EP1336213A1 - Method for regenerating co contamination in ht-pem fuel cells and a corresponding fuel-cell system - Google Patents

Method for regenerating co contamination in ht-pem fuel cells and a corresponding fuel-cell system

Info

Publication number
EP1336213A1
EP1336213A1 EP01993032A EP01993032A EP1336213A1 EP 1336213 A1 EP1336213 A1 EP 1336213A1 EP 01993032 A EP01993032 A EP 01993032A EP 01993032 A EP01993032 A EP 01993032A EP 1336213 A1 EP1336213 A1 EP 1336213A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
pem fuel
pem
pulse
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01993032A
Other languages
German (de)
French (fr)
Inventor
Joachim Grosse
Manfred Poppinger
Rolf BRÜCK
Meike Reizig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH, Siemens AG filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP1336213A1 publication Critical patent/EP1336213A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04671Failure or abnormal function of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • CD ⁇ -3 CD o 3 ⁇ P ⁇ -i c H- o tr P o ⁇ 3 ⁇ Cfl tr P ⁇ SD ⁇ - SD H
  • the object of the invention is therefore to propose a method specifically for the HT-PEM fuel cell, with which possible CO deposits on the electrodes are prevented, and to create an associated fuel cell system.
  • the HT-PEM fuel cell is pulsed for a predetermined period during the heating from the cold to the operationally warm state.
  • the pulse operation achieves with sufficient certainty a regeneration of any CO-coated electrodes of the HT-PEM fuel cells.
  • the measure according to the invention can advantageously take place as a function of the poisoning state, provided that a suitable sensor for detecting the poisoning state is present.
  • the cell voltage generated by the fuel cell or its change is appropriate here.
  • the measures according to the invention can also be carried out as a precaution after each cold start, so that the formation of CO deposits on electrodes is prevented and thus possible poisoning of the membrane electrode units (MEAs) is excluded.
  • the Regenerati ⁇ on he d C O-poisoning is performed once per operating cycle of HT-PEM fuel cell.
  • the Regene ⁇ takes place ration by pulse operation at temperatures between 60 ° C and 300 ° C, preferably between 120 and 200 ° C.
  • FIG. 1 the co-dependence is operated at a voltage of the PEM fuel cell stack ⁇ at low temperatures
  • Figure 2 is a corresponding illustration for a HT-PEM fuel cell stack
  • Figure 3 and Figure 4 shows the influence of pulsing on the operation of a HT-PEM fuel cell stack
  • FIG. 5 shows a fuel cell system with an HT-PEM fuel cell stack and an associated control or. Control device.
  • PEM fuel cells are sufficiently known from the prior art, so that their structure is no longer described in detail in the present context. Such PEM fuel cells are based essentially on proton exchange in a solid electrolyte (proton exchange membrane), the term “PEM * also being derived from the structure of the fuel cell with a polymer electrolyte membrane.
  • the heart of such PEM fuel cells is the so-called MEA or membrane electrode assembly (membrane electrode assembly), in which a suitable membrane made of organic material as the electrolyte or its carrier electrodes are applied as the cathode and anode of the fuel cell on both sides.
  • FIG. 2 shows two characteristic curves 21 and 22 with 0 ppm CO and 1000 ppm CO, especially for the high-temperature PEM fuel cell, that their voltage-current density dependencies are practically identical. This corresponds to the well-known fact that the HT-PEM is largely insensitive to contamination with CO.
  • the HT-PEM fuel cell When the HT-PEM fuel cell is in operation, potential poisoning of the electrodes can now be excluded by starting the fuel cell from the cold stand during the heating of the fuel cell or after reaching the operating temperature condition of Brennstoffzel ⁇ le for a predetermined period, the HT-PEM fuel cell is operated in pulse mode. This can on the one hand gene by temporary short-circuiting or reversing the polarity and secondly by switching off the hydrogen supply at load operation SUC ⁇ .
  • the pulsed operation regenerates the electrodes covered with CO and thus puts the HT-PEM fuel cell in the ideal state.
  • the line voltage gradient can be used as such a criterion, for example, since a drop in the cell voltage indicates poisoning.
  • the pulse operation can therefore advantageously be carried out as a function of the drop in the cell voltage.
  • FIGS. 3 and 4 show the individual voltages U of high-temperature PEM fuel cell units as characteristic curves 31 and 41 with different CO poisonings as a function of time t, pulse operation taking place over different time intervals with a given current density. It is discharged via a defined resistor with a specified discharge time.
  • the characteristic curve 31 stands for a CO content of 100 ppm with a pulse of 10 min at 300 mA / m 2 and 20 s discharge time.
  • the characteristic curve 41 stands for a CO content of 1000 ppm with a pulse of 5 min at 300 A / cm 2 and 20 s discharge time.
  • pulse operation takes place when the HT-PEM fuel cell is heated, that is to say before the respective operating temperature has been reached, since electrode deposits with carbon monoxide (CO) can occur at the low temperatures.
  • the pulse mode can also be zen, d . h . Warm operating condition is reached. It can thus be ensured that the HT-PEM fuel cell is regenerated depending on the poisoning state.
  • the cell voltage or its change can be recorded as a trigger for an automatic regeneration of the HT-PEM fuel cell. This means that the pulse operation takes place depending on the dynamic voltage behavior.
  • the clamping voltage of the ⁇ HT-PEM fuel cell also CO impurities in the fuel gas is in the range of 100 and 1000 ppm CO occupancy can be kept constant. This confirms a major advantage of the HT-PEM fuel cell.
  • 110 shows a fuel cell module, which consists of a stack of individual HT-PEM fuel cells 111, 111 ⁇ , ... and is referred to in the technical field as a fuel cell stack or "stack *" for short.
  • the process gas ie hydrogen or hydrogen-rich gas as the fuel gas on the one hand and oxygen or air as the oxidant on the other hand, are supplied centrally.
  • the stack 110 contains lines for the process gases, which are not discussed further in the present context.
  • FIG. 5 there is a control device 120 with which the process in the fuel cell stack 110 is controlled in a known manner.
  • the control device has discrete inputs 121, 121,... For setting process parameters and, for example, an output 131 for a common, possibly bidirectional data bus. several outputs 131, 131 ⁇ , ... for individual control lines.
  • the control device 120 is assigned a pulse device 125, which enables pulse operation of the fuel cell system.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The HT-PEM fuel cells that are constantly operated at high temperatures are less sensitive to CO contamination than PEM fuel cells that are operated at normal temperatures. The aim of the invention is to regenerate possible CO contamination caused by the starting of the fuel cell. To achieve this, the HT-PEM fuel cell is operated in pulse mode for a predetermined period during the warm-up phase or at operating temperature. This permits the regeneration of the electrodes of the fuel cells, which have CO deposits. To carry out a regeneration method of a control and/or regulation device (120) in a fuel-cell system comprising at least one fuel cell module that consists of a stack of HT-PEM fuel cells, with a control and/or regulation device for process management allocated thereto, said system is provided with a pulse device (125), which activates a pulse-mode operation for the fuel-cell stack (110), in accordance with predeterminable parameters.

Description

LO υ f ιv> ' H1 μ-1 π o Cπ o Cn o CπLO υ f ιv>'H 1 μ- 1 π o Cπ o Cn o Cπ
3 M SD P 0 SD 3 SD P SD CΛ CΛ ϊö cn φ φ iQ <! tr rt ^ IS > cn tr H ö Cd <! Cd3 M SD P 0 SD 3 SD P SD CΛ CΛ ϊö cn φ φ iQ <! tr rt ^ IS> cn tr H ö Cd <! CD
SD μ- P EU fu P I-1 H- P •ö Φ Φ H- H H- P o φ P P Φ (-> S D Φ P μ- H φ φ o P Hi n Cfl Cfl P cn φ Hi Φ H Hi P N P P H rt P' H Φ S CΛ rt ιQ N P φ φ ü CΛSD μ- P EU fu P I- 1 H- P • ö Φ Φ H- H H- P o φ PP Φ (- > SD Φ P μ- H φ φ o P Hi n Cfl Cfl P cn φ Hi Φ H Hi PNPPH rt P 'H Φ S CΛ rt ιQ NP φ φ ü CΛ
Φ CD t ι-i N p " N cn O Φ φ ^ rt ι-i " N Φ μ- <P P Hi ΩΦ CD t ι-i N p "N cn O Φ φ ^ rt ι-i" N Φ μ- <P P Hi Ω
P 2J CD P φ ≥! H H- rt l-i P 3 Φ Φ μ- < li K Φ M P SD PJ P 2J CD P φ ≥! H H- rt li P 3 Φ Φ μ- <li K Φ MP SD P J
0 CD p H- cn ι-s ι-3 H- c Φ O 3 H- iQ P μ- Φ o O O SD Hl t^ PJ <! H fl " li0 CD p H- cn ι-s ι-3 H- c Φ O 3 H- iQ P μ- Φ o OO SD Hl t ^ P J <! H fl "li
P f" H CD P Ω •P 1 ιP P Hi Φ P rt SD tr tr P Φ P 1 o tr rt O Hi rt ü ΦP f "H CD P Ω • P 1 ιP P Hi Φ P rt SD tr tr P Φ P 1 o tr rt O Hi rt ü Φ
H- CΛ rf ü H- P' ü T) Φ Hi H cn Φ P PJ φ Φ 1 ) S CD P μ- O φ μ- n H Φ vQ H- M P Φ tr P ω ύ J P ι-i tr Cd M 3 μ- CΛ P Hi P trH- CΛ rf ü H- P 'ü T) Φ Hi H cn Φ PP J φ Φ 1 ) S CD P μ- O φ μ- n H Φ vQ H- MP Φ tr P ω ύ JP ι-i tr Cd M 3 μ- CΛ P Hi P tr
PJ CD v P H- Hi S α ij" P SD φ CΛ Hl PJ φ ü S rt μ- o Hi P rt H- P CD P Φ Hi 1 td CD Φ P cn ≤ öd rt , SD i r Φ 1 P- Ω o P N N PP J CD v P H- Hi S α ij "P SD φ CΛ Hl P J φ ü S rt μ- o Hi P rt H- P CD P Φ Hi 1 td CD Φ P cn ≤ öd rt, SD ir Φ 1 P- Ω or PNNP
0 P Hi ιQ EP Φ öd φ l-i H- Φ CΛ O SD Φ öd Φ φ M SD tr P öd Φ p- 1 P φ P ι0 P Hi ιQ EP Φ öd φ l-i H- Φ CΛ O SD Φ öd Φ φ M SD tr P öd Φ p- 1 P φ P ι
P H- rt o Cfl Φ P ü rt H P Cfl P H H H tr P Φ P H H < ιp ÜP H- rt o Cfl Φ P ü rt H P Cfl P H H H tr P Φ P H H <ιp Ü
O LP CD i-i ω P φ i-i H- fi N öd cn N φ . α P N cn Φ P φ r+ P l-i 3 rt • s; P H- r3 Φ Φ φ Φ Φ H- P Φ Φ rt Φ rt P P μ- li tr Φ rΛ s; P H- P CD P Φ P P P K H P P μ- P Φ Φ μ- O P SD φ ιp Φ P φO LP CD i-i ω P φ i-i H- fi N öd cn N φ. α P N cn Φ P φ r + P l-i 3 rt • s; P H- r3 Φ Φ φ Φ Φ H- P Φ Φ rt Φ rt P P μ- li tr Φ rΛ s; P H- P CD P Φ P P P K H P P μ- P Φ Φ μ- O P SD φ ιp Φ P φ
CD <P μ1 Φ Hi H ü cn tr < ^> N Φ Cn •« iQ ω • l-i P Ω Hi ω Cfl μ- N ^PCD <P μ 1 Φ Hi H ü cn tr <^> N Φ Cn • «iQ ω • li P Ω Hi ω Cfl μ- N ^ P
P O H Φ P P rt cn Φ tr rt H- rt SD φ PJ Hi rt M Hi μ- P φPOH Φ PP rt cn Φ tr rt H- rt SD φ P J Hi rt M Hi μ- P φ
P H- O P P 0) O rt ι-i H- P α O s CΛ Cd : d P N O P ii rt Φ P P μ- Cfl P tr P Hi φ Cfl Z, SD Hl φ Φ φ Φ tr r? φ Φ Hl P Hi P PJ P φ tQ rt »Ü -> Φ Hl 3 I-1 PJ H- P Hi rt Cfl μ- μ- H g rt Hi ιQ μ- P rt HP H- OPP 0) O rt ι-i H- P α O s CΛ Cd: d PNOP ii rt Φ PP μ- Cfl P tr P Hi φ Cfl Z, SD Hl φ Φ φ Φ tr r? φ Φ Hl P Hi PP J P φ tQ rt »Ü -> Φ Hl 3 I- 1 P J H- P Hi rt Cfl μ- μ- H g rt Hi ιQ μ- P rt H
• »Ö cn N >Ü Φ Φ H s P i-i P μ- 1 « N Φ P ιQ N μ- tr 3 P H- O P Φ Φ M- H P φ Φ SD Φ cn Ω td Φ Φ ^P Φ Λ P Φ• »Ö cn N> Ü Φ Φ H s P ii P μ- 1« N Φ P ιQ N μ- tr 3 P H- OP Φ Φ M- HP φ Φ SD Φ cn Ω td Φ Φ ^ P Φ Λ P Φ
H CD CD Φ P 3 (- ι-i Ω rt iQ (_,. P H- o P' H P P Φ P P μ- ιP iiH CD CD Φ P 3 (- ι-i Ω rt iQ ( _ ,. P H- o P 'HPP Φ PP μ- ιP ii
P H- SD l-i J p- p: PJ Φ Ω o P φ φ μ- μj tr P Ω φ P tr P Φ φ Φ rt tr SD Ω PJ CΛ P Ω P P Φ . φ Φ ιQ tr PJ PJ PP H- SD li J p- p: P J Φ Ω o P φ φ μ- μ j tr P Ω φ P tr P Φ φ Φ rt tr SD Ω P J CΛ P Ω PP Φ. φ Φ ιQ tr P J P J P
P K ιQ π Φ l-i H- P P N P Φ Φ σ Φ PJ P Φ P P Φ O: <PK ιQ π Φ li H- PPNP Φ Φ σ Φ P J P Φ PP Φ O: <
CD ι-3 CD o 3 φ P ι-i c H- o tr P o Φ 3 Φ Cfl tr P Φ SD μ- SD HCD ι-3 CD o 3 φ P ι-i c H- o tr P o Φ 3 Φ Cfl tr P Φ SD μ- SD H
H 1 CΛ 1 φ tr Ω H Φ α cn 13 P ι-{ rt Φ iQ s: P P μ-H 1 CΛ 1 φ tr Ω H Φ α cn 13 P ι- {rt Φ iQ s: P P μ-
TJ CD 0 ?ö i≡s Φ PJ P d Φ O Hi tr O μ- l-1 φ Ω M Hi o pj: M P CD Φ P N C Φ O ^ H li P μ- φ Φ Hi • li Φ - Hl φ PTJ CD 0? Ö i≡s Φ P J P d Φ O Hi tr O μ- l- 1 φ Ω M Hi o pj: MP CD Φ PNC Φ O ^ H li P μ- φ Φ Hi • li Φ - Hl φ P
S w 1 Hi cn o φ H- Ö P o. Φ P i-i μ- Hi LQ P- Q 1 Φ ri- 1 rt- SD O cn 1 H- Φ φ s: P PJ Φ ü P1 rt N Φ SD φ Φ P T) μ- Cd oS w 1 Hi cn o φ H- Ö P o. Φ P ii μ- Hi LQ P- Q 1 Φ ri- 1 rt- SD O cn 1 H- Φ φ s: PP J Φ ü P 1 rt N Φ SD φ Φ PT ) μ- Cd o
CD Öd M ι-i <! n tn »TJ ι-i Φ P O: i-i O: Cfl Φ iQ P P P P M P li o li H ≤ rt f3 H- φ - tr -3 M P IQ PJ φ μ- P' rt φ Ω Φ Hi S Φ 1CD Öd M ι-i <! n tn »TJ ι-i Φ PO: ii O: Cfl Φ iQ PPPPMP li o li H ≤ rt f3 H- φ - tr -3 MP IQ P J φ μ- P 'rt φ Ω Φ Hi S Φ 1
CD CD CD φ P 1-1 P Φ 1 s SD P SD φ Ω rt Φ (-" P P* CΛ ü 1 < P <CD CD CD φ P 1-1 P Φ 1 s SD P SD φ Ω rt Φ (- "PP * CΛ ü 1 <P <
P P H P ι-i <Q H- t) 1 P cn i-i O P" Φ 3 Φ : o μ- Φ Cd φ P φP P H P ι-i <Q H- t) 1 P cn i-i O P "Φ 3 Φ: o μ- Φ Cd φ P φ
P P CD SD H- rt tS ÖJ C • Φ O ? P •6 P tr I »XJ φ μ- ii li CΛ HP P CD SD H- rt tS ÖJ C • Φ O? P • 6 P tr I »XJ φ μ- ii li CΛ H
CΛ CD Cfl P P Hi n S H φ SD P 1 Φ φ Φ li Ω H P φ Hi rt ιCΛ CD Cfl P P Hi n S H φ SD P 1 Φ φ Φ li Ω H P φ Hi rt ι
P r P SD Hl rt s; D I Φ l-i cn O <! μ- H - l-i φ Ü O PJ P φ P P> O μ-P r P SD Hl rt s; DI Φ li cn O <! μ- H - li φ Ü OP J P φ P P> O μ-
H- O • Φ O s: P Φ • ω P φ o !^ Φ rt Φ SD ι-i rt Φ P P PJ Hl Hi n Hi l-i P* Φ P H ι-i P P d 1 O ι-i 3 rt PJ O ιp td CΛ ii Hi rtH- O • Φ O s: P Φ • ω P φ o! ^ Φ rt Φ SD ι-i rt Φ PPP J Hl Hi n Hi li P * Φ PH ι-i PP d 1 O ι-i 3 rt P J O ιp td CΛ ii Hi rt
PJ Hi N ιP P ι P σ> Φ cn H < PJ P iQ •ö P O: Φ P I TJ CΛ ii rt Φ N P r+ N φ φ P Φ o p rt P" φ φ h-1 P Φ φ l-i P' ü o <i φ O P φ PP J Hi N ιP P ι P σ> Φ cn H <P J P iQ • ö PO: Φ PI TJ CΛ ii rt Φ NP r + N φ φ P Φ op rt P " φ φ h- 1 P Φ φ li P 'ü o <i φ OP φ P
CD P CΛ P- P P o Ö O O: P l-i φ l-i iQ l-i Φ rt I M r-' Φ P Hi H" ιpCD P CΛ P- P P o Ö O O: P l-i φ l-i iQ l-i Φ rt I M r- 'Φ P Hi H "ιp
<J ^ 0 ^ Φ n cn Hi tr P P P φ Φ SD P Φ Cd ^ H P Hi INI Φ<J ^ 0 ^ Φ n cn Hi tr P P P φ Φ SD P Φ Cd ^ H P Hi INI Φ
O H rt ' Φ H rt Hl (D iQ P s: H- P rt P Φ Ω p Hl fl N P Φ P ü CD Φ SD P 9 0 N l-i SD ι-i J P P < rt 4 Φ P> rr Φ H POH rt 'Φ H rt Hl (D iQ P s: H- P rt P Φ Ω p Hl fl NP Φ P ü CD Φ SD P 9 0 N li SD ι-i JPP <rt 4 Φ P> rr Φ HP
P P r-> M p: H- Hi φ φ cn Φ cn H- <! K 0 ι-3 ü SD li P' O PJ trPP r- > M p: H- Hi φ φ cn Φ cn H- <! K 0 ι-3 ü SD li P 'O PJ tr
CD rt P h-1 cn Φ Hi P μ- cn i j φ φ P Φ H- P 1 li Hi H1 V P Φ l-i tr ω Φ P φ cn ιQ N H- P φ P H P 3 Φ ιQ I M Φ Hi Φ φ μj μ-CD rt P h- 1 cn Φ Hi P μ- cn ij φ φ P Φ H- P 1 li Hi H 1 VP Φ li tr ω Φ P φ cn ιQ N H- P φ PHP 3 Φ ιQ IM Φ Hi Φ φ μ j μ-
O: CD ι-i rt P t φ rt Φ Φ « P H- ι-i P P Ω 1_i tr Φ P N P ι SD l-h Φ rt P ~- P o U3 cn iQ P tr SD φ cn Φ φ Φ U3 KO: CD ι-i rt P t φ rt Φ Φ «P H- ι-i P P Ω 1_i tr Φ P N P ι SD l-h Φ rt P ~ - P o U3 cn iQ P tr SD φ cn Φ φ Φ U3 K
Hi SD P ω et H -J " PJ φ P rt φ ι-i Φ • ι-i rt I S ? N I-" P Φ ι-3Hi SD P ω et H - J "P J φ P rt φ ι-i Φ • ι-i rt IS? N I-" P Φ ι-3
CD P P H- Φ O £ SD Φ H-1 H- P O P Φ Λ (D Φ Φ rt H ö φ 1CD PP H- Φ O £ SD Φ H- 1 H- POP Φ Λ (D Φ Φ rt H ö φ 1
1-3 P iQ P P P D P B φ P ιQ Hi μ- rt σ> rt 3 g ü 3 Φ SD H J r+ ri- PJ p H Φ So n H- P Φ Φ Hi tr P Φ o P • rj1 O P P μ- M1-3 P iQ PPPDPB φ P ιQ Hi μ- rt σ> rt 3 g ü 3 Φ SD HJ r + ri- PJ p H Φ So n H- P Φ Φ Hi tr P Φ o P • rj 1 OPP μ- M
/ (0 co CD P P ' φ s: 3 P Φ Φ μ- p- 0 H φ ii M SD φ Φ g/ (0 co CD P P 'φ s: 3 P Φ Φ μ- p- 0 H φ ii M SD φ Φ g
H Φ P SD SD P μ- 1 rt n Φ ü SD *< μ- P tr 1 1H Φ P SD SD P μ- 1 rt n Φ ü SD * <μ- P tr 1 1
1 CΛ p- CΛ « P SD P rt P 1 Φ1 CΛ p- CΛ «P SD P rt P 1 Φ
1 1 *< 1 φ 1 1 P 1 1 * <1 φ 1 1 P
lichten WO 00/02156 A2 wird ausgeführt, dass speziell sog. HTM- bzw. HT-PEM-Brennstoffzellen CO-Verunreinigungen im Brenngas von bis zu 10.000 pp tolerieren. Für den stationä¬ ren Betrieb können also CO-Belegungen in Kauf genommen wer- den. Trotzdem ist man bemüht, CO-Belegungen der Elektroden, insbesondere beim oder nach dem Anfahren der Brennstoffzelle, zu beseitigen.lichten W O 00/02156 A2 states that special so-called HTM- b between HT-PEM fuel cells tolerate CO impurities in the fuel gas of up to 10,000 pp. For the stationä ¬ ren operation so CO assignments can advertising put into the purchase. Nevertheless, efforts are made to remove CO deposits on the electrodes, particularly when or after starting the fuel cell.
Aufgabe der Erfindung ist daher, speziell für die HT-PEM- Brennstoffzelle ein Verfahren vorzuschlagen, mit dem möglichen CO-Belegungen der Elektroden vorgebeugt wird, und eine zugehörige Brennstoffzellenanlage zu schaffen.The object of the invention is therefore to propose a method specifically for the HT-PEM fuel cell, with which possible CO deposits on the electrodes are prevented, and to create an associated fuel cell system.
Die Aufgabe ist bezüglich des Verfahrens erfindungsgemäß durch die Maßnahmen des Patentanspruches 1 und bezüglich der Brennstoffzellenanlage durch die Merkmale des Patentanspruches 9 gelöst. Weiterbildungen des Verfahrens und der zugehörigen Anlage sind in den abhängigen Ansprüchen angegeben.The object is achieved with respect to the method according to the invention by the measures of claim 1 and with respect to the fuel cell system by the features of claim 9. Further developments of the method and the associated system are specified in the dependent claims.
Bei der Erfindung erfolgt während des Aufheizens vom kalten bis zum betriebswarmen Zustand jeweils für einen vorgegebenen Zeitraum ein Pulsbetrieb der HT-PEM-Brennstoffzelle. Durch den Pulsbetrieb wird mit hinreichender Sicherheit eine Regenerierung von etwaig mit CO belegten Elektroden der HT-PEM- Brennstoffzellen erreicht.In the invention, the HT-PEM fuel cell is pulsed for a predetermined period during the heating from the cold to the operationally warm state. The pulse operation achieves with sufficient certainty a regeneration of any CO-coated electrodes of the HT-PEM fuel cells.
Die erfindungsgemäße Maßnahme kann vorteilhafterweise in Abhängigkeit vom Vergiftungszustand erfolgen, sofern ein geeigneter Sensor zur Erkennung des Vergiftungszustandes vorhanden ist. Hier bietet sich die von der Brennstof zelle erzeugte Zellspannung bzw. deren Änderung an. Die erfindungsgemäßen Maßnahmen können auch vorsorglich nach jedem Kaltstart erfolgen, so dass die Bildung von CO-Belegungen an Elektroden vorgebeugt und damit möglichen Vergiftungen der Membran- Elektroden-Einheiten (MEA' s) ausgeschlossen werden. Im Rahmen der Erfindung ist vorteilhaft, wenn die Regenerati¬ on der CO-Vergiftungen einmal pro Betriebszyklus der HT-PEM- Brennstoffzelle durchgeführt wird. Dabei erfolgt die Regene¬ ration durch Pulsbetrieb bei Temperaturen zwischen 60°C und 300°C, vorzugsweise zwischen 120 und 200°C.The measure according to the invention can advantageously take place as a function of the poisoning state, provided that a suitable sensor for detecting the poisoning state is present. The cell voltage generated by the fuel cell or its change is appropriate here. The measures according to the invention can also be carried out as a precaution after each cold start, so that the formation of CO deposits on electrodes is prevented and thus possible poisoning of the membrane electrode units (MEAs) is excluded. Within the scope of the invention is advantageous when the Regenerati ¬ on he d C O-poisoning is performed once per operating cycle of HT-PEM fuel cell. The Regene ¬ takes place ration by pulse operation at temperatures between 60 ° C and 300 ° C, preferably between 120 and 200 ° C.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbei- spielen anhand der Zeichnung in Verbindung mit den Patentan- Sprüchen. Es zeigen jeweils als graphische DarstellungenFurther details and advantages of the invention result from the following description of figures of exemplary embodiments with reference to the drawing in conjunction with the patent claims. They each show as graphical representations
Figur 1 die CO-Abhängigkeit der Spannung bei einer PEM- Brennstoffzellenstapel, der^ im Niedertemperaturbereich betrieben wird, Figur 2 eine entsprechende Darstellung für ein HT-PEM- Brennstoff,zellenstapel,1, the co-dependence is operated at a voltage of the PEM fuel cell stack ^ at low temperatures, Figure 2 is a corresponding illustration for a HT-PEM fuel cell stack,
Figur 3 und Figur 4 den Einfluss des Pulsens auf den Betrieb einer HT-PEM-Brennstoffzellenstapel undFigure 3 and Figure 4 shows the influence of pulsing on the operation of a HT-PEM fuel cell stack
Figur 5 eine Brennstoffzellenanlage mit einem HT-PEM- Brennstoffzellenstapel und einer zugehörigen Steuerbzw. Regelvorrichtung.FIG. 5 shows a fuel cell system with an HT-PEM fuel cell stack and an associated control or. Control device.
PEM-Brennstoffzellen sind vom Stand der Technik hinreichend bekannt, so dass im vorliegenden Zusammenhang deren Aufbau nicht mehr im Einzelnen beschrieben wird. Derartige PEM- Brennstoffzellen beruhen im Wesentlichen auf dem Protonenaustausch in einem festen Elektrolyten (Proton Exchange Membrane) , wobei der Begriff „PEM* auch aus dem Aufbau der Brennstoffzelle mit einer Polymer-Elektrolyt-Membran abgeleitet wird. Herzstück solcher PEM-Brennstoffzellen ist die sogenannte MEA oder Membran-Elektroden-Einheit (Membrane Electro- de Assembly) , bei der beidseitig einer geeigneten Membran aus organischem Material als Elektrolyt bzw. dessen Träger Elektroden als Kathode und Anode der Brennstoffzelle aufgebracht sind. co CO M r 1 PEM fuel cells are sufficiently known from the prior art, so that their structure is no longer described in detail in the present context. Such PEM fuel cells are based essentially on proton exchange in a solid electrolyte (proton exchange membrane), the term “PEM * also being derived from the structure of the fuel cell with a polymer electrolyte membrane. The heart of such PEM fuel cells is the so-called MEA or membrane electrode assembly (membrane electrode assembly), in which a suitable membrane made of organic material as the electrolyte or its carrier electrodes are applied as the cathode and anode of the fuel cell on both sides. co CO M r 1
Cπ O Cn o cπ O CπCπ O Cn o cπ O Cπ
φ td H £! N M et Hi SD I-1 P H Cfl P ü Cd ≤, N 3 rt Φ tr Cd μ- tr Cfl Φ O P öd ii li P Φ φ P Φ SD Ω o Φ Φ TJ P φ φ s: SD O φ μ- Φ Φ P p: Φ H φ H ιp Ω Φ * P ü Φ 3 tr tr • ü μ- μ- P P μ- H Φ So li ^q P μ- μ- rt cn Φ li φ r? φ 3 P P ** Ω ii H et o Φ P φ 3 P Ω P <1 rt rt 3 P rt N rt li P P tr > P Φ tr P" et Φ »Ö Φ o μ- N Φ ^ SD Φ ξ φ φ rt o 3 P Φφ td H £! NM et Hi SD I- 1 PH Cfl P ü Cd ≤, N 3 rt Φ tr Cd μ- tr Cfl Φ OP öd ii li P Φ φ P Φ SD Ω o Φ Φ TJ P φ φ s: SD O φ μ- Φ Φ P p: Φ H φ H ιp Ω Φ * P ü Φ 3 tr tr • ü μ- μ- PP μ- H Φ So li ^ q P μ- μ- rt cn Φ li φ r? φ 3 PP * * Ω ii H et o Φ P φ 3 P Ω P <1 rt rt 3 P rt N rt li PP tr> P Φ tr P "et Φ» Ö Φ o μ- N Φ ^ SD Φ ξ φ φ rt o 3 P Φ
Φ CΛ P Φ P H H PJ rt o ? ^q Φ s; P Cd P Λ tr li P φ rt Cd ü P • Hi Φ μ- CΛΦ CΛ P Φ PHHP J rt o? ^ q Φ s; P Cd P Λ tr li P φ rt Cd ü P • Hi Φ μ- CΛ
Hi PHi P
P et Cfl φ o SD D O: P P J Φ • 3 ^q P CΛ *« φ P Hi μ- rt rtP et Cfl φ o SD D O: P P J Φ • 3 ^ q P CΛ * «φ P Hi μ- rt rt
0 ^ Φ P* μ- P et Cfl ? Ό P P H y rt < Φ μ- P Φ rt M cn P rt O g0 ^ Φ P * μ- P et Cfl? Ό PPH y rt <Φ μ- P Φ rt M cn P rt O g
CΛ H Hl μ- μ- • P Φ P φ SD TS P ιq P ii Φ P H) P cn H O P P φ Φ Hl M μ- Hi ι rt φ P ü P 3 φ φ SD μ- μ- ii rt rt rt μ- ü Dd P 3CΛ H Hl μ- μ- • P Φ P φ SD TS P ιq P ii Φ PH) P cn HOPP φ Φ Hl M μ- Hi ι rt φ P ü P 3 φ φ SD μ- μ- ii rt rt rt μ - ü Dd P 3
P P H Hi >P P H Hi>
Ω N P μ- μ- P P P P ιq P tr φ P l 3 Hl Φ φ H1 Φ Φ 3 li t? rt cn isi p- Φ H et ^q 3 3 < SD ^ Φ f Φ tr φ p: rt li μ- H1 tr Φ r Φ tr φ cnΩ NP μ- μ- PPPP ιq P tr φ P l 3 Hl Φ φ H 1 Φ Φ 3 li t? rt cn isi p- Φ H et ^ q 3 3 <SD ^ Φ f Φ tr φ p: rt li μ- H 1 tr Φ r Φ tr φ cn
Φ rt Tl μ- o φ O μ- 3 ^q tr μ- μ- li Ω < P - H O: Φ μj Φ rt Tl μ- o φ O μ- 3 ^ q tr μ- μ- li Ω <P - HO: Φ μ j
P Φ P • tr P rt P CΛ CΛ P 3 μ- φ Φ φ P s; SD - rt Φ o P p: P" μ- H" μ- H Φ Φ μj O H rt P cn ≥i μ- P P Φ P Φ μ- P <P P Öd Φ P φ μ-P Φ P • tr P rt P CΛ CΛ P 3 μ- φ Φ φ P s; SD - rt Φ o P p: P "μ- H" μ- H Φ Φ μ j OH rt P cn ≥i μ- PP Φ P Φ μ- P <PP Öd Φ P φ μ-
Φ CΛ P μ* rt Cfl « p: P Φ Cd o o P P ü Hl CΛ « P P »P μ- ü φ ü fl Ω cn H tr O tr μ- tr H p H K P P ü φ ι CΛ P O φ « Cfl μ- H Φ CΛ S! P tr rt P μ- Φ PJ Φ P 3 Φ O μ- P 3 H Φ tr Ti P4 ii o ^ P P P φ μ- P P φ rt H C Φ O P tr φ φ fu P P N H P4 K P 5ö CΛ ödΦ CΛ P μ * rt Cfl «p: P Φ Cd oo PP ü Hl CΛ« PP »P μ- ü φ ü fl Ω cn H tr O tr μ- tr H p HKPP ü φ ι CΛ PO φ« Cfl μ- H Φ CΛ S! P tr rt P μ- Φ P J Φ P 3 Φ O μ- P 3 H Φ tr Ti P 4 ii o ^ PPP φ μ- PP φ rt HC Φ OP tr φ φ fu PPNHP 4 KP 5ö CΛ öd
N Φ Ω P tr ü Φ tr li P P ii H l o P t O Φ TJ 0 Φ P « φ Cfl ü p: P l r Cfl μ- P H1 Φ P o v Φ ιO Φ P M P ii tr P M Φ P4 μ- ^q o Hi φ Φ ι r-1 cn rx> , φ 3 O CΛ μ- X D P P P g Ω ö 3 g p rt μ- PJ o H PN Φ Ω P tr ü Φ tr li PP ii H lo P t O Φ TJ 0 Φ P «φ Cfl ü p: P lr Cfl μ- PH 1 Φ P ov Φ ιO Φ PMP ii tr PM Φ P 4 μ- ^ qo Hi φ Φ ι r- 1 cn rx>, φ 3 O CΛ μ- XDPPP g Ω ö 3 gp rt μ- P J o HP
SD tr O O O P μ- Cfl 3 SD μ- Ω 1 <; P4 φ μ- φ o / 3 Φ H cn P μ- Ω SD μ- tr H P P ιq P o 3 W Cd Φ cn P 3 P td O P <l o Φ 3 rt ^qSD tr OOOP μ- Cfl 3 SD μ- Ω 1 <; P 4 φ μ- φ o / 3 Φ H cn P μ- Ω SD μ- tr HPP ιq P o 3 W Cd Φ cn P 3 P td OP <lo Φ 3 rt ^ q
Ω μ- CΛ 3 tr O O P CΛ < P μ- H H tö tr O H P CΛ o P P Φ O P ' φ cn rt Φ X Φ π φ o rt Cd PJ Φ <P φ SD P P X φ O rt P s: H Hl cn φ P μ- H- ü SD ö o ii pj: φ P μ- Hl φ P μ- P O S! P Cfl H ^Ω μ- CΛ 3 tr OOP CΛ <P μ- HH tö tr OHP CΛ o PP Φ OP 'φ cn rt Φ X Φ π φ o rt Cd PJ Φ <P φ SD PPX φ O rt P s: H Hl cn φ P μ- H- ü SD ö o ii p j : φ P μ- Hl φ P μ- POS! P Cfl H ^
M P 3 N Φ P - — P μ- rt rt Cfl P Hi O tr P H P P μ- Hi P CΛM P 3 N Φ P - - P μ- rt rt Cfl P Hi O tr P H P P μ- Hi P CΛ
^ P P μ- INI P Ω P P P ii O Λ rt ü cn P Hi Φ cn CΛ P tr P φ P Φ P J fv tr r H P H- et P 3 3 M O rt < H Cfl Φ P N P J=>^ P P μ- INI P Ω P P P ii O Λ rt ü cn P Hi Φ cn CΛ P tr P φ P Φ P J fv tr r H P H- et P 3 3 M O rt <H Cfl Φ P N P J =>
P ^ CΛ l er P o P o O φ φ Φ Φ tr O P μ- p: i, O O n φ φ li Cf s. P-P ^ CΛ l er P o P o O φ φ Φ Φ tr O P μ- p: i, O O n φ φ li Cf s. P-
P rt CΛ rt Hi 3 P li tr μ- μ- CΛ tr Φ Hl ιq φ Cfl φ Φ — ' Hi o H ιO ii CΛ •P rt CΛ rt Hi 3 P li tr μ- μ- CΛ tr Φ Hl ιq φ Cfl φ Φ - 'Hi o H ιO ii CΛ •
Φ μ- TS SD tr J3 φ μ- Φ P P CΛ μ- Hi Φ H CΛ t μ- Hi — P P rt öd N μ- P- o P P Φ Φ H P Φ ii μ- φ Cd σ N P P φ rt μ- 1 . P P P O φ Φ s:Φ μ- TS SD tr J3 φ μ- Φ PP CΛ μ- Hi Φ H CΛ t μ- Hi - PP rt öd N μ- P- o PP Φ Φ HP Φ ii μ- φ Cd σ NPP φ rt μ- 1 , P P P O φ Φ s:
P μ- P P μ- P P £ Φ H μ- ^q li Φ HJ Φ P P ü P N H P Hi P μ- P μ- P N • p: 3 Φ P ιq Φ li Φ ι O P Φ Φ μ- P Hi N P üP μ- P P μ- P P £ Φ H μ- ^ q li Φ HJ Φ P P ü P N H P Hi P μ- P μ- P N • p: 3 Φ P ιq Φ li Φ ι O P Φ Φ μ- P Hi N P ü
Φ ι P P P Φ P CΛ H P φ P Φ P 3 (-' Φ φ P P P μ- rt μ-Φ ι P P P Φ P CΛ H P φ P Φ P 3 (- 'Φ φ P P P μ- rt μ-
P Φ P P M TS rt U5 H P μ- S Φ P α cn H φ P Φ P μ- P p: P1 P 2, μ-P Φ PPM TS rt U5 HP μ- S Φ P α cn H φ P Φ P μ- P p: P 1 P 2, μ-
H <P H μ- Ω H φ φ μ- ιp Ω Φ ü rt P P Φ Φ H- rt P •P P 3 o φ tr li N s: P P PJ t li tr M N CΛ ii cn -> «3 φ CΛH <PH μ- Ω H φ φ μ- ιp Ω Φ ü rt PP Φ Φ H- rt P • PP 3 o φ tr li N s: PP PJ t li tr MN CΛ ii cn -> «3 φ CΛ
CD CΛ CdCD CΛ Cd
P P Cfl et Φ μ- Φ <q Cfl Φ Φ J tr Ω φ P P P s: g CΛ MP P Cfl et Φ μ- Φ <q Cfl Φ Φ J tr Ω φ P P P s: g CΛ M
II rt ü φ Φ Φ μ- φ H φ Φ < rt μ- Φ P ii Φ tr 3 P Φ P o φ Φ PII rt ü φ Φ Φ μ- φ H φ Φ <rt μ- Φ P ii Φ tr 3 P Φ P o φ Φ P
H μ- Φ P Ω P O ü CΛ o P Λ" ι φ Hl μ- » li ιq P rt liH μ- Φ P Ω P O ü CΛ o P Λ "ι φ Hl μ-» li ιq P rt li
Hi P o P P S t μj Φ P Φ P ü PJ rt rt Ω μ- P m Φ φ fl P tr CΛHi P o PPS t μ j Φ P Φ P ü P J rt rt Ω μ- P m Φ φ fl P tr CΛ
. — . P 3 P P Φ Öd Φ P P Φ O: ü Φ tr P μ- Φ P to rt Φ P rt μ- li P 0, CΛ SD H φ P s; tr !Λ P P P4 O P φ P φ 3 tr Φ ii P P O, -. P 3 PP Φ Öd Φ PP Φ O: ü Φ tr P μ- Φ P to rt Φ P rt μ- li P 0, CΛ SD H φ P s; tr! Λ PPP 4 OP φ P φ 3 tr Φ ii PPO
— tq μ- <! rt Ω P. SD: μ- o P r Φ P P Ti Φ Hi p: o Hl Φ- tq μ- <! rt Ω P. SD: μ- o P r Φ P P Ti Φ Hi p: o Hl Φ
^ Φ Ω O n PJ Φ φ P PJ ü CΛ p: H Φ Cd μ- M Φ μ- μ- o vq s: Hl ii c φ Hi P •P Φ ü φ H P o tr Φ P H Φ Ω H P li φ μ- ii s; r+ rt μ- Hi P P H φ CΛ N φ φ O Φ P Φ - Φ P Ω CΛ 3 H ü φ T o Φ Φ P N Φ P P P CΛ P » CΛ H Φ P ?d φ t rt P tr μ- P P μ- M tr Φ Φ 3 P ιq Cd P Φ CΛ tr Hl H P Φ rt P » Φ Φ Ω g^ Φ Ω O n P J Φ φ PP J ü CΛ p: H Φ Cd μ- M Φ μ- μ- o vq s: Hl ii c φ Hi P • P Φ ü φ HP o tr Φ PH Φ Ω HP li φ μ- ii s; r + rt μ- Hi PPH φ CΛ N φ φ O Φ P Φ - Φ P Ω CΛ 3 H ü φ T o Φ Φ PN Φ PPP CΛ P »CΛ H Φ P? d φ t rt P tr μ- PP μ- M tr Φ Φ 3 P ιq Cd P Φ CΛ tr Hl HP Φ rt P »Φ Φ Ω g
Φ μ- cn P Φ Φ H r+ P φ μ- H1 Φ ιq ιq μ- ?5 ii ü CΛ ti P tr I μ-Φ μ- cn P Φ Φ H r + P φ μ- H 1 Φ ιq ιq μ-? 5 ii ü CΛ ti P tr I μ-
* 3 P rt P P P ω o 3 li P P» O tr σ> o P 3 3 φ μ- TJ Φ P φ ü Φ P Cfl o τ1 μ- CΛ μ- rt P Φ o P P *P μ- CΛ tr P M P Hi P" μ- li P* 3 P rt PPP ω o 3 li PP »O tr σ> o P 3 3 φ μ- TJ Φ P φ ü Φ P Cfl o τ1 μ- CΛ μ- rt P Φ o PP * P μ- CΛ tr PMP Hi P "μ- li P
M P tr <! IV) Φ Hl ^ P Φ li o P ιq Φ rtM P tr <! IV) Φ Hl ^ P Φ li o P ιq Φ rt
Φ g SD t ii Φ Φ ιq φ φ σ n ii Hi P H" P Φ O Φ 1 0 μ- Cfl I P Φ H tr Φ CΛSD g SD t ii Φ Φ ιq φ φ σ n ii Hi P H "P Φ O Φ 1 0 μ- Cfl I P Φ H tr Φ CΛ
S H o SD φ P μ- fi φ CΛ PSH o SD φ P μ- fi φ CΛ P
H μ- Cfl 1 o P o rt P ιq CΛ tr Ω P Φ P P CflH μ- Cfl 1 o P o rt P ιq CΛ tr Ω P Φ P P Cfl
SD 1 1 1 P P O P cn P φ tr H et P 1 1 1 1 l 1 1 I 1 1 SD 1 1 1 PPOP cn P φ tr H et P 1 1 1 1 l 1 1 I 1 1
hohen Stromdichten i die Spannungen U steil auf Null abfal¬ len.high S i tromdichten the voltages U steep wastes for ¬ len to zero.
Derartige Kennlinien sind bekannt. Bekannt ist weiterhin, dass bei CO-Belegungen der Elektroden die Brennstoffzellen funktionsunfähig werden.Such characteristics are known. It is also known that when the electrodes are coated with CO, the fuel cells become inoperable.
In Figur 1 sind vier Kennlinien 11 bis 14 für Niedertempera¬ tur-PEM-Brennstoffzellen dargestellt, die unterschiedliche CO-Gehalte als Parameter, und zwar im Einzelnen 0 ppm bei Kennlinie 11, 100 ppm bei Kennlinie 12, 1000 ppm bei Kennlinie 13 und 10.000 ppm Kennlinie 14, haben. Es ergibt sich, dass bei höheren CO-Gehalten, die zu CO-Belegungen der Elektroden führen, die Spannungen bereits bei geringen Stromdichten zusammenbrechen, beispielsweise bei 1000 ppm CO bei ca. 1,1 A/cm2 gegenüber ca. 2 A/cm2 bei 0 ppm CO.1 shows four characteristic curves 11 are illustrated to 14 for low temperature ¬ tur PEM fuel cells, the different CO concentrations as a parameter, namely in detail 0 ppm with characteristic curve 11, 100 ppm in curve 12, 1000 ppm with characteristic curve 13 and 10,000 ppm characteristic curve 14. The result is that at higher CO contents, which lead to CO deposits on the electrodes, the voltages collapse even at low current densities, for example at 1000 ppm CO at approximately 1.1 A / cm 2 compared to approximately 2 A / cm 2 at 0 ppm CO.
Figur 2 zeigt bei zwei Kennlinien 21 und 22 mit 0 ppm CO und 1000 ppm CO speziell für die Hochtemperatur-PEM-Brennstoff- zelle, dass deren Spannungs-Stromdichte-Abhängigkeiten praktisch identisch verlaufen. Dies entspricht der bekannten Tat- sache, dass die HT-PEM weitestgehend unempfindlich gegen Verunreinigungen mit CO ist.FIG. 2 shows two characteristic curves 21 and 22 with 0 ppm CO and 1000 ppm CO, especially for the high-temperature PEM fuel cell, that their voltage-current density dependencies are practically identical. This corresponds to the well-known fact that the HT-PEM is largely insensitive to contamination with CO.
Betrachtet man die CO-Vergiftung in Abhängigkeit von der Temperatur, ergibt sich also insbesondere bei niedrigen Tempera- turen, d.h. bei der Niedertemperatur-PEM-Brennstoffzelle, ein rascher Abfall der Zellspannung, die bei hohen Temperaturen, d.h. bei der Hochtemperatur-PEM, asymptotisch gegen Null geht.If one considers the CO poisoning as a function of the temperature, this results in particular at low temperatures, i.e. in the low-temperature PEM fuel cell, a rapid drop in cell voltage that occurs at high temperatures, i.e. at high temperature PEM, asymptotically goes to zero.
Beim Betrieb der HT-PEM-Brennstoffzelle kann nun eine potentielle Vergiftung der Elektroden dadurch ausgeschlossen werden, dass beim Starten der Brennstoffzelle aus dem kalten Zu- stand während des Aufheizens der Brennstoffzelle bzw. nach dem Erreichen des betriebswarmen Zustandes der Brennstoffzel¬ le für einen vorgegebenen Zeitraum die HT-PEM-Brennstoffzelle im Pulsbetrieb gefahren wird. Dies kann einerseits durch kurzzeitiges Kurzschließen bzw. Umpolen und andererseits durch Abschalten der Wasserstoffzufuhr bei Lastbetrieb erfol¬ gen.When the HT-PEM fuel cell is in operation, potential poisoning of the electrodes can now be excluded by starting the fuel cell from the cold stand during the heating of the fuel cell or after reaching the operating temperature condition of Brennstoffzel ¬ le for a predetermined period, the HT-PEM fuel cell is operated in pulse mode. This can on the one hand gene by temporary short-circuiting or reversing the polarity and secondly by switching off the hydrogen supply at load operation SUC ¬.
Durch den Pulsbetrieb wird eine Regenerierung der mit CO be- legten Elektroden erreicht und damit die HT-PEM-Brennstoff- zelle jeweils in den Idealzustand versetzt.The pulsed operation regenerates the electrodes covered with CO and thus puts the HT-PEM fuel cell in the ideal state.
Es bietet sich also an, geeignete Kriterien zur Erfassung des Vergiftungszustandes der HT-PEM-Brennstoffzelle zu finden. Als ein solches Kriterium kann beispielsweise der Zeilspannungsgradient herangezogen werden, da ein Abfallen der Zellspannung auf eine Vergiftung hindeutet. Vorteilhafterweise kann also der Pulsbetrieb in Abhängigkeit vom Abfallen der Zellspannung vorgenommen werden.It therefore makes sense to find suitable criteria for determining the poisoning status of the HT-PEM fuel cell. The line voltage gradient can be used as such a criterion, for example, since a drop in the cell voltage indicates poisoning. The pulse operation can therefore advantageously be carried out as a function of the drop in the cell voltage.
In den Figuren 3 und 4 sind dazu die Einzelspannungen U von Hochtemperatur-PEM-Brennstoffzelleneinheiten als Kennlinien 31 bzw. 41 mit unterschiedlichen CO-Vergiftungen als Funktion der Zeit t dargestellt, wobei jeweils ein Pulsbetrieb über unterschiedliche Zeitintervalle mit vorgegebener Stromdichte erfolgte. Dabei wird über einen definierten Widerstand mit vorgegebener Entladezeit entladen. Die Kennlinie 31 steht für einen CO-Anteil von 100 ppm bei einem Puls von jeweils 10 min bei 300 mA/m2 und 20 s Entladezeit. Die Kennlinie 41 steht dagegen für einen CO-Anteil von 1000 ppm bei einem Puls von jeweils 5 min bei 300 A/cm2 und 20 s Entladezeit.For this purpose, FIGS. 3 and 4 show the individual voltages U of high-temperature PEM fuel cell units as characteristic curves 31 and 41 with different CO poisonings as a function of time t, pulse operation taking place over different time intervals with a given current density. It is discharged via a defined resistor with a specified discharge time. The characteristic curve 31 stands for a CO content of 100 ppm with a pulse of 10 min at 300 mA / m 2 and 20 s discharge time. The characteristic curve 41, on the other hand, stands for a CO content of 1000 ppm with a pulse of 5 min at 300 A / cm 2 and 20 s discharge time.
Bei den Figuren 3 und 4 erfolgt der Pulsbetrieb beim Aufheizen der HT-PEM-Brennstoffzelle, also vor Erreichen der jewei- ligen Betriebstemperatur, da es bei den niedrigen Temperaturen zu Elektrodenbelegungen mit Kohlenmonoxid (CO) kommen kann. Statt dessen kann der Pulsbetrieb auch nach dem Auf ei- zen, d.h. Erreichen des betriebswarmen Zustandes, erfolgen. Es kann somit sichergestellt werden, dass die HT-PEM- Brennstoffzelle in Abhängigkeit vom Vergiftungszustand regeneriert wird. Als Trigger für eine automatisch erfolgende Re- generierung der HT-PEM-Brennstoffzelle kann die Zellspannung bzw. deren Änderung erfasst werden. Dies bedeutet, dass der Pulsbetrieb jeweils in Abhängigkeit vom dynamischen Spannungsverhalten erfolgt.In FIGS. 3 and 4, pulse operation takes place when the HT-PEM fuel cell is heated, that is to say before the respective operating temperature has been reached, since electrode deposits with carbon monoxide (CO) can occur at the low temperatures. Instead, the pulse mode can also be zen, d . h . Warm operating condition is reached. It can thus be ensured that the HT-PEM fuel cell is regenerated depending on the poisoning state. The cell voltage or its change can be recorded as a trigger for an automatic regeneration of the HT-PEM fuel cell. This means that the pulse operation takes place depending on the dynamic voltage behavior.
Es zeigt sich, dass mit den beschriebenen Verfahren die Span¬ nung der HT-PEM-Brennstoffzelle auch bei CO-Verunreinigungen des Brenngases im Bereich von 100 bzw. 1000 ppm CO-Belegung konstant gehalten werden kann. Damit ist ein wesentlicher Vorteil der HT-PEM-Brennstoffzelle bestätigt.It turns out that with the described method, the clamping voltage of the ¬ HT-PEM fuel cell also CO impurities in the fuel gas is in the range of 100 and 1000 ppm CO occupancy can be kept constant. This confirms a major advantage of the HT-PEM fuel cell.
In Figur 5 ist dazu mit 110 ein Brennstoffzellenmodul dargestellt, das aus einem Stapel einzelner HT-PEM-Brennstoffzellen 111, 111 Λ, ... besteht und in der Fachwelt als Brennstoffzellenstack oder kurz als „Stack* bezeichnet wird. Die Prozessgas, d.h. Wasserstoff oder wasserstoffreiches Gas als Brenngas einerseits und Sauerstoff bzw. Luft als Oxidans andererseits, werden zentral zugeführt. Das Stack 110 enthält Leitungen für die Prozessgase, auf die im vorliegenden Zusammenhang nicht weiter eingegangen wird.In FIG. 5, 110 shows a fuel cell module, which consists of a stack of individual HT-PEM fuel cells 111, 111 Λ , ... and is referred to in the technical field as a fuel cell stack or "stack *" for short. The process gas, ie hydrogen or hydrogen-rich gas as the fuel gas on the one hand and oxygen or air as the oxidant on the other hand, are supplied centrally. The stack 110 contains lines for the process gases, which are not discussed further in the present context.
In Figur 5 ist eine Steuervorrichtung 120 vorhanden, mit der in bekannter Weise der Prozess im Brennstoffzellenstack 110 gesteuert wird. Die Steuervorrichtung hat diskrete Eingänge 121, 121 , ... zur Einstellung von Prozessparametern und bei- spielsweise einem Ausgang 131 für einen gemeinsamen, ggfs. bidirektionalen Datenbus 'bzw. mehrere Ausgänge 131, 131 Λ, ... für einzelne Steuerleitungen.In FIG. 5 there is a control device 120 with which the process in the fuel cell stack 110 is controlled in a known manner. The control device has discrete inputs 121, 121,... For setting process parameters and, for example, an output 131 for a common, possibly bidirectional data bus. several outputs 131, 131 Λ , ... for individual control lines.
Gemäß Figur 5 ist der Steuervorrichtung 120 eine Pulseinrich- tung 125, die einen Pulsbetrieb der Brennstoffzellenanlage ermöglicht, zugeordnet. Es ist weiterhin ein Timer 126 vorhanden, der die Pulseinrichtung 125 in vorgebbaren Betriebs- K) I—1 o Cπ O Cπ r öd <l α EU ιq N Hi N 03 P* P P M P cn o ii o μ- ι-3 φ Φ P Φ P o P Φ tr Cd ti P μ- o φ P Φ 1 Hi t 3 ü P CΛ φ H Hi rt o P Tl p: ü q P ti Φ P P PAccording to FIG. 5, the control device 120 is assigned a pulse device 125, which enables pulse operation of the fuel cell system. There is also a timer 126 which operates the pulse device 125 in predefinable operating modes. K) I— 1 o Cπ O Cπ r öd <l α EU ιq N Hi N 03 P * PPMP cn o ii o μ- ι-3 φ Φ P Φ P o P Φ tr Cd ti P μ- o φ P Φ 1 Hi t 3 ü P CΛ φ H Hi rt o P Tl p: ü q P ti Φ PPP
O P cn T> M t Φ Φ Φ CΛ φ φ Cd P cn ιq PO P cn T> M t Φ Φ Φ CΛ φ φ Cd P cn ιq P
CΛ o φ g ü P rt tr P φ P P cn φ rtCΛ o φ g ü P rt tr P φ P P cn φ rt
Φ et 0 vP 1 rt ü μ- 0: tr H μ- cn P -«« μ- μ- O n Φ Cd o μ- CΛ »i P cn Φ Ω et P OΦ et 0 vP 1 rt ü μ- 0: tr H μ- cn P - «« μ- μ- O n Φ Cd o μ- CΛ »i P cn Φ Ω et P O
P Hi P H s; P P rt P ti φ <P tr O ιq ιq PP Hi P H s; P P rt P ti φ <P tr O ιq ιq P
CΛ Hi tr φ φ μ- rt P Φ μ- P et Hi ιp φCΛ Hi tr φ φ μ- rt P Φ μ- P et Hi ιp φ
Ω INI μ- li P ü μ- P φ «3 ti P P Hi < Hi P tr φ CΛ P P P P φ CΛ cn ιQ μ- N O • μj H rt CΛ φ P Hi 0 Cfl 3 Φ P μ- O μ- rt 3 ii H CΛ N P μ- φ Φ O 0 O H ΓJJ: tr o Φ Φ O P M H CΛ fco σ PΩ INI μ- li P ü μ- P φ «3 ti PP Hi <Hi P tr φ CΛ PPPP φ CΛ cn ιQ μ- NO • μ j H rt CΛ φ P Hi 0 Cfl 3 Φ P μ- O μ- rt 3 ii H CΛ NP μ- φ Φ O 0 OH ΓJJ: tr o Φ Φ OPMH CΛ fco σ P
O P Hl 3 > Φ H μ- P CΛ μ- Φ Ti Φ cn et s: 0 Hi μ- et rt φ N rt P P P li trO P Hl 3> Φ H μ- P CΛ μ- Φ Ti Φ cn et s: 0 Hi μ- et rt φ N rt P P li tr
• Φ O s; N M ιq ti Φ P s: P P N cn P φ• Φ O s; N M ιq ti Φ P s: P P N cn P φ
CΛ μ- Φ μ- μ- μ- Φ CΛ P Φ rt P P CflCΛ μ- Φ μ- μ- μ- Φ CΛ P Φ rt P P Cfl
Φ P ü P φ φ P1 li cn P H" P P P OΦ P ü P φ φ P 1 li cn PH "PPPO
P P P μj N μ- tr tr P rt Φ P Ω P Ω P rt li Φ Φ P CΛ P P Φ P cn Φ ^r ιq P1 P μj Ω P H" ≤ Hi ιq μ- P cn φ μ- tr P Φ P Tl P rt N CΛ Φ P ?T : N HPPP μ j N μ- tr tr P rt Φ P Ω P Ω P rt li Φ Φ P CΛ PP Φ P cn Φ ^ r ιq P 1 P μ j Ω PH "≤ Hi ιq μ- P cn φ μ- tr P Φ P Tl P rt N CΛ Φ P? T: NH
Ω LP σ μ- Φ P ü * φ Φ φ P O: P >< Φ tr Φ Φ p P 3 μ- P J H P P P ?rΩ LP σ μ- Φ P ü * φ Φ φ PO: P><Φ tr Φ Φ p P 3 μ- PJHPPP? R
Φ Hl μ- p CΛ φ s: rt CΛ P CΛ P Φ H1 tr p: P CΛ tr P Φ tr o μ-> M vq Φ ti μ- Φ f-3 tr μ- H1 O Φ P Φ H cn Φ P P cn μ-Φ Hl μ- p CΛ φ s: rt CΛ P CΛ P Φ H 1 tr p: P CΛ tr P Φ tr o μ-> M vq Φ ti μ- Φ f-3 tr μ- H 1 O Φ P Φ H cn Φ PP cn μ-
Φ li P et N P rt ιq φ Φ Hl P O 3 ooΦ li P et N P rt ιq φ Φ Hl P O 3 oo
3 rt cn i r-> ii P ii φ μ- W p: μ- <q tr3 rt cn i r-> ii P ii φ μ- W p: μ- <q tr
TJ tr H rt μ- cn P μ- P r t P cn -> φ φ O φ Φ rt P φ et H li H ιq %TJ tr H rt μ- cn P μ- P r t P cn -> φ φ O φ Φ rt P φ et H li H ιq%
H P CΛ tr P Ω tr φ μ- O rt ii P HiH P CΛ tr P Ω tr φ μ- O rt ii P Hi
P φ o Cd P P tr P Ω P φ Φ P w P rt li P φ P P. P Φ Φ tr Φ Ü P rt 4 P φ o Cd PP tr P Ω P φ Φ P w P rt li P φ P P. P Φ Φ tr Φ Ü P rt 4
P P et 3 Φ LJ- μ- H et P CΛ μ- μ- Ü ü P φ H μ- H P Φ P et P φ M Φ ΦP P et 3 Φ LJ- μ- H et P CΛ μ- μ- Ü ü P φ H μ- H P Φ P et P φ M Φ Φ
Hi P ti μ- rt Φ P φ P 3 P μ- P μ- PHi P ti μ- rt Φ P φ P 3 P μ- P μ- P
Φ Ω Φ φ Cd H φ H P ιq μ- cn ^q rt φΦ Ω Φ φ Cd H φ H P ιq μ- cn ^ q rt φ
P tr tr φ ti 3 ? rt O P φ H PP tr tr φ ti 3? rt O P φ H P
CΛ μ- CΛ μ- φ K K rt tv> ü ti P rt Φ rt P 3 N P P f-3 μ- π « φ • HCΛ μ- CΛ μ- φ K K rt tv> ü ti P rt Φ rt P 3 N P P f-3 μ- π «φ • H
Φ P •< Φ P 1 P 1 <l o P cπ PΦ P • <Φ P 1 P 1 <l o P cπ P
H CΛ ι-3 ?r CΛ Tl Tl μ- tr tr 3 CdH CΛ ι-3? R CΛ Tl Tl μ- tr tr 3 Cd
Φ H" ? rt M rt M Φ φ N P φ iiΦ H "? Rt M rt M Φ φ N P φ ii
Hi 3 P φ o g CΛ g ii μ- φ P P tr ΦHi 3 P φ o g CΛ g ii μ- φ P P tr Φ
O P: S CΛ ιq Hi 1 rt 1 rt P ti ti Φ PO P: S CΛ ιq Hi 1 rt 1 rt P ti ti Φ P
P H φ φ Hi Cd P Cd Cf 3 P PP H φ φ Hi Cd P Cd Cf 3 P P
H Φ P N ti ii ii s: tr o M P ωH Φ P N ti ii ii s: tr o M P ω
P P ii φ φ Φ et φ Φ Φ P H P g rtP P ii φ φ Φ et φ Φ Φ P H P g rt
M μ- rt Hl H P P ii H o Hi ι μ- OM μ- rt Hl H P P ii H o Hi ι μ- O
O φ P O P P P P P CΛ X P Φ rt HiO φ P O P P P P P CΛ X P Φ rt Hi
0 li H" rt Φ cn P CΛ Φ Ω μ- Cfl P- rt Hi0 li H "rt Φ cn P CΛ Φ Ω μ- Cfl P- rt Hi
O K tr ιq μ- et P rt P t P cn Φ Φ INIO K tr ιq μ- et P rt P t P cn Φ Φ INI
H φ Φ o O O P P Φ tr 1 H P P P Hl M Hi ; r φ < P rt P μ- TJ Φ • ü Hi O Hi P μ- o ^q ΦH φ Φ o O O P P Φ tr 1 H P P P Hl M Hi; r φ <P rt P μ- TJ Φ • ü Hi O Hi P μ- o ^ q Φ
CΛ M μ- P Ω 1 Ω 1 P rt K rt N φ g Ω φ tr tr P φ 1 Φ P P 1 tr H 1 1 P li 1 CΛ M μ- P Ω 1 Ω 1 P rt K rt N φ g Ω φ tr tr P φ 1 Φ P P 1 tr H 1 1 P li 1

Claims

Patentansprüche claims
1. Verfahren zur Regenerierung von CO-Vergiftungen bei HT- PEM-Brennstoffzellen mit folgenden Verfahrensschritten: - die HT-PEM-Brennstoffzelle wird im kalten Zustand ge¬ startet,1. A process for regeneration of CO poisoning in HT-PEM fuel cell comprising the following steps: - the HT-PEM fuel cell is starting in cold state ge ¬,
- anschließend wird die HT-PEM-Brennstoffzelle für einen vorgegebenen Zeitraum im Pulsbetrieb betrieben,- The HT-PEM fuel cell is then operated in pulse mode for a predetermined period of time,
- durch den Pulsbetrieb wird eine Regenerierung der CO- Vergiftungen, insbesondere der Vergiftungen von mit CO belegten Elektroden, der HT-PEM-Brennstoffzelle erreicht.- The pulse mode regenerates the CO poisoning, in particular the poisoning of electrodes covered with CO, of the HT-PEM fuel cell.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass der Pulsbetrieb während des Aufhei- zens der HT-PEM-Brennstoffzelle auf Betriebstemperatur erfolgt .2. The method according to claim 1, so that the pulse operation takes place during the heating of the HT-PEM fuel cell to the operating temperature.
3. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass der Pulsbetrieb nach dem Aufheizen, d.h. im betriebswarmen Zustand, der HT-PEM-Brennstoffzelle erfolgt.3. The method of claim 1, d a d u r c h g e k e n n z e i c h n e t that the pulse operation after heating, i.e. in the warm operating state, the HT-PEM fuel cell takes place.
4. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die HT-PEM- Brennstoffzelle in Abhängigkeit vom Vergiftungszustand im Pulsbetrieb betrieben wird4. The method according to any one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that the HT-PEM fuel cell is operated in pulse mode depending on the poisoning state
5. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die HT-PEM- Brennstoffzelle in Abhängigkeit von der Zellspannung im Pulsbetrieb betrieben wird.5. The method according to any one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that the HT-PEM fuel cell is operated as a function of the cell voltage in pulse mode.
6. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass die HT-PEM-Brennstoffzelle nach jedem Kaltstart im Pulsbetrieb betrieben wird. 6. The method according to claim 1, characterized in that the HT-PEM fuel cell is operated in pulse mode after each cold start.
7. Verfahren nach einem der vorhergehenden Ansprüche, d a ¬ du r c h g e k e n n z e i c h n e t, dass eine Regeneration der HT-PEM-Brennstoffzelle einmal pro Betriebszyklus erfolgt.7. V out according to one of the preceding claims, ¬ du rchgekennzeichnet that a regeneration of the HT-PEM fuel cell is carried out once per cycle of operation.
8. Verfahren nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , dass die Regeneration der HT-PEM- Brennstoffzelle bei Temperaturen zwischen 60°C und 300°C, vorzugsweise zwischen 120°C und 200°C, erfolgt.8. The method according to claim 6, so that the regeneration of the HT-PEM fuel cell takes place at temperatures between 60 ° C and 300 ° C, preferably between 120 ° C and 200 ° C.
9. Brennstoffzellenanlage mit wenigstens einem Brennstoffzellenmodul aus einem Stapel von HT-PEM-Brennstoffzellen (Brennstoffzellenstack) und einer zugehörigen Steuer- und/oder Regeleinrichtung zur Prozessführung, d a d u r c h g e k e n n z e i c h n e t , dass der Steuer- und/oder Regeleinrichtung (120) eine Pulseinrichtung (125) zugeordnet ist, die in Abhängigkeit von vorgebbaren Parametern das Brennstoffzellenstack (110) zum Pulsbetrieb aktiviert.9. Fuel cell system with at least one fuel cell module from a stack of HT-PEM fuel cells (fuel cell stack) and an associated control and / or regulating device for process control, characterized in that the control and / or regulating device (120) is assigned a pulse device (125) which, depending on predefinable parameters, activates the fuel cell stack (110) for pulsed operation.
10. Brennstoffzellenanlage nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , dass ein Timer (126) zur Aktivierung der Pulseinrichtung (125) vorhanden ist.10. The fuel cell system as claimed in claim 10, so that a timer (126) for activating the pulse device (125) is present.
11. Brennstoffzellenanlage nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , dass Mittel zur Erfassung der11. Fuel cell system according to claim 9, d a d u r c h g e k e n n z e i c h n e t that means for detecting the
Ausgangsspannung des Brennstoffzellenstacks (110) bzw. zur Erfassung von Änderungen der Spannung vorhanden sind.Output voltage of the fuel cell stack (110) or for detecting changes in the voltage are present.
12. Brennstoffzellenanlage nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass die Aktivierung des12. Fuel cell system according to claim 11, d a d u r c h g e k e n n z e i c h n e t that the activation of the
Brennstoffzellenstacks (110) zum Pul'sbetrieb getriggert durch einen vorgebbaren Spannungsänderungsgradienten des Brennstoffzellenstacks (110) erfolgt.Fuel cell stacks (110) for pulse operation are triggered by a predeterminable voltage change gradient of the fuel cell stack (110).
13. Brennstoffzellenanlage nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , dass Sensoren zur Erfassung von CO-Belegungen in den HT-PEM-Brennstoffzellen vorhanden sind.13. Fuel cell system according to claim 9, characterized in that sensors for detection of CO occupancies are present in the HT-PEM fuel cells.
14. Brennstoffzellenanlage nach Anspruch 11, d a du r c h g e k e n n z e i c h n e t , dass die Aktivierung des Brennstoffzellenstacks (110) zum Pulsbetrieb sensorgesteuert erfolgt. 14. The fuel cell system according to claim 11, so that the activation of the fuel cell stack (110) for pulse operation is sensor-controlled.
EP01993032A 2000-10-30 2001-10-30 Method for regenerating co contamination in ht-pem fuel cells and a corresponding fuel-cell system Withdrawn EP1336213A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10053851 2000-10-30
DE10053851A DE10053851A1 (en) 2000-10-30 2000-10-30 Process for the regeneration of CO poisoning in HT-PEM fuel cells
PCT/DE2001/004103 WO2002037591A1 (en) 2000-10-30 2001-10-30 Method for regenerating co contamination in ht-pem fuel cells and a corresponding fuel-cell system

Publications (1)

Publication Number Publication Date
EP1336213A1 true EP1336213A1 (en) 2003-08-20

Family

ID=7661606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01993032A Withdrawn EP1336213A1 (en) 2000-10-30 2001-10-30 Method for regenerating co contamination in ht-pem fuel cells and a corresponding fuel-cell system

Country Status (9)

Country Link
US (1) US20030203248A1 (en)
EP (1) EP1336213A1 (en)
JP (1) JP2004513486A (en)
KR (1) KR20030044062A (en)
CN (1) CN1473370A (en)
AU (1) AU2002215835A1 (en)
CA (1) CA2427133A1 (en)
DE (1) DE10053851A1 (en)
WO (1) WO2002037591A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6312846B1 (en) 1999-11-24 2001-11-06 Integrated Fuel Cell Technologies, Inc. Fuel cell and power chip technology
AU2003219726A1 (en) 2002-02-06 2003-09-02 Battelle Memorial Institute Methods of removing contaminants from a fuel cell electrode
AU2003296367A1 (en) * 2002-12-05 2004-06-30 Battelle Memorial Institute Methods of removing sulfur from a fuel cell electrode
US7632583B2 (en) * 2003-05-06 2009-12-15 Ballard Power Systems Inc. Apparatus for improving the performance of a fuel cell electric power system
DE10328257A1 (en) * 2003-06-24 2005-01-13 Daimlerchrysler Ag Regeneration of membrane polymer electrode arrangement of fuel cell, specifies values of regeneration medium flow, temperature and pressure
US7241521B2 (en) 2003-11-18 2007-07-10 Npl Associates, Inc. Hydrogen/hydrogen peroxide fuel cell
KR100717747B1 (en) 2005-10-25 2007-05-11 삼성에스디아이 주식회사 Method of recovering stack for direct oxidation fuel cell
HK1130951A1 (en) * 2006-03-02 2010-01-08 Encite Llc Power cell architectures and control of power generator arrays
US9819037B2 (en) 2006-03-02 2017-11-14 Encite Llc Method and apparatus for cleaning catalyst of a power cell
JP5194402B2 (en) 2006-08-09 2013-05-08 トヨタ自動車株式会社 Fuel cell system
DE102008022581A1 (en) 2008-05-07 2009-11-12 Bayerische Motoren Werke Aktiengesellschaft Polymer-electrolyte membrane fuel cell component for use in fuel cell system of motor vehicle, has low-temperature polymer-electrolyte membrane fuel cell thermally connected with high temperature polymer-electrolyte membrane fuel cell
EP2438642B1 (en) * 2009-06-03 2013-04-03 BDF IP Holdings Ltd Methods of operating fuel cell stacks and systems
DE102010056416A1 (en) 2010-07-07 2012-01-12 Volkswagen Ag Method for operating high temperature polymer electrolyte membrane fuel cell for vehicle, involves rewarming fuel cell to operating temperature by pressurizing at specific voltage which is predesignated as function of required power
JP5817472B2 (en) * 2011-11-28 2015-11-18 トヨタ自動車株式会社 FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
AT520682B1 (en) * 2017-12-07 2021-07-15 Avl List Gmbh Method for determining an operating state of an electrochemical system
DE102019211490A1 (en) * 2019-08-01 2021-02-04 Audi Ag Method for operating a motor vehicle with a fuel cell device and a motor vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9412073D0 (en) * 1994-06-16 1994-08-03 British Gas Plc Method of operating a fuel cell
JP3564742B2 (en) * 1994-07-13 2004-09-15 トヨタ自動車株式会社 Fuel cell power generator
JP3088320B2 (en) * 1997-02-06 2000-09-18 三菱電機株式会社 Method for removing carbon monoxide from hydrogen gas containing carbon monoxide, electrochemical device thereof, method of operating the same, method of operating fuel cell, and fuel cell power generation system
DE19710819C1 (en) * 1997-03-15 1998-04-02 Forschungszentrum Juelich Gmbh Fuel cell with anode-electrolyte-cathode unit
US6329089B1 (en) * 1997-12-23 2001-12-11 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell
US6465136B1 (en) * 1999-04-30 2002-10-15 The University Of Connecticut Membranes, membrane electrode assemblies and fuel cells employing same, and process for preparing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0237591A1 *

Also Published As

Publication number Publication date
CN1473370A (en) 2004-02-04
AU2002215835A1 (en) 2002-05-15
WO2002037591A1 (en) 2002-05-10
KR20030044062A (en) 2003-06-02
JP2004513486A (en) 2004-04-30
CA2427133A1 (en) 2003-04-28
DE10053851A1 (en) 2002-05-08
US20030203248A1 (en) 2003-10-30

Similar Documents

Publication Publication Date Title
EP1336213A1 (en) Method for regenerating co contamination in ht-pem fuel cells and a corresponding fuel-cell system
DE602004006884T2 (en) DETECTING DEVICE FOR A FUEL CELL SYSTEM FOR DETECTING ANOMALIES
DE102012206370B4 (en) Fuel cell system and method for controlling and regulating the same
DE102017103058B4 (en) Fuel cell system and method for controlling the fuel cell system
DE112008002901T5 (en) Fuel cell system and start control method for a fuel cell system
DE112007002405T5 (en) The fuel cell system
CN100472866C (en) Fuel battery system and purging method therefor
DE102017219141A1 (en) Operation control method of a fuel cell system
DE112007002792T5 (en) The fuel cell system
DE102012201647A1 (en) Hydrogen detection system
DE112007002985T5 (en) The fuel cell system
DE102018213479A1 (en) METHOD AND SYSTEM FOR CONTROLLING HYDROGEN FLUSHING
WO2002001662A1 (en) Polymer electrolyte membrane (pem) fuel cell with a heating element, pem fuel cell system and method for operating a pem fuel cell system
EP1194966A2 (en) High-temperature polymer electrolyte membrane (htm) fuel cell, htm fuel cell system, method for operating an htm fuel cell and/or an htm fuel cell system
DE19916386C2 (en) Fuel cell system and method for regenerating a filter element in a fuel cell system
DE112012006025T5 (en) The fuel cell system
DE102015117240A1 (en) Method for operating a fuel cell system and fuel cell system and vehicle
WO2001022515A1 (en) Method and system for starting a fuel cell stack of a fuel cell arrangement
DE112016006970T5 (en) Galvanic metal-oxygen cell, battery module and vehicle with such a battery module
DE19926495C2 (en) Energy supply system for safety-related systems in a motor vehicle
DE102020119137A1 (en) Method for the model-based humidity control of a fuel cell device, fuel cell device and fuel cell vehicle
DE102020107895A1 (en) Fuel cell vehicle
DE102018132755A1 (en) SYSTEM AND METHOD FOR MEA CONDITIONING IN A FUEL CELL
DE102014007013A1 (en) Process for heating a catalyst
DE102006056377A9 (en) An apparatus for a fuel cell vehicle for preventing formation of a hydrogen / oxygen interface on the anode side

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030319

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040504