AT520682B1 - Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems - Google Patents

Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems Download PDF

Info

Publication number
AT520682B1
AT520682B1 ATA51019/2017A AT510192017A AT520682B1 AT 520682 B1 AT520682 B1 AT 520682B1 AT 510192017 A AT510192017 A AT 510192017A AT 520682 B1 AT520682 B1 AT 520682B1
Authority
AT
Austria
Prior art keywords
fluid
section
valve
cell stack
variation pattern
Prior art date
Application number
ATA51019/2017A
Other languages
English (en)
Other versions
AT520682A1 (de
Inventor
Pofahl Dr Stefan
Wielandner Bsc Lukas
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Priority to ATA51019/2017A priority Critical patent/AT520682B1/de
Priority to DE112018006216.3T priority patent/DE112018006216A5/de
Priority to JP2020531054A priority patent/JP7417526B2/ja
Priority to PCT/AT2018/060288 priority patent/WO2019109120A1/de
Priority to US16/770,600 priority patent/US11824239B2/en
Priority to CN201880077555.2A priority patent/CN111418103B/zh
Publication of AT520682A1 publication Critical patent/AT520682A1/de
Application granted granted Critical
Publication of AT520682B1 publication Critical patent/AT520682B1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04671Failure or abnormal function of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems (1a; 1b; 1c; 1d; 1e), aufweisend die Schritte: variierendes Zuführen eines ersten Fluides zu dem Anodenabschnitt (3) durch das erste Zuführventil (5) mit einem vordefinierten ersten Variationsmuster, variierendes Zuführen eines zweiten Fluides zu dem Kathodenabschnitt (4) durch das zweite Zuführventil (6) mit einem vordefinierten zweiten Variationsmuster, wobei sich das erste Variationsmuster vom zweiten Variationsmuster unterscheidet, Ermitteln einer anodenabschnittspezifischen Spannungs- und/oder Stromantwort des Zellenstapels (2) während des sich variierenden Zuführens des ersten Fluides zum Anodenabschnitt (3),Ermitteln einer kathodenabschnittspezifischen Spannungs- und/oder Stromantwort des Zellenstapels (2) während des sich variierenden Zuführens des zweiten Fluides zum Kathodenabschnitt (4), und Ermitteln des Betriebszustandes des elektrochemischen Systems (1a; 1b; 1c; 1d; 1e) anhand der anodenabschnittsspezifischen und/oder kathodenabschnittsspezifischen Spannungsantwort und/oder Stromantwort.

Description

Beschreibung
VERFAHREN ZUR ERMITTLUNG EINES BETRIEBSZUSTANDES EINES ELEKTROCHEMISCHEN SYSTEMS
[0001] Die vorliegende Erfindung betrifft ein Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems. Die Erfindung betrifft ferner ein Computerprogrammprodukt, ein Speichermittel mit einem darauf gespeicherten Computerprogrammprodukt, eine Schaltungsanordnung mit einem drauf installierten Computerprogrammprodukt sowie ein elektrochemisches System.
[0002] In elektrochemischen Systemen können kritische Betriebszustände auftreten. Ein derartiger kritischer Betriebszustand kann beispielsweise die Folge eines Wasserstoffübertritts bei einem als Elektrolyseur ausgebildeten elektrochemischen System oder einer Luftverarmung und/ oder Brennstoffverarmung bei einem als Brennstoffzellensystem ausgebildeten elektrochemischen System sein.
[0003] Aus dem Stand der Technik sind verschiedene Verfahren bekannt, um einen Betriebszustand eines elektrochemischen Systems zu überwachen und somit ein Auftreten von kritischen Zuständen frühzeitig zu erkennen. Beispielsweise ist es gebräuchlich, eine Zellenspannungsüberwachung (CVM) durchzuführen. Dabei werden allerdings nur Spannungen in einem Zellenstapel überwacht. Mögliche Ursachen einer Spannungsabweichung werden nicht ergründet, weshalb es auch nicht möglich ist, kritische Betriebszustände frühzeitig und zuverlässig zu erkennen.
[0004] Um diese Problematik teilweise zu überwinden, wurden Schaltungsanordnungen zur Einprägung von elektrischen Wechselsignalen in ein elektrochemisches System mittels Regelungsvorrichtung entwickelt. Die Einprägung von Signalen in elektrochemische Systeme kann beispielweise bei der Anwendung von Verfahren notwendig sein, bei welchen durch Messung von Spannungs- und/oder Stromsignalantworten auf den Betriebszustand des elektrochemischen Systems rückgeschlossen werden soll. Ein solches Verfahren ist beispielsweise aus der europäischen Patentanmeldung EP 1 646 101 A1 bekannt, bei welcher ein vorgebbares niederfrequentes Stromsignal in einen Brennstoffzellenstapel eingeprägt oder aufgeprägt wird und durch den Vergleich mit einem an dem Brennstoffzellenstapel gemessenen Antwortsignal, typischerweise einem Spannungssignal, insbesondere durch Vergleich der Oberwellenanteile der beiden Signale, auf den Betriebszustand der Einzelzellen eines Brennstoffzellenstapels rückgeschlossen werden kann. Bei Brennstoffzellenstapeln, die typischerweise eine nichtlineare Strom-Spannungs-Kennlinie aufweisen, kann durch den Vergleich der Oberwellenanteile des eingeprägten Signals mit den Oberwellenanteilen des Antwortsignals, das aufgrund des nichtlinearen Verhaltens des Brennstoffzellenstapels verzerrt wird, auf den Betriebszustand des Brennstoffzellenstapels und somit entsprechend auf den Betriebszustand des elektrochemischen Systems rückgeschlossen werden. Gemäß der EP 1 646 101 A1 kann eine Nichtlinearität einer Übertragungsstrecke, die das Antwortsignal hin zu dem Brennstoffzellenstapel zurücklegt, jedoch nicht ausgeglichen werden. Demnach kann es vorkommen, dass ein Ist-Wert eines einzuprägenden Signals, d. h., ein Ist-Signal, nicht mit einem Sollwert des einzuprägenden Signals übereinstimmt.
[0005] Ein weiteres Verfahren zum Ermitteln eines kritischen Betriebszustandes einer Brennstoffzelle ist beispielsweise aus der DE 102012218572 A1 und der US 2011008697 A1 bekannt.
[0006] Aufgabe der vorliegenden Erfindung ist es, ein effizienteres Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems zur Verfügung zu stellen. Insbesondere ist es Aufgabe der vorliegenden Erfindung, ein Verfahren, ein Computerprogrammprodukt, ein Speichermittel und eine Schaltungsanordnung zur einfachen, zuverlässigen und kostengünstigen Ermittlung eines Betriebszustandes eines elektrochemischen Systems, sowie ein entsprechendes elektrochemisches System, welches eine Alternative zum Stand der Technik darstellt, zur Verfügung zu stellen.
[0007] Die voranstehende Aufgabe wird durch die Patentansprüche gelöst. Insbesondere wird die voranstehende Aufgabe durch das Verfahren gemäß Anspruch 1, das Computerprogramm-
produkt gemäß Anspruch 8, das Speichermittel gemäß Anspruch 9, die Schaltungsanordnung gemäß Anspruch 10 sowie das elektrochemische System gemäß Anspruch 11 gelöst. Weitere Vorteile der Erfindung ergeben sich aus den Unteransprüchen, der Beschreibung und den Zeichnungen. Dabei gelten Merkmale und Details, die im Zusammenhang mit dem Verfahren beschrieben sind, selbstverständlich auch im Zusammenhang mit dem erfindungsgemäßen Computerprogrammprodukt, dem erfindungsgemäßen Speichermittel, der erfindungsgemäßen Schaltungsanordnung, dem erfindungsgemäßen elektrochemischen System und jeweils umgekehrt, sodass bezüglich der Offenbarung zu den einzelnen Erfindungsaspekten stets wechselseitig Bezug genommen wird bzw. werden kann.
[0008] Gemäß einem ersten Aspekt der vorliegenden Erfindung wird ein Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems zur Verfügung gestellt. Das elektrochemische System weist einen Zellenstapel mit wenigstens einem Elektrodenabschnitt auf, wobei zumindest ein Ventil und zumindest eine Fluidleitung vorgesehen sind. Das Verfahren weist folgende Schritte auf:
[0009] - variierendes Führen wenigstens eines Fluides über die zumindest eine Fluidleitung durch das zumindest eine Ventil mit einem vordefinierten Variationsmuster, wobei einem Fluidstrom das Variationsmuster durch das Ventil aufgeprägt wird,
[0010] - Ermitteln einer Spannungsantwort und/oder einer Stromantwort des Zellenstapels während des variierenden Führens des wenigstens einen Fluides, und
[0011] - Ermitteln des Betriebszustandes des elektrochemischen Systems anhand der Spannungs- und/oder Stromantwort.
[0012] Unter dem variierenden Führen des wenigstens einen Fluides mit einem vordefinierten Variationsmuster ist vorzugsweise ein getaktetes und/oder gepulstes Führen des Fluides im elektrochemischen System zu verstehen. Im Rahmen des getakteten Führens des Fluides kann das Fluid in einem ersten Takt geführt werden, in einem anschließenden Takt nicht mehr, danach wieder, und so weiter. Weiterhin ist es möglich, dass das Fluid in einem ersten Takt nur mit einer vordefinierten niedrigen Führrate zu geführt wird und in einem anschließenden Takt mit einer vordefinierten hohen Zuführrate geführt wird, wobei die hohe Führrate höher als die niedrige Führrate ist. Die unterschiedlichen bzw. sich variierenden Führraten können sich periodisch gleichmäBig unterscheiden, oder auf vordefinierte Weise ungleichmäßig variiert werden. Das erfindungsgemäße Variieren der Führrate wird vorzugsweise durch Verwendung von getakteten bzw. gepulsten Ventilen (Zuführ- und/oder Auslassventile) realisiert. Durch die Verwendung derartiger Ventile ist in dem elektrochemischen System keine zusätzliche und/oder angepasste Leistungselektronik erforderlich, die für eine elektrische Anregung verwendet werden müsste. Dadurch kann das Verfahren einfach umgesetzt und das System entsprechend einfach betrieben werden. Da erfindungsgemäße Ventile in der Regel bereits in gattungsgemäßen elektrochemischen Systemen verbaut sind, kann bei der Anwendung des erfindungsgemäßen Verfahrens auf eine komplexe Implementation in elektrochemischen Systemen verzichtet werden. Für den Fall, dass in einem elektrochemischen System keine erfindungsgemäßen Ventile installiert oder vorgesehen sind, wären diese jedoch einfach und kostengünstig nachrüstbar. Beim erfindungsgemäßen Verfahren wird zumindest ein Medienfluss modelliert oder gepulst. Dies kann entweder vor dem Zellenstapel oder nach dem Zellenstapel erfolgen. Das Fluid wird also durch das Ventil selbst getaktet bzw. gepulst, d. h. mit einer vorgegebenen Frequenz beaufschlagt. Durch die erfindungsgemäße Anregungsmethode ist also keine Modifikation an einer Leistungselektronik des elektrochemischen Systems notwendig.
[0013] Das zumindest eine Ventil zur Taktung eines Fluidstormes ist in einer Fluidleitung angeordnet. Dieses kann beispielsweise unmittelbar stromabwärts oder unmittelbar stromaufwärts des Zellenstapels angeordnet sein. Alternativ kann dieses auch in einer als Zuleitung oder Ableitung ausgebildeten Fluidleitung angeordnet sein, durch welche ein getaktetes oder gepulstes Fluid einer Fluidleitung zugeführt bzw. von einer Fluidleitung abgeführt oder zudosiert bzw. abdosiert wird. Eine weitere Möglichkeit ist es, das Ventil zur Pulsung oder Taktung einer Befeuchtung anzuordnen. Hierzu wird das Ventil in einer Bypassleitung angeordnet, wobei die Bypassleitung
eine Fluidleitung ist und zum Bypassen eines semipermeablen Stoffaustauschers wie eines Gegenstrombefeuchters ausgebildet und angeordnet sein kann. Das durch die Bypassleitung und das Ventil geführte und getaktete Fluid wird stromabwärts des semipermeablen Stofftaustauschers und stromaufwärts des Zellenstapels, insbesondere des Anodenabschnittes, der Fluidleitung zugeführt.
[0014] Unter dem elektrochemischen System ist insbesondere ein System zum Wandeln von chemisch gebundener in elektrische Energie, beispielsweise in Form eines Brennstoffzellensystems, oder ein System zum Verändern von chemischen Stoffzusammensetzungen mittels elektrischer Energie, beispielsweise in Form eines Elektrolyseurs, zu verstehen. Dabei ist es ein weiterer Vorteil des vorliegenden Verfahrens, dass es unabhängig von der Betriebsweise des elektrochemischen Systems, also unabhängig davon, ob das System als Brennstoffzellensystem oder als Elektrolyseur betrieben oder ausgestaltet wird bzw. ist, durchgeführt werden kann. Das Brennstoffzellensystem kann ein Niedertemperatur-Brennstoffzellensystem, beispielsweise ein PEMBrennstoffzellensystem, sein.
[0015] Als Zellenstapel wird im Rahmen der Erfindung ein elektrochemischer Reaktor verstanden, welcher zumindest einen Elektrodenabschnitt bzw. eine Elektrodenseite aufweist. Insbesondere weist ein Zellenstapel zwei Elektrodenseiten auf wie eine Kathode und eine Anode. Beispielsweise kann der Zellenstapel zur Durchführung einer Elektrolyse oder als galvanische Zelle ausgebildet und angeordnet sein.
[0016] Der wenigstens eine Elektrodenabschnitt kann ein Anodenabschnitt und/oder ein Kathodenabschnitt eines elektrochemischen Reaktors wie eines Brennstoffzellenstapels oder eines SOEC-Systems sein, wobei der elektrochemische Reaktor in diesem Fall dem Zellenstapel entspricht. Durch das varilierende, insbesondere getaktete bzw. gepulste Zuführen des wenigstens einen Fluides zu dem wenigstens einen Elektrodenabschnitt entsteht ein getaktetes bzw. gepulstes Signal. Aufgrund des Ausbleibens oder zumindest der Verminderung des Fluides zwischen den Takten bzw. Pulsen wird das Fluid in dem wenigstens einen Elektrodenabschnitt ungleichmäßig über eine Dauer des Pulses oder des Taktes verbraucht oder zumindest teilweise verbraucht und muss während des nächsten Pulses wieder zu einer jeweiligen Elektrode transportiert werden, beispielsweise durch Diffusion. Erfolgt die Anregung beispielsweise durch ein Rechtecksignal (gepulst oder getaktet) wird die Amplitude des Wechselanteiles der Zellenstapelspannung mit der Taktfrequenz oder Pulsfrequenz sägezahnartig ausgelenkt und kann entsprechend aussagekräftig ausgewertet werden.
[0017] Unter dem Ermitteln der Spannungs- und/oder Stromantwort ist vorzugsweise ein Erfassen oder Messen eines Wechselanteiles eines Mischsignales aus Spannung und Strom zu verstehen. Im Rahmen der Ermittlung der Spannungs- bzw. Stromantwort werden die unterschiedlichen Konzentrationen der Fluide bzw. Medien an dem wenigstens einen Elektrodenabschnitt, also dem Anodenabschnitt und/oder dem Kathodenabschnitt, ermittelt. Hierbei wird insbesondere die Anderung der Fluidversorgung, beispielsweise die Anderung der Stöchiometrie des Fluides, beispielsweise des Reduktionsmittels wie des Brennstoffs am Anodenabschnitt und/oder des Oxidationsmittels wie der Luft am Kathodenabschnitt, ermittelt. Unter einer Ermittlung des Betriebszustandes des elektrochemischen Systems ist insbesondere eine Ermittlung des Zustandes eines Elektrodenabschnitts, also beispielsweise des Anodenabschnitts und/oder des Kathodenabschnitts, zu verstehen. Im Rahmen dieser Ermittlung kann insbesondere festgestellt werden, ob eine Oxidationsmittelverarmung und/oder eine Reduktionsmittelverarmung oder ein Übertritt zwischen den Fluiden stattfindet. Unter dem Aufprägen eines Variationsmusters kann auch ein Einprägen eines Variationsmusters verstanden werden. Der Fluidstrom entspricht im Wesentlichen dem Fluid, wobei im Rahmen der Erfindung stets der Fluidstrom mit einem Variationsmuster versehen wird.
[0018] Abhängig vom ermittelten Betriebszustand des elektrochemischen Systems kann eine Arbeitsfluidzufuhr zu einem Elektrodenabschnitt, beispielsweise in Form von Luft zu einem Kathodenabschnitt und/oder Brennstoff zu einem Anodenabschnitt, angepasst werden.
[0019] Günstig ist es, wenn wenigstens ein Zuführventil stromaufwärts des wenigstens einen
Elektrodenabschnitts und/oder wenigstens ein Auslassventil stromabwärts des wenigstens einen Elektrodenabschnitts vorgesehen ist, wobei wenigstens ein Fluid durch das wenigstens eine Zuführventil und/oder wenigstens eine Auslassventil mit einem vordefinierten Variationsmuster vanierend geführt wird und eine Spannungsantwort und/oder eine Stromantwort des Zellenstapels während des variierenden Führens des wenigstens einen Fluides ermittelt wird. Dadurch bietet das erfindungsgemäße Verfahren nicht nur den Vorteil, dass keine Modifikation an der Leistungselektronik notwendig ist, sondern erste Versuche belegen auch eine dem Stand der Technik überlegene Analysefähigkeit.
[0020] Gemäß der vorliegenden Erfindung ist es vorgesehen, dass der Zellenstapel einen ersten Elektrodenabschnitt in Form eines Anodenabschnitts und einen zweiten Elektrodenabschnitt in Form eines Kathodenabschnitts aufweist, wobei stromaufwärts des Anodenabschnitts ein erstes Zuführventil und stromaufwärts des Kathodenabschnitts ein zweites Zuführventil angeordnet sind. Das Verfahren kann in dieser Ausgestaltungsvariante die folgenden weiteren Schritte aufweisen:
[0021] - variierendes Zuführen eines ersten Fluides zu dem Anodenabschnitt durch das erste Zuführventil mit einem vordefinierten ersten Variationsmuster,
[0022] - variierendes Zuführen eines zweiten Fluides zu dem Kathodenabschnitt durch das zweite Zuführventil mit einem vordefinierten zweiten Variationsmuster, wobei sich das erste Variationsmuster vom zweiten Variationsmuster unterscheidet,
[0023] - Ermitteln einer anodenabschnittspezifischen Spannungs- und/oder Stromantwort des Zellenstapels während des sich varlierenden Zuführens des ersten Fluides zum Anodenabschnitt,
[0024] - Ermitteln einer kathodenabschnittspezifischen Spannungs- und/oder Stromantwort des Zellenstapel während des sich variierenden Zuführens des zweiten Fluides zum Kathodenabschnitt, und
[0025] - Ermitteln des Betriebszustandes des elektrochemischen Systems anhand der anodenabschnittsspezifischen und/oder kathodenabschnittsspezifischen Spannungs- bzw. Stromantwort.
[0026] Dadurch kann der Betriebszustand des elektrochemischen Systems betriebsbegleitend bzw. online besonders detailliert und fortlaufend ermittelt werden. Genauer gesagt können im Wesentlichen gleichzeitig der Betriebszustand im Anodenabschnitt sowie der Betriebszustand im Kathodenabschnitt ermittelt werden. Dieser Betriebszustand kann einerseits durch Medienüberoder -unterversorgung beeinträchtigt oder durch Medienübertritt über die Zellmembran oder wand gestört sein. Bei der Verwendung von unterschiedlichen Variationsmustern kann im Nachhinein zuverlässig festgestellt werden, von welcher Elektrode welches Signal kommt und welchem Fluidstrom bzw. Medienfluss es entspricht. Es kann also anodenabschnittspezifisch und kathodenabschnittspezifisch gemessen bzw. gerechnet werden. Bei einem unerwünschten Fluidübertritt oder Fluidverarmung kann in gleicher Weise der Ursprung desselben zurückverfolgt bzw. eruiert werden. Wenn das elektrochemische System bzw. der Zellenstapel mit zwei unterschiedlichen Frequenzen angeregt wird, können diese auch in der entsprechenden Signalantwort detektiert werden. Anhand der detektierten Frequenz kann das Signal dem Anodenabschnitt oder dem Kathodenabschnitt zugeordnet werden. Anschließend kann der Amplitudenverlauf der entsprechenden Frequenzen rekonstruiert werden, wodurch auf die sich ändernde Fluidversorgung der einzelnen Elektroden geschlossen werden kann.
[0027] Zusätzlich oder alternativ kann es günstig sein, wenn der Zellenstapel einen ersten Elektrodenabschnitt in Form eines Anodenabschnitts und einen zweiten Elektrodenabschnitt in Form eines Kathodenabschnitts aufweist, und stromabwärts des Anodenabschnitts ein erstes Auslassventil und stromabwärts des Kathodenabschnitts ein zweites Auslassventil angeordnet sind. Das Verfahren kann in dieser Ausgestaltungsvariante die folgenden weiteren Schritte aufweisen:
[0028] - variierendes Abführen eines ersten Fluides vom Anodenabschnitt durch das erste Auslassventil mit einem vordefinierten ersten Variationsmuster,
[0029] - variierendes Abführen eines zweiten Fluides vom Kathodenabschnitt durch das zweite Auslassventil mit einem vordefinierten zweiten Variationsmuster, wobei sich das erste Variationsmuster vom zweiten Variationsmuster unterscheidet,
[0030] - Ermitteln einer anodenabschnittspezifischen Spannungs- und/oder Stromantwort des Zellenstapels während des sich variierenden Abführens des ersten Fluides vom Anodenabschnitt,
[0031] - Ermitteln einer kathodenabschnittspezifischen Spannungs- und/oder Stromantwort des Zellenstapels während des sich varilierenden Abführens des zweiten Fluides vom Kathodenabschnitt, und
[0032] - Ermitteln des Betriebszustandes des elektrochemischen Systems anhand der anodenabschnittsspezifischen und/oder kathodenabschnittsspezifischen Spannungsantwort und/oder Stromantwort.
[0033] Dabei wird der Medienfluss also straomabwärts des Zellenstapels gepulst. Die Modellierung desselben erfolgt also im Nachlauf. Die oben beschriebenen Vorteile treffen jedoch auch auf diese Variante zu, weshalb darauf nicht mehr im Detail eingegangen wird.
[0034] Grundsätzlich kann der Zellenstapel einen ersten Elektrodenabschnitt in Form eines Anodenabschnitts und einen zweiten Elektrodenabschnitt in Form eines Kathodenabschnitts aufweisen, und stromaufwärts des Anodenabschnitts sind ein erstes Zuführventil in einer ersten Zuleitung und stromaufwärts des Kathodenabschnitts ein zweites Zuführventil in einer zweiten Zuleitung angeordnet. Das Verfahren kann in dieser Ausgestaltungsvariante die folgenden weiteren Schritte aufweisen:
[0035] - variierendes Zuführen eines ersten zudosierten Fluides in der ersten Zuleitung durch das erste Zuführventil mit einem vordefinierten ersten Variationsmuster zu einem ersten Fluid in einer erste Fluidleitung und in weiterer Folge zu dem Anodenabschnitt,
[0036] - variierendes Zuführen eines zweiten zudosierten Fluides in der zweiten Zuleitung durch das zweite Zuführventil mit einem vordefinierten zweiten Variationsmuster zu einem zweiten Fluid in einer zweite Fluidleitung und in weiterer Folge zu dem Kathodenabschnitt, wobei sich das erste Variationsmuster vom zweiten Variationsmuster unterscheidet,
[0037] - Ermitteln einer anodenabschnittspezifischen Spannungs- und/oder Stromantwort des Zellenstapels während des sich varlierenden Zuführens des ersten Fluides zum Anodenabschnitt,
[0038] - Ermitteln einer kathodenabschnittspezifischen Spannungs- und/oder Stromantwort des Zellenstapels während des sich variierenden Zuführens des zweiten Fluides zum Kathodenabschnitt, und
[0039] - Ermitteln des Betriebszustandes des elektrochemischen Systems anhand der anodenabschnittsspezifischen und/oder kathodenabschnittsspezifischen Spannungsantwort und/oder Stromantwort.
[0040] Bei dieser Variante erfolgt die Pulsung oder Taktung der Fluide also über eine Anordnung der Ventile in einen jeweils eigenen Zumischerpfad.
[0041] Ferner ist es möglich, dass bei einem Verfahren gemäß der vorliegenden Erfindung das erste Fluid Brennstoff oder Wasser ist oder aufweist und/oder das zweite Fluid Luft ist oder aufweist. Durch Zuführen von Wasser, Brennstoff und/oder Luft zur entsprechenden Elektrode wird ein Prozessfluid verwendet, das sich ohnehin im elektrochemischen System befindet. Dadurch kann das Verfahren entsprechend einfach durchgeführt werden. Als Brennstoff kann Wasserstoff oder ein Kohlenwasserstoff wie Methanol oder Ethanol verwendet werden. Allgemein ist das erste Fluid ein Reduktionsmittel und das zweite Fluid ein Oxidationsmittel, wobei insbesondere das Reduktionsmittel auf der Kathodenseite und Oxidationsmittel auf der Anodenseite geführt wird. Ist das zweite Fluid Luft, so kann der Luft beispielsweise Wasser zur Befeuchtung oder Stickstoff
zugemischt sein. Die Fluide können auch inert sein, wie beispielsweise Wasserstoff in einem Kathodenpfad in einem SOEC-System.
[0042] Außerdem ist es bei einem erfindungsgemäßen Verfahren möglich, dass das wenigstens eine Fluid mit einer Taktung zwischen 1 Hz und 500 Hz, insbesondere zwischen 3 Hz und 400 Hz, besonders bevorzugt zwischen 4 Hz und 350 Hz geführt wird. Bei Versuchen im Rahmen der vorliegenden Erfindung hat sich herausgestellt, dass diese Taktung für ein aussagekräftiges Messergebnis ausreicht. Außerdem können relativ kostengünstige Zuführventile verwendet werden. Als besonders vorteilhaft hat sich eine Taktung zwischen 10 Hz und 30 Hz herausgestellt. Hierbei entspricht die Taktung einem variierenden Zuführen des Fluides.
[0043] Darüber hinaus ist es möglich, dass bei einem erfindungsgemäßen Verfahren die Ermittlung des Betriebszustandes des elektrochemischen Systems während des Betriebs des elektrochemischen Systems kontinuierlich oder automatisiert in vordefinierten Zeitfenstern durchgeführt wird. Durch eine kontinuierliche Überwachung des elektrochemischen Systems können Fehlfunktionen stets rechtzeitig erkannt und mögliche Schäden entsprechend frühzeitig verhindert werden. Durch eine automatisiert gezielte und/oder ausgewählte Überwachung, beispielsweise in vordefinierten Betriebszuständen des elektrochemischen Systems, reduziert sich ein Datenstrom zwischen einer Überwachungseinrichtung und einer Systemsteuereinheit auf skalare Größen (Indikatoren), wie beispielsweise Brennstoffverarmung. Die Indikatoren können z. B. als Prozentwerte skaliert sein (100% trifft ganz zu, 50% trifft zur Hälfte zu, 0% trifft gar nicht zu).
[0044] Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein Computerprogrammprodukt bereitgestellt, das auf einem Speichermittel gespeichert und zum Durchführen eines Verfahrens nach einem der voranstehenden Ansprüche konfiguriert und ausgestaltet ist. Damit bringt das Computerprogrammprodukt die gleichen Vorteile mit sich, wie sie ausführlich mit Bezug auf das erfindungsgemäße Verfahren beschrieben worden sind. Das Computerprogrammprodukt kann als computerlesbarer Anweisungscode in jeder geeigneten Programmiersprache wie beispielsweise in JAVA oder C++ implementiert sein. Das Computerprogrammprodukt kann auf einem computerlesbaren Speichermittel wie einer Datendisk, einem Wechsellaufwerk, einem flüchtigen oder nichtflüchtigen Speicher, oder einem eingebauten Speicher/Prozessor abgespeichert sein. Der Anweisungscode kann einen Computer oder andere programmierbare Geräte derart programmieren, dass die gewünschten Funktionen ausgeführt werden. Ferner kann das Computerprogrammprodukt in einem Netzwerk wie beispielsweise dem Internet bereitgestellt werden bzw. sein, von dem es bei Bedarf von einem Nutzer heruntergeladen werden kann. Das Computerprogrammprodukt kann sowohl mittels eines Computerprogramms, d.h. einer Software, als auch mittels einer oder mehrerer spezieller elektronischer Schaltungen, d.h. in Hardware, oder in beliebig hybrider Form, d.h. mittels Software-Komponenten und Hardware-Komponenten, realisiert werden bzw. sein.
[0045] Ein weiterer Aspekt der vorliegenden Erfindung betrifft ein Speichermittel mit einem darauf gespeicherten und wie vorstehend beschriebenen Computerprogrammprodukt. Darüber hinaus betrifft die Erfindung eine Schaltungsanordnung für ein elektrochemisches System, die zum Durchführen eines wie vorstehend im Detail beschriebenen Verfahrens konfiguriert und ausgestaltet ist. Damit bringen das Speichermittel und die Schaltungsanordnung ebenfalls die vorstehend beschriebenen Vorteile mit sich.
[0046] Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein elektrochemisches System zur Verfügung gestellt. Das elektrochemische System weist einen Zellenstapel mit wenigstens einem Elektrodenabschnitt , wenigstens ein Zuführventil und/oder wenigstens ein Auslassventil auf, wobei das wenigstens eine Zuführventil stromaufwärts des wenigstens einen Elektrodenabschnitts zum varlierenden Zuführen wenigstens eines Fluides zu dem wenigstens einen Elektrodenabschnitt und/oder das wenigstens eine Auslassventil stromabwärts des wenigstens einen Elektrodenabschnitts zum variierenden Abführen wenigstens eines Fluides vom wenigstens einen Elektrodenabschnitt angeordnet ist. Das elektrochemische System weist außerdem eine wie vorstehend beschriebene Schaltungsanordnung auf.
[0047] Mithin bringt auch das elektrochemische System die vorstehend erläuterten Vorteile mit
sich. Unter einem Prozessfluid bzw. Prozessfluiden sind Fluide zu verstehen, die für den Betrieb des elektrochemischen Systems benötigt werden. Die Prozessfluide können Luft, Wasser, Wasserstoff, Biogas, Methanol, Ethanol und/oder weitere sein, wobei diese Aufzählung nicht als abschließend zu werten ist. Das Zuführventil und/oder Auslassventil ist vorzugsweise jeweils als getaktetes Ventil bzw. als Pulsationsventil ausgestaltet.
[0048] Es sind zumindest zwei Fluidleitungen vorgesehen, wobei zumindest eine Fluidleitung als Zuleitung ausgebildet ist und das wenigstens eine Zuführventil in der Zuleitung angeordnet ist, wobei die Zuleitung stromabwärts zumindest eines Durchflussreglers in eine Fluidleitung mündet. Dadurch ist ein Prozessfluid vor dem Zellenstapel mit einem Puls oder Takt beaufschlagbar, wobei dies in einer separaten Zuleitung erfolgt, in welcher bevorzugt nur ein kleiner Teil eines Prozessfluides geführt ist. Stromabwärts des Durchflussreglers wird das mit einem Takt/Puls beaufschlagte Prozessfluid zu der Fluidleitung beigemischt, wodurch auch der große Teil des Prozessfluides nun getaktet ist.
[0049] Vorgesehen ist es dabei weiter, dass der Zellenstapel einen ersten Elektrodenabschnitt in Form eines Anodenabschnitts und einen zweiten Elektrodenabschnitt in Form eines Kathodenabschnitts aufweist, wobei eine erste Zuleitung und eine zweite Zuleitung vorgesehen sind, wobei ein erstes Zuführventil in der ersten Zuleitung und ein zweites Zuführventil in der zweiten Zuleitung angeordnet ist und das erste Zuführventil und das zweite Zuführventil zum Führen der Fluide unterschiedlich periodisch getaktet sind, und wobei die erste Zuleitung straomaufwärts des Anodenabschnittes in eine erste Fluidleitung und die zweite Zuleitung stromaufwärts des Kathodenabschnittes in eine zweite Fluidleitung mündet. D.h., das erste Zuführventil und das zweite Zuführventil sind mit unterschiedlichen periodischen Variationsmustern konfiguriert, wobei diese jeweils in einer separaten Zuleitung abgeordnet sind. Durch die Periodizität kann ein besonders gleichmäßiges und dadurch aussagekräftiges Antwortsignal zur entsprechend aussagekräftigen Ermittlung des Betriebszustandes generiert werden.
[0050] Grundsätzlich kann der Zellenstapel einen ersten Elektrodenabschnitt in Form eines Anodenabschnitts und einen zweiten Elektrodenabschnitt in Form eines Kathodenabschnitts aufweisen, wobei stromaufwärts des Anodenabschnitts ein erstes Zuführventil in einer ersten Zuleitung angeordnet ist, wobei die erste Zuleitung stromabwärts eines ersten Durchflussreglers in eine erste Fluidleitung zum Zuführen eines ersten Fluides zum Anodenabschnitt mündet, und stromaufwärts des Kathodenabschnitts ein zweites Zuführventil in einer zweiten Zuleitung angeordnet ist, wobei die zweite Zuleitung stromabwärts eines zweiten Durchflussreglers in eine zweite Fluidleitung zum Zuführen eines zweiten Fluides zum Anodenabschnitt mündet, und wobei das erste Zuführventil und das zweite Zuführventil zum Führen der Fluide unterschiedlich periodisch getaktet sind. D.h., das erste Zuführventil und das zweite Zuführventil sind mit unterschiedlichen periodischen Variationsmustern konfiguriert.
[0051] Durch die Periodizität kann ein besonders gleichmäßiges und dadurch aussagekräftiges Antwortsignal zur entsprechend aussagekräftigen Ermittlung des Betriebszustandes generiert werden.
[0052] Grundsätzlich kann der Zellenstapel einen ersten Elektrodenabschnitt in Form eines Anodenabschnitts und einen zweiten Elektrodenabschnitt in Form eines Kathodenabschnitts aufweisen, wobei stromabwärts des Anodenabschnitts ein erstes Auslassventil zum Abführen eines ersten Fluides vom Anodenabschnitt und stromabwärts des Kathodenabschnitts ein zweites Auslassventil zum Abführen eines zweiten Fluides vom Kathodenabschnitt angeordnet sind, und wobei das erste Auslassventil und das zweite Auslassventil zum Abführen der Fluide unterschiedlich periodisch getaktet sind. D.h., das erste Auslassventil und das zweite Auslassventil sind mit unterschiedlichen periodischen Variationsmustern konfiguriert. Durch die Periodizität kann ein besonders gleichmäßiges und dadurch aussagekräftiges Antwortsignal zur entsprechend aussagekräftigen Ermittlung des Betriebszustandes generiert werden.
[0053] Weitere, die Erfindung verbessernde Maßnahmen ergeben sich aus der nachfolgenden Beschreibung zu verschiedenen Ausführungsbeispielen der Erfindung, welche in den Figuren schematisch dargestellt sind. Es zeigen jeweils schematisch:
[0054] Figur 1 ein Flussdiagramm zum Erläutern eines Verfahrens gemäß einer ersten Ausführungsform der vorliegenden Erfindung,
[0055] Figur 2 ein Flussdiagramm zum Erläutern eines Verfahrens gemäß einer zweiten Ausführungsform der vorliegenden Erfindung,
[0056] Figur 3 ein Flussdiagramm zum Erläutern eines Verfahrens gemäß einer dritten Ausführungsform der vorliegenden Erfindung,
[0057] Figur 4 ein Flussdiagramm zum Erläutern eines Verfahrens gemäß einer vierten Ausführungsform,
[0058] Figur 5 ein Flussdiagramm zum Erläutern eines Verfahrens gemäß einer fünften Ausführungsform,
[0059] Figur 6 ein Blockschaltbild zum Darstellen eines elektrochemischen Systems gemäß einer ersten Ausführungsform,
[0060] Figur 7 ein Blockschaltbild zum Darstellen eines elektrochemischen Systems gemäß einer Ausführungsform der vorliegenden Erfindung,
[0061] Figur 8 ein Diagramm zum Erläutern eines im Stand der Technik bekannten Kennlinienverlaufs, und
[0062] Figur 9 ein Diagramm zum Erläutern eines erfindungsgemäßen Kennlinienverlaufs.
[0063] Elemente mit gleicher Funktion und Wirkungsweise sind in den Figuren 1 bis 9 jeweils mit denselben Bezugszeichen versehen.
[0064] In Fig. 1 ist ein elektrochemisches System 1a gemäß einer ersten Ausführungsform dargestellt. Das in Fig. 1 dargestellte System 1a kann beispielsweise als Brennstoffzellensystem oder zumindest als Teil eines Brennstoffzellensystems verstanden werden. Der Zellenstapel 2 weist einen ersten und einen zweiten Elektrodenabschnitt beispielweise als Anodenabschnitt 3 und Kathodenabschnitt 4 auf. Stromaufwärts des Anodenabschnitts 3 ist ein erstes Zuführventil 5 angeordnet. Stromaufwärts des Kathodenabschnitts 4 ist ein zweites Zuführventil 6 angeordnet. Die Zuführventile 5, 6 sind als getaktete bzw. gepulste Ventile zum variierenden Zuführen des jeweiligen Prozessfluides zum zugehörigen Elektrodenabschnitt 3, 4 ausgestaltet.
[0065] Stromaufwärts des ersten Zuführventils 5 ist ergänzend ein erster Durchflussregler 7 zum Steuern und/oder Regeln des Fluiddurchflusses zum ersten Zuführventil 5 angeordnet. Stromaufwärts des zweiten Zuführventils 6 ist ergänzend ein zweiter Durchflussregler 8 zum Steuern und/oder Regeln des Fluiddurchflusses zum zweiten Zuführventil 6 angeordnet. Stromabwärts des Anodenabschnitts 3 ist ein in Fig. 1 nicht gezeigtes Spülventil 9 zum Spülen des Anodenbereichs angeordnet. Das erste Zuführventil 5 und das zweite Zuführventil 6 sind zum unterschiedlich varlierenden Zuführen der jeweiligen Prozessfluide unterschiedlich periodisch getaktet. D.h., das erste Zuführventil 5 ist mit einem ersten Variationsmuster konfiguriert und das zweite Zuführventil 6 ist mit einem zweiten Variationsmuster konfiguriert, wobei sich das erste Variationsmuster vom zweiten Variationsmuster unterscheidet. Zwischen dem Durchflussregler 7, 8, dem Zuführventil 5, 6 und dem Zellenstapel 2 sowie stromabwärts des Zellenstapels 2 ist jeweils eine Fluidleitung 23 vorgesehen, wobei im Anodenpfad eine erste Fluidleitung 23a und im Kathodenpfad eine zweite Fluidleitung 23b angeordnet ist.
[0066] Das in Fig. 1 dargestellte System 1a weist ferner eine Schaltungsanordnung 13 zum Steuern und/oder Regeln des Systems 1a auf. Die Schaltungsanordnung 13 weist ein Speichermittel 12 mit einem darauf gespeicherten bzw. installierten Computerprogrammprodukt 11 auf. Das Computerprogrammprodukt 11 ist zum Durchführen von Verfahren konfiguriert, die mit Bezug auf Fig. 3 und Fig. 4 beschrieben werden.
[0067] In Fig. 2 ist ein elektrochemisches System 1b gemäß einer zweiten Ausführungsform dargestellt, in welchem nur ein getaktetes bzw. gepulstes Auslassventil 20 angeordnet ist. Auf die Darstellung eines Kathodenabschnitts bzw. eines Zellenstapels wurde verzichtet. Stromabwärts des Anodenabschnitts 3 ist eine Fluidbumpe 10 angeordnet, wobei stromabwärts der Fluidbumpe
10 ein Spülventil 9 vorgesehen ist. Das Spülventil 9 ist zum Spülen des Anodenbereichs angeordnet. Die Schaltungsanordnung 13 entspricht derjenigen, die bereits mit Bezug auf die erste Ausführungsform beschrieben worden ist. Wieder ist zwischen den einzelnen Elementen des elektrochemischen Systems 1b eine Fluidleitung 23 vorgesehen. Die Schaltungsanordnung 13 entspricht dieser der Fig. 1. Der Anodenabschnitt 3 kann grundsätzlich auch als Kathodenabschnitt ausgebildet sein.
[0068] Fig. 3 zeigt ein weiteres elektrochemisches System 1c, in welchem ein gepulstes/getaktetes erstes Auslassventil 20 und ein gepulstes/getaktetes zweites Auslassventil 21 vorgesehen sind, wobei das erste Auslassventil 20 stromabwärts des Anodenabschnittes 3 und das zweite Auslassventil 21 stromabwärts des Kathodenabschnittes 4 angeordnet ist. Die Auslassventile 20, 21 sind dabei jeweils in einer Ableitung 25a, 25b angeordnet. Die erste Ableitung 25a trennt sich stromabwärts des Anodenabschnittes 3 von der ersten Fluidleitung 23a und die zweite Ableitung 25b trennt sich stromabwärts des Kathodenabschnittes 4 von der zweiten Fluidleitung 23b. In den jeweiligen Fluidleitungen 23a, 23b ist ein Uberströmventil 19 angeordnet, welches als Druckhalteventil ausgebildet sein kann. Die Schaltungsanordnung 13 entspricht wieder dieser der anderen Ausführungsbeispiele.
[0069] Ein elektrochemisches System 1d gemäß einer anderen Ausführungsform ist in Fig. 4 gezeigt. Stromaufwärts des Anodenabschnittes 3 bzw. des Kathodenabschnittes 4 ist eine erste Zuleitung 24a bzw. eine zweite Zuleitung 24b angeordnet, in welcher jeweils ein Zuführventil 5, 6 vorgesehen ist. Die jeweilige Zuleitung 24a, 24b führt stromaufwärts des Zellenstapels 2 und stromabwärts eines jeweiligen Durchflussreglers 7, 8 mit einer ersten Fluidleitung 23a bzw. einer zweiten Fluidleitung 23b zusammen. Die Durchflussregler 7, 8 sind im Wesentlichen Ventile und können auch jeweils als Magnetventile ausgebildet sein. In Fig. 4 sind auch zwei Uberströmventile stromabwärts des Zellenstapels 2 vorgesehen, welche bei einem Betrieb im Uberdruck verwendet werden. Die Schaltungsanordnung 13 entspricht wieder dieser der anderen Ausführungsbeispiele.
[0070] Fig. 5 zeigt ein elektrochemisches System 1e gemäß einer anderen Ausführungsform. Hierbei ist das Ventil 5 zur Pulsung oder Taktung einer Befeuchtung und in einer Bypassleitung 26 angeordnet, wobei die Bypassleitung 26 einer Fluidleitung 23 entspricht und zum Bypassen eines semipermeablen Stoffaustauschers 22 ausgebildet und angeordnet ist. Das durch die Bypassleitung 26 und das Ventil 5 geführte und getaktete Fluid wird stromabwärts eines semipermeablen Stofftaustauschers 22 und stromaufwärts des Zellenstapels 2, insbesondere des Anodenabschnittes 3, der Fluidleitung 23 zugeführt. Stromabwärts des Anodenabschnittes 3 ist ein UÜberströmventil 19 angeordnet, wobei die Fluidleitung 23 das Uberströmventil 19 mit dem semipermeablen Stofftaustauscher 22 strömungsverbindet. Die Schaltungsanordnung 13 entspricht wieder dieser der anderen Ausführungsbeispiele.
[0071] Die verschiedenen Ausführungsbeispiele können auch zumindest teilweise miteinander kombiniert werden. Es wird auch explizit darauf hingewiesen, dass ein Brennstoffzellensystem wie ein PEMFC nur ein mögliches Ausführungsbeispiel ist. Beispielsweise kann das elektrochemische System auch als SOEC-System ausgebildet sein, wobei bei dieser Variante die Ausbildung (Kathodenbereich 4 bzw. Anodenbereich 3) der Elektrodenabschnitte genau umgekehrt zu einer Ausbildung als Brennstoffzellensystem ist.
[0072] Fig. 6 zeigt ein Flussdiagramm zum Erläutern eines Verfahrens zur Ermittlung eines Betriebszustandes in einem wie in Fig. 1 bis Fig. 5 dargestellten elektrochemischen System 1a, 1b, 1c, 1d, 1e gemäß einer beispielhaften ersten Ausführungsform. In einem ersten Schritt S1 wird ein Fluid bzw. ein Prozessfluid in Form von Wasserstoff durch ein auf 30 Hz gepulstes Zuführventil 5 entsprechend variierend dem Anodenabschnitt 3 des Zellenstapels 2 zugeführt. In einem zweiten Schritt S2 wird eine Spannungs- bzw. Stromantwort des Zellenstapels 2 ermittelt bzw. gemessen. In einem darauffolgenden dritten Schritt S3 werden die Messwerte ausgewertet und analysiert (z. B. über ein THDA- oder andere geeignete Verfahren) und es wird der Betriebszustand des elektrochemischen Systems 1a, 1b anhand der Spannungs- bzw. Stromantwort ermittelt. Hierbei können vordefinierte Algorithmen einen Indikatorverlauf (Bezugszeichen 14 in Fig. 8)
ermitteln bzw. berechnen. Bei Änderungen des Indikators kann die Schaltungsanordnung 13 zur Anpassung des Wasserstoffflusses entsprechend angesteuert werden.
[0073] Mit Bezug auf Fig. 7 wird ein Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems 1b gemäß einer zweiten Ausführungsform beschrieben. In einem ersten Schritt S10 wird ein Prozessfluid in Form von Wasserstoff durch ein auf 20 Hz gepulstes erstes Zuführventil 5 entsprechend variierend dem Anodenabschnitt 3 des Zellenstapels 2 zugeführt. Außerdem wird in einem zumindest teilweise gleichzeitig ablaufenden zweiten Schritt S20 ein Prozessfluid in Form von beispielsweise Luft durch ein auf 40 Hz gepulstes zweites Zuführventil 6 entsprechend variierend dem Kathodenabschnitt 4 des Zellenstapels 2 zugeführt. Anschließend bzw. währenddessen wird in einem dritten Schritt S30 eine anodenabschnittspezifische Spannungs- bzw. Stromantwort des Zellenstapels 2 sowie eine kathodenabschnittspezifische Spannungs- bzw. Stromantwort des Zellenstapels 2 gemessen. Dies ist möglich, da die Elektroden 3, 4 mit zwei unterschiedlichen Frequenzen angeregt werden, welche in der Signalantwort detektiert werden können. Nun kann in einem vierten Schritt S40 der Betriebszustand des elektrochemischen Systems 1b anhand der anodenabschnittsspezifischen und/oder kathodenabschnittsspezifischen Spannungs- bzw. Stromantworten ermittelt werden.
[0074] Mit Bezug auf Fig. 8 und Fig. 9 soll der Vorteil des erfindungsgemäßen Verfahrens gegenüber dem im Stand der Technik bisher üblichen Verfahren hervorgehoben werden. Fig. 8 und Fig. 9 zeigen jeweils ein Diagramm mit einer Stromachse (I/A) bzw. einer Spannungsachse (U/V), die an einer Zeitachse (s) anliegen. In den Diagrammen sind jeweils ein Prozessmedium-Indikator 14, eine Stapelspannung 15, Strom 16, eine mit 10 skalierte Stöchiometrie des Sauerstoffs 17 (Lambda mal 10) und eine Wasserstoffkonzentration 18 dargestellt, wobei der ProzessmediumIndikator 14 (0 % bis 100 %) hervorzuheben ist. Wie in Fig. 8 zu sehen, zeigt der ProzessmediumIndikator 14 einen Amplitudenverlauf, der über die Zeit mit Ausschlägen nach oben sowie nach unten insgesamt zunimmt. Der sich in Fig. 9 ergebende Prozessmedium-Indikator 14 zeigt hingegen einen Amplitudenverlauf, der über die Zeit gleichmäßig nach oben ansteigt. Ein solcher Verlauf kann im Vergleich zu dem in Fig. 8 dargestellten Verlauf deutlich einfacher und zuverlässiger als entsprechender Hinweis bzw. Indikator zum Betriebszustand des elektrochemischen Systems 1a, 1b, 1c, 1d, erkannt werden.
[0075] Neben den dargestellten Ausführungsformen lässt die Erfindung weitere Gestaltungsgrundsätze zu. D.h., die vorliegende Erfindung soll nicht auf die dargestellten Figuren beschränkt betrachtet werden.
BEZUGSZEICHENLISTE
1a, 1b Brennstoffzellensystem
2 Zellenstapel
3 Anode (Elektrodenabschnitt) 4 Kathode (Elektrodenabschnitt) 5 Zuführventil
6 Zuführventil
7 Durchflussregler
8 Durchflussregler
9 Spülventil
10 Fluidgbumpe
11 Computerprogrammprodukt 12 Speichermittel
13 Schaltungsanordnung
14 Prozessmedium-Indikator 15 Stapelspannung
16 Strom
17 Stöchiometrieverhältnis 18 Wasserstoffmenge
19 Überströmventil
19a Überströmventil 19b Überströmventil
20 Auslassventil
21 Auslassventil
22 semipermeabler Stoffaustauscher 23 Fluidleitung
23a Fluidleitung 23b Fluidleitung 24a Zuleitung
24b Zuleitung
25a Ableitung
25b Ableitung
26 Bypassleitung

Claims (1)

  1. Patentansprüche
    1. Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems (1a; 1b; 1c; 1d; 1e), das einen Zellenstapel (2) mit wenigstens einem Elektrodenabschnitt (3, 4) aufweist, wobei zumindest ein Ventil (5, 6, 20, 21) und zumindest eine Fluidleitung (23) vorgesehen sind, aufweisend die Schritte:
    - varlierendes Führen wenigstens eines Fluides über die zumindest eine Fluidleitung (23) durch das zumindest eine Ventil (5, 6, 20, 21) mit einem vordefinierten Variationsmuster, wobei einem Fluidstrom das Variationsmuster durch das zumindest eine Ventil (5, 6, 20, 21) aufgeprägt wird,
    - Ermitteln einer Spannungsantwort und/oder einer Stromantwort des Zellenstapels (2) während des variierenden Führens des wenigstens einen Fluides, und
    - Ermitteln des Betriebszustandes des elektrochemischen Systems (1a; 1b; 1c; 1d; 1e) anhand der Spannungs- und/oder Stromantwort,
    dadurch gekennzeichnet, dass
    der Zellenstapel (2) einen ersten Elektrodenabschnitt in Form eines Anodenabschnitts (3) und einen zweiten Elektrodenabschnitt in Form eines Kathodenabschnitts (4) aufweist, und stromaufwärts des Anodenabschnitts (3) ein erstes Zuführventil (5) und stromaufwärts des Kathodenabschnitts (4) ein zweites Zuführventil (6) angeordnet sind, aufweisend die weiteren Schritte:
    - variierendes Zuführen eines ersten Fluides zu dem Anodenabschnitt (3) durch das erste Zuführventil (5) mit einem vordefinierten ersten Variationsmuster,
    - variierendes Zuführen eines zweiten Fluides zu dem Kathodenabschnitt (4) durch das zweite Zuführventil (6) mit einem vordefinierten zweiten Variationsmuster, wobei sich das erste Variationsmuster vom zweiten Variationsmuster unterscheidet,
    - Ermitteln einer anodenabschnittspezifischen Spannungs- und/oder Stromantwort des Zellenstapels (2) während des sich variierenden Zuführens des ersten Fluides zum Anodenabschnitt (3),
    - Ermitteln einer kathodenabschnittspezifischen Spannungs- und/oder Stromantwort des Zellenstapels (2) während des sich variierenden Zuführens des zweiten Fluides zum Kathodenabschnitt (4), und
    - Ermitteln des Betriebszustandes des elektrochemischen Systems (1a; 1b; 1c; 1d; 1e) anhand der anodenabschnittsspezifischen und/oder kathodenabschnittsspezifischen Spannungsantwort und/oder Stromantwort.
    2, Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    wenigstens ein Zuführventil (5, 6) stromaufwärts des wenigstens einen Elektrodenabschnitts (3, 4) und/oder wenigstens ein Auslassventil (20, 21) stromabwärts des wenigstens einen Elektrodenabschnitts (3, 4) vorgesehen ist, wobei wenigstens ein Fluid durch das wenigstens eine Zuführventil (5, 6) und/oder wenigstens eine Auslassventil (20, 21) mit einem vordefinierten Variationsmuster varlierend geführt wird und eine Spannungsantwort und/oder eine Stromantwort des Zellenstapels (2) während des variierenden Führens des wenigstens einen Fluides ermittelt wird.
    3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass der Zellenstapel (2) einen ersten Elektrodenabschnitt in Form eines Anodenabschnitts (3) und einen zweiten Elektrodenabschnitt in Form eines Kathodenabschnitts (4) aufweist, und stromabwärts des Anodenabschnitts (3) ein erstes Auslassventil (20) und stromabwärts des Kathodenabschnitts (4) ein zweites Auslassventil (21) angeordnet sind, aufweisend die weiteren Schritte:
    10.
    11.
    Österreichisches AT 520 682 B1 2021-07-15
    - variierendes Abführen eines ersten Fluides vom Anodenabschnitt (3) durch das erste Auslassventil (20) mit einem vordefinierten ersten Variationsmuster,
    - variierendes Abführen eines zweiten Fluides vom Kathodenabschnitt (4) durch das zweite Auslassventil (21) mit einem vordefinierten zweiten Variationsmuster, wobei sich das erste Variationsmuster vom zweiten Variationsmuster unterscheidet,
    - Ermitteln einer anodenabschnittspezifischen Spannungs- und/oder Stromantwort des Zellenstapels (2) während des sich variierenden Abführens des ersten Fluides vom Anodenabschnitt (3),
    - Ermitteln einer kathodenabschnittspezifischen Spannungs- und/oder Stromantwort des Zellenstapels (2) während des sich varlierenden Abführens des zweiten Fluides vom Kathodenabschnitt (4), und
    - Ermitteln des Betriebszustandes des elektrochemischen Systems (1a; 1b; 1c; 1d; 1e) anhand der anodenabschnittsspezifischen und/oder kathodenabschnittsspezifischen Spannungsantwort und/oder Stromantwort.
    Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass
    das erste Fluid ein Brennstoff oder Wasser ist oder aufweist und/oder das zweite Fluid Luft ist oder aufweist, wobei das erste und das zweite Fluid jeweils in einer Fluidleitung (23a, 23b) geführt werden.
    Verfahren nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das wenigstens eine Fluid mit einer Taktung zwischen 1 Hz und 500 Hz, insbesondere zwischen 3 Hz und 400 Hz, besonders bevorzugt zwischen 4 Hz und 350 Hz geführt wird.
    Verfahren nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das elektrochemische System (1a; 1b; 1ec; 1d; 1e) eine Brennstoffzelle oder ein Elektrolyseur ist.
    Verfahren nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Ermittlung des Betriebszustandes des elektrochemischen Systems (1a; 1b; 1c; 1d; 1e) während des Betriebs des elektrochemischen Systems (1a; 1b; 1e; 1d; 1e) kontinuierlich oder automatisiert in vordefinierten Zeitfenstern durchgeführt wird.
    Computerprogrammprodukt (11), das auf einem Speichermittel (12) gespeichert und zum Durchführen eines Verfahrens nach einem der voranstehenden Ansprüche konfiguriert und ausgestaltet ist.
    Speichermittel (12) mit einem darauf gespeicherten Computerprogrammprodukt (11) nach Anspruch 8.
    Schaltungsanordnung (13) für ein elektrochemisches System (1a; 1b; 1c; 1d; 1e), die zum Durchführen eines Verfahrens nach einem der Ansprüche 1 bis 7 konfiguriert und ausgestaltet ist.
    Elektrochemisches System (1a; 1b; 1c; 1d; 1e), aufweisend einen Zellenstapel (2) mit wenigstens einem Elektrodenabschnitt (3, 4), wenigstens ein Zuführventil (5, 6) und/oder wenigstens ein Auslassventil (20, 21), zumindest eine Fluidleitung (23), wobei das wenigstens eine Zuführventil (5, 6) in der Fluidleitung (23) und stromaufwärts des wenigstens einen Elektrodenabschnitts (3, 4) zum variierenden Zuführen wenigstens eines Fluides zu dem wenigstens einen Elektrodenabschnitt (3, 4) und/oder das wenigstens eine Auslassventil (20, 21) in der Fluidleitung (23) und stromabwärts des wenigstens einen Elektrodenabschnitts (3, 4) zum variierenden Abführen wenigstens eines Fluides vom wenigstens einen Elektrodenabschnitt (3, 4) angeordnet ist, und eine Schaltungsanordnung (13) nach Anspruch 10, wobei
    zumindest zwei Fluidleitungen (23a, 24a) vorgesehen sind, wobei zumindest eine Fluidleitung als Zuleitung (24a) ausgebildet ist und das wenigstens eine Zuführventil (5) in der Zuleitung (24a) angeordnet ist, wobei die Zuleitung (24a) stromabwärts zumindest eines Durchflussreglers (7) in eine Fluidleitung (23a) mündet,
    dadurch gekennzeichnet, dass
    der Zellenstapel (2) einen ersten Elektrodenabschnitt in Form eines Anodenabschnitts (3) und einen zweiten Elektrodenabschnitt in Form eines Kathodenabschnitts (4) aufweist, wobei eine erste Zuleitung (24a) und eine zweite Zuleitung (24b) vorgesehen sind, wobei ein erstes Zuführventil (5) in der ersten Zuleitung (24a) und ein zweites Zuführventil (6) in der zweiten Zuleitung (24b) angeordnet ist und das erste Zuführventil (5) und das zweite Zuführventil (6) zum Führen der Fluide unterschiedlich periodisch getaktet sind, und wobei die erste Zuleitung (24a) stromaufwärts des Anodenabschnittes (3) in eine erste Fluidleitung (23a) und die zweite Zuleitung (24b) stromaufwärts des Kathodenabschnittes (4) in eine zweite Fluidleitung (23b) mündet.
    Hierzu 5 Blatt Zeichnungen
ATA51019/2017A 2017-12-07 2017-12-07 Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems AT520682B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ATA51019/2017A AT520682B1 (de) 2017-12-07 2017-12-07 Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems
DE112018006216.3T DE112018006216A5 (de) 2017-12-07 2018-12-07 Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems
JP2020531054A JP7417526B2 (ja) 2017-12-07 2018-12-07 電気化学システムの作動状態を判断するための方法
PCT/AT2018/060288 WO2019109120A1 (de) 2017-12-07 2018-12-07 Verfahren zur ermittlung eines betriebszustandes eines elektrochemischen systems
US16/770,600 US11824239B2 (en) 2017-12-07 2018-12-07 Method for determining an operating state of an electrochemical system
CN201880077555.2A CN111418103B (zh) 2017-12-07 2018-12-07 用于确定电化学系统工作状态的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA51019/2017A AT520682B1 (de) 2017-12-07 2017-12-07 Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems

Publications (2)

Publication Number Publication Date
AT520682A1 AT520682A1 (de) 2019-06-15
AT520682B1 true AT520682B1 (de) 2021-07-15

Family

ID=64901240

Family Applications (1)

Application Number Title Priority Date Filing Date
ATA51019/2017A AT520682B1 (de) 2017-12-07 2017-12-07 Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems

Country Status (6)

Country Link
US (1) US11824239B2 (de)
JP (1) JP7417526B2 (de)
CN (1) CN111418103B (de)
AT (1) AT520682B1 (de)
DE (1) DE112018006216A5 (de)
WO (1) WO2019109120A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT520682B1 (de) 2017-12-07 2021-07-15 Avl List Gmbh Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems
CN114361534B (zh) * 2022-03-11 2022-05-31 北京亿华通科技股份有限公司 外部提供反应物的电化学装置的内部状态监测方法及装置
AT525865A1 (de) * 2022-10-19 2023-07-15 Avl List Gmbh Verfahren Ermittlung eines Betriebszustandes eines Brennstoffzellensystems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028550A1 (de) * 2006-09-04 2008-03-13 Daimler Ag Vorrichtung und verfahren zum befeuchten eines zu einer brennstoffzelle strömenden gasstroms
US20110008697A1 (en) * 2005-12-21 2011-01-13 American Power Conversion Corporation Fuel cell sensors and methods
US20120135327A1 (en) * 2010-11-25 2012-05-31 Kangnam University Industry-Academia Cooperation Foundation Monitoring the operational state of a fuel cell stack
DE102012218572A1 (de) * 2012-10-11 2014-04-17 Robert Bosch Gmbh Verfahren zum gesicherten Brennstoffzellenbetrieb
DE102015210836A1 (de) * 2015-06-12 2016-12-15 Volkswagen Aktiengesellschaft Diagnoseverfahren zur Ermittlung eines Zustands eines Brennstoffzellenstapels

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2044068A1 (de) 1970-09-05 1972-03-16 Siemens Ag Brennstoffbatterie
US6472090B1 (en) 1999-06-25 2002-10-29 Ballard Power Systems Inc. Method and apparatus for operating an electrochemical fuel cell with periodic reactant starvation
DE10053851A1 (de) 2000-10-30 2002-05-08 Siemens Ag Verfahren zur Regenerierung von CO-Vergiftungen bei HT-PEM-Brennstoffzellen
DE60310994D1 (de) * 2002-08-31 2007-02-15 Axsia Serck Baker Ltd Fluidisiervorrichtung
US7405012B2 (en) * 2003-02-07 2008-07-29 Hewlett-Packard Development Company, L.P. Oscillating gas flow in fuel cells
US20050260463A1 (en) 2004-05-21 2005-11-24 Chapman Ivan D Fluid flow pulsing for increased stability in PEM fuel cell
JP5041272B2 (ja) * 2005-12-12 2012-10-03 トヨタ自動車株式会社 燃料電池システム及び移動体
JP4924792B2 (ja) * 2005-12-15 2012-04-25 トヨタ自動車株式会社 燃料電池システム及び移動体
US8389167B2 (en) * 2006-08-28 2013-03-05 GM Global Technology Operations LLC Detection of cell-to-cell variability in water holdup using pattern recognition techniques
WO2008057081A1 (en) * 2006-11-07 2008-05-15 Bdf Ip Holdings Ltd. Fuel cell systems and methods of operating the same
GB2453127A (en) * 2007-09-26 2009-04-01 Intelligent Energy Ltd Fuel Cell System
US7942035B2 (en) * 2008-04-09 2011-05-17 Ford Motor Company Anode leak test implementation
US20140120440A1 (en) * 2012-10-25 2014-05-01 GM Global Technology Operations LLC Coolant flow pulsing in a fuel cell system
JP6015548B2 (ja) * 2013-05-14 2016-10-26 トヨタ自動車株式会社 燃料電池の製造方法、評価方法、評価装置
GB2518681B (en) * 2013-09-30 2021-08-25 Intelligent Energy Ltd Anode bleed control in a fuel cell stack
JP2015125911A (ja) * 2013-12-26 2015-07-06 日産自動車株式会社 燃料電池システム
US9685667B2 (en) * 2014-08-06 2017-06-20 Ford Global Technologies, Llc Methods for testing anode integrity during fuel cell vehicle operation
US10644336B2 (en) * 2014-12-12 2020-05-05 Ford Global Technologies, Llc Methods for determining anode integrity during fuel cell vehicle operation
AT520682B1 (de) 2017-12-07 2021-07-15 Avl List Gmbh Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110008697A1 (en) * 2005-12-21 2011-01-13 American Power Conversion Corporation Fuel cell sensors and methods
WO2008028550A1 (de) * 2006-09-04 2008-03-13 Daimler Ag Vorrichtung und verfahren zum befeuchten eines zu einer brennstoffzelle strömenden gasstroms
US20120135327A1 (en) * 2010-11-25 2012-05-31 Kangnam University Industry-Academia Cooperation Foundation Monitoring the operational state of a fuel cell stack
DE102012218572A1 (de) * 2012-10-11 2014-04-17 Robert Bosch Gmbh Verfahren zum gesicherten Brennstoffzellenbetrieb
DE102015210836A1 (de) * 2015-06-12 2016-12-15 Volkswagen Aktiengesellschaft Diagnoseverfahren zur Ermittlung eines Zustands eines Brennstoffzellenstapels

Also Published As

Publication number Publication date
CN111418103A (zh) 2020-07-14
DE112018006216A5 (de) 2020-09-03
AT520682A1 (de) 2019-06-15
WO2019109120A1 (de) 2019-06-13
US11824239B2 (en) 2023-11-21
US20210175528A1 (en) 2021-06-10
JP7417526B2 (ja) 2024-01-18
JP2021508405A (ja) 2021-03-04
CN111418103B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
AT520682B1 (de) Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems
DE102017111871B4 (de) Stromversorgungssystem, mobiles Objekt und Stromversorgungsverfahren mit verringertem Stromverbrauch beim Spülen
EP3209412B1 (de) Überprüfung einer membrandichtheit wenigstens einer membran eines elektrolyseurs
EP1256037B1 (de) Verfahren zum betrieb einer technischen anlage
EP1707954B1 (de) Verfahren und Vorrichtung zur Funktionskontrolle eines Sensors
DE102018222388A1 (de) Verfahren zum Betreiben einer Elektrolyseanlage und Elektrolyseanlage
WO2022028859A1 (de) Verfahren zum betreiben eines brennstoffzellensystems, auswerteeinheit für ein brennstoffzellensystem
AT523373B1 (de) Sensorvorrichtung für ein Brennstoffzellensystem
AT522522B1 (de) Brennstoffzellensystem und Verfahren zum Entfernen von Wasser aus dem Brennstoffzellensystem
EP3596770B1 (de) Verfahren zur erkennung einer leckage in einem energiewandler-system
DE102019204992A1 (de) Verfahren und Vorrichtung zum Überprüfen und Sicherstellen einer Funktionsfähigkeit eines Abgasnachbehandlungssystems einer Brennkraftmaschine
DE112007000329T5 (de) Brennstoffzellensystem und Steuerverfahren hierfür
AT523209B1 (de) Brennstoffzellensystem, Computerprogrammprodukt, Speichermittel und Verfahren zum Betreiben eines Brennstoffzellensystems
EP1504255A1 (de) Vorrichtung und verfahren zur messung einer gas-konzentration mittels einer festelektroytsauerstoffionenpumpe
DE102021200451A1 (de) Verfahren zur Kalibrierung und/oder Adaption eines in einem Kathodenzuluftpfad eines Brennstoffzellensystems angeordneten Luftmassenstromsensors, Steuergerät
DE102018210197A1 (de) Verfahren zum Erkennen des Abschlusses eines Durchlaufs einer Wasserstoff/Luft-Front durch einen Brennstoffzellenstapel und Brennstoffzellensystem
AT525058B1 (de) Erkennungsverfahren für ein Erkennen von flüssigem Wasser in einem Strömungsabschnitt in einem Brennstoffzellensystem
AT522847B1 (de) Brennstoffzellensystem und Verfahren zum Einstellen einer Betriebsweise eines Brennstoffzellensystems
WO2013010905A1 (de) Vorrichtung und verfahren zur bestimmung von modellparametern einer regelungstechnischen modellstruktur eines prozesses, regeleinrichtung und computerprogrammprodukt
DE102007040837A1 (de) Verfahren zum zerstörungsfreien Erkennen eines Gaslecks in einer Brennstoffzelle sowie Brennstoffzellenanlage zur Durchführung des Verfahrens
DE102021203349A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems, Steuergerät
WO2023110609A1 (de) Brennstoffzellensystem und verfahren zum betrieb eines brennstoffzellensystems
DE102022209498A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems, Steuergerät
DE102022211773A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems, Steuergerät
DE102022211770A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems, Steuergerät