EP1336213A1 - Verfahren zur regenerierung von co-vergiftungen bei ht-pem-brennstoffzellen und zugehörige brennstoffzellenanlage - Google Patents

Verfahren zur regenerierung von co-vergiftungen bei ht-pem-brennstoffzellen und zugehörige brennstoffzellenanlage

Info

Publication number
EP1336213A1
EP1336213A1 EP01993032A EP01993032A EP1336213A1 EP 1336213 A1 EP1336213 A1 EP 1336213A1 EP 01993032 A EP01993032 A EP 01993032A EP 01993032 A EP01993032 A EP 01993032A EP 1336213 A1 EP1336213 A1 EP 1336213A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
pem fuel
pem
pulse
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01993032A
Other languages
German (de)
English (en)
French (fr)
Inventor
Joachim Grosse
Manfred Poppinger
Rolf BRÜCK
Meike Reizig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH, Siemens AG filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP1336213A1 publication Critical patent/EP1336213A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04671Failure or abnormal function of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • CD ⁇ -3 CD o 3 ⁇ P ⁇ -i c H- o tr P o ⁇ 3 ⁇ Cfl tr P ⁇ SD ⁇ - SD H
  • the object of the invention is therefore to propose a method specifically for the HT-PEM fuel cell, with which possible CO deposits on the electrodes are prevented, and to create an associated fuel cell system.
  • the HT-PEM fuel cell is pulsed for a predetermined period during the heating from the cold to the operationally warm state.
  • the pulse operation achieves with sufficient certainty a regeneration of any CO-coated electrodes of the HT-PEM fuel cells.
  • the measure according to the invention can advantageously take place as a function of the poisoning state, provided that a suitable sensor for detecting the poisoning state is present.
  • the cell voltage generated by the fuel cell or its change is appropriate here.
  • the measures according to the invention can also be carried out as a precaution after each cold start, so that the formation of CO deposits on electrodes is prevented and thus possible poisoning of the membrane electrode units (MEAs) is excluded.
  • the Regenerati ⁇ on he d C O-poisoning is performed once per operating cycle of HT-PEM fuel cell.
  • the Regene ⁇ takes place ration by pulse operation at temperatures between 60 ° C and 300 ° C, preferably between 120 and 200 ° C.
  • FIG. 1 the co-dependence is operated at a voltage of the PEM fuel cell stack ⁇ at low temperatures
  • Figure 2 is a corresponding illustration for a HT-PEM fuel cell stack
  • Figure 3 and Figure 4 shows the influence of pulsing on the operation of a HT-PEM fuel cell stack
  • FIG. 5 shows a fuel cell system with an HT-PEM fuel cell stack and an associated control or. Control device.
  • PEM fuel cells are sufficiently known from the prior art, so that their structure is no longer described in detail in the present context. Such PEM fuel cells are based essentially on proton exchange in a solid electrolyte (proton exchange membrane), the term “PEM * also being derived from the structure of the fuel cell with a polymer electrolyte membrane.
  • the heart of such PEM fuel cells is the so-called MEA or membrane electrode assembly (membrane electrode assembly), in which a suitable membrane made of organic material as the electrolyte or its carrier electrodes are applied as the cathode and anode of the fuel cell on both sides.
  • FIG. 2 shows two characteristic curves 21 and 22 with 0 ppm CO and 1000 ppm CO, especially for the high-temperature PEM fuel cell, that their voltage-current density dependencies are practically identical. This corresponds to the well-known fact that the HT-PEM is largely insensitive to contamination with CO.
  • the HT-PEM fuel cell When the HT-PEM fuel cell is in operation, potential poisoning of the electrodes can now be excluded by starting the fuel cell from the cold stand during the heating of the fuel cell or after reaching the operating temperature condition of Brennstoffzel ⁇ le for a predetermined period, the HT-PEM fuel cell is operated in pulse mode. This can on the one hand gene by temporary short-circuiting or reversing the polarity and secondly by switching off the hydrogen supply at load operation SUC ⁇ .
  • the pulsed operation regenerates the electrodes covered with CO and thus puts the HT-PEM fuel cell in the ideal state.
  • the line voltage gradient can be used as such a criterion, for example, since a drop in the cell voltage indicates poisoning.
  • the pulse operation can therefore advantageously be carried out as a function of the drop in the cell voltage.
  • FIGS. 3 and 4 show the individual voltages U of high-temperature PEM fuel cell units as characteristic curves 31 and 41 with different CO poisonings as a function of time t, pulse operation taking place over different time intervals with a given current density. It is discharged via a defined resistor with a specified discharge time.
  • the characteristic curve 31 stands for a CO content of 100 ppm with a pulse of 10 min at 300 mA / m 2 and 20 s discharge time.
  • the characteristic curve 41 stands for a CO content of 1000 ppm with a pulse of 5 min at 300 A / cm 2 and 20 s discharge time.
  • pulse operation takes place when the HT-PEM fuel cell is heated, that is to say before the respective operating temperature has been reached, since electrode deposits with carbon monoxide (CO) can occur at the low temperatures.
  • the pulse mode can also be zen, d . h . Warm operating condition is reached. It can thus be ensured that the HT-PEM fuel cell is regenerated depending on the poisoning state.
  • the cell voltage or its change can be recorded as a trigger for an automatic regeneration of the HT-PEM fuel cell. This means that the pulse operation takes place depending on the dynamic voltage behavior.
  • the clamping voltage of the ⁇ HT-PEM fuel cell also CO impurities in the fuel gas is in the range of 100 and 1000 ppm CO occupancy can be kept constant. This confirms a major advantage of the HT-PEM fuel cell.
  • 110 shows a fuel cell module, which consists of a stack of individual HT-PEM fuel cells 111, 111 ⁇ , ... and is referred to in the technical field as a fuel cell stack or "stack *" for short.
  • the process gas ie hydrogen or hydrogen-rich gas as the fuel gas on the one hand and oxygen or air as the oxidant on the other hand, are supplied centrally.
  • the stack 110 contains lines for the process gases, which are not discussed further in the present context.
  • FIG. 5 there is a control device 120 with which the process in the fuel cell stack 110 is controlled in a known manner.
  • the control device has discrete inputs 121, 121,... For setting process parameters and, for example, an output 131 for a common, possibly bidirectional data bus. several outputs 131, 131 ⁇ , ... for individual control lines.
  • the control device 120 is assigned a pulse device 125, which enables pulse operation of the fuel cell system.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
EP01993032A 2000-10-30 2001-10-30 Verfahren zur regenerierung von co-vergiftungen bei ht-pem-brennstoffzellen und zugehörige brennstoffzellenanlage Withdrawn EP1336213A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10053851A DE10053851A1 (de) 2000-10-30 2000-10-30 Verfahren zur Regenerierung von CO-Vergiftungen bei HT-PEM-Brennstoffzellen
DE10053851 2000-10-30
PCT/DE2001/004103 WO2002037591A1 (de) 2000-10-30 2001-10-30 Verfahren zur regenerierung von co-vergiftungen bei ht-pem-brennstoffzellen und zugehörige brennstoffzellenanlage

Publications (1)

Publication Number Publication Date
EP1336213A1 true EP1336213A1 (de) 2003-08-20

Family

ID=7661606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01993032A Withdrawn EP1336213A1 (de) 2000-10-30 2001-10-30 Verfahren zur regenerierung von co-vergiftungen bei ht-pem-brennstoffzellen und zugehörige brennstoffzellenanlage

Country Status (9)

Country Link
US (1) US20030203248A1 (ja)
EP (1) EP1336213A1 (ja)
JP (1) JP2004513486A (ja)
KR (1) KR20030044062A (ja)
CN (1) CN1473370A (ja)
AU (1) AU2002215835A1 (ja)
CA (1) CA2427133A1 (ja)
DE (1) DE10053851A1 (ja)
WO (1) WO2002037591A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6312846B1 (en) 1999-11-24 2001-11-06 Integrated Fuel Cell Technologies, Inc. Fuel cell and power chip technology
EP1500158A2 (en) * 2002-02-06 2005-01-26 Battelle Memorial Institute Methods of removing contaminants from a fuel cell electrode
EP1579522A2 (en) * 2002-12-05 2005-09-28 Battelle Memorial Institute Methods of removing sulfur from a fuel cell electrode
US7632583B2 (en) * 2003-05-06 2009-12-15 Ballard Power Systems Inc. Apparatus for improving the performance of a fuel cell electric power system
DE10328257A1 (de) * 2003-06-24 2005-01-13 Daimlerchrysler Ag Verfahren zur Regeneration einer Membran-Elektroden-Anordnung einer PEM-Brennstoffzelle
US7241521B2 (en) 2003-11-18 2007-07-10 Npl Associates, Inc. Hydrogen/hydrogen peroxide fuel cell
KR100717747B1 (ko) 2005-10-25 2007-05-11 삼성에스디아이 주식회사 직접 산화형 연료 전지용 스택의 회복 방법
US9819037B2 (en) 2006-03-02 2017-11-14 Encite Llc Method and apparatus for cleaning catalyst of a power cell
HK1130951A1 (en) * 2006-03-02 2010-01-08 Encite Llc Power cell architectures and control of power generator arrays
JP5194402B2 (ja) 2006-08-09 2013-05-08 トヨタ自動車株式会社 燃料電池システム
DE102008022581A1 (de) 2008-05-07 2009-11-12 Bayerische Motoren Werke Aktiengesellschaft PEM-Brennstoffzellen-Baueinheit
US9099704B2 (en) * 2009-06-03 2015-08-04 Bdf Ip Holdings Ltd. Methods of operating fuel cell stacks and systems
DE102010056416A1 (de) 2010-07-07 2012-01-12 Volkswagen Ag Verfahren zum Betreiben und/oder Regenerieren einer Brennstoffzelle sowie Brennstoffzelle
JP5817472B2 (ja) * 2011-11-28 2015-11-18 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
AT520682B1 (de) * 2017-12-07 2021-07-15 Avl List Gmbh Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems
DE102019211490A1 (de) * 2019-08-01 2021-02-04 Audi Ag Verfahren zum Betreiben eines Kraftfahrzeugs mit einer Brennstoffzellenvorrichtung sowie ein Kraftfahrzeug

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9412073D0 (en) * 1994-06-16 1994-08-03 British Gas Plc Method of operating a fuel cell
JP3564742B2 (ja) * 1994-07-13 2004-09-15 トヨタ自動車株式会社 燃料電池発電装置
JP3088320B2 (ja) * 1997-02-06 2000-09-18 三菱電機株式会社 一酸化炭素を含む水素ガスから一酸化炭素を除去する方法、その電気化学デバイス、その運転方法、燃料電池の運転方法および燃料電池発電システム
DE19710819C1 (de) * 1997-03-15 1998-04-02 Forschungszentrum Juelich Gmbh Brennstoffzelle mit pulsförmig verändertem Anodenpotential
US6329089B1 (en) * 1997-12-23 2001-12-11 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell
AU4500500A (en) * 1999-04-30 2000-11-17 University Of Connecticut, The Membranes, membrane electrode assemblies and fuel cells employing same, and process for preparing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0237591A1 *

Also Published As

Publication number Publication date
AU2002215835A1 (en) 2002-05-15
DE10053851A1 (de) 2002-05-08
WO2002037591A1 (de) 2002-05-10
US20030203248A1 (en) 2003-10-30
CA2427133A1 (en) 2003-04-28
KR20030044062A (ko) 2003-06-02
JP2004513486A (ja) 2004-04-30
CN1473370A (zh) 2004-02-04

Similar Documents

Publication Publication Date Title
WO2002037591A1 (de) Verfahren zur regenerierung von co-vergiftungen bei ht-pem-brennstoffzellen und zugehörige brennstoffzellenanlage
DE602004006884T2 (de) Detektiervorrichtung für ein brennstoffzellensystem zum erkennen von anomalien
DE102017103058B4 (de) Brennstoffzellensystem und Verfahren zum Steuern des Brennstoffzellensystems
DE112008002901T5 (de) Brennstoffzellensystem und Startsteuerverfahren für ein Brennstoffzellensystem
DE112007002405T5 (de) Brennstoffzellensystem
DE102017219141A1 (de) Betriebssteuerverfahren eines Brennstoffzellensystems
DE112007002792T5 (de) Brennstoffzellensystem
DE102012201647A1 (de) Wasserstoffdetektionssystem
DE10295963T5 (de) Brennstoffzellensystem und Spülsystem für das Brennstoffzellensystem
DE112007002985T5 (de) Brennstoffzellensystem
DE102018213479A1 (de) Verfahren und system zur steuerung einer wasserstoffspülung
WO2002001662A1 (de) Polymer-elektrolyt-membran(pem) - brennstoffzelle mit heizelement, pem-brennstoffzellenanlage und verfahren zum betreiben einer pem-brennstoffzellenanlage
EP1194966A2 (de) Hochtemperatur-polymer-elektrolyt- membran (htm)-brennstoffzelle, htm-brennstoffzellenanlage, verfahren zum betreiben einer htm-brennstoffzelle und /oder einer htm-brennstoffzellenanlage
DE102022209330B4 (de) Brennstoffzellensystem
DE102015117240A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems sowie Brennstoffzellensystem und Fahrzeug
DE112012006025T5 (de) Brennstoffzellensystem
WO2001022515A1 (de) Verfahren und system zum starten eines brennstoffzellenstapels einer brennstoffzellenanlage
DE102018132755A1 (de) System und verfahren zur mea-konditionierung in einer brennstoffzelle
DE19926495C2 (de) Energieversorgungssystem für sicherheitsrelevante Systeme in einem Kraftfahrzeug
DE102020107895B4 (de) Brennstoffzellenfahrzeug
DE102020123782A1 (de) Verfahren zur Unterscheidung der Ursache von Spannungsverlusten bei einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung und Kraftfahrzeug mit einer solchen
DE102020119137A1 (de) Verfahren für die modellbasierte Feuchteregelung einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Brennstoffzellen-Fahrzeug
DE102006056377A9 (de) Vorrichtung für ein Brennstoffzellenfahrzeug zum Verhindern der Bildung einer Wasserstoff/Sauerstoff-Grenzfläche an der Anodenseite
DE10257212A1 (de) Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
DE10306237A1 (de) Verfahren zum Steuern eines Brennstoffzellensystems und Anordnungen zur Durchführung des Vefahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030319

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040504