 (en) * | 2009-12-23 | 2012-07-30 | Agency Science Tech & Res | Optical converter and method of manufacturing the same |
US11382653B2 (en) | 2010-07-01 | 2022-07-12 | Avinger, Inc. | Atherectomy catheter |
JP2013531542A (ja) | 2010-07-01 | 2013-08-08 | アビンガー・インコーポレイテッド | 長手方向に移動可能なドライブシャフトを有するアテローム切除カテーテル |
US9040919B2 (en) * | 2010-10-25 | 2015-05-26 | Thomas E. Darcie | Photomixer-waveguide coupling tapers |
EP2487717B1 (de) | 2011-02-09 | 2014-09-17 | Canon Kabushiki Kaisha | Fotoelektrisches Umwandlungselement, Photoelektrische Umwandlungsvorrichtung und Bildabtastsystem |
US9949754B2 (en) | 2011-03-28 | 2018-04-24 | Avinger, Inc. | Occlusion-crossing devices |
EP3135232B1 (de) | 2011-03-28 | 2018-05-02 | Avinger, Inc. | Verschlussöffnungsvorrichtungen sowie bildgebungs- und atherektomievorrichtungen |
GB2492996B (en) * | 2011-07-19 | 2018-01-10 | Huawei Tech Co Ltd | Coupled waveguide apparatus and structures therefor |
US9885832B2 (en) * | 2014-05-27 | 2018-02-06 | Skorpios Technologies, Inc. | Waveguide mode expander using amorphous silicon |
RU2011140310A (ru) * | 2011-09-16 | 2013-04-10 | Конинклейке Филипс Электроникс Н.В. | Высокочастотная волоноводная структура |
JP6356604B2 (ja) | 2011-10-17 | 2018-07-11 | アビンガー・インコーポレイテッドAvinger, Inc. | アテローム切除カテーテルおよびカテーテル用の非接触型作動機構 |
US9345406B2 (en) | 2011-11-11 | 2016-05-24 | Avinger, Inc. | Occlusion-crossing devices, atherectomy devices, and imaging |
JP6140923B2 (ja) | 2011-12-28 | 2017-06-07 | 富士通株式会社 | スポットサイズ変換器、光送信器、光受信器、光送受信器及びスポットサイズ変換器の製造方法 |
GEP20166462B (en) * | 2011-12-30 | 2016-04-11 | Isotopically altered optical fiber | |
US20130230274A1 (en) * | 2012-03-05 | 2013-09-05 | Gregory Alan Fish | Photonic flexible interconnect |
JP2013231753A (ja) * | 2012-04-27 | 2013-11-14 | Nippon Telegr & Teleph Corp <Ntt> | スポットサイズ変換器およびその製造方法 |
EP2849660B1 (de) | 2012-05-14 | 2021-08-25 | Avinger, Inc. | Antriebsanordnungen für atherektomiekatheter |
EP2849661B1 (de) | 2012-05-14 | 2020-12-09 | Avinger, Inc. | Atherektomiekatheter mit bildgebung |
EP2849636B1 (de) | 2012-05-14 | 2020-04-22 | Avinger, Inc. | Optische kohärenztomografie mit gradientenindexfaser für biologische bildgebung |
US9498247B2 (en) | 2014-02-06 | 2016-11-22 | Avinger, Inc. | Atherectomy catheters and occlusion crossing devices |
US11284916B2 (en) | 2012-09-06 | 2022-03-29 | Avinger, Inc. | Atherectomy catheters and occlusion crossing devices |
US10335173B2 (en) | 2012-09-06 | 2019-07-02 | Avinger, Inc. | Re-entry stylet for catheter |
WO2015120146A1 (en) | 2014-02-06 | 2015-08-13 | Avinger, Inc. | Atherectomy catheters and occlusion crossing devices |
EP2892448B1 (de) | 2012-09-06 | 2020-07-15 | Avinger, Inc. | Ballonatherektomiekatheter mit bildgebung |
JP2014165292A (ja) * | 2013-02-25 | 2014-09-08 | Hitachi Ltd | 発光素子及びその製造方法並びに光送受信器 |
WO2014142954A1 (en) | 2013-03-15 | 2014-09-18 | Avinger, Inc. | Tissue collection device for catheter |
WO2014143064A1 (en) | 2013-03-15 | 2014-09-18 | Avinger, Inc. | Chronic total occlusion crossing devices with imaging |
WO2014142958A1 (en) | 2013-03-15 | 2014-09-18 | Avinger, Inc. | Optical pressure sensor assembly |
JP6107948B2 (ja) | 2013-06-07 | 2017-04-05 | 日本電気株式会社 | 導波モード変換素子、偏波分離器及び光デバイス |
EP3019096B1 (de) | 2013-07-08 | 2023-07-05 | Avinger, Inc. | System zur identifizierung von elastischen lamina zur anleitung einer interventionellen therapie |
JP2015084019A (ja) * | 2013-10-25 | 2015-04-30 | 富士通株式会社 | スポットサイズ変換器及び光装置 |
JP2015087510A (ja) * | 2013-10-30 | 2015-05-07 | 日本電信電話株式会社 | 光モジュールの作製方法 |
US9202493B1 (en) * | 2014-02-28 | 2015-12-01 | Western Digital (Fremont), Llc | Method of making an ultra-sharp tip mode converter for a HAMR head |
EP2924482B1 (de) * | 2014-03-26 | 2017-12-20 | Huawei Technologies Co., Ltd. | Polarisationmodal Umsetzer mit einem asymmetrischem Siliziumnitrid-Wellenleiter |
US20150277036A1 (en) * | 2014-03-28 | 2015-10-01 | Futurewei Technologies, Inc. | Apparatus and Method for an Optical Waveguide Edge Coupler for Photonic Integrated Chips |
US20150293299A1 (en) * | 2014-04-11 | 2015-10-15 | Futurewei Technologies, Inc. | Suspended Ridge Oxide Waveguide |
KR20160147018A (ko) * | 2014-04-30 | 2016-12-21 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 저손실 모드 컨버터를 위한 역 테이퍼 도파관 |
EP3166512B1 (de) | 2014-07-08 | 2020-08-19 | Avinger, Inc. | Schnelle durchquerungsvorrichtungen für chronische totalokklusion |
JP6394285B2 (ja) * | 2014-10-31 | 2018-09-26 | 富士通株式会社 | 光導波路、スポットサイズ変換器及び光装置 |
WO2016112296A1 (en) * | 2015-01-08 | 2016-07-14 | Acacia Communications, Inc. | Horizontal coupling to silicon waveguides |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US10568520B2 (en) | 2015-07-13 | 2020-02-25 | Avinger, Inc. | Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters |
US11278248B2 (en) | 2016-01-25 | 2022-03-22 | Avinger, Inc. | OCT imaging catheter with lag correction |
EP3206062B1 (de) * | 2016-02-12 | 2023-01-04 | Huawei Technologies Research & Development Belgium NV | Wellenleitstruktur für optische kopplung |
CN105607185B (zh) * | 2016-03-21 | 2019-01-08 | 中国科学院半导体研究所 | 提高亚微米硅波导与普通单模光纤耦合效率的结构 |
JP6959255B2 (ja) | 2016-04-01 | 2021-11-02 | アビンガー・インコーポレイテッドAvinger, Inc. | 粥腫切除用カテーテルデバイス |
US11344327B2 (en) | 2016-06-03 | 2022-05-31 | Avinger, Inc. | Catheter device with detachable distal end |
JP6387373B2 (ja) * | 2016-06-24 | 2018-09-05 | 株式会社フジクラ | 微小光回路および光モード変換器 |
CN109414273B (zh) | 2016-06-30 | 2023-02-17 | 阿维格公司 | 具有可塑形的远侧头端的斑块切除导管 |
WO2018047119A1 (en) * | 2016-09-09 | 2018-03-15 | Ranovus Inc. | An optical coupler with a waveguide and waveguide index matched materials at an edge of a substrate |
KR102313684B1 (ko) | 2016-10-12 | 2021-10-20 | 한국전자통신연구원 | 광 결합기 |
US10345524B2 (en) * | 2016-12-22 | 2019-07-09 | Huawei Technologies Co., Ltd. | Optical edge coupler with controllable mode field for photonic chip |
US10416381B1 (en) | 2016-12-23 | 2019-09-17 | Acacia Communications, Inc. | Spot-size-converter design for facet optical coupling |
US10571633B1 (en) | 2016-12-23 | 2020-02-25 | Acacia Communications, Inc. | Suspended cantilever waveguide |
US11320267B2 (en) | 2017-03-23 | 2022-05-03 | Kvh Industries, Inc. | Integrated optic wavemeter and method for fiber optic gyroscopes scale factor stabilization |
FR3065323B1 (fr) * | 2017-04-13 | 2019-06-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Photodiode |
US10718904B2 (en) * | 2017-04-26 | 2020-07-21 | University Of Central Florida Research Foundation, Inc. | Thin-film integration compatible with silicon photonics foundry production |
CN107294606B (zh) * | 2017-07-26 | 2024-01-12 | 深圳市傲科光电子有限公司 | 一种单模光纤双向光收发器 |
CN107561640A (zh) * | 2017-08-18 | 2018-01-09 | 中国科学院半导体研究所 | 硅纳米线波导与光纤耦合结构及其制作方法 |
JP2019045750A (ja) * | 2017-09-05 | 2019-03-22 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
KR20200060718A (ko) * | 2017-09-15 | 2020-06-01 | 케이브이에이치 인더스트리즈, 인코포레이티드 | 광자 집적 회로의 도파관에 광섬유의 자기 정렬 연결을 위한 방법 및 장치 |
CN107966761B (zh) * | 2017-12-26 | 2019-11-12 | 武汉邮电科学研究院 | 一种渐变匹配耦合器 |
JP2019117286A (ja) | 2017-12-27 | 2019-07-18 | ルネサスエレクトロニクス株式会社 | 半導体装置およびその製造方法 |
CN110231719A (zh) * | 2018-03-05 | 2019-09-13 | 中国科学院半导体研究所 | 一种电光调制器 |
KR102632526B1 (ko) * | 2018-04-11 | 2024-02-02 | 삼성전자주식회사 | 광 집적 회로 |
JP7112254B2 (ja) * | 2018-05-31 | 2022-08-03 | ルネサスエレクトロニクス株式会社 | 半導体モジュールおよび半導体モジュールを用いた通信方法 |
WO2019228486A1 (en) * | 2018-05-31 | 2019-12-05 | Broadex Technologies Co., Ltd. | Plc silica to silicon nitride mode transformer for hybrid devices |
CN110749955A (zh) * | 2018-07-23 | 2020-02-04 | 上海新微技术研发中心有限公司 | 光波模式转换装置及其制造方法 |
US11415419B2 (en) | 2018-10-11 | 2022-08-16 | Kvh Industries, Inc. | Polarizer implemented in a photonic integrated circuit for use in a fiber optic gyroscope |
CN109581588B (zh) * | 2018-12-29 | 2023-11-28 | 国科光芯(海宁)科技股份有限公司 | 一种复合硅基波导结构及其制备方法 |
CN109445032A (zh) * | 2019-01-14 | 2019-03-08 | 科新网通科技有限公司 | SiON波导与光纤耦合结构及其制作方法 |
US11353655B2 (en) | 2019-05-22 | 2022-06-07 | Kvh Industries, Inc. | Integrated optical polarizer and method of making same |
CN110379901B (zh) * | 2019-05-22 | 2020-10-27 | 华灿光电(苏州)有限公司 | 发光二极管芯片及其制作方法 |
US10921682B1 (en) | 2019-08-16 | 2021-02-16 | Kvh Industries, Inc. | Integrated optical phase modulator and method of making same |
WO2021076356A1 (en) | 2019-10-18 | 2021-04-22 | Avinger, Inc. | Occlusion-crossing devices |
CN110632702B (zh) * | 2019-10-23 | 2021-04-09 | 北京工业大学 | 一种lnoi基光波导反向楔形模斑耦合器及制备方法 |
CN113126217B (zh) * | 2020-01-16 | 2022-11-11 | 华为技术有限公司 | 一种光发端器件、光发端器件的制备方法及光通信设备 |
JP7279658B2 (ja) * | 2020-02-12 | 2023-05-23 | 住友電気工業株式会社 | 半導体光素子およびその製造方法 |
CN111522096B (zh) * | 2020-03-31 | 2022-07-19 | 长春理工大学 | 硅波导与氧化硅波导模式转换器的制备方法 |
US11435525B2 (en) | 2020-05-14 | 2022-09-06 | Renesas Electronics Corporation | Semiconductor device and method of manufacturing the same |
US11860421B2 (en) * | 2020-11-13 | 2024-01-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Multi-tip optical coupling devices |
CA3158693A1 (en) * | 2021-05-14 | 2022-11-14 | Ranovus Inc. | Waveguide coupler |
CN117616316A (zh) * | 2021-09-18 | 2024-02-27 | 华为技术有限公司 | 光芯片及其制备方法、通信设备 |
CN115047563B (zh) * | 2022-05-22 | 2023-03-17 | 上海图灵智算量子科技有限公司 | 集成波导的光学组件 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2502494B2 (ja) | 1984-08-01 | 1996-05-29 | 松下電器産業株式会社 | テ−パカツプリング素子の製造方法 |
FR2625333B1 (fr) | 1987-12-24 | 1993-09-10 | Commissariat Energie Atomique | Procede de fabrication de microguides de lumiere a faibles pertes de propagation optique par depot de multicouches |
JPH02163706A (ja) | 1988-12-19 | 1990-06-25 | Nippon Telegr & Teleph Corp <Ntt> | シリコン光導波路およびその製造方法 |
JPH04283704A (ja) | 1991-03-13 | 1992-10-08 | Fujitsu Ltd | 半導体光導波路 |
JPH05249331A (ja) | 1992-01-09 | 1993-09-28 | Nippon Telegr & Teleph Corp <Ntt> | 導波路形ビームスポット変換素子およびその製造方法 |
JPH06174982A (ja) | 1992-12-03 | 1994-06-24 | Nippon Telegr & Teleph Corp <Ntt> | 光結合デバイス |
JP3318406B2 (ja) | 1993-10-13 | 2002-08-26 | 京セラ株式会社 | 光導波路、光導波路と光ファイバの接続装置 |
JP3462049B2 (ja) | 1996-08-30 | 2003-11-05 | 本田技研工業株式会社 | 車両用油圧作動式変速機の温度推定装置 |
JP3343846B2 (ja) | 1996-10-21 | 2002-11-11 | 日本電信電話株式会社 | 光導波路の製造方法 |
JP3758258B2 (ja) | 1996-11-29 | 2006-03-22 | 富士通株式会社 | 光結合装置 |
KR100333900B1 (ko) * | 1999-01-21 | 2002-04-24 | 윤종용 | 모드모양 변환기, 그 제작 방법 및 이를 구비한 집적광학 소자 |
JP2001033642A (ja) | 1999-07-19 | 2001-02-09 | Nippon Telegr & Teleph Corp <Ntt> | 光導波路構造 |
JP2001051144A (ja) | 1999-08-17 | 2001-02-23 | Nippon Telegr & Teleph Corp <Ntt> | 光導波路及びその作製方法 |
US6631225B2 (en) | 2000-07-10 | 2003-10-07 | Massachusetts Institute Of Technology | Mode coupler between low index difference waveguide and high index difference waveguide |
US6850683B2 (en) | 2000-07-10 | 2005-02-01 | Massachusetts Institute Of Technology | Low-loss waveguide and method of making same |
JP3543121B2 (ja) | 2000-10-18 | 2004-07-14 | 日本電信電話株式会社 | 光導波路接続構造 |
US20030044118A1 (en) * | 2000-10-20 | 2003-03-06 | Phosistor Technologies, Inc. | Integrated planar composite coupling structures for bi-directional light beam transformation between a small mode size waveguide and a large mode size waveguide |
KR100358133B1 (ko) * | 2000-12-30 | 2002-10-25 | 한국전자통신연구원 | 스트레인 분산 패드를 이용한 측면-테이퍼 도파로 제조방법과 이를 응용한 모드변환기 제조방법 및 그에 따른광소자 |
JP2004085868A (ja) | 2002-08-27 | 2004-03-18 | Matsushita Electric Ind Co Ltd | 光導波路デバイスおよびその製造方法 |
-
2003
- 2003-09-18 US US10/666,482 patent/US7076135B2/en not_active Expired - Lifetime
- 2003-09-19 DE DE60309800T patent/DE60309800T2/de not_active Expired - Lifetime
- 2003-09-19 EP EP03090309A patent/EP1400822B1/de not_active Expired - Lifetime
- 2003-09-19 CN CNB031586481A patent/CN1238740C/zh not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101359071B (zh) * | 2007-07-31 | 2011-02-02 | 株式会社东芝 | 光耦合器件 |
Also Published As
Publication number | Publication date |
---|---|
EP1400822A3 (de) | 2004-04-21 |
EP1400822A2 (de) | 2004-03-24 |
DE60309800D1 (de) | 2007-01-04 |
CN1238740C (zh) | 2006-01-25 |
US20040057667A1 (en) | 2004-03-25 |
US7076135B2 (en) | 2006-07-11 |
DE60309800T2 (de) | 2007-09-13 |
CN1495447A (zh) | 2004-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1400822B1 (de) | Planare optische Wellenleitervorrichtung zur Umwandlung des Modenfeldes und dessen Herstellungsverfahren | |
JP5413810B2 (ja) | 光導波路及びその製造方法 | |
US7664352B1 (en) | Spot size converter | |
JP2004133446A (ja) | 光モジュール及び製造方法 | |
KR101121459B1 (ko) | 광섬유 및 평면 광학 도파관을 치밀하게 결합하는 방법 및장치 | |
US20020191916A1 (en) | Vertical waveguide tapers for optical coupling between optical fibers and thin silicon waveguides | |
US20070230873A1 (en) | Broadband optical via | |
US20040114869A1 (en) | Mode converter including tapered waveguide for optically coupling photonic devices | |
JPH09166716A (ja) | 平面型光学導波路素子 | |
JP2012083446A (ja) | 光学変換素子 | |
JP2004184986A (ja) | 光学素子およびその製造方法 | |
JP4377195B2 (ja) | 光モジュールの製造方法 | |
JP4914396B2 (ja) | 光導波路の作製方法 | |
CA3133035A1 (en) | Optical mode-size converter | |
JP3890046B2 (ja) | 平面回路型光学素子の製造方法 | |
JP3795848B2 (ja) | 光平面回路型光学素子の製造方法 | |
KR20220011709A (ko) | 모드 확장 웨이브가이드 및 광섬유를 직접 결합하기 위해 이를 포함하는 스폿 크기 변환기 | |
JP5083915B2 (ja) | スポットサイズ変換器 | |
JP4235179B2 (ja) | 光導波路デバイスの製造方法および光導波路デバイス | |
KR100440257B1 (ko) | 광집적 회로의 제작 방법 | |
WO2022254701A1 (ja) | 光導波回路およびその製造方法 | |
CN114895401B (zh) | 一种硅光子芯片光耦合结构及其制造方法 | |
KR100399577B1 (ko) | 광 모드 크기 변환기의 제조 방법 | |
JP2820202B2 (ja) | スポットサイズ変換器の製造方法 | |
CN118091838A (zh) | 改善光波导损耗和偏振敏感性的波导结构及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7G 02B 6/14 A Ipc: 7G 02B 6/30 B Ipc: 7G 02B 6/12 B |
|
17P | Request for examination filed |
Effective date: 20040429 |
|
17Q | First examination report despatched |
Effective date: 20040907 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60309800 Country of ref document: DE Date of ref document: 20070104 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070823 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220920 Year of fee payment: 20 Ref country code: DE Payment date: 20220920 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220922 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60309800 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20230918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20230918 |