EP1307395A1 - Dispositif de surveillance pour ascenseur - Google Patents

Dispositif de surveillance pour ascenseur

Info

Publication number
EP1307395A1
EP1307395A1 EP01957667A EP01957667A EP1307395A1 EP 1307395 A1 EP1307395 A1 EP 1307395A1 EP 01957667 A EP01957667 A EP 01957667A EP 01957667 A EP01957667 A EP 01957667A EP 1307395 A1 EP1307395 A1 EP 1307395A1
Authority
EP
European Patent Office
Prior art keywords
unit
monitoring device
response
elevator
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01957667A
Other languages
German (de)
English (en)
Other versions
EP1307395B1 (fr
EP1307395B2 (fr
Inventor
Killian Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8174850&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1307395(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP01957667A priority Critical patent/EP1307395B2/fr
Publication of EP1307395A1 publication Critical patent/EP1307395A1/fr
Publication of EP1307395B1 publication Critical patent/EP1307395B1/fr
Priority to CY20071100157T priority patent/CY1105988T1/el
Application granted granted Critical
Publication of EP1307395B2 publication Critical patent/EP1307395B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/22Operation of door or gate contacts

Definitions

  • the invention relates to a monitoring device for an elevator, which comprises at least one switching device u which can be actuated without contact.
  • Switching devices must have a certain state in order to be able to safely carry out the intended action.
  • Elevator cabin all doors remain closed and mechanically locked.
  • a monitoring device for a control device having a safety chain is known from the document EP 0 535 205 B1, which is provided with a switching device comprising a sensor that can be triggered without contact.
  • the switches or sensors are actuated by approaching or removing a magnet.
  • a disadvantage of this solution is the fact that the switch or the sensor responds to each magnet, regardless of whether this magnet is the correct magnet and the magnet intended for the selected switch or sensor. It is enough to approximate an appropriate material in order to trigger a valid signal. As soon as the switch is in the effective range of the magnet, it triggers a valid signal. A malfunction (incorrect triggering) of the switch or sensor can hardly be excluded with reasonable effort. An erroneous triggering can also be caused, for example, by artifacts and / or external faults, which is dangerous for the safe operation of the elevator system.
  • the invention has for its object a
  • a monitoring device for an elevator of the type mentioned at the outset which does not have the aforementioned disadvantages and enables safe and trouble-free monitoring. Furthermore, the monitoring device is insensitive to artifacts and external manipulations. The components to be monitored can be clearly identified by means of the monitoring device.
  • Another advantage is that several switching devices can be monitored for functionality and condition at the same time.
  • Several active units are chained in such a way that the responses of all passive units are linked in such a way that mutual interference in the sense of a misinterpretation can be excluded.
  • Another advantage is the fact that data exchange between the active and passive unit can only take place by bringing the coils working as antennas closer together.
  • the passive unit does not need its own energy supply or battery. This is achieved in that it has an energy store in which the energy transmitted by the active unit can be stored. This saves energy. Since the energy has to be transmitted to generate the response, no spontaneous activity is possible.
  • Fig. 1 shows a switching device of the safety chain in the idle state, i.e. in ineffective condition
  • Fig. 2 shows the switching device from Fig. 1 in the operating state, i.e. in the effective state
  • FIG. 6 shows a central control unit according to an embodiment of the invention
  • Fig. 7 shows a security chain for the door contacts of an elevator system.
  • FIG. 1 shows a switching device 1 of an electronic security chain, the switching device 1 having an active unit designed as an interrogation unit 2 and a passive unit designed as an answering unit 3.
  • the response unit 3 can be, for example, a transponder, a tag, a smart card or a chip card.
  • the interrogation unit 2 has a first coil 4 and the Response unit 3 a second coil 5.
  • the interrogation unit 2 and the response unit 3 are in a so-called idle state, that is to say they are so far apart from one another that there is no interaction, that is to say no electromagnetic coupling between them.
  • the query unit 2 generates a pattern M, which is transmitted to the response unit 3 and to which the response unit 3 does not respond.
  • FIG. 2 shows the same switching device 1 from FIG. 1, but in this case it is in a so-called operating state.
  • the query unit 2 and the response unit 3 are arranged so close to one another that an interaction takes place. There is therefore an electromagnetic coupling between the interrogation unit 2 and the response unit 3.
  • the answering unit 3 gives a complex answer M 'to the pattern M generated by the query unit 2.
  • the interrogation unit 2 can have a generator 6, a first modulator 7 and a first demodulator 8.
  • the generator 6 can be, for example, an HF generator, an RF generator and so on.
  • the response unit 3 can in turn have a second modulator 9 and a second demodulator 10.
  • Response unit 3 can furthermore have an energy store 11, which can be designed, for example, as a capacitor with a capacitance.
  • the response unit 3 therefore preferably does not have its own energy supply or battery.
  • Interrogation unit 2 response unit 3 is in a preferred
  • the query unit 2 is designed such that it is able to transmit information to the answering unit 3 and / or to receive information from the answering unit 3.
  • the first coil 4 and the second coil 5 are designed as an antenna.
  • the interrogation unit 2 transmits the energy to the response unit 3 via an electromagnetic field.
  • electromagnetic coupling is used because the energy transfer works similarly to a transformer, where the energy is transferred from the primary winding to the secondary winding through close coupling.
  • the energy coupled in via the electromagnetic field temporarily stores the response unit 3 in the energy store 11. As soon as the response unit 3 has received enough energy, it becomes functional and responds in a very specific manner to the pattern M generated by the query unit 2.
  • the pattern M and / or the answer M 'can for example, be numbers which are represented by a bit pattern / bit sequence.
  • the pattern M exciting the response unit 3 need not be very complex since it is primarily the
  • the pattern M can be an RF carrier, for example, and can be generated as a phase-modulated RF signal.
  • the pattern M is used by the response unit 3 only for energy generation and synchronization of a response.
  • the pattern M as Instruction to the response unit 3 can be understood to generate a corresponding response M '.
  • the pattern M need not be constant and can be specified by the query unit 2 or from outside.
  • the response unit 3 changes the pattern M in such a way that it is ensured that this change is carried out by the corresponding response unit 3 itself and not by another element. This can be done, for example, by the answering unit 3 responding to a request by transmitting a unique number. The response unit 3 is thus clearly identified.
  • FIG. 3 shows a chain of several switching devices 1, which are linked to one another in series with a central control unit 12.
  • Control unit 12 sends a command r (x) and an instruction a (w) in data word format via a serial channel 13 to all query units 2 of the security chain S.
  • An electromagnetic signal is generated therefrom and as a pattern M, which is used, for example, with the function M (R , x) can be represented, transmitted to the response units 3.
  • the Pattern M excites the respective response units 3 if they are within the range / range of action of the query units 2.
  • Each response unit 3 has a characteristic function fi (x), where i represents the number of participants, so in this example the response units 3 are designated with the characteristic functions f0 (x), f1 (x) and f2 (x).
  • the response units 3 process the pattern M with the respective characteristic functions fi (x).
  • the respective responses M 1 designed as electromagnetic information which can be represented, for example, by the function M '(A, fi (x)), are converted into data word information and additively linked along the serial channel 13.
  • the result a (w + fi (x)) is reported back to the central control unit 12.
  • the central control unit 12 must be functional and reliable, which can be ensured in a known manner, for example, by a redundant decision branch, not shown ,
  • the responses M 'of the response units 3 can be linked additively, it being ensured that the responses of all switching devices 1 are independent of one another. In this example, this is achieved through the characteristic functions f ⁇ (x), fl (x) and f2 (x).
  • the communication with the central control unit 12 and the data transmission to the same can take place, for example, via a bus 13.
  • the characteristic function fi (x) of the response unit 3 is stored in a table, for example. This means that the determination of the function value is traced back to reading out a memory addressed by the function argument.
  • a preferred embodiment variant results from an arrangement as set out in the following FIGS. 4, 5 and 6.
  • the response unit 3 has an address / data memory 14, an intermediate data memory 15, a local control unit 16, a modulation / demodulation unit 17 and an antenna 18, which can be designed as a coil.
  • the pattern M can be represented, for example, with the function M (R, x), where R represents an inquiry and x an address. If a pattern M (R, x) is picked up by the antenna 18 and then demodulated by the modulation / demodulation unit 17, this becomes an inquiry R of a local one
  • Control unit 16 communicated. This then causes reading the cell with the address x from the address / data memory. The value read out is interpreted as the result fi (x), modulated together with the identifier A and emitted via the antenna 18 as a response M ', which can thus be represented as a function M' (A, fi (x)).
  • the configuration of the address / data memory so that the contents at the addresses x correspond to the values f (x) can also be carried out using analog mechanisms with appropriate commands or separately, for example by means of a laser and permanent change in the semiconductor structure.
  • the answers M 'of several answering units are linked by serial addition of the individual results along a bus 13.
  • the queries of the answering units 3 can also be triggered using appropriate commands.
  • the interrogation unit 2 has a further antenna 19, a further modulation / demodulation unit 20, a further local control unit 21, a further intermediate data memory 22, an adder 23, and a bus coupling 24, which is positioned along the serial bus 13.
  • Response units 3 which are in sufficient proximity to the further antenna 19 are located, then respond with the answer M '(A, f (x)). This is demodulated and stored in the further intermediate data memory 22 as a result. If there is then an instruction a (w) with argument w through the bus 13, the sum w + f (x) is generated in the serial adder 23 and passed on via the bus coupling 24 as a (w + f (x)).
  • the result determined by the summation over all tags is compared with that determined by the interrogation unit, and if the safety circuit matches, it is evaluated as closed.
  • the central control unit 12 has a control unit 25, a random generator 26, a memory 27, a computer 28, a comparator 29 and a coupling 30, which ensures the serial link with the query units 2.
  • a random argument x is generated by the random generator 26 and output to the query units 2 as the command r (x).
  • the random argument x will then correspond to an address of the address / data memory 14 of the response unit 3.
  • the "setpoint" f A 0 (x) + ... + f ⁇ (x) is calculated using the information relating to the functions fi stored in the memory 27. All those answer units TO ... TN that are used for
  • f (x) can also be used.
  • f should be chosen so that a simple criterion can be used to check the result.
  • Such functions are well known in the field of cryptography under the term “one way function” or "trap door function”. The function need not necessarily deliver scalar results.
  • Hierarchy level is guaranteed, the requirements on the bus system itself are very low.
  • interlinking of the interrogation stations can also be accomplished by functions other than the addition.
  • a single query of all tags is also conceivable.
  • the security requirements for the components are low.
  • the security results primarily from the handling of information. It only needs to be ensured that the comparator is safe works and its input signals come from independent sources (calculation / bus).
  • the central control unit 12 issues a query command r (x) which is propagated along the bus 13 by the query units 2.
  • the query command r (x) serves as a control command for each query unit 2 to generate a response in the response units 3.
  • the response units 3 have the characteristic functions f0 (x), f1 (x) and f2 (x) in the row.
  • the central control unit also sends the instruction a (w) on the bus 13, which the query units 2 interpret as quasi a read command to read the answers M 'and to forward them on.
  • Each shaft door 32 has a first door leaf 32 ′ and a second door leaf 32 ′′, which are movable relative to one another for opening and closing the door.
  • the closing direction of the shaft doors 32 is shown by the arrows P in FIG.
  • the first door leaf 32 ' has the interrogation unit 2 and the second door leaf 32''has the answering unit 3.
  • Response unit 3 are attached to the respective door leaf 32 ', 32''arranged so that they attach Schli' eat the shaft door 32 may come so close that they can interact in the sense of this invention together, which means that between which the above-mentioned elektromamegnetician coupling can take place.
  • the query units 2 and the response units 3 are preferably located on those parts of the respective door leaves which overlap when the door is closed.
  • the query units 2 and the response units 3 are preferably arranged on the corresponding door leaves 32 ′, 32 ′′ such that they only interact in the sense of the invention when the door leaves 32 ′, 32 ′′ are already mechanically or electromechanically locked.
  • the query units 2 of each shaft door 32 are connected to one another via a bus line 13 and to a control unit 12 in series.
  • the query of the query units 2, the response of the answering units 3 and the data transfer to the control unit 12 functions exactly as shown in FIG. 3.
  • the control unit 12 continuously monitors the state of the door contacts and is connected to a central elevator control system (not shown) in a conventional manner.
  • the monitoring device according to the invention can be used at all locations of an elevator to be secured, and the switching devices can replace all safety switches of an elevator.
  • the active and / or the passive unit can also be provided with switch contacts or with semiconductor switches which, for example, put the energy store or the antenna out of operation. This could be used for example with existing mechanical contacts.

Landscapes

  • Indicating And Signalling Devices For Elevators (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)
  • Elevator Door Apparatuses (AREA)
  • Lock And Its Accessories (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Burglar Alarm Systems (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

L'invention concerne un dispositif de surveillance pour ascenseur, qui comporte plusieurs dispositifs de commutation (1) actionnables sans contact, interconnectés en série pour former une chaîne de sécurité (S). Le dispositif de commutation (1) comprend une unité d'interrogation (2) et une unité de réponse (3). L'unité de réponse (3) ne réagit qu'à un modèle (M) produit par l'unité d'interrogation (2), s'ils se trouvent suffisamment proches. Ce système permet d'assurer une surveillance fiable et efficace et de garantir un fonctionnement fiable du système d'ascenseur.
EP01957667A 2000-08-07 2001-08-02 Dispositif de surveillance pour ascenseur Expired - Lifetime EP1307395B2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01957667A EP1307395B2 (fr) 2000-08-07 2001-08-02 Dispositif de surveillance pour ascenseur
CY20071100157T CY1105988T1 (el) 2000-08-07 2007-02-05 Εξοπλισμος επιτηρησης δια εναν ανελκυστηρα

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00810706 2000-08-07
EP00810706 2000-08-07
PCT/CH2001/000474 WO2002012109A1 (fr) 2000-08-07 2001-08-02 Dispositif de surveillance pour ascenseur
EP01957667A EP1307395B2 (fr) 2000-08-07 2001-08-02 Dispositif de surveillance pour ascenseur

Publications (3)

Publication Number Publication Date
EP1307395A1 true EP1307395A1 (fr) 2003-05-07
EP1307395B1 EP1307395B1 (fr) 2006-11-08
EP1307395B2 EP1307395B2 (fr) 2009-11-18

Family

ID=8174850

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01957667A Expired - Lifetime EP1307395B2 (fr) 2000-08-07 2001-08-02 Dispositif de surveillance pour ascenseur

Country Status (14)

Country Link
US (1) US6732839B2 (fr)
EP (1) EP1307395B2 (fr)
JP (1) JP2004505868A (fr)
CN (1) CN1232436C (fr)
AT (1) ATE344778T1 (fr)
AU (2) AU7953101A (fr)
CA (1) CA2416902C (fr)
CY (1) CY1105988T1 (fr)
DE (1) DE50111416D1 (fr)
DK (1) DK1307395T3 (fr)
ES (1) ES2276809T5 (fr)
IL (1) IL153936A0 (fr)
PT (1) PT1307395E (fr)
WO (1) WO2002012109A1 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1289870B1 (fr) * 2000-06-13 2006-06-07 Cedes AG Dispositif de securite pour portes d'ascenseur
US7191165B2 (en) * 2001-06-04 2007-03-13 Synopsys, Inc. Transaction based design verification with hierarchical verification components
WO2003080495A1 (fr) * 2002-03-27 2003-10-02 Inventio Ag Systeme de controle de cage destine a un ascenseur
JP4527362B2 (ja) * 2002-05-03 2010-08-18 インベンテイオ・アクテイエンゲゼルシヤフト エレベータ装置のシャフトドア監視方法
FR2841075B1 (fr) * 2002-06-13 2004-12-24 Systemig Sa Dispositif de controle et/ou de surveillance utilisant au moins un controleur de transmission
FR2841084B1 (fr) * 2002-06-13 2004-12-17 Systemig Sa Dispositif de telereleve d'etats, et applications
JP4205057B2 (ja) 2002-08-01 2009-01-07 オーチス エレベータ カンパニー 無線周波数識別装置(RFIDs)を用いたエレベータ
EP1418149B1 (fr) * 2002-11-08 2011-07-06 Daniel Schürmann Dispositif de sécurité pour porte d'ascenseur
ES2280742T3 (es) * 2003-04-30 2007-09-16 Thyssenkrupp Elevator Ag Instalacion de ascensor y procedimiento para el control de una instalacion de ascensor.
WO2005052842A2 (fr) * 2003-10-31 2005-06-09 Otis Elevator Company Systeme de positionnement a base de detecteur a dispositif de transfert de charge faible resolution et d'identification r.f.
US20080271957A1 (en) * 2004-06-21 2008-11-06 Siewert Bryan R Elevator Door Coupler
EP1765713A4 (fr) * 2004-06-22 2010-03-03 Otis Elevator Co Detecteur de position de porte d'ascenseur
ATE521563T1 (de) * 2004-07-06 2011-09-15 Otis Elevator Co Elektromagnetisch betriebenes aufzugtürschloss
CN100522780C (zh) * 2004-08-31 2009-08-05 三菱电机株式会社 单井道多轿厢方式电梯的控制装置
ATE532736T1 (de) * 2004-09-03 2011-11-15 Otis Elevator Co Aufzug mit einer vorrichtung zur erfassung von fremdkörpern und insbesondere fingern zwischen den türen und den angrenzenden wänden einer aufzugskabine mit glastüren
WO2006041450A2 (fr) * 2004-09-23 2006-04-20 Otis Elevator Company Serrure de porte d'ascenseur
WO2006036146A1 (fr) * 2004-09-27 2006-04-06 Otis Elevator Company Dispositif de detection de verrouillage de porte paliere d'ascenseur
US7896137B2 (en) * 2005-04-01 2011-03-01 Mitsubishi Electric Corporation Elevator power system having plural storage apparatuses
DE102006013578B4 (de) * 2006-03-22 2008-03-27 Phoenix Contact Gmbh & Co. Kg Verfahren und Steuer- und Datenübertragungsanlage zum Überprüfen des Einbauortes eines sicheren Kommunikationsteilnehmers
JP4820905B2 (ja) * 2006-09-12 2011-11-24 オーチス エレベータ カンパニー 自動ドアの動きを制御するセンサを備えるドアアセンブリ
US7958970B2 (en) * 2009-09-02 2011-06-14 Empire Technology Development Llc Acceleration sensor calibrated hoist positioning
KR101481568B1 (ko) 2010-09-13 2015-01-13 오티스 엘리베이터 컴파니 엘리베이터 안전 시스템 및 방법
MY166669A (en) * 2011-08-11 2018-07-18 Inventio Ag Function-monitoring of a safety element
EP2567928B1 (fr) * 2011-09-06 2013-09-11 Cedes AG Capteur, dispositif de sécurisation et dispositif d'ascenseur
FI123145B (fi) * 2012-01-23 2012-11-30 Kone Corp Menetelmä ja järjestely kuljetusjärjestelmän toimintakunnon valvomiseksi
TWI622548B (zh) 2012-12-13 2018-05-01 伊文修股份有限公司 用於人員輸送設備的監視裝置、人員輸送設備、以及用於監視人員輸送設備之方法
SG11201508848YA (en) * 2013-05-28 2015-11-27 Inventio Ag Elevator door with a door contact switch
US11175638B2 (en) 2015-11-09 2021-11-16 Otis Elevator Company Self-diagnostic electrical circuit
CN109071164B (zh) * 2016-05-04 2020-06-09 因温特奥股份公司 包括中央控制单元和多个具有优化的故障识别方法的现场设备的人员运送设备
EP3681833B1 (fr) * 2017-09-13 2021-11-03 Inventio AG Vérification de l'état des appareils de champs d'une installation de transport de personnes reliées aux bâtiments

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3054475A (en) * 1956-12-18 1962-09-18 Schweiz Wagons Aufzuegefab Safety device for an elevator door
US3859624A (en) 1972-09-05 1975-01-07 Thomas A Kriofsky Inductively coupled transmitter-responder arrangement
JPS6232496U (fr) * 1985-08-06 1987-02-26
NL8701565A (nl) * 1987-07-03 1989-02-01 Nedap Nv Identificatiesysteem met twee werkingsmodes.
US5107964A (en) * 1990-05-07 1992-04-28 Otis Elevator Company Separate elevator door chain
DE4032033A1 (de) 1990-10-09 1992-04-16 Siemens Ag Steuerungs- und ueberwachungsverfahren und elektrisches automatisierungssystem fuer eine technische anlage, insbesondere eine schachtanlage
DE4112626A1 (de) * 1991-04-18 1992-10-22 Fraunhofer Ges Forschung Ueberwachungseinrichtung fuer eine steuervorrichtung
US5300875A (en) * 1992-06-08 1994-04-05 Micron Technology, Inc. Passive (non-contact) recharging of secondary battery cell(s) powering RFID transponder tags
JPH0761726A (ja) * 1993-08-23 1995-03-07 Shimizu Corp 仮設エレベーター用呼出表示装置
US5708416A (en) * 1995-04-28 1998-01-13 Otis Elevator Company Wireless detection or control arrangement for escalator or moving walk
US5682024A (en) * 1995-07-31 1997-10-28 Otis Elevator Company Elevator position determination
JPH1045344A (ja) * 1996-08-05 1998-02-17 Toshiba Corp エレベーターの群管理装置
DE19714198A1 (de) 1997-04-07 1998-10-08 Euchner Gmbh & Co Sicherheitsschalter
JP3465869B2 (ja) * 1997-04-11 2003-11-10 ニッタン株式会社 異常検知装置および異常監視システム
WO1998048523A2 (fr) * 1997-04-24 1998-10-29 Koninklijke Philips Electronics N.V. Repondeur d'identification destine a une communication inductive sans contact
DE19737464A1 (de) * 1997-08-28 1999-03-04 Datasec Electronic Gmbh Berührungslos betätigbare Schalteinheit
US5945920A (en) * 1997-12-10 1999-08-31 Atmel Corporation Minimum voltage radio frequency indentification
FI109468B (fi) * 1998-11-05 2002-08-15 Kone Corp Vetopyörähissi
US6173814B1 (en) * 1999-03-04 2001-01-16 Otis Elevator Company Electronic safety system for elevators having a dual redundant safety bus
JP3864647B2 (ja) * 1999-11-26 2007-01-10 株式会社日立製作所 エレベータシステム
JP3857508B2 (ja) * 2000-08-29 2006-12-13 株式会社日立製作所 エレベータ装置
DE10108772A1 (de) * 2001-02-23 2002-11-21 Otis Elevator Co Aufzugssicherheitseinrichtung
US6601679B2 (en) * 2001-09-05 2003-08-05 Otis Elevator Company Two-part wireless communications system for elevator hallway fixtures
US20030089558A1 (en) * 2001-11-09 2003-05-15 Otis Elevator Company Power line carrier used in elevator system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0212109A1 *

Also Published As

Publication number Publication date
JP2004505868A (ja) 2004-02-26
PT1307395E (pt) 2007-02-28
CN1446175A (zh) 2003-10-01
US6732839B2 (en) 2004-05-11
ES2276809T3 (es) 2007-07-01
ES2276809T5 (es) 2010-04-19
CN1232436C (zh) 2005-12-21
DK1307395T3 (da) 2007-02-12
ATE344778T1 (de) 2006-11-15
EP1307395B1 (fr) 2006-11-08
EP1307395B2 (fr) 2009-11-18
WO2002012109A1 (fr) 2002-02-14
CA2416902A1 (fr) 2003-01-22
CY1105988T1 (el) 2011-04-06
US20030111300A1 (en) 2003-06-19
AU2001279531B2 (en) 2006-09-07
AU7953101A (en) 2002-02-18
CA2416902C (fr) 2010-03-23
IL153936A0 (en) 2003-07-31
DE50111416D1 (de) 2006-12-21

Similar Documents

Publication Publication Date Title
EP1307395B1 (fr) Dispositif de surveillance pour ascenseur
EP0755026B1 (fr) Procédé d'identification automatique d'un nombre inconnu de transpondeurs par un lecteur et dispositif d'identification pour la mise en oeuvre de ce procédé
DE4329697C2 (de) Fernsteuerbare Zugangskontrolleinrichtung
DE69831514T2 (de) Identifizierungssystem
EP2401221B1 (fr) Ascenseur pourvu d'un systeme de surveillance
DE3715976A1 (de) Verfahren und schaltungsanordnung zum automatischen identifizieren von lebewesen und gegenstaenden
DE60012378T2 (de) Verfahren und Vorrichtung zur Adresszuweisung an Komponenten in einer Steueranlage
WO2014044524A1 (fr) Système d'accès à un véhicule
DE4026439A1 (de) Elektronisch gesteuertes schlosssystem
DE60007995T2 (de) Verfahren und vorrichtung zur detektion von personen oder objekten in einem abgegrenzten raum mit einem eingang
DE102010019193A1 (de) Netzknoten für ein drahtloses Kommunikationsnetz, insbesondere für ein drahtloses Sensornetz
EP0267528B1 (fr) Système numérique de transmission de données comprenant des répéteurs adressables et des dispositifs de localisation d'erreurs
WO2010012292A1 (fr) Activation et désactivation par radio d'un fonctionnement en mode veille sans énergie de systèmes d'automatisation
DE102004020956B4 (de) Kommunikationsverfahren in RFID-oder Remote-Sensor-Systemen
DE19949572B4 (de) Verfahren zum Identifizieren mehrerer Transponder
DE60002856T2 (de) Verfahren zur verwaltung von elektronischen fahrkarten und einrichtung zu dessen durchführung
WO2006063731A1 (fr) Procédé de localisation d'un transpondeur à base de rétrodiffusion
DE69906821T2 (de) Festhalten eines kanals mit antikollision in einem elektronischen identifizierungssystem
DE19901984A1 (de) System zur automatischen Identifikation von wenigstens einem Transponder in einem elektromagnetischen Feld einer Basisstation
DE102010011766B4 (de) Überwachungseinrichtung
EP0879160B2 (fr) Dispositif antivol pour automobiles et procede antivol
EP2955701A2 (fr) Système de fermeture électromécanique radio-commandé et procédé de fonction d'un système de fermeture électromécanique radio-commandé
EP1040454B1 (fr) Procede pour reattribuer un element de commande a un dispositif de commande a distance, et dispositif de commande a distance y relatif
DE4341333A1 (de) Verfahren zum Betreiben einer elektronischen Wegfahrsperre und elektronische Wegfahrsperre für Kraftfahrzeuge
DE4336896C2 (de) Verfahren zur Energieversorgung von mit akustischen Oberflächenwellen arbeitenden und mit aktiver Elektronik beschalteten Identifizierungsmarken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030205

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20030807

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50111416

Country of ref document: DE

Date of ref document: 20061221

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070124

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070400300

Country of ref document: GR

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070122

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2276809

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: OTIS ELEVATOR COMPANY

Effective date: 20070807

NLR1 Nl: opposition has been filed with the epo

Opponent name: OTIS ELEVATOR COMPANY

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20090811

Year of fee payment: 9

Ref country code: IE

Payment date: 20090821

Year of fee payment: 9

Ref country code: MC

Payment date: 20090813

Year of fee payment: 9

27A Patent maintained in amended form

Effective date: 20091118

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090814

Year of fee payment: 9

Ref country code: LU

Payment date: 20090820

Year of fee payment: 9

Ref country code: PT

Payment date: 20090729

Year of fee payment: 9

Ref country code: SE

Payment date: 20090813

Year of fee payment: 9

Ref country code: TR

Payment date: 20090722

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20090729

Year of fee payment: 9

NLR2 Nl: decision of opposition

Effective date: 20091118

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20100217

Kind code of ref document: T5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20090825

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100219

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100329

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190821

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20190822

Year of fee payment: 19

Ref country code: FR

Payment date: 20190822

Year of fee payment: 19

Ref country code: ES

Payment date: 20190924

Year of fee payment: 19

Ref country code: IT

Payment date: 20190829

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20190821

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190821

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190821

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201029

Year of fee payment: 20

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200802

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50111416

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20211228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200802