EP1307683B1 - Kohlendioxid-Feuerlöschvorrichtung - Google Patents

Kohlendioxid-Feuerlöschvorrichtung Download PDF

Info

Publication number
EP1307683B1
EP1307683B1 EP01969584A EP01969584A EP1307683B1 EP 1307683 B1 EP1307683 B1 EP 1307683B1 EP 01969584 A EP01969584 A EP 01969584A EP 01969584 A EP01969584 A EP 01969584A EP 1307683 B1 EP1307683 B1 EP 1307683B1
Authority
EP
European Patent Office
Prior art keywords
carbon dioxide
valve base
contact
insulating sleeve
screwed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01969584A
Other languages
English (en)
French (fr)
Other versions
EP1307683A1 (de
Inventor
Thomas Andreas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luxembourg Patent Co SA
Original Assignee
Luxembourg Patent Co SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luxembourg Patent Co SA filed Critical Luxembourg Patent Co SA
Publication of EP1307683A1 publication Critical patent/EP1307683A1/de
Application granted granted Critical
Publication of EP1307683B1 publication Critical patent/EP1307683B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0018Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using gases or vapours that do not support combustion, e.g. steam, carbon dioxide
    • A62C99/0027Carbon dioxide extinguishers
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/50Testing or indicating devices for determining the state of readiness of the equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0382Constructional details of valves, regulators
    • F17C2205/0385Constructional details of valves, regulators in blocks or units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/036Control means using alarms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0408Level of content in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0491Parameters measured at or inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/038Detecting leaked fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • F17C2270/0754Fire extinguishers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8158With indicator, register, recorder, alarm or inspection means
    • Y10T137/8326Fluid pressure responsive indicator, recorder or alarm

Definitions

  • the present invention relates to a carbon dioxide fire extinguishing device.
  • Pressure controls are for detecting a gas leak from a Carbon dioxide pressure bottle completely unsuitable there, with a usual Ratio of 1: 1.50 (i.e., a fill weight of 0.666 kg of carbon dioxide per Liter of bottle volume), below a temperature of 27 ° C a loss of gas of 10% caused no significant pressure drop in the bottle anymore (at a fill ratio of 1: 1.34, i. a filling weight of 0.746 kg of carbon dioxide per liter of bottle volume, this is the lower temperature limit even about 22 ° C).
  • the pressure in the carbon dioxide pressure bottle strongly dependent on temperature.
  • level gauge with float have, at least at Fire extinguishing devices, not as an alternative to weighing carbon dioxide pressure vessels can enforce.
  • a valve with an integrated level gauge with float as e.g. from the patent US-A-4,580,450 to a carbon dioxide pressure bottle is known in carbon dioxide fire extinguishing systems not usable because the accommodation of the linkage the level gauge in the valve base takes up a lot of space and thereby the inlet hole for the gas in the valve base will be relatively small got to.
  • carbon dioxide pressure bottles for stationary carbon dioxide fire extinguishing devices in only a female thread W 28.8 x 1/14 "according to DIN 477 to have. In this internal thread a valve base must be screwed in, the one inlet hole for the extinguishing agent of at least 12 mm in diameter should allow the carbon dioxide after triggering the fire extinguishing device, With low pressure loss can flow into the valve.
  • WHICH is considered the closest prior art, is for gas bottles with high purity Gases, a gas cylinder valve with a built-in capacitive level gauge as an alternative to a mechanical level measurement with Swimmers known.
  • the capacitive type described in US-A-5,701,932 Level measurement is based on the principle that the liquid phase a gas has a much higher dielectric constant than the gaseous one Phase, so that a sinking of the liquid level in the pressure bottle reflected in a reduction in the capacity of the probe.
  • the liquid phase of the carbon dioxide already from a temperature of 27.2 ° C, the entire bottle volume, so that above this temperature a loss of gas is no longer necessarily a change in the liquid level in the pressure bottle causes.
  • valve with the capacitive level measuring device from US-A-5,701,932 note that it is also fluidic Do not reason for carbon dioxide pressure bottles in fire extinguishers suitable. In fact, in a valve base with a W 28.8 x 1/14 "screw thread the installation of the capacitive probe takes up so much space that there is no room left for an inlet hole of at least 12 mm diameter for the carbon dioxide quenching gas remains. To have enough space for one To win such 12 mm inlet bore in the valve base, one could of course the diameter of the capacitive probe still smaller. However, one would have to stability problems of the probe with in Take a purchase, which is not responsible for a security-related element are.
  • the present invention is therefore based on the object in one Carbon dioxide fire extinguisher the carbon dioxide pressure vessel, both at low as well as high ambient temperatures, without weighing Reliable to control gas losses.
  • This object is achieved according to the invention achieved by a device according to claim 1.
  • a Capacitive measuring device used for a temperature range is calibrated below and above the critical temperature of the carbon dioxide.
  • the present invention is based on the surprising Acknowledgment that a capacitive measuring device not only in a known way and Can measure changes in fluid level in the pressure vessel, but also above the critical temperature of the carbon dioxide, i. if there is no more physical difference between the gaseous and the liquid phase of the carbon dioxide gives a gas loss from the Pressure vessels are assigned a measurable capacity change clearly can.
  • Such a capacitive measuring device preferably comprises: a capacitive Measuring probe which extends over the entire height of the pressure vessel, a measuring module for measuring the capacitance of the capacitive measuring probe, a Microprocessor for processing the measured capacitance measurements, a measured capacitance change a corresponding gas loss assigns, as well as means for generating an alarm message if that of the microprocessor determined gas loss exceeds a predetermined value.
  • the calibration is preferably done electronically, e.g. a temperature sensor and a memory with calibration values for a temperature range used below and above the critical temperature of the carbon dioxide become.
  • the microprocessor accesses the calibration values in a temperature-dependent manner Memory back to a measured capacitance change a corresponding Allocate gas loss. If the calculated gas loss is a exceeds predetermined value, the microprocessor generates an alarm message.
  • Such a device is ideal for controlling the gas content of carbon dioxide pressure cylinders, both at high and at low levels Ambient temperatures. It is therefore particularly suitable for use in Carbon dioxide fire extinguishing devices suitable where the ambient temperature between -20 ° C and + 60 ° C can lie.
  • the present invention has additionally solved the problem that Capacitive probe so cheap by the tight bottleneck in the Introduce carbon dioxide pressure bottle that the outflow resistance of the Extinguishing gas from the pressure bottle is hardly enlarged.
  • the present Invention an outlet valve for a carbon dioxide pressure bottle with a integrated capacitive probe, wherein a first measuring electrode is formed by a riser, which opens into the valve base, and a second measuring electrode is formed by an electrode tube, which surrounds the riser with an intermediate gap over its entire length.
  • exhaust valve finally results in a simple, reliable and cost effective way transportable carbon dioxide fire extinguisher easier and more often to check for gas loss, or elaborate weighing devices for carbon dioxide pressure cylinders in stationary carbon dioxide fire extinguishing devices to avoid.
  • exhaust valve with probe about the same outflow resistance may be like a flow-optimized outlet valve without a measuring probe. This is where the capacitive measuring probe stands, in which the riser pipe an inner measuring electrode is formed, even with large pressure bottles by a excellent stability.
  • an insulating sleeve surrounds the first end of the Riser in the inlet bore of the valve base and it isolated electrically from the conductive valve base.
  • this first end of the riser then with a contact element from the conductive valve socket is electrically isolated, electrically in contact.
  • the outer Electrode tube is electrically connected to the conductive valve base in Contact and is electrically connected via the latter.
  • the first end of the Riser advantageously has an annular end face as a contact surface for the insulated contact element on, allowing to produce a reliable electrical connection between the insulated contact element and the Riser, the latter only in the axial direction of the contact element in the Inlet hole of the valve base must be pressed.
  • An insulated contact element suitable for this first embodiment comprises advantageously a contact ring with approximately the same inner and outer diameter as the annular contact surface of the riser, and a Insulating ring with larger outer diameter than the contact ring.
  • This Insulating ring lies with an end face on a shoulder surface in the inlet bore and has in the other end face a recess into which the Contact ring is fitted.
  • a large area ensures trouble-free contact between riser and contact element, while reliably preventing an electrical short circuit.
  • the valve base advantageously has a connection channel in this first embodiment on, which forms an opening in the aforementioned shoulder surface, at which the insulating ring rests in the inlet bore.
  • the insulating ring then has in turn an annular groove in the end face, which on this shoulder surface rests, with the opening of the channel in the shoulder surface in this Ring groove opens, and a perforation of the insulating ring from the Ring groove extends to the contact ring.
  • an isolated Connecting wire with a first end firmly connected to the contact ring and through the through-hole and the annular groove of the insulating ring in the connection channel introduced. The annular groove prevents this, that the connecting wire is sheared off, if the contact element is twisted in the inlet bore.
  • the second end of the aforesaid lead wire is fixed to one of connected externally accessible connection element, the latter sealed and electrically isolated is inserted into a bore of the valve base.
  • the conductive valve base makes electrical contact with the outer electrode tube ago.
  • the electrical contact between the outer electrode tube and the valve base can then via an annular end face of the outer Electrode tube are produced, which are connected to an annular end face of the Valve socket is pressed.
  • one end of the insulating sleeve preferably protrudes from the bore of the valve base and serves to attach the outer electrode tube.
  • this electrode tube e.g. screwed onto this end of the insulating sleeve, that its annular end face fixed to the annular end face of the valve base is pressed.
  • the insulating sleeve thus fulfills the function of an electrical Isolator between riser and valve base, an insulating Spacer between riser and outer electrode tube and a Fixing and pressing device for the outer electrode tube.
  • the insulating sleeve can continue to be an electrical have conductive outer wall, over which the valve base and the outer Electrode tube are electrically connected together. This will be the electrical contact between valve base and outer electrode tube on improved.
  • the measuring electrode is the riser with screwed its upper end into the inlet bore of the valve base.
  • An upper insulating sleeve is pushed onto the upper end of the riser.
  • a lower mounting sleeve is placed on the lower end of the riser unscrewed, with the screwed mounting sleeve the outer Pressing the electrode tube axially against the upper insulating sleeve.
  • the upper insulation sleeve This is advantageous against an end face of the valve socket pressed.
  • a preferred embodiment of the lower mounting sleeve comprises a metallic Kemlik the screwed onto the lower end of the riser is and an insulator between the metallic core body and the outer electrode tube is arranged.
  • reference numeral 10 denotes a carbon dioxide pressure bottle a carbon dioxide fire extinguisher.
  • This carbon dioxide pressure bottle is e.g. with a filling ratio of 1: 1.50 with carbon dioxide filled, giving a filling weight of 0.666 kg of carbon dioxide per liter of bottle volume equivalent.
  • the pressure bottle 10 is closed 62.8% filled with liquid carbon dioxide.
  • the volume fraction of the liquid phase is 82%.
  • These Device 11 comprises a capacitive measuring probe 12, which consists of two Composed of electrodes. The latter extend over the entire height the pressure bottle 10 and are separated by an intermediate gap, in which the carbon dioxide forms a dielectric. Note that: (1) at Temperatures below 27.2 ° C the dielectric in the upper part of the intermediate gap is formed by gaseous carbon dioxide (at 20 ° C is the Measuring probe 10 e.g.
  • the capacitive measuring probe 12 is connected to a measuring module 14, which measures the capacitance of the capacitive probe 12 and its measured values to a microprocessor 16 passes.
  • a memory module 20 on that the microprocessor 16 has access are calibration values for a temperature range below and above the critical temperature of the carbon dioxide saved.
  • the microprocessor 16 calculates, based on the measured temperature and the calibration value for this temperature, the carbon dioxide content of the pressure bottle 10 and compares this calculated carbon dioxide content with the target content the pressure bottle. If a Gasvertust is determined the one given Exceeds value, the microprocessor 16 generates an alarm message, e.g. is displayed by means of an optical and / or acoustic alarm module 22. In this way, a simple device for detecting a Gas loss created from a carbon dioxide pressure vessel, which is also at high ambient temperatures can be used.
  • Fig. 2 shows an exhaust valve 30 of a stationary carbon dioxide fire extinguishing device in which a capacitive probe 12 is integrated.
  • Top 31 of the outlet valve 30, which includes a triggering device is in Fig. 2 only indicated, since it for the understanding of the present invention is not important.
  • the outlet valve 30 comprises a valve body 31 with a valve base 32 with an external thread 34, with which it is in the bottleneck of a carbon dioxide pressure bottle is screwed in.
  • a carbon dioxide pressure bottle is screwed in.
  • the Carbon dioxide pressure cylinders used in stationary fire extinguishing devices are used in their bottleneck only a W 28.8 x 1/14 "thread according to DIN 477 for screwing in the valve base 32, i. that in the Valve base 32 relatively narrow space prevail.
  • an inlet bore 36 is disposed, in a riser 38 opens axially this riser 38 extends into the proximity of the bottom of the bottle. Note that in a stationary carbon dioxide fire extinguisher the inlet bore 36 in the valve base 32 and the Riser 38 must have at least an inner diameter of 12 mm, to ensure that after triggering the fire extinguishing device, the Quenching gas with sufficiently low pressure loss via the riser 38 in the Outlet valve 30 can flow.
  • the capacitive measuring probe 12 is in the outlet valve 30 of FIG. 2 formed by the riser 38 and by an outer electrode tube 40, which surrounds the riser 38 with an intermediate gap 42.
  • the capacitive probe 12 comprises two coaxial tubular Electrodes, wherein the riser 38, the inner electrode, the electrode tube 40th the outer electrode is formed.
  • the annular intermediate gap 42 between the both electrodes 38 and 40 is liquid, gaseous or supercritical Carbon dioxide, which is a dielectric between the two Forms electrodes 38 and 40.
  • the reference numeral 48 is a ventilation opening at the upper end of the outer electrode tube 40, the ensures that the liquid level and the pressure in the intermediate gap 42 and the pressure bottle always agree.
  • An insulating sleeve 50 is on the upper end of the Riser 38 screwed.
  • This insulating sleeve 50 comprises at its upper End a first external thread 52 with which they into an internal thread 52 'in one Bore of the valve base 32 is screwed in
  • the lower end of the insulating sleeve 50 protrudes from the bore of the valve base 32 and is with a second external thread 54 provided.
  • On this second external thread 54 is screwed the upper end of the outer electrode tube 40 so that it with its end face 56 fixed to a face 58 of the electrically conductive Valve socket 32 is pressed and thus in electrical contact with this stands.
  • the insulating sleeve 50 thus the function an electrical insulator between riser 38 and valve base 32, a insulating spacer between riser 38 and outer electrode tube 40 and a fastening and pressing device for the outer Electrode tube 40 is satisfied.
  • This multifunctional sleeve is a minimum Individual parts for the installation of the two measuring electrodes 38, 40 needed.
  • the insulating sleeve 50 is also an electrically conductive Outside wall may have, over which the valve base 32 and the outer Electrode tube 40 are electrically connected together. This will be the electrical contact between valve base 32 and outer electrode tube 40 even further improved.
  • the reference numeral 60 denotes a contact ring which is approximately the same inner and outer diameter as the end face 62 of the riser 38 has.
  • This contact ring 60 is in a recess in a first End face of an insulating ring 64 fitted.
  • the latter has the same inner diameter, however, a larger outer diameter than the contact ring 60th on and lies with its second end face on a shoulder surface 66 in the Inlet bore 36 on.
  • the reference numeral 70 denotes a connection channel in the valve base 32, in the shoulder surface 66 forms an opening at which the Insulating ring 64 rests in the inlet bore 36.
  • the insulating ring 64 has a Ring groove 72 in the end face which rests against the shoulder surface 66, wherein the Opening of the connection channel 70 opens into this annular groove 72.
  • a puncture 74 of the insulating ring 64 extends from the annular groove 72 to the contact ring 60.
  • An insulated terminal wire 76 is connected to the contact ring at a first end 60 firmly connected and through the through hole 74 and the annular groove 72nd of the insulating ring 64 inserted into the connection channel 70.
  • the annular groove 72 prevents in this case that the connecting wire 76 is sheared off, if the Contact ring 60 is rotated in the inlet bore 36.
  • the connecting wire 76 is firmly connected to a rod-shaped connection element 78.
  • the latter is sealed inserted into a cone-shaped insulating sleeve 80, the in turn by means of a clamping screw 82 in a conical bore 84 in Valve body is pressed sealed.
  • the reference numeral 90 in Fig. 4 is a board with an electronic Shadow shown fitted in a chamber 92 of the valve body is.
  • a screw plug 94 closes the chamber 92 and at the same time fixes the Board 90 in the chamber 92.
  • the board 90th connected to the riser 38, which is known to be the first electrode of the capacitive probe 12 is formed.
  • Above the electrically conductive valve housing the board 90 is connected to the outer electrode tube 40, the As is known, the second electrode of the capacitive measuring probe 12 is formed.
  • One Plug 96 sealed in a socket in screw plug 94th is inserted, it allows the board 90 via a connecting line 98 at external circuits or to connect external power sources.
  • the measuring module 14 On the board 90 are the measuring module 14, the microprocessor 16, the Temperature probe 18 and the memory module 20 housed. Above the Connecting line 98 is an alarm message either to an external alarm module or a central monitoring network forwarded.
  • Reference numeral 110 denotes an upper insulating sleeve which is pushed onto the riser 38 'and an end face 112 on the End face 58 of the valve base 32 abuts.
  • the outer electrode tube 40 ' is pushed with one end to the lower end of the upper insulating sleeve 110 and lies with its upper end face on a shoulder surface 114 of upper insulating sleeve 110 at.
  • On the lower end of the riser 38 ' is a Attachment sleeve 116 screwed.
  • the latter has a cylindrical end 118, which is inserted into the lower end of the outer electrode tube 40 '.
  • an annular Contact surface 120 on the lower end face of the electrode tube 40 'from to the latter axially with its upper end face to the shoulder surface 114 of the to press upper insulating sleeve 110, which in turn with its end face 112 is pressed against the end face 58 of the valve base 32.
  • the lower attachment sleeve 116 advantageously comprises a metallic Kemographer 122, in which the internal thread for screwing onto the riser 38 'is formed, and an insulating sleeve 124, which on the metallic Kemanalysis 122 is placed and an electrical contact between the outer electrode tube 40 and the metallic core body 122 avoids.
  • the metallic core body 122 also be coated with an insulating material.
  • a mounting sleeve can be used which is made entirely of an insulating material.
  • the solution with a metallic core body 122 is characterized by a larger mechanical strength in the event of severe temperature fluctuations therefore preferred.
  • an annular spacer 44 made of an insulating material that of annular intermediate gap 42 between the two tubes over the whole Length remains constant.
  • the reference numeral 130 in Fig. 5 denotes a locking pin in a Bore in the end face 58 of the valve base 32 is screwed and in a Recess of the upper insulating sleeve 110 engages such that it the latter blocked against twisting.
  • a pierced locking pin 132 is advantageous as Used cable entry.
  • an insulated connection cable 134th through a cable channel 136 in the valve base 32 through the pierced Locking pin 132 in an outer recess 138 of the Isotationsmuffe 110th where it is electrically connected to the outer electrode tube 40 ' is.
  • the reference numerals 140, 142 in Fig. 5 denote lateral openings in lower and upper end of the outer electrode tube 40 '. These openings 140, 142 ensure that the intermediate gap 42 in immediate connection standing with the bottle interior.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Description

Die vorliegende Erfindung betrifft eine Kohlendioxid-Feuerlöschvorrichtung.
Stand der Technik
Für Feuerlöschvorrichtungen mit gasförmigen Löschmedien ist vorgeschrieben, dass der Druckbehälter, in dem das Löschmedium unter Druck bevorratet wird, auf Gasverluste kontrolliert wird. Bei Kohlendioxid-Druckflaschen muss gewährleistet sein, dass ein Gasverlust von mehr als 10 % des Füllgewichts sicher festgestellt wird. Transportable Kohlendioxid-Feuerlöscher werden bei ihrer periodischen Überprüfung mittels einer geeichten Waage gewogen. Zwischen zwei Überprüfungen bleibt ein Gasverlust demnach unbemerkt. Bei stationären Kohlendioxid-Feuerlöschanlagen hängen die Kohlendioxid-Druckflaschen einzeln in einer Wiegevorrichtung, so dass das Gewicht jeder einzelnen Kohlendioxid-Druckflasche kontinuierlich überwacht wird. Wird ein festgelegtes Gewicht unterschritten, so wird ein Alarm ausgelöst. Solche Wiegevorrichtungen zum Einhängen der Kohlendioxid-Druckflaschen verteuern die stationären Feuerlöschvorrichtungen wesentlich. Sie müssen zudem in regelmäßigen Abständen geeicht werden.
Bis jetzt gab es keine zufriedenstellende Alternative zum Wiegen der Kohlendioxid-Dnrckflaschen.
Drucküberwachungen sind für das Feststellen eines Gasverlustes aus einer Kohlendioxid-Druckflasche völlig ungeeignet da, bei einem üblichen Fültverhältnis von 1:1,50 (d.h. einem Füllgewicht von 0.666 kg Kohlendioxid pro Liter Flaschenvolumen), unterhalb einer Temperatur von 27°C ein Gasverlust von 10% keinen wesentlichen Druckabfall in der Flasche mehr verursacht (bei einem Füllverhältnis von 1:1,34, d.h. einem Füllgewicht von 0.746 kg Kohlendioxid pro Liter Flaschenvolumen, beträgt diese untere Temperaturgrenze sogar zirka 22°C). Zudem ist der Druck in der Kohlendioxid-Druckflasche stark temperaturabhängig.
Auch Füllstandsmesser mit Schwimmkörper haben sich, zumindest bei Feuerlöschvorrichtungen, nicht als Alternative zum Wiegen der Kohlendioxid-Druckbehälter durchsetzen können. Ein Ventil mit einem integrierten Füllstandsmesser mit Schwimmkörper, wie es z.B. aus der Patentschrift US-A-4,580,450 für eine Kohlendioxid-Druckflasche bekannt ist, ist in Kohlendioxid-Feuerlöschanlagen nicht einsetzbar weil die Unterbringung des Gestänges des Füllstandsmessers im Ventilsockel sehr viel Platz beansprucht und hierdurch die Einlassbohrung für das Gas im Ventilsockel relativ klein ausfallen muss. In diesem Zusammenhang ist in der Tat anzumerken, dass Kohlendioxid-Druckflaschen für stationäre Kohlendioxid-Feuerlöschvorrichtungen in ihrem Flaschenhals lediglich ein Innengewinde W 28,8 x 1/14" nach DIN 477 haben. In dieses Innengewinde muss ein Ventilsockel eingeschraubt werden, der eine Einlassbohrung für das Löschmittel von mindestens 12 mm Durchmesser aufweisen soll, damit das Kohlendioxid nach Auslösen der Feuerlöschvorrichtung, mit niedrigem Druckverlust in das Ventil einströmen kann.
Aus der Patentschrift US-A-5,701,932, WELCHE ALS nächstliegender Stand der Technik gilt, ist, für Gasflaschen mit hochreinen Gasen, ein Gasflaschenventil mit einer eingebauten kapazitiven Füllstandsmessvorrichtung als Alternative zu einer mechanischen Füllstandsmessung mit Schwimmer bekannt. Die in der US-A-5,701,932 beschriebene kapazitive Füllstandsmessung basiert hierbei auf dem Prinzip, dass die flüssige Phase eines Gases eine weitaus höhere dielektrische Konstante als die gasförmige Phase aufweist, so dass ein Sinken des FlGssigkeitsstands in der Druckflasche sich in einer Minderung der Kapazität der Sonde niederschlägt. Dieses Messprinzip setzt also voraus, dass die Messung bei einer vorgegeben Umgebungstemperatur erfolgt, bei der gewährleistet ist, dass es zwei getrennte Phasen in der Druckflasche gibt, und dass der Flüssigkeitsstands in der Druckflasche abnimmt falls der Druckflasche Gas entnommen wird. Dies ist jedoch, im Gegensatz zu der in der US-A-5,701,932 beschriebenen Anwendung für hochreine Gase, bei einer Kohlendioxid-Druckflasche für den Feuerlöschbereich längst nicht immer der Fall. In der Tat, in Feuerlöschvorrichtungen werden Kohlendioxid-Druckflaschen u.a. in Maschinenräumen zum Objektschutz eingesetzt, wobei ohne weiteres Umgebungstemperaturen über 40°C erreicht werden können. Nun nimmt bei einem Füllverhältnis der Kohlendioxid-Druckflasche von 1:1,50 (d.h. 0.666 kg Kohlendioxid pro Liter Flaschenvolumen), die flüssige Phase des Kohlendioxids schon ab einer Temperatur von 27,2°C das gesamte Flaschenvolumen ein, so dass oberhalb dieser Temperatur ein Gasverlust nicht mehr unbedingt einer Änderung des Flüssigkeitsstands in der Druckflasche bewirkt. Zudem liegt die kritische Temperatur des Kohlendioxids, ab der das Kohlendioxid ein superkritisches Fluid bildet indem es sowieso keinen Unterschied mehr zwischen einer gasförmigen und einer flüssigen Phase gibt, schon bei 31 °C.
Weiterhin ist zum Ventil mit der kapazitiven Füllstandsmessvorrichtung aus der US-A-5,701,932 anzumerken, dass es sich auch aus strömungstechnischen Gründen nicht für Kohlendioxid-Druckflaschen in Feuerlöschvorrichtungen eignet. In der Tat, in einem Ventilsockel mit einem W 28,8 x 1/14" Einschraubgewinde nimmt der Einbau der kapazitiven Messsonde soviel Platz ein, dass kein Platz mehr für eine Einlassbohrung von mindestens 12 mm Durchmesser für das Kohlendioxid-Löschgas übrigbleibt. Um genügend Platz für eine solche 12 mm Einlassbohrung im Ventilsockel zu gewinnen, könnte man selbstverständlich den Durchmesser der kapazitiven Messsonde noch verkleinem. Hierbei müsste man jedoch Stabilitätsprobleme der Messsonde mit in Kauf nehmen, die bei einem sicherheitsrelevanten Element nicht zu verantworten sind.
Aufgabe der Erfindung
Der vorliegenden Erfindung liegt demnach die Aufgabe zugrunde, in einer Kohlendioxid-Feuerlöschvorrichtung den Kohlendioxid-Druckbehälter, sowohl bei niedrigen wie auch bei hohen Umgebungstemperaturen, ohne Wiegen zuverlässig auf Gasverluste zu kontrollieren. Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung nach Anspruch 1 gelöst.
Allgemeine Beschreibung der Erfindung
In einer erfindungsgemäßen Kohlendioxid-Feuerlöschvorrichtung wird zum Feststellen eines Gasverlustes aus dem Kohlendioxid-Druckbehälter eine kapazitive Messvorrichtung eingesetzt, die für einen Temperaturbereich unterhalb und oberhalb der kritischen Temperatur des Kohlendioxids geeicht ist. Mit anderen Worten, die vorliegende Erfindung basiert auf der überraschenden Erkenntnis, dass eine kapazitive Messvorrichtung nicht nur in bekannter Art und Weise Änderungen im Flüssigkeitsstand in dem Druckbehälter messen kann, sondern dass auch oberhalb der kritischen Temperatur des Kohlendioxids, d.h. wenn es keinen physikalischen Unterschied mehr zwischen der gasförmigen und der flüssigen Phase des Kohlendioxids gibt, einem Gasverlust aus dem Druckbehälter eine messbare Kapazitätsänderung eindeutig zugeordnet werden kann. Auf diese Art und Weise wird eine einfache Lösung zum Feststellen eines Gasverlustes aus einem Kohlendioxid-Druckbehälter einer Feuerlöschvorrichtung zur Verfügung gestellt, die auch bei hohen Umgebungstemperaturen (d.h. Temperaturen über 30°C) einsetzbar ist und ein aufwendiges Wiegen des Druckbehälters überflüssig macht.
Eine solche kapazitive Messvorrichtung umfasst vorzugsweise: eine kapazitive Messsonde die sich über die gesamte Höhe des Druckbehälters erstreckt, ein Messmodul zum Messen der Kapazität der kapazitiven Messsonde, einen Mikroprozessor zum Verarbeiten der gemessenen Kapazitätsmesswerte, der einer gemessenen Kapazitätsänderung einen entsprechenden Gasverlust zuordnet, sowie Mittel zum Erzeugen einer Alarmmeldung falls der vom Mikroprozessor ermittelte Gasverlust einen vorgegebenen Wert überschreitet.
Die Eichung erfolgt vorzugsweise elektronisch, wobei z.B. ein Temperatursensor und einen Speicher mit Eichwerten für einen Temperaturbereich unterhalb und oberhalb der kritischen Temperatur des Kohlendioxids eingesetzt werden. Der Mikroprozessor greift temperaturabhängig auf die Eichwerte im Speicher zurück um einer gemessenen Kapazitätsänderung einen entsprechenden Gasverlust zuzuordnen. Falls der errechnete Gasverlust einen vorgegebenen Wert überschreitet, erzeugt der Mikroprozessor eine Alarmmeldung.
Eine solche Vorrichtung eignet sich hervorragend zur Kontrolle des Gasinhalts von Kohlendioxid-Druckflaschen, sowohl bei hohen als auch bei niedrigen Umgebungstemperaturen. Sie ist demnach besonders für den Einsatz in Kohlendioxid-Feuerlöschvorrichtungen geeignet, bei denen die Umgebungstemperatur zwischen -20°C und +60°C liegen kann.
Damit diese Vorrichtung auch problemlos in einer Kohiendioxid-Feuerlöschvorrichtung in Kombination mit einer Kohlendioxid-Druckflasche einsetzbar ist, hat die vorliegende Erfindung zusätzlich das Problem gelöst, die kapazitive Messsonde derart günstig durch den engen Flaschenhals in die Kohlendioxid-Druckflasche einzuführen, dass der Ausströmwiderstand des Löschgases aus der Druckflasche kaum vergrößert wird. Hierzu hat die vorliegende Erfindung ein Auslassventil für eine Kohlendioxid-Druckflasche mit einer integrierten kapazitiven Messsonde geschaffen, wobei eine erste Messelektrode durch ein Steigrohr ausgebildet wird, das in den Ventilsockel einmündet, und eine zweite Messelektrode durch ein Elektrodenrohr ausgebildet wird, welches das Steigrohr mit einem Zwischenspalt auf seiner gesamten Länge umgibt. Durch dieses Auslassventil ergibt sich endlich eine einfache, zuverlässige und kostengünstige Möglichkeit transportable Kohlendioxid-Feuerlöscher einfacher und öfters auf Gasverlust zu überprüfen, bzw. aufwendige Wiegevorrichtungen für Kohlendioxid-Druckflaschen in stationären Kohlendioxid-Feuerlöschvorrichtungen zu vermeiden. Es ist insbesondere hervorzustreichen, dass ein solches Auslassventil mit Messsonde ungefähr den gleichen Ausströmwiderstand aufweisen kann wie ein strömungsoptimiertes Auslassventil ohne Messsonde. Hierbei zeichnet sich die kapazitive Messsonde, bei der das Steigrohr eine innere Messelektrode ausbildet, auch bei großen Druckflaschen durch eine ausgezeichnete Stabilität aus.
Es werden ebenfalls Ausführungen dieses Ventils vorgestellt bei denen die elektrische Verbindung mit der kapazitiven Messsonde auf eine besonders platzsparende und störungsfreie Art und Weise gelöst ist.
Bei einer ersten Ausführung umgibt eine Isoliermuffe das erste Ende des Steigrohrs in der Einlassbohrung des Ventilsockels und isoliert es elektrisch vom leitenden Ventilsockel. In der Einlassbohrung des Ventilsockels steht dieses erste Ende des Steigrohrs dann mit einem Kontaktelement, das vom leitenden Ventilsockel elektrisch isoliert ist, elektrisch in Kontakt. Das äußere Elektrodenrohr steht hingegen elektrisch mit dem leitenden Ventilsockel in Kontakt und wird über letzteren elektrisch angeschlossen.Das erste Ende des Steigrohrs weist vorteilhaft eine ringförmige Stirnfläche als Kontaktfläche für das isolierte Kontaktelement auf, so dass zum Herstellen einer zuverlässigen elektrischen Verbindung zwischen dem isolierten Kontaktelement und dem Steigrohr, letzteres lediglich in axialer Richtung an das Kontaktelement in der Einlassbohrung des Ventilsockels angepresst werden muss.
Ein für diese erste Ausführung geeignetes isoliertes Kontaktelement umfasst vorteilhaft einen Kontaktring mit ungefähr gleichem Innen- und Außendurchmesser wie die ringförmige Kontaktfläche des Steigrohrs, sowie einen Isolierring mit größerem Außendurchmesser als der Kontaktring. Dieser Isolierring liegt mit einer Stimfläche an einer Schulterfläche in der Einlassbohrung auf und weist in der anderen Stirnfläche eine Ausnehmung auf, in die der Kontaktring eingepasst ist. Bei dieser Ausführung wird ein großflächiger, störungsfreier Kontakt zwischen Steigrohr und Kontaktelement gewährleistet, wobei gleichzeitig ein elektrischer Kurzschluss zuverlässig verhindert wird.
Der Ventilsockel weist bei dieser ersten Ausführung vorteilhaft einen Anschlusskanal auf, der eine Öffnung in der vorerwähnten Schulterfläche ausbildet, an welcher der Isolierring in der Einlassbohrung aufliegt. Der Isolierring weist dann seinerseits eine Ringnut in der Stirnfläche auf, die an dieser Schulterfläche aufliegt, wobei die Öffnung des Kanals in der Schulterfläche in diese Ringnut einmündet, und eine Durchbohrung des Isolierrings sich von der Ringnut zum Kontaktring erstreckt. Bei dieser Ausführung ist dann ein isolierter Anschlussdraht mit einem ersten Ende an den Kontaktring fest angeschlossen und durch die Durchbohrung und die Ringnut des Isolierrings in den Anschlusskanal eingeführt. Die Ringnut verhindert hierbei, dass der Anschlussdraht abgeschert wird, falls das Kontaktelement in der Einlassbohrung verdreht wird.
Das zweite Ende des vorerwähnten Anschlussdrahts ist fest an ein von außen zugängliches Anschlusselement angeschlossen, wobei letzteres abgedichtet und elektrisch isoliert in eine Bohrung des Ventilsockels eingesetzt ist. Der leitende Ventilsockel stellt einen elektrischen Kontakt zum äußeren Elektrodenrohr her. Der elektrische Kontakt zwischen dem äußeren Elektrodenrohr und dem Ventilsockel kann dann über eine ringförmige Stirnfläche des äußeren Elektrodenrohrs hergestellt werden, die an eine ringförmige Stimfläche des Ventilsockels angepresst ist.
Bei dieser ersten Ausführung ragt ein Ende der Isoliermuffe vorzugsweise aus der Bohrung des Ventilsockels heraus und dient zur Befestigung des äußeren Elektrodenrohrs. In einer vorteilhaften Ausführung ist dieses Elektrodenrohr z.B. derart auf dieses Ende der Isoliermuffe aufgeschraubt, dass seine ringförmigen Stirnfläche fest an die ringförmige Stirnfläche des Ventilsockels angepresst ist. Hierbei erfüllt die Isoliermuffe somit die Funktion eines elektrischen Isolators zwischen Steigrohr und Ventilsockel, eines isolierenden Abstandshalters zwischen Steigrohr und äußerem Elektrodenrohr und einer Befestigungs- und Anpressvorrichtung für das äußere Elektrodenrohr. Durch diese Multifunktionsmuffe wird ein Minimum an Einzelteilen für den Einbau der beiden Messelektroden benötigt. Die Isoliermuffe kann weiterhin eine elektrisch leitende Außenwand aufweisen, über die der Ventilsockel und das äußere Elektrodenrohr elektrisch miteinander verbunden sind. Hierdurch wird der elektrische Kontakt zwischen Ventilsockel und äußerem Elektrodenrohr weiter verbessert.
In einer alternativen Ausführung der Messelektrode ist das Steigrohr mit seinem oberen Ende in die Einlassbohrung des Ventilsockels eingeschraubt. Eine obere Isolationsmuffe ist auf das obere Ende des Steigrohr aufgeschoben. Eine untere Befestigungsmuffe wird auf das untere Ende des Steigrohrs aufgeschraubt, wobei die aufgeschraubte Befestigungsmuffe das äußere Elektrodenrohr axial gegen die obere Isolationsmuffe presst. Die obere Isolationsmuffe wird hierbei vorteilhaft gegen eine Stirnfläche des Ventilsockels gepresst. Ein bevorzugte Ausführung der unteren Befestigungsmuffe umfasst einen metallischen Kemkörper der auf das untere Ende des Steigrohrs aufgeschraubt ist und einen Isolator der zwischen dem metallischen Kemkörper und dem äußeren Elektrodenrohr angeordnet ist.
Beschreibung anhand der Figuren
Im folgenden wird nun eine Ausgestaltung der Erfindung anhand der beiliegenden Figuren beschrieben. Es zeigen:
Fig.1:
ein Blockschema das einen beispielhaften Aufbau einer erfindungsgemäßen Kohlendioxid-Feuerlöschvoriichtung;
Fig.2:
einen Längsschnitt durch ein Auslassventil einer Kohlendioxid-Feuerlöschvorrichtung mit integrierter Vorrichtung zum Feststellen eines Gasverlustes aus der angeschlossenen Kohlendioxid-Druckflasche, wobei eine erste Ausgestaltung eines Steigrohrs gezeigt ist, das als kapazitive Messsonde ausgebildet ist;
Fig.3:
eine Vergrößerung des eingerahmten Details I aus Fig. 2; und
Fig.4:
eine Vergrößerung des eingerahmten Details II aus Fig. 2.
Fig.5:
einen Längsschnitt durch eine weitere Ausgestaltung eines Steigrohrs das als kapazitive Messsonde ausgebildet ist; und
Fig.6:
einen Längsschnitt nach Schnittlinie 6-6 durch das Steigrohr der Fig. 5.
In Fig. 1 bezeichnet das Bezugszeichen 10 eine Kohlendioxid-Druckflasche einer Kohlendioxid-Feuerlöschvorrichtung. Diese Kohlendioxid-Druckflasche ist z.B. mit einem Füllverhältnis von 1:1,50 mit Kohlendioxid gefüllt, was einem Füllgewicht von 0.666 kg Kohlendioxid pro Liter Flaschenvolumen entspricht. Bei einer Temperatur von -20°C ist die Druckflasche 10 zu 62,8 % mit flüssigem Kohlendioxid gefüllt. Bei einer Temperatur von +20°C beträgt der Volumenanteil der flüssigen Phase 82%. Bei einer Temperatur von 27,2 C ist die Druckflasche schlussendlich zu 100 % mit flüssigem Kohlendioxid gefüllt. Ab einer Temperatur von 31°C (=kritische Temperatur des Kohlendioxid) gibt es keinen physikalischen Unterschied mehr zwischen flüssigem und gasförmigem Kohlendioxid, d.h. es gibt auch keinen Übergang mehr zwischen einer gasförmigen und flüssigen Phase des Kohlendioxid. Es bleibt anzumerken, dass der Druck in der Druckflasche von 19 bar bei -20°C auf 170 bar bei +60°C ansteigt.
In Fig. 1 ist die Kohlendioxid-Druckflasche 10 mit einer erfindungsgemäßen Vorrichtung zum Feststellen eines Gasverlustes aus der Druckflasche 10 ausgestattet, die global mit dem Bezugszeichen 11 bezeichnet ist. Diese Vorrichtung 11 umfasst eine kapazitive Messsonde 12, die sich aus zwei Elektroden zusammensetzt. Letztere erstrecken sich über die gesamte Höhe der Druckflasche 10 und sind durch einen Zwischenspalt voneinander getrennt, in dem das Kohlendioxid ein Dielektrikum ausbildet. Man beachte, dass: (1 ) bei Temperaturen unter 27,2°C das Dielektrikum im oberen Teil des Zwischenspalts durch gasförmiges Kohlendioxid ausgebildet wird (bei 20°C ist die Messsonde 10 z.B. zu 82 % in flüssiges Kohlendioxid eingetaucht, während die restlichen 18 % von gasförmigem Kohlendioxid umgeben sind); (2) bei Temperaturen zwischen 27,2°C und 31°C das Dielektrikum im gesamten Zwischenspalt durch flüssiges Kohlendioxid ausgebildet wird; und (3) bei Temperaturen oberhalb 31°C das Dielektrikum im gesamten Zwischenspalt durch superkritisches Kohlendioxid ausgebildet wird.
Das Funktionsprinzip der Vorrichtung 11 basiert auf der überraschenden Erkenntnis, dass eine kapazitive Messvorrichtung nicht nur in bekannter Art und Weise Änderungen im Flüssigkeitsstand in dem Druckbehälter 10 messen kann, sondern dass einem Gasverlust von einigen Prozent aus dem Druckbehälter 10 eine messbare Kapazitätsänderung der Messsonde 12 auch dann eindeutig zugeordnet werden kann falls:
  • a) der Druckbehälter 10 zu 100 % mit flüssigem Kohlendioxid gefüllt ist, und somit ein Gasverlust von einigen Prozent nicht mehr zwangsläufig einer Änderung des Flüssigkeitsstands in der Druckflasche bewirkt; und
  • b) die kritische Temperatur des Kohlendioxids (31°C) überschritten ist, und das Kohlendioxid somit ein superkritisches Fluid bildet indem es keinen Unterschied mehr zwischen einer gasförmigen und einer flüssigen Phase gibt.
  • Dieses Funktionsprinzip der Vorrichtung 11 wird vorzugsweise wie folgt umgesetzt. Die kapazitive Messsonde 12 ist an ein Messmodul 14 angeschlossen, das die Kapazität der kapazitiven Messsonde 12 misst und seine Messwerte an einen Mikroprozessor 16 weitergibt. In einem Speichermodul 20, auf das der Mikroprozessor 16 Zugriff hat, sind Eichwerte für einen Temperaturbereich unterhalb und oberhalb der kritischen Temperatur des Kohlendioxids gespeichert. Mittels einer Temperatursonde 18 wird die Umgebungstemperatur erfasst. Der Mikroprozessor 16 errechnet, anhand der gemessenen Temperatur und des Eichwertes für diese Temperatur, den Kohlendioxidinhalt der Druckflasche 10 und vergleicht diesen errechneten Kohlendioxidinhalt mit dem Sollinhalt der Druckflasche. Falls ein Gasvertust festgestellt wird der einen vorgegebenen Wert überschreitet, erzeugt der Mikroprozessor 16 eine Alarmmeldung, die z.B. mittels einem optischen und/oder akustischen Alarmmodul 22 angezeigt wird. Auf diese Art und Weise wird eine einfache Vorrichtung zum Feststellen eines Gasverlustes aus einem Kohlendioxid-Druckbehälter geschaffen, die auch bei hohen Umgebungstemperaturen einsetzbar ist.
    Fig. 2 zeigt ein Auslassventil 30 einer stationären Kohlendioxid-Feuerlöschvorrichtung in das eine kapazitive Messsonde 12 integriert ist. Der Oberteil 31 des Auslassventils 30, welcher eine Auslösevorrichtung umfasst, ist in Fig. 2 nur angedeutet, da er für das Verständnis der vorliegenden Erfindung nicht von Bedeutung ist.
    Das Auslassventil 30 umfasst einen Ventilkörper 31 mit einem Ventilsockel 32 mit einem Außengewinde 34, mit dem es in den Flaschenhals einer Kohlendioxid-Druckflasche eingeschraubt wird. Hierzu ist anzumerken, dass die Kohlendioxid-Druckflaschen, die in stationären Feuerlöschvorrichtungen eingesetzt werden, in ihrem Flaschenhals lediglich ein W 28,8 x 1/14" Gewinde nach DIN 477 zum Einschrauben des Ventilsockels 32 aufweisen, d.h. dass im Ventilsockel 32 relative enge Platzverhältnisse vorherrschen.
    Innerhalb des Ventilsockels 32 ist eine Einlassbohrung 36 angeordnet, in die ein Steigrohr 38 axial einmündet Dieses Steigrohr 38 erstreckt sich bis in die Nähe des Flaschenbodens. Man beachte, dass in einer stationären Kohlendioxid-Feuerlöschvonichtung die Einlassbohrung 36 im Ventilsockel 32 und das Steigrohr 38 mindestens einen Innendurchmesser von 12 mm haben müssen, damit gewährleistet ist, dass nach Auslösen der Feuerlöschvorrichtung, das Löschgas mit ausreichend niedrigem Druckverlust über das Steigrohr 38 in das Auslassventil 30 einströmen kann.
    Die kapazitive Messsonde 12 wird in dem Auslassventil 30 der Fig. 2 durch das Steigrohr 38 und durch ein äußeres Elektrodenrohr 40 ausgebildet, welches das Steigrohr 38 mit einem Zwischenspalt 42 umgibt. Mit anderen Worten, die kapazitive Messsonde 12 umfasst zwei koaxiale rohrförmige Elektroden, wobei das Steigrohr 38 die innere Elektrode, das Elektrodenrohr 40 die äußere Elektrode ausbildet. Der ringförmige Zwischenspalt 42 zwischen den beiden Elektroden 38 und 40 wird durch flüssiges, gasförmiges oder superkritisches Kohlendioxid eingenommen, das ein Dielektrikum zwischen den beiden Elektroden 38 und 40 ausbildet.
    Ringförmige Abstandshalter 44, 44' aus einem isolierenden Material, deren Wandstärke der Breite des Zwischenspalts 42 entspricht, sind jeweils mittels einem Paar Sicherungsringe 46, 46' am Steigrohr 38 befestigt und gewährleisten, dass der ringförmige Zwischenspalt 42 zwischen den beiden Elektroden über die ganze Länge der Messsonde 12 konstant bleibt. Man beachte, dass die Abstandshalter 44, 44' lokale Abflachungen 45, 45' aufweisen, so dass das Kohlendioxid an den Abstandshaltem 44, 44' entlang in den Zwischenspalt 42 einströmen kann. Mit dem Bezugszeichen 48 ist eine Lüftungsöffnung am oberen Ende des äußeren Elektrodenrohrs 40 bezeichnet, die gewährleistet, dass das Flüssigkeüsniveau und der Druck in dem Zwischen spalt 42 und der Druckflasche stets übereinstimmen.
    Der Einbau der Messsonde 12 in den Ventilsockel 32 wird jetzt anhand der Fig. 3 näher beschrieben. Eine Isoliermuffe 50 ist auf das obere Ende des Steigrohrs 38 aufgeschraubt. Diese Isoliermuffe 50 umfasst an ihrem oberen Ende ein erstes Außengewinde 52 mit dem sie in ein Innengewinde 52' in einer Bohrung des Ventilsockels 32 eingeschraubt ist Das untere Ende der Isoliermuffe 50 steht aus der Bohrung des Ventilsockels 32 hervor und ist mit einem zweiten Außengewinde 54 versehen. Auf dieses zweite Außengewinde 54 ist das obere Ende des äußeren Elektrodenrohrs 40 derart aufgeschraubt, dass es mit seiner Stirnfläche 56 fest an eine Stimfläche 58 des elektrisch leitenden Ventilsockels 32 angepresst ist und somit mit diesem in elektrischen Kontakt steht. Es ist hervorzustreichen, dass die Isoliermuffe 50 folglich die Funktion eines elektrischen Isolators zwischen Steigrohr 38 und Ventilsockel 32, eines isolierenden Abstandshalters zwischen Steigrohr 38 und äußerem Elektrodenrohr 40 und einer Befestigungs- und Anpressvorrichtung für das äußere Elektrodenrohr 40 erfüllt. Durch diese Multifunktionsmuffe wird ein Minimum an Einzelteilen für den Einbau der beiden Messelektroden 38, 40 benötigt. Man beachte weiterhin, dass die Isoliermuffe 50 ebenfalls eine elektrisch leitende Außenwand aufweisen kann, über die der Ventilsockel 32 und das äußere Elektrodenrohr 40 elektrisch miteinander verbunden sind. Hierdurch wird der elektrische Kontakt zwischen Ventilsockel 32 und äußerem Elektrodenrohr 40 noch weiter verbessert.
    Mit dem Bezugszeichen 60 ist ein Kontaktring bezeichnet, der ungefähr den gleichen Innen- und Außendurchmesser wie die Stirnfläche 62 des Steigrohrs 38 aufweist. Dieser Kontaktring 60 ist in eine Ausnehmung in einer ersten Stirnseite eines Isolierrings 64 eingepasst. Letzterer weist den gleichen Innendurchmesser, jedoch einen größeren Außendurchmesser als der Kontaktring 60 auf und liegt mit seiner zweiten Stirnfläche an einer Schulterfläche 66 in der Einlassbohrung 36 auf. Durch Einschrauben des Steigrohrs 38 mittels der Isoliermuffe 50 in den Ventilsockel 32, wird die Stimfläche des Steigrohrs 38 fest an den Kontaktring 60 angepresst, so dass eine zuverlässige elektrische Verbindung zwischen Steigrohr 38 und Kontaktring 60 hergestellt wird. Zusammenfassend bleibt also festzustellen, dass das Steigrohr 38 in der Einlassbohrung 36 des Ventilsockels 32 mit dem Kontaktring 60 großflächig in Kontakt steht, wobei der Kontaktring 60 durch den Isolierring 64 vom leitenden Ventilsockel 32 zuverlässig isoliert ist.
    Mit dem Bezugszeichen 70 ist ein Anschlusskanal im Ventilsockel 32 bezeichnet, der in der Schulterfläche 66 eine Öffnung ausbildet, an welcher der Isolierring 64 in der Einlassbohrung 36 aufliegt. Der Isolierring 64 weist eine Ringnut 72 in der Stirnfläche die an der Schulterfläche 66 aufliegt auf, wobei die Öffnung des Anschlusskanal 70 in diese Ringnut 72 einmündet. Eine Durchbohrung 74 des Isolierrings 64 erstreckt sich von der Ringnut 72 zum Kontaktring 60. Ein isolierter Anschlussdraht 76 ist mit einem ersten Ende an den Kontaktring 60 fest angeschlossen und durch die Durchbohrung 74 und die Ringnut 72 des Isolierrings 64 in den Anschlusskanal 70 eingeführt. Die Ringnut 72 verhindert hierbei, dass der Anschlussdraht 76 abgeschert wird, falls der Kontaktring 60 in der Einlassbohrung 36 verdreht wird.
    Die Beschreibung wird jetzt anhand der Fig. 4 fortgesetzt. Der Anschlussdraht 76 ist fest an ein stabförmiges Anschlusselement 78 angeschlossen. Letzteres ist abgedichtet in eine konusförmige Isoliermuffe 80 eingesetzt, die ihrerseits mittels einer Klemmschraube 82 in eine konische Bohrung 84 im Ventilkörper abgedichtet eingepresst ist.
    Mit dem Bezugszeichen 90 ist in Fig. 4 eine Platine mit einer elektronischen Schattung gezeigt, die in eine Kammer 92 des Ventilkörpers eingepasst ist. Ein Schraubstopfen 94 verschließt die Kammer 92 und fixiert zugleich die Platine 90 in der Kammer 92. Ober das Anschlusselement 78 ist die Platine 90 mit dem Steigrohr 38 verbunden, die bekanntlich die erste Elektrode der kapazitiven Messsonde 12 ausbildet. Ober das elektrisch leitende Ventilgehäuse ist die Platine 90 mit dem äußeren Elektrodenrohr 40 verbunden, das bekanntlich die zweite Elektrode der kapazitiven Messsonde 12 ausbildet. Ein Stecker 96 der abgedichtet in eine Anschlussbuchse im Schraubstopfen 94 eingesteckt ist, ermöglicht es die Platine 90 über eine Anschlussleitung 98 an externe Schaltungen, bzw. externe Stromquellen anzuschließen.
    Auf der Platine 90 sind das Messmodul 14, der Mikroprozessor 16, die Temperatursonde 18 und das Speichermodul 20 untergebracht. Ober die Anschlussleitung 98 wird eine Alarmmeldung entweder an ein externes Alarmmodul oder ein zentrales Überwachungsnetz weitergeleitet.
    In der Ausführung nach Fig. 5 und 6 ist das Steigrohr 38' mit einem Ende in die Einlassbohrung 36 des Ventilsockels 32 eingeschraubt, wodurch der elektrische Kontakt zwischen Ventilsockel 32 und Steigrohr 38' unmittelbar hergestellt wird. Das Bezugszeichen 110 bezeichnet eine obere Isolationsmuffe die auf das Steigrohr 38' aufgeschoben ist und über eine Stirnfläche 112 an der Stirnfläche 58 des Ventilsockels 32 anliegt. Das äußere Elektrodenrohr 40' ist mit einem Ende auf das untere Ende der oberen Isolationsmuffe 110 aufgeschoben und liegt mit seiner oberen Stirnfläche an einer Schulterfläche 114 der oberen Isolationsmuffe 110 an. Auf das untere Ende des Steigrohrs 38' ist eine Befestigungsmuffe 116 aufgeschraubt. Letztere weist ein zylindrisches Ende 118 auf, das in das untere Ende des äußeren Elektrodenrohrs 40' eingeführt ist. Beim Festziehen der Befestigungsmuffe 116 stützt sich eine ringförmige Anpressfläche 120 auf der unteren Stirnfläche des Elektrodenrohrs 40' ab, um letzteres axial mit seiner oberen Stirnfläche an die Schulterfläche 114 der oberen Isolationsmuffe 110 anzupressen, welche ihrerseits mit ihrer Stimfläche 112 an die Stirnfläche 58 des Ventilsockels 32 angepresst wird.
    Die untere Befestigungsmuffe 116 umfasst vorteilhaft einen metallische Kemkörper 122, in dem das Innengewinde zum Aufschrauben auf das Steigrohr 38' ausbildet ist, sowie eine Isolationsmuffe 124, die auf den metallische Kemkörper 122 aufgesetzt ist und einen elektrischen Kontakt zwischen dem äußeren Elektrodenrohr 40 und dem metallischen Kemkörper 122 vermeidet. Als Alternative zur Isolationsmuffe 124, kann der metallische Kemkörper 122 auch mit einem isolierenden Material beschichtet sein. Als weitere Alternative zur Isolationsmuffe 124, kann eine Befestigungsmuffe eingesetzt werden welche gänzlich aus einem isolierendem Material hergestellt wird. Die Lösung mit einem metallischen Kemkörper 122 zeichnet sich jedoch durch eine größere mechanische Festigkeit bei starken Temperaturschwankungen aus und wird deshalb bevorzugt. Wie in der Ausführung der Fig. 2, gewährleistet mindestens ein ringförmiger Abstandshalter 44 aus einem isolierenden Material, dass der ringförmige Zwischenspalt 42 zwischen den beiden Rohren über die ganze Länge konstant bleibt.
    Das Bezugszeichen 130 in Fig. 5 bezeichnet einen Arretierstift der in eine Bohrung in der Stirnfläche 58 des Ventilsockels 32 einschraubt ist und in eine Aussparung der oberen Isolationsmuffe 110 derart eingreift, dass er letztere gegen Verdrehen blockiert. Ein durchbohrter Arretierstift 132 wird vorteilhaft als Kabeldurchführung gebraucht. Hierbei ist ein isoliertes Anschlusskabel 134 durch einen Kabelkanal 136 im Ventilsockel 32 durch den durchbohrten Arretierstift 132 in eine äußere Aussparung 138 der Isotationsmuffe 110 eingeführt, wo er elektrisch leitend mit dem äußeren Elektrodenrohr 40' verbunden ist.
    Die Bezugszeichen 140, 142 in Fig. 5 bezeichnen seitliche Öffnungen im unteren und oberen Ende des äußeren Elektrodenrohr 40'. Diese Öffnungen 140, 142 gewährleisten, dass der Zwischenspalt 42 in unmittelbarer Verbindung mit dem Flascheninnenraum steht.
    Es bleibt anzumerken, dass die vorliegende Erfindung zwar nur im Zusammenhang mit dem Feststellen eines Gasverlustes aus einem Kohlendioxid-Druckbehälter beschrieben wurde, dass sie selbstverständlich jedoch auch auf andere Gase anwendbar ist die ähnliche Eigenschaften wie Kohlendioxid aufweisen.

    Claims (17)

    1. Kohlendioxid-Feuerlöschvorrichtung umfassend:
      eine Kohlendioxid-Druckflasche (10) zur Löschmittelbevorratung;
      eine Vorrichtung zum Feststellen eines Gasverlustes aus der Kohlendioxid-Druckflasche (10);
      dadurch gekennzeichnet, dass die Vorrichtung zum Feststellen eines Gasverlustes aus der Kohlendioxid-Druckflasche (10) eine kapazitive Messvorrichtung (11) umfasst, die für einen Temperaturbereich unterhalb und oberhalb der kritischen Temperatur des Kohlendioxids geeicht ist.
    2. Vorrichtung nach Anspruch 1, umfassend:
      eine kapazitive Messsonde (12) die sich über die gesamte Höhe des Druckbehälters (10) erstreckt;
      ein Messmodul (14) zum Messen der Kapazität der kapazitiven Messsonde (12);
      einen Mikroprozessor (16) der einer gemessenen Kapazitätsänderung einen entsprechenden Gasverlust zuordnet; und
      Mittel zum Erzeugen einer Alarmmeldung falls der vom Mikroprozessor ermittelte Gasverlust einen vorgegebenen Wert überschreitet.
    3. Vorrichtung nach Anspruch 2, umfassend:
      einen Temperatursensor (18); und
      einen Speichermodul (20) mit Eichwerten für einen Temperaturbereich unterhalb und oberhalb der kritischen Temperatur des Kohlendioxids, wobei der Mikroprozessor (16) temperaturabhängig auf diese Eichwerte zurückgreift um einer gemessenen Kapazitätsänderung einen entsprechenden Gasverlust zuzuordnen.
    4. Vorrichtung nach Anspruch 1, 2 oder 3, umfassend:
      ein Auslassventil (30) mit einem Ventilsockel (32) zum Aufschrauben auf eine Kohlendioxid-Druckflasche (10), wobei dieser Ventilsockel (32) eine Einlassbohrung (36) aufweist;
      ein Steigrohr (38) das in die Einlassbohrung (36) des Ventilsockels (32) einmündet, so dass das Kohlendioxid-Gas, nach Auslösen der Feuerlöschvorrichtung, über das Steigrohr (38) in das Auslassventil (30) einströmt; und
      eine kapazitive Messsonde (12) die zwei koaxiale Elektroden umfasst, wobei das Steigrohr (38) die erste Elektrode ausgebildet, und die zweite Elektrode durch ein äußeres Elektrodenrohr (40) ausgebildet wird, welches das Steigrohr (38) mit einem Zwischenspalt (42) umgibt.
    5. Vorrichtung nach Anspruch 4, gekennzeichnet durch:
      eine Isoliermuffe (50), die das Ende des Steigrohrs (38) in der Einlassbohrung (36) umgibt und es vom leitenden Ventilsockel (32) elektrisch isoliert;
      ein Kontaktelement (60, 64) in der Einlassbohrung (36) des Ventilsockels (32), das vom leitenden Ventilsockel (32) elektrisch isoliert ist und mit dem ersten Ende des Steigrohrs (38) elektrisch in Kontakt steht;
      wobei das äußere Elektrodenrohr (40) elektrisch mit dem leitenden Ventilsockel (32) in Kontakt steht.
    6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass das Steigrohr (38) eine ringförmige Stirnfläche (62) als Kontaktfläche für das isolierte Kontaktelement (60, 64) aufweist.
    7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass das isolierte Kontaktelement (60, 64) folgende Teile umfasst:
      einen Kontaktring (60) mit ungefähr gleichem Innen- und Außendurchmesser wie die ringförmige Kontaktfläche (62) des Steigrohrs (38); und
      einen Isolierring (64) mit größerem Außendurchmesser als der Kontaktring (60), der mit einer Stirnfläche an einer Schulterfläche (66) der Einlassbohrung (36) aufliegt und in der anderen Stirnfläche eine Ausnehmung aufweist in die der Kontaktring (60) eingepasst ist.
    8. Vorrichtung nach Anspruch 7, gekennzeichnet durch:
      einen Anschlusskanal (70) im Ventilsockel (32), der eine Öffnung in der Schulterfläche (66) ausbildet an welcher der Isolierring (64) aufliegt;
      eine Ringnut (72) in der Stirnfläche des Isolierrings (64) die an dieser Schulterfläche (66) aufliegt, wobei die Öffnung des Anschlusskanals (70) in der Schulterfläche (66) in diese Ringnut (72) einmündet;
      eine Durchbohrung (74) des Isolierrings (64) von der Ringnut (72) zum Kontaktring (60); und
      einen isolierten Anschlussdraht (76) der mit einem ersten Ende an den Kontaktring (60) fest angeschlossen ist und durch die Durchbohrung (74) und die Ringnut (72) des Isolierrings (64) in den Anschlusskanal (70) eingeführt ist.
    9. Vorrichtung nach Anspruch 8, gekennzeichnet durch ein von außen zugängliches erstes Anschlusselement (78), das abgedichtet und elektrisch isoliert in eine Bohrung des Ventilsockels (32) eingesetzt ist und an welches das zweite Ende des Anschlussdrahts (76) fest angeschlossen ist.
    10. Vorrichtung nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass das äußere Elektrodenrohr (40) eine ringförmige Stirnfläche (56) aufweist die an eine ringförmige Stirnfläche (58) des Ventilsockels (32) angepresst ist
    11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass ein Ende der Isoliermuffe (50) aus der Bohrung des Ventilsockels (32) herausragt und das Elektrodenrohr (40) auf dieses Ende der Isoliermuffe (50) derart aufgeschraubt ist, dass seine ringförmige Stirnfläche fest an die ringförmige Stirnfläche des Ventilsockels (32) angepresst ist.
    12. Vorrichtung nach einem der Ansprüche 5 bis 11, dadurch gekennzeichnet, dass die Isoliermuffe (50) in die Einlassbohrung (36) eingeschraubt ist.
    13. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet:
      dass ein erstes Ende der Isoliermuffe (50) in die Einlassbohrung (36) eingeschraubt ist und das zweite Ende der Isoliermuffe (50) aus der Einlassbohrung (36) herausragt;
      dass das äußere Elektrodenrohr (40) auf das zweite Ende der Isoliermuffe (50) aufgeschraubt ist; und
      dass die Isoliermuffe (50) eine elektrisch leitende Außenwand aufweist, über die der Ventilsockel (32) und das äußere Elektrodenrohr (40) elektrisch miteinander verbunden sind.
    14. Vorrichtung nach einem der Ansprüche 5 bis 13, dadurch gekennzeichnet, dass das Steigrohr (38) in die Isoliermuffe (50) eingeschraubt ist.
    15. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet dass:
      das Steigrohr (38) mit seinem oberen Ende in die Einlassbohrung (36) des Ventilsockels (32) eingeschraubt ist;
      eine obere Isolationsmuffe (110) auf das obere Ende des Steigrohr (38') aufgeschoben ist;
      eine untere Befestigungsmuffe (116) auf das untere Ende des Steigrohrs (38') aufgeschraubt ist, wobei die aufgeschraubte Befestigungsmuffe (116) das äußere Elektrodenrohr (40') axial gegen die obere Isolationsmuffe (110) presst.
    16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet dass:
      die obere Isolationsmuffe (110) gegen eine Stirnfläche (58) des Ventifsockels (32) gepresst wird.
    17. Vorrichtung nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass die untere Befestigungsmuffe (116) umfasst:
      einen metallischen Kernkörper (122) der auf das untere Ende des Steigrohrs (38') aufgeschraubt ist; und
      einen Isolator der zwischen dem metallischen Kemkörper (122) und dem äußeren Elektrodenrohr (40') angeordnet ist.
    EP01969584A 2000-08-10 2001-08-10 Kohlendioxid-Feuerlöschvorrichtung Expired - Lifetime EP1307683B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    LU90629A LU90629B1 (de) 2000-08-10 2000-08-10 Vorrichtung zum Feststellen eines Gasverlustes auseinem Kohlendioxid-Druckbeh{lter.
    LU90629 2000-08-10
    PCT/EP2001/009269 WO2002012781A1 (de) 2000-08-10 2001-08-10 Kohlendioxid-feuerlöschvorrichtung

    Publications (2)

    Publication Number Publication Date
    EP1307683A1 EP1307683A1 (de) 2003-05-07
    EP1307683B1 true EP1307683B1 (de) 2004-05-12

    Family

    ID=19731923

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01969584A Expired - Lifetime EP1307683B1 (de) 2000-08-10 2001-08-10 Kohlendioxid-Feuerlöschvorrichtung

    Country Status (9)

    Country Link
    US (1) US6836217B2 (de)
    EP (1) EP1307683B1 (de)
    JP (1) JP4751007B2 (de)
    CN (1) CN1230647C (de)
    AU (1) AU2001289797A1 (de)
    DE (1) DE50102278D1 (de)
    LU (1) LU90629B1 (de)
    RU (1) RU2266464C2 (de)
    WO (1) WO2002012781A1 (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102010004902A1 (de) * 2010-01-19 2011-07-21 Piontek, Bernd, Dr., 45549 Vorrichtung zur Entleerung von Flüssigkeiten oder Pulvern aus Behältern

    Families Citing this family (24)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    NL1026216C2 (nl) * 2004-05-18 2005-11-21 Fernandus Cornelis Koelewijn Inrichting en werkwijze voor het tegen brand beveiligen van een object.
    DE102006016554A1 (de) * 2006-04-07 2007-10-11 L'Air Liquide, S.A. a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren zum Befüllen mindestens eines Druckgasbehälters mit mindestens einem Gas, Zwischenstück zum Verbinden mit einer Öffnung eines Druckgasbehälters und Druckgasflaschenarmatur
    WO2007124784A1 (en) * 2006-04-28 2007-11-08 Luxembourg Patent Company S.A. Gas tank containing a compressed combustible gas
    EP1884757B1 (de) 2006-08-02 2013-10-16 Air Products and Chemicals, Inc. Verfahren und Vorrichtung zur Überwachung von Flussigkeitsdruck
    DE202006021007U1 (de) * 2006-10-09 2012-01-04 Minimax Gmbh & Co. Kg Feuerlöschanlage für ein Gehäuse
    DE102006048015B4 (de) * 2006-10-09 2015-01-29 Minimax Gmbh & Co. Kg Feuerlöschanlage für ein Gehäuse
    IT1391473B1 (it) * 2008-09-29 2011-12-23 Melli Automazione S R L Dispositivo di monitoraggio per un apparecchio antincendio.
    RU2561841C2 (ru) * 2010-12-30 2015-09-10 Ютс Файер Энд Секьюрити Корпорейшн Противопожарная управляющая система
    RU2476760C2 (ru) * 2011-05-05 2013-02-27 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Устройство для пожаротушения
    GB201109290D0 (en) 2011-06-02 2011-07-20 Linde Ag A flow apparatus and monitoring system relating thereto
    RU2515074C1 (ru) * 2012-12-07 2014-05-10 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова РАН Устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре
    CN103759893A (zh) * 2014-01-03 2014-04-30 重庆和航科技股份有限公司 气体灭火系统灭火剂泄漏监测方法、装置及远程监控系统
    RU2626303C1 (ru) * 2016-05-10 2017-07-25 Федеральное государственное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре
    RU169277U1 (ru) * 2016-09-19 2017-03-13 Закрытое акционерное общество "АРТСОК" Устройство контроля утечки газа
    CN109520559A (zh) * 2018-09-30 2019-03-26 西安工程大学 一种气瓶气体压力与温度的实时监测装置
    WO2020112227A1 (en) * 2018-11-30 2020-06-04 Carrier Corporation Printed capacitive liquid level sensor for fire suppression
    WO2020112236A1 (en) * 2018-11-30 2020-06-04 Carrier Corporation Suppression tank scale and level determination
    CN109621274A (zh) * 2018-12-07 2019-04-16 福州大学 一种基于超临界二氧化碳的隔爆装置及其工作方法
    IT201800020317A1 (it) * 2018-12-20 2020-06-20 Algobrain S R L Wireless Estintori Telecontrollo
    CN109681205A (zh) * 2019-02-19 2019-04-26 贵州致裂科技有限公司 一种二氧化碳致裂器
    CA3071170C (en) * 2019-02-28 2022-04-12 Carrier Corporation Suppressant detection based on capacitive sensing
    US11385092B2 (en) * 2020-02-27 2022-07-12 Carrier Corporation Suppressant detection based on capacitive sensing
    CN112577846A (zh) * 2020-11-30 2021-03-30 广东星联精密机械有限公司 一种用称重法检测瓶子二氧化碳留存性能的方法
    EP4230971A1 (de) * 2022-02-20 2023-08-23 Hexagon Ragasco AS Intelligentes verbunddruckgefäss

    Family Cites Families (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3735376A (en) * 1971-03-05 1973-05-22 Htl Industries Leakage indicator for a fire extinguisher
    US3946175A (en) * 1973-12-03 1976-03-23 Htl Industries, Inc. Magnetic pressure indicator for a container
    WO1981002484A1 (en) * 1980-02-22 1981-09-03 Caterpillar Tractor Co Leak detection apparatus
    GB2084014B (en) * 1980-09-23 1984-06-13 Rampart Engineering Co Ltd Fire extinguishers
    EP0162879B1 (de) 1983-11-16 1989-01-25 Mb Group Plc Gasfüllverfahren und apparat für einen behälter
    JPS6124600U (ja) 1984-07-06 1986-02-13 株式会社 ネリキ 残量表示装置付き高圧ガス容器用バルブ
    JPH0626909A (ja) * 1992-07-10 1994-02-04 Japan Tobacco Inc 圧力容器における接触界面位置調節方法および装置
    JPH06241875A (ja) * 1993-02-17 1994-09-02 Tokimec Inc 消火薬剤量監視装置
    CA2113774A1 (en) 1994-01-19 1995-07-20 Harold L. Gier Loading, storage and delivery apparatus and method for fluid at cryogenic temperature
    LU88552A1 (fr) 1994-10-31 1995-02-01 Luxembourg Patent Co Robinet avec jauge de niveau intégrée
    US5518032A (en) * 1995-06-05 1996-05-21 Berke; Lanny R. Pressure vessel safety relief
    GB2315335A (en) * 1996-07-16 1998-01-28 First Technology Fire & Safety Monitoring weight loss from articles
    US6131667A (en) * 1997-12-18 2000-10-17 Safety Inventions, Ltd., Part. Manual and automatic fire extinguishing systems
    FR2785046B1 (fr) * 1998-10-23 2001-01-26 Claude Launay Dispositif de mesure reposant sur la mesure indirecte de la permittivite
    JP3321460B2 (ja) * 2000-04-03 2002-09-03 三菱マテリアル株式会社 近臨界流体液面感知センサ

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102010004902A1 (de) * 2010-01-19 2011-07-21 Piontek, Bernd, Dr., 45549 Vorrichtung zur Entleerung von Flüssigkeiten oder Pulvern aus Behältern
    DE102010004902B4 (de) * 2010-01-19 2011-09-01 Bernd Piontek Vorrichtung zur Entleerung von Flüssigkeiten oder Pulvern aus Behältern

    Also Published As

    Publication number Publication date
    US6836217B2 (en) 2004-12-28
    DE50102278D1 (de) 2004-06-17
    US20040164868A1 (en) 2004-08-26
    JP2004505699A (ja) 2004-02-26
    RU2266464C2 (ru) 2005-12-20
    LU90629B1 (de) 2006-02-21
    EP1307683A1 (de) 2003-05-07
    CN1446296A (zh) 2003-10-01
    AU2001289797A1 (en) 2002-02-18
    JP4751007B2 (ja) 2011-08-17
    WO2002012781A1 (de) 2002-02-14
    CN1230647C (zh) 2005-12-07

    Similar Documents

    Publication Publication Date Title
    EP1307683B1 (de) Kohlendioxid-Feuerlöschvorrichtung
    CH653130A5 (de) Stabfoermige sonde fuer die kapazitive messung des fuellstandes in einem behaelter.
    DE69425215T2 (de) Kapazitive, hermetisch dichte, eigensichere Hochdruck-Messsonde
    EP0542956B1 (de) Vorrichtung zur elektrisch isolierten befestigung einer metallischen sondenelektrode in der öffnung eines gehäuses
    DE112005002501B4 (de) Pirani-Vakuummessvorrichtung
    DE19507616B4 (de) Sonde zur Überwachung von Flüssigkeit mit Leckageschutz
    DE3731793C2 (de)
    EP0519245A1 (de) Temperaturmess- und Anzeigevorrichtung
    WO2010000087A1 (de) Zundkerze mit drucksensor
    DE102009020439B4 (de) Zweipoliger Flüssigkeits-Leitfähigkeitssensor für hohe Hygieneanforderungen
    DE19808878B4 (de) Meßgerät für die Prozeßmeßtechnik
    WO2004065799A2 (de) Befestigungssystem für ein messgerät zur überwachung und/oder bestimmung eines füllstands
    DE2818140A1 (de) Kraftmesszelle, insbesondere waegezelle mit einem auf biegung beanspruchbaren messkoerper
    DE202007005297U1 (de) Kältemittelmess- und Warneinrichtung und deren Messfühler
    DE102017117906A1 (de) Rohradapter und Feldgerät
    DE4116355C2 (de) Meßfühler
    DE3050189C2 (de) Stabförmige Sonde für die kapazitive Messung des Füllstandes in einem Behälter
    DE2142638A1 (de) Rucklauftransformatoranordnung
    EP0094446B1 (de) Druckaufnehmer mit einer Membran und einem Überlastanschlag
    DE4428616A1 (de) Kapazitive Sonde zur Überwachung von Flüssigkeit in einem Behälter
    WO1982001017A1 (en) Reactive anode with consumption indicator and diving capsule for a heat probe
    WO2002095420A2 (de) Prozessanschluss
    DE102004010912B4 (de) Messsonde zur Bestimmung von physikalischen Parametern an oder in einem Kessel
    DE3313884A1 (de) Stroemungssonde
    DE1642448C3 (de) Vorrichtung zum Überwachen des Erschöpfungsgrades von Ionenaustauschern für Wasserentmineralisierungsgeräte

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20030120

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RTI1 Title (correction)

    Free format text: CARBON DIOXIDE FIRE EXTINGUISHING DEVICE

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20040512

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50102278

    Country of ref document: DE

    Date of ref document: 20040617

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040705

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20040512

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050215

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20180713

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20180717

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20190820

    Year of fee payment: 19

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20190810

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190810

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50102278

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20210302