EP1295691A2 - Anlage zum Herstellen von dampfgehärteten Baustoffen - Google Patents

Anlage zum Herstellen von dampfgehärteten Baustoffen Download PDF

Info

Publication number
EP1295691A2
EP1295691A2 EP02017298A EP02017298A EP1295691A2 EP 1295691 A2 EP1295691 A2 EP 1295691A2 EP 02017298 A EP02017298 A EP 02017298A EP 02017298 A EP02017298 A EP 02017298A EP 1295691 A2 EP1295691 A2 EP 1295691A2
Authority
EP
European Patent Office
Prior art keywords
heating chamber
autoclave
aerated concrete
station
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02017298A
Other languages
English (en)
French (fr)
Other versions
EP1295691A3 (de
EP1295691B1 (de
Inventor
Erfindernennung liegt noch nicht vor Die
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XELLA PORENBETON AG
Original Assignee
Ytong AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ytong AG filed Critical Ytong AG
Publication of EP1295691A2 publication Critical patent/EP1295691A2/de
Publication of EP1295691A3 publication Critical patent/EP1295691A3/de
Application granted granted Critical
Publication of EP1295691B1 publication Critical patent/EP1295691B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B15/00General arrangement or layout of plant ; Industrial outlines or plant installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/50Producing shaped prefabricated articles from the material specially adapted for producing articles of expanded material, e.g. cellular concrete
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/245Curing concrete articles

Definitions

  • the invention relates to a plant for producing steam-hardened building materials.
  • Steam-hardened building materials in particular steam-hardened lightweight building materials, for example porous or gas concrete, are produced using the following process.
  • the ground raw materials sand, lime, cement, sulfate carrier and aluminum powder are metered in batches together with water in a mixer. After mixing, the material is poured into an oiled mold with a volume between 4 and 9 m 3 . After the casting mold has been filled, it is brought to a fermentation station, where the mass is fermented to its final volume and remains between one and six hours until the binder component has set enough green strength for the sawing. When the green strength is sufficient, the material is removed and then cut using wires in a sawing station.
  • the material After sawing, the material is either collected at further locations in front of the autoclave until there is an autoclave filling or it is fed directly into the autoclave. After autoclaving, the usual autoclaving time is approx. 12 hours, the material is removed from the autoclave, unloaded in a discharge device, packaged and transported to the warehouse.
  • the cleaned and oiled Molds filled with an aerated concrete mixture and then on Proofing stations 102 move where the mass floats in the molds and sets.
  • the greenest ones are turned off in a removal station 103 AAC cake tilted by 90 ° and part of the mold removed, while a mold side wall is used as a hard floor remains.
  • Another possibility is the implementation of the cellular concrete cake on grids so that the entire shape is removed becomes.
  • the aerated concrete cakes are then placed in a cutting station 104 driven and cut there into the desired shape.
  • the shapes taken from the cellular concrete cakes are in a cleaning station 105 cleaned and then in one Oil station 106 oiled.
  • the hard floors, each with a cellular concrete cake, are now three with their long sides next to each other or with their broad sides placed one above the other on autoclave or hardening car 107 and in entered a tunnel 108, which prevents them from cooling, in particular Train to protect. From tunnel 108, the aerated concrete cakes, if sufficient autoclave trolleys for one autoclave filling stand ready, run into a free autoclave 109 and subjected to steam curing there.
  • the cellular concrete cakes are made the autoclave 109 extended and then stand for an aftertreatment and / or packaging on a stand 111. If the aerated concrete cakes are equipped with reinforcements should be in a reinforcement station 112 before casting Reinforcements are inserted into the forms.
  • a disadvantage is that such systems have a significant Need space. There will be plenty of space for the fermentation areas and needed for the footprint in front of the autoclave, it It is sometimes customary to install heat tunnels in the area of the fermentation areas, to shorten the fermentation time and thus save space.
  • CH-A 281 682 is a plant for the production of concrete slabs, especially the steam-hardened, frame-reinforced Lightweight concrete slabs are known.
  • This known system is essentially housed in a temperature-controlled hall, whose interior temperature on a for the requirements of gas concrete or Foam concrete production can be adjusted to the required dimension. With this system, it is disadvantageous that it has a considerable Space requirements and a huge investment for the structural measures required.
  • the object of the invention is to provide a system in which the economic production capacity and the space required considerably is reduced and the clock rates during production are increased.
  • a particularly compact system is achieved in that all functional sections are arranged parallel to one another.
  • the individually new functional sections ie sawing station, heating chamber, heating chamber and autoclave
  • the saw and the heating chamber can be arranged above the autoclaves and the heating chamber, the heating chamber being arranged above the heating chamber.
  • a system 1 (Fig. 1) for the production of steam-hardened building materials has functional lines 2, 3, 4, 5, 6, 7, which are parallel are arranged to each other.
  • Functional routes 2 to 7 are aligned parallel to each other and about the same length, the end regions of the functional sections 2 to 7 on one Height are so that the base of the system 1 is approximately rectangular is, with two longitudinal outer sides L and two end outer sides S.
  • the functional routes 2 to 7 extend parallel to the longitudinal outer sides L of Appendix 1.
  • a crane runway 8a, 8b Over the end areas of the functional sections 2 to 7 are along a crane runway 8a, 8b a cross crane 9a, 9b along one each Crane runway axis 10a, 10b movable.
  • the crane runway axes 10a, 10b are parallel to each other and to the outside S and perpendicular oriented to functional routes 2 to 7.
  • the functional sections 2 to 7 each have a track 11a, 11b, 11c, 11d, 11e and 11f with two rails each, the rails being so are dimensioned that aerated concrete molds and autoclave wagons they can be moved.
  • the functional section 2 has a between the crane tracks 8a, 8b Cleaning station 15 for molds, a pouring buffer line 16, one Oil station 17 for molds and in the area of Krahnbahn 8b Pouring station 18 on.
  • the functional section 3 has a between the crane tracks 8a, 8b Hardness floor buffer section 19, which hard floors from one Unloading station 20 takes over, which is on a track 21 is located, and which is in the extension of the rail 11e of the functional route 3 extends beyond the crane runway 8b.
  • the crane runway 8a has a mold construction area 24a in which Molds and hard floors are put together.
  • the functional section 4 has one between the crane tracks 8a, 8b Saw buffer section 22, a saw station 23a and a stacking station 23b, with a tilting area in the area of the crane runway 8a 24b for tilting and removing the molds from the hardened cellular concrete cake is provided.
  • the functional section 5 has one between the crane tracks 8a, 8b Preheating chamber 5a, the longitudinal axis 5b parallel to and between the rails to the track 11a is arranged.
  • the preheating chamber 5a has approximately a length that corresponds to the length of the Functional route 5 between the crane tracks 8a, 8b corresponds.
  • the functional section 6 has one between the crane tracks 8a, 8b Heating chamber 6a, the longitudinal axis 6b between the rails of the Track 11b is arranged parallel to track 11b.
  • the heating chamber 6a has approximately a length that corresponds to the length of the Functional route 6 between the crane tracks 8a, 8b corresponds.
  • the functional section 7 has between the crane tracks 8a, 8b an autoclave 7a, the longitudinal axis 7b between the Rails is arranged parallel to the track 11c.
  • the autoclave 7a has a length approximately equal to the length of the functional section 7 between the crane tracks 8a, 8b.
  • the track 11c of the functional section 7 is over the crane runway 8b also extends and forms an exit path 25 for batches extended from the autoclave, with hardened aerated concrete products loaded hard floors.
  • a cleaned mold standing on the pouring buffer line 16 will oiled in the oil station 17 and then in the pouring station 18 filled.
  • the filled shape is by means of the cross crane 9b raised, move along a crane runway axis 10b and onto the Track 11a of the functional section 5 set and in the heating chamber 5a retracted.
  • the shape passes through the heat chamber 5a, in the it is preferably exposed to temperatures of 40 to 70 ° C, preferably the fermentation process at a time which is sufficient complete and a green strength sufficient for cutting to get.
  • the mold leaves the heat chamber 5a the other side and arrives at crane runway 8a, where it joins a cross crane 9a along a crane runway axis 10a onto the track 11f of the functional section 4 is shifted and there onto the saw buffer section 22 is operated.
  • the mold without a hard bottom becomes the mold construction area 24a of the functional section 3 move and there with an empty hardness floor assembled and moved from there to the cleaning station 15, taking these two steps also in reverse can take place.
  • the hardness floor comes with cellular concrete cake to the sawing station 23a, where the aerated concrete cake into the desired formats is cut.
  • a downstream Station 23b always has three hard floors with aerated concrete cakes placed on a hardening trolley.
  • the cut cellular concrete cake is moved into the area of the crane runway 8b and with the cross crane 9b on the track 11b of the functional section 6 and from there moved into the heating chamber 6a.
  • the heating chamber 6a the hardening carts are fed continuously, up to the heating chamber an autoclave batch is ready, causing the heating chamber 6a also the task of a buffer or collecting section before Autoclave takes over.
  • the cellular concrete cake is in the heating chamber preferably exposed to a temperature ⁇ 100 ° C.
  • the hardening trolley reaches the crane runway area 8a, where it from the cross crane 9a on the track 11c of the functional section 7 is set and from there move into the autoclave becomes.
  • the heating chamber 6a can e.g. filled and emptied in batches be so that an autoclave batch initially complete heated, then from the heating chamber 6a in batches en bloc is extended and inserted into the autoclave 7a en bloc.
  • the hardening trolleys are on the other side of the autoclave 7a move onto an exit section 25 of the functional section 7 in order to free the autoclaves 7a for new batches as quickly as possible do. From the exit section 25, the hardening wagons get into the Area of the crane runway 8b, from where it with the cross crane 9b the track 11e of the functional section 3 implemented and in the unloading station 20 are driven.
  • the aerated concrete cakes are made by unloaded the hardening trolley and the hardening trays and the hardening trolley are pushed into the hardness floor magazine 19, where the hardness floors collected and preferably stacked.
  • the hardening car then become a transfer station in a suitable manner process or transported.
  • the hardening wagons are replaced by the tracks pushed onto the sliding platforms.
  • the transfer platforms move the Hardening car along the crane / transfer platform axes 10a, 10b to the desired track where the hardening wagon is from the transfer platform the track is pushed.
  • the basic procedure is the same, however.
  • the entire System mounted on level foundation plates and the heat chamber arranged above the heating chamber. Is also the Sawing station at the level of the heating chamber, results in particular advantageously with a compact design of the system little floor space consumption. In addition, at a such system no expensive foundation pits for e.g. Sludge storage tank, to be created.
  • As transfer devices for Moving the hardening car from the lower level to the upper level Level at which the saw and the heat chamber are located The cross cranes described above also serve here.
  • the residence times of the AAC cake in an autoclave advantageously from approx. 12 Hours to about 8 hours.
  • This can be a Autoclave now filled three times a day instead of twice become, which leads to a reduction in cycle times and to a Increasing the clock rates in production or reducing it the number of autoclaves can help.
  • the high cycle rates and high throughput of the overall cost-effective system allow the system to be operated economically and efficiently with an autoclave at 70,000 to 80,000 m 3 / year.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Die Erfindung schafft eine Anlage zum Herstellen von Leichtbaustoffen, insbesondere von Gas- bzw. Porenbeton, in der die Porenbetonkuchen nach dem Schneiden und vor der Dampfhärtung einer zusätzlichen Wärmebehandlung unterzogen werden. Hierdurch können die Verweilzeiten der Porenbetonkuchen im Autoklaven (7a) gesenkt und die Taktzeiten in der Produktion erhöht werden, wobei eine kompakte Bauweise der Anlage ermöglicht wird. Wesentlich ist, dass die Wärmekammer (5a) für die Wärmebehandlung über einer Heizkammer (6a) angeordnet ist, in die die Leichtbaustoffkuchen eingebracht und unter Wärmeeinwirkung gelagert werden. <IMAGE>

Description

Die Erfindung betrifft eine Anlage zum Herstellen von dampfgehärteten Baustoffen.
Dampfgehärtete Baustoffe, insbesondere dampfgehärtete Leicht-baustoffe, z.B. Poren- bzw. Gasbeton, werden nach dem folgenden Verfahren hergestellt. Die gemahlenen Rohstoffe Sand, Kalk, Zement, Sulfatträger und Aluminiumpulver werden zusammen mit Wasser in einem Mischer chargenweise dosiert. Nach dem Mischen wird das Material in eine eingeölte Gießform mit einem Volumen zwischen 4 und 9 m3 gefüllt. Nach dem Befüllen der Gießform wird diese auf einen Gärplatz gebracht, wo die Masse auf ihr endgültiges Volumen aufgärt und zwischen ein und sechs Stunden stehen bleibt, bis durch das Abbinden der Bindemittelkomponente eine ausreichende Grünfestigkeit für das Sägen vorhanden ist. Wenn die ausreichende Grünfestigkeit erreicht ist, wird das Material entschalt und anschließend in einer Sägestation mittels Drähten geschnitten. Nach dem Sägen wird das Material entweder auf weiteren Standplätzen vor den Autoklaven so lange gesammelt, bis eine Autoklavenfüllung vorhanden ist oder direkt in den Autoklaven eingefahren. Nach dem Autoklavieren, die übliche Autoklavierungszeit beträgt ca. 12 Stunden, wird das Material aus dem Autoklaven ausgefahren, in einer Entladungseinrichtung entladen, verpackt und auf das Lager transportiert.
Eine solche herkömmliche Anlage wird in S. Röbert, Silikatbeton, VEB Verlag für Bauwesen Berlin, Berlin 1970, beschrieben und nachfolgend anhand Fig. 4 erläutert.
In einer Gießstation 101 werden die gereinigten und geölten Formen mit einer Porenbetonmischung gefüllt und anschließend auf Gärplätze 102 verfahren, wo die Masse in den Formen auftreibt und abbindet. In einer Entfcrmungsstation 103 werden die grünfesten Porenbetonkuchen um 90° gekippt und ein Teil der Form abgenommen, während eine Formseitenwand als Härteboden stehen bleibt. Eine andere Möglichkeit sieht das Umsetzen der Porenbetonkuchen auf Roste vor, so daß die gesamte Form abgenommen wird. Die Porenbetonkuchen werden anschließend in eine Schneidstation 104 gefahren und dort in die gewünschte Form geschnitten. Die von den Porenbetonkuchen abgenommenen Formen werden in einer Reinigungsstation 105 gesäubert und anschließend in einer Ölstation 106 eingeölt.
Die Härteböden mit je einem Porenbetonkuchen werden nun zu dritt mit ihren Längsseiten nebeneinander oder mit ihren Breitseiten übereinander auf Autoklaven- bzw. Härtewagen 107 gesetzt und in einen Tunnel 108 eingefahren, der sie vor Auskühlung, insbeondere Zug, schützen soll. Aus dem Tunnel 108 werden die Porenbetonkuchen, wenn ausreichend Autoklavenwagen für eine Autoklavenfüllung bereit stehen, in einen freien Autoklaven 109 eingefahren und dort der Dampfhärtung unterzogen.
Nach Abschluß der Dampfhärtung werden die Porenbetonkuchen aus dem Autoklaven 109 ausgefahren und stehen dann für eine Nachbehandlung und/oder Verpackung auf einer Standfläche 111 bereit. Wenn die Porenbetonkuchen mit Bewehrungen ausgestattet werden sollen, so können vor dem Gießen in einer Bewehrungsstation 112 Bewehrungen in die Formen eingelegt werden.
Dabei besteht ein Nachteil darin, daß solche Anlagen einen erheblichen Platzbedarf haben. Viel Platz wird für die Gärplätze und für die Aufstellfläche vor den Autoklaven benötigt, wobei es teilweise üblich ist, im Bereich der Gärplätze Wärmetunnel einzubauen, um die Gärzeit zu verkürzen und damit Platz zu sparen.
Beschickt man die Autoklaven einzeln und nicht chargenweise, kann ebenfalls der Platzbedarf gesenkt werden. Dafür wird allerdings teuere Autoklavenkapazität blockiert.
Um solche Anlagen wirtschaftlich betreiben zu können, sind Produktionskapazitäten von mehr als 300.00 m3/Jahr notwendig.
Ein weiterer Nachteil ist, daß mit den herkömmlichen Verfahren sehr viele Formen vorhanden sein müssen, was eine erhebliche Investitition erfordert.
Aus der BE 556 531 A ist es bekannt, die in die Porenbetonformen eingefüllte Masse während des Auftreibens sowie während des Sägens und nach dem Sägen vor dem Autoklavieren zu wärmen. Während des Auftreibens und Sägens findet :das Aufwärmen in einem Tunnel statt, in dem mehrere Sägestationen hintereinander angeordnet sind. Die gesägten Porenbetonblöcke werden auf Wagen in eine große beheizte Wartekammer mit mehreren Gleisen eingefahren. Bei dieser Anlage ist von Nachteil, daß sie einen erheblichen Platzbedarf erfordert und die Taktraten nicht optimal aufeinander abgestimmt werden können.
Aus der CH-A 281 682 ist eine Anlage zur Herstellung von Betonplatten, insbesondere den dampfgehärteten, rahmenbewehrten Leichtbetonplatten bekannt. Diese bekannte Anlage ist im wesentlichen in einer temperierbaren Halle untergebracht, deren Innenraumtemperautr auf ein für die Anforderungen der Gasbeton- bzw. Schaumbetonherstellung abgestimmtes Maß eingesteltl werden kann. Bei dieser Anlage ist es von Nachteil, daß sie einen erheblichen Platzbedarf sowie einen encrmen Investitionsaufwand für die baulichen Maßnahmen erfordert.
Aus der FR-A-1.360763 ist es bekannt, die frisch gefüllten Pcrenbetonformen auf einen Lagerplatz oberhalb der Autoklaven zu lagern, wobei die von den Autoklaven an die Umgebung abgegebene Wärme infolge Konvektion die Porenbetonkuchen anwärmen soll. Bei dieser Anlage ist es von Nachteil, daß die Abwärme der Autoklaven den Porenbetonkuchen nicht gezielt zuleitbar ist. Weiterhin ist es bei einer Anlage nach D2 nachteilig, daß, bedingt durch den Wechselbetrieb der Autoklaven, der Lagerplatz nur ungleichmäßig mit Wärme beaufschlagt wird. Abgeschaltene Autoklaven (z.B. beim Be- und Entladen) tragen nur in geringem Maße zur Erwärmung bei und verursachen eine ungleichmäßige Wärmeverteilng für die oberhalb gelagerten Porenbetonkuchen. Damit ist die Gärnzeit nicht optimal einstellbar. Somit muß zur Vollendung des Gärprozesses der Porenbetonkuchen ein großer Lagerplatz errichtet werden. Damit ist bei einer solchen Anlage in großer Raumbedarf und hoher baulicher Investitionsaufwand notwendig.
Aufgabe der Erfindung ist, eine Anlage zu schaffen, in der die wirtschaftliche Produktionskapazität und der Platzbedarf erheblich verringert ist und die Taktraten bei der Produktion erhöht.
Die Aufgabe wird durch eine Vorrichtung mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausführungsformen sind in Unteransprüchen gekennzeichnet.
Eine besonders kompakte Anlage wird dadurch erreicht, daß alle Funktionsstrecken parallel zueinander angeordnet sind. Besondere Vorteile ergeben sich, wenn die einzelnneu Funktionsstrecken, d.h. Sägestation, Aufwärmkammer, Heizkammer und Autoklav eine gleiche Länge aufweisen. Erfindungsgemäß können die Säge sowie die Wärmekammer oberhalb der Autoklaven und der Heizkammer angeordnet sein, wobei die Wärmekammer über der Heizkammer angeordnet ist. Durch die Anordnung der Säge auf dem
erhöhten Niveau der Wärmekammer können Einbauten in den Boden, wie Schlammfangbehälter, bzw. die Errichtung eines Kellers vermieden werden, welches die Investitionskosten senkt. Die erfindungsgemäße Kombination dieser Ausführungsform einer Anlage mit dem Aufwärmen und Aufheizen sowohl der Porenbetonformen mit gärender Masse als auch der fertiggeschnittenen Porenbetonkuchen ermöglicht es einerseits eine kompakte Anlage zu erreichen, da die Stellplätze vor den Autoklaven wegfallen, auf der anderen Seite wird der gesamte Produktionsprozess erheblich verkürzt unter optimaler Nutzung der Energie, wodurch auch niedrige Produktionsleistungen noch wirtschaftlich erfolgen können.
Die erfindungsgemäße Anlage wird beispielhaft anhand einer Zeichnung erläutert. Es zeigen:
Fig. 1
schematisch eine Porenbeton-Anlage;
Fig. 2
beispielhaft eine Ausgestaltungsform einer Anlage nach Fig. 1;
Fig. 3
beispielhaft eine weitere Ausgestaltungsform einer Anlage nach Fig. 2;
Fig. 4
eine bekannte Anlage.
Eine Anlage 1 (Fig. 1) zur Herstellung von dampfgehärteten Baustoffen weist Funktionsstrecken 2, 3, 4, 5, 6, 7 auf, die parallel zueinander angeordnet sind. Die Funktionsstrecken 2 bis 7 sind parallel zueinander ausgerichtet und in etwa gleich lang, wobei die Endbereiche der Funktionsstrecken 2 bis 7 auf einer Höhe liegen so daß die Grundfläche der Anlage 1 in etwa rechteckförmig ist, mit zwei Längsaußenseiten L und zwei Stirnaußenseiten S. Die Funktionsstrecken 2 bis 7 erstrecken sich dabei parallel zu den Längsaußenseiten L der Anlage 1.
Über die Endbereiche der Funktionsstrecken 2 bis 7 sind entlang einer Kranbahn 8a, 8b je ein Querkran 9a, 9b entlang je einer Kranbahnachse 10a, 10b verfahrbar. Die Kranbahnachsen 10a, 10b sind parallel zueinander und zur Stirnaußenseite S und senkrecht zu den Funktionsstrecken 2 bis 7 orientiert.
Anstelle der Querkräne 9a, 9b können im Bereich der Kranbahnen 8a, 8b Schiebebühnen vorgesehen sein.
Die Funktionsstrecken 2 bis 7 weisen je ein Gleis 11a, 11b, 11c, 11d, 11e und 11f mit je zwei Schienen auf, wobei die Schienen so bemessen sind, daß Porenbetonformen und Autoklavenwagen auf ihnen verfahren werden können.
Die Funktionsstrecke 2 weist zwischen den Kranbahnen 8a, 8b eine Reinigungsstation 15 für Formen, eine Gießpufferstrecke 16, eine Ölstation 17 für Formen und im Bereich der Krahnbahn 8b eine Gießstation 18 auf.
Die Funktionsstrecke 3 weist zwischen den Kranbahnen 8a, 8b eine Härtebodenpufferstrecke 19 auf, welche Härteböden von einer Entladestation 20 übernimmt, welche sich auf einem Gleis 21 befindet, und die sich in Verlängerung der Schiene 11e der Funktionsstrecke 3 über die Kranbahn 8b hinaus erstreckt. Im Bereich der Kranbahn 8a ist ein Formenbaubereich 24a angeordnet, in dem Formen und Härteböden zusammengesetzt werden.
Die Funktionsstrecke 4 weist zwischen den Kranbahnen 8a, 8b eine Sägepufferstrecke 22, eine Sägestation 23a und eine Stapelstation 23b auf, wobei im Bereich der Kranbahn 8a ein Kippbereich 24b zum Kippen und Abnehmen der Formen von den erhärteten Porenbetonkuchen vorgesehen ist.
Die Funktionsstrecke 5 weist zwischen den Kranbahnen 8a, 8b eine Vorwärmkammer 5a auf, deren Längsachse 5b parallel zu und zwischen den Schienen zum Gleis 11a angeordnet ist. Die Vorwärmkammer 5a weist dabei in etwa eine Länge auf, die der Länge der Funktionsstrecke 5 zwischen den Kranbahnen 8a, 8b entspricht.
Die Funktionsstrecke 6 weist zwischen den Kranbahnen 8a, 8b eine Heizkammer 6a auf, deren Längsachse 6b zwischen den Schienen des Gleises 11b parallel zum Gleis 11b angeordnet ist. Die Heizkammer 6a weist dabei in etwa eine Länge auf, die der Länge der Funktionsstrecke 6 zwischen den Kranbahnen 8a, 8b entspricht.
Die Funktionsstrecke 7 weist zwischen den Kranbahnen 8a, 8b einen Autoklaven 7a auf, dessen Längsachse 7b zwischen den Schienen parallel zum Gleis 11c angeordnet ist. Der Autoklav 7a weist dabei in etwa eine Länge auf, die der Länge der Funktionsstrecke 7 zwischen den Kranbahnen 8a, 8b entspricht.
Das Gleis 11c der Funktionsstrecke 7 ist dabei über die Kranbahn 8b hinaus verlängert und bildet eine Ausfahrstrecke 25 für chargenweise aus dem Autoklaven ausgefahrene, mit gehärteten Porenbetonprodukten beladene Härteböden.
Im folgenden wird die Verfahrensweise der Anlage gemäß Fig. 1 erläutert.
Eine gereinigte, auf der Gießpufferstrecke 16 stehende Form wird in der Ölstation 17 eingeölt und anschließend in der Gießstation 18 befüllt. Die gefüllte Form wird mittels des Querkranes 9b angehoben, entlang einer Kranbahnachse 10b verfahren und auf das Gleis 11a der Funktionsstrecke 5 gesetzt und in die Wärmekammer 5a eingefahren. Die Form durchläuft die Wärmekammer 5a, in der sie vorzugsweise Temperaturen von 40 bis 70°C ausgesetzt wird, vorzugsweise in einer Zeit, die ausreichend ist, den Gärprozeß abzuschließen und eine für das Schneiden ausreichende Grünfestigkeit zu erlangen. Die Form verläßt die Wärmekammer 5a auf der anderen Seite und gelangt auf die Kranbahn 8a, wo sie mit einem Querkran 9a entlang einer Kranbahnachse 10a auf das Gleis 11f der Funktionsstrecke 4 versetzt wird und dort auf die Sägepufferstrecke 22 verfahren wird.
Beim Versetzen wird die Form im Kippbereich 24 der Kranbahn 8a und der Funktionsstrecke 4 gekippt und nach dem Absetzen bis auf den Härteboden von grünfesten Porenbetonkuchen abgenommen.
Die Form ohne Härteboden wird zum Formenbaubereich 24a der Funktionsstrecke 3 verfahren und dort mit einem leeren Härteboden zusammengebaut und von dort zur Reinigungsstation 15 verfahren, wobei diese beiden Schritte auch in umgekehrter Reihenfolge stattfinden können.
Von der Sägepufferstrecke 22 gelangt der Härteboden mit Porenbetonkuchen zur Sägestation 23a, wo der Porenbetonkuchen in die gewünschten Formate geschnitten wird. In einer nachgeschalteten Station 23b werden immer drei Härteböden mit Porenbetonkuchen auf einen Härtewagen gesetzt. Der geschnittene Porenbetonkuchen wird in den Bereich der Kranbahn 8b verfahren und mit dem Querkran 9b auf das Gleis 11b der Funktionsstrecke 6 versetzt und von dort in die Heizkammer 6a eingefahren. In der Heizkammer 6a werden die Härtewagen kontinuierlich zugeführt, bis in der Heizkammer eine Autoklavencharge bereit steht, wodurch die Heizkammer 6a auch die Aufgabe einer Puffer- bzw. Sammelstrecke vor dem Autoklaven übernimmt. Der Porenbetonkuchen wird in der Heizkammer vorzugsweise einer Temperatur ≥ 100°C ausgesetzt. Am Ende der Heizkammer gelangt der Härtewagen in den Bereich der Kranbahn 8a, wo er vom Querkran 9a auf das Gleis 11c der Funktionsstrecke 7 gesetzt wird und von dort in den Autoklaven verfahren wird. Die Heizkammer 6a kann z.B. chargenweise befüllt und entleert werden, so daß eine Autoklavencharge zunächst komplett aufgeheizt, dann aus der Heizkammer 6a chargenweise en bloc ausgefahren und in den Autoklaven 7a en bloc eingefahren wird.
Die Härtewagen werden auf der anderen Seite des Autoklavens 7a auf eine Ausfahrstrecke 25 der Funktionsstrecke 7 verfahren, um den Autoklaven 7a schnellstmöglich für neue Chargen frei zu machen. Von der Ausfahrstrecke 25 gelangen die Härtewagen in den Bereich der Kranbahn 8b, von wo aus sie mit dem Querkran 9b auf das Gleis 11e der Funktionsstrecke 3 umgesetzt und in die Entladestation 20 gefahren werden. Die Porenbetonkuchen werden von den Härtewagen und den Härteböden abgeladen und die Härtewagen werden in das Härtebodenmagazin 19 geschoben, wo die Härteböden gesammelt und vorzugsweise gestapelt werden. Die Härtewagen werden anschließend in geeigneter Weise zu einer Umsetzstation verfahren bzw. transportiert.
Bei der Verwendung von Schiebebühnen als Versetzeinrichtungen anstelle von Querkränen werden die Härtewagen von den Gleisen auf die Schiebebühnen geschoben. Die Schiebebühnen verfahren die Härtewagen entlang der Kran-/Schiebebühnenachsen 10a, 10b zu dem gewünschten Gleis, wo der Härtewagen von der Schiebebühne auf das Gleis geschoben wird. Der grundsätzliche Verfahrensablauf ist jedoch gleich.
Die Anlage nach Fig. 2 weist zwei Wärmekammern 5a vor dem Schneiden auf, die nacheinander von einer Form durchfahren werden. Nach dem Aufheizen der Formen in einer Heizkammer 6a können wahlweise zwei Autoklaven 7a beschickt werden. Dadurch, daß auch hier die Gleise parallel zueinander, in gleicher Länge und auf gleicher Höhe angeordnet sind, ist auch hier eine komoakte Bauform der Anlage erreicht. Zwischen der Gießstation 18 und einer ersten Wärmekammer 5a ist kein Versetzen der Formen notwendig, da sich die Gießstation 18 auf einer Verlängerung des Gleises der Wärmekammer befindet.
Die Anlage nach Fig. 3 weist statt
zwei kurzen einen langen Autoklaven 7a auf, der zwar über die Kranbahn 8b hinausreicht, dessen Ende sich aber auf Höhe der Gießstation 18 befindet, so daß trotzdem eine kompakte Bauform erreicht wird.
Bei der erfindungsgemäßen Ausführungsform einer Anlage ist die gesamte Anlage auf ebenen Fundamentplatten aufgeständert und die Wärmekammer über der Heizkammer angeordnet. Befindet sich aucn die Sägestation aur dem Niveau der Wärmekammer, ergibt sich in besonders vorteilhafter Weise eine kompakte Bauform der Anlage mit wenig Grundflächenverbrauch. Darüber hinaus müssen bei einer solchen Anlage keine teuren Fundamentgruben für z.B. Schlammsammelbehälter, erstellt werden. Als Versetzeinrichtungen zum Versetzen der Härtewagen von dem unteren Niveau auf das obere Niveau, auf dem die Säge und die Wärmekammer angeordnet sind, dienen auch hier die vorbeschriebenen Querkräne.
Durch das Vorsehen einer Heizkammer können die Verweilzeiten der Porenbetonkuchen im Autoklaven in vorteilhafter Weise von ca. 12 Stunden auf ca. 8 Stunden gesenkt werden. Hierdurch kann ein Autoklav statt wie bisher zweimal nunmehr dreimal am Tag befüllt werden, was zu einer Verminderung der Taktzeiten und zu einer Erhöhung der Taktraten in der Produktion bzw. zu einer Verminderung der Anzahl der Autoklaven verhelfen kann.
Durch die Kombination des Aufheizens der Porenbetonkuchen mit einem Aufwärmen der Formen während der Gär- und Abbindezeiten können die Gär- und Abbindezeiten verkürzt und auf die höheren Taktraten abgestimmt werden. Die Anzahl der Formen kann gering gehalten werden.
Die hohen Taktraten bei hohem Durchsatz der insgesamt kostengünstigen Anlage erlauben ein wirtschaftliches und rationelles Betreiben der Anlage mit einem Autoklaven schon bei 70.000 bis 80.000 m3/Jahr.

Claims (3)

  1. Anlage zum Herstellen von Leichtbaustoffen, insbesondere von Gas- oder Porenbeton, mit einer Füllstation (18), in der Porenbetonmasse in Formen gefüllt wird, mindestens einer Wärmekammer (5a), in die gefüllte Formen gebracht und in der das Auftreiben und sogenannte Abbinden bzw. Ansteifen der Porenbetonmasse erfolgt, einer Sägestation (23a), in die abgebundene Porenbetonkuchen anschließend gefahren und in der sie in gewünschte Formate geschnitten werden, mindestens einer Heizkammer (6a), in die geschnittene Porenbetonkuchen eingebracht und unter Wärmeeinwirkung gelagert werden, und mindestens einem Autoklaven (7a), in den Porenbetonkuchen eingeschoben und einer Dampfhärtung unterzogen werden, wobei alle Einrichtungen (18, 5a, 23a, 6a, 7a) mit Schienen ausgerüstete Funktionsstrecken aufweisen, dadurch gekennzeichnet, dass die Wärmekammer (5a) über der Heizkammer (6a) angeordnet ist.
  2. Anlage nach Anspruch 1,
    dadurch gekennzeichnet, dass sich die Sägestation (23a) auf dem Niveau der über der Heizkammer (6a) angeordneten Wärmekammer (5a) befindet.
  3. Anlage nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass Einrichtungen vorhanden sind, welche Abwärme aus der Heizkammer (6a) der Wärmekammer (5a) zuführen.
EP02017298A 1996-07-04 1997-04-25 Anlage zum Herstellen von dampfgehärteten Baustoffen Expired - Lifetime EP1295691B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19627019 1996-07-04
DE19627019A DE19627019B4 (de) 1996-07-04 1996-07-04 Verfahren und Anlage zum Herstellen von dampfgehärteten Baustoffen
EP97921783A EP0918604B1 (de) 1996-07-04 1997-04-25 Anlage zum herstellen von dampfgehärteten baustoffen

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP97921783A Division EP0918604B1 (de) 1996-07-04 1997-04-25 Anlage zum herstellen von dampfgehärteten baustoffen

Publications (3)

Publication Number Publication Date
EP1295691A2 true EP1295691A2 (de) 2003-03-26
EP1295691A3 EP1295691A3 (de) 2003-04-02
EP1295691B1 EP1295691B1 (de) 2004-04-14

Family

ID=7798957

Family Applications (2)

Application Number Title Priority Date Filing Date
EP97921783A Expired - Lifetime EP0918604B1 (de) 1996-07-04 1997-04-25 Anlage zum herstellen von dampfgehärteten baustoffen
EP02017298A Expired - Lifetime EP1295691B1 (de) 1996-07-04 1997-04-25 Anlage zum Herstellen von dampfgehärteten Baustoffen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP97921783A Expired - Lifetime EP0918604B1 (de) 1996-07-04 1997-04-25 Anlage zum herstellen von dampfgehärteten baustoffen

Country Status (6)

Country Link
EP (2) EP0918604B1 (de)
AU (1) AU2772197A (de)
CZ (2) CZ300675B6 (de)
DE (3) DE19627019B4 (de)
PL (1) PL185199B1 (de)
WO (1) WO1998001273A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105082329A (zh) * 2014-05-05 2015-11-25 艾乐迈铁科公司 浇筑混凝土制品的方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19800182C2 (de) * 1998-01-05 2000-05-04 Ytong Deutschland Ag Anlage zum Herstellen von Bauelementen aus dampfgehärteten Baustoffen
CN102350731A (zh) * 2011-09-30 2012-02-15 芜湖新铭丰机械装备有限公司 一种蒸养釜工艺布置结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE556531A (de) *
CH281682A (de) * 1949-07-11 1952-03-31 Messerschmitt Willy Ing Dr Anlage für die Herstellung von Betonplatten, insbesondere von Leichtbetonplatten.
FR1360763A (fr) * 1963-03-28 1964-05-15 Procédé de fabrication en autoclave d'éléments de construction traités de grande dimension en silicate gazeux, ou béton-gaz et installation pour exécution de ce procédé
DE3015245A1 (de) * 1980-04-21 1981-10-22 Pfister Gmbh, 8900 Augsburg Verfahren zur herstellung von form- und/oder bauteilen aus leichtbeton sowie daraus hergestellte form- und/oder bauteile, insbesondere zur verwendung als isolierungs- und/oder brandschutzelemente

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT72072B (de) * 1912-03-18 1916-07-10 Alois Peter Bock Verfahren und Betriebsanlage zur Fertigstellung von Kunststeinerzeugnissen durch kombinierte Erhärtung.
GB2085425B (en) * 1980-10-09 1984-02-01 Tselinogradsky Inzhenernostroi Heat and moisture treatment for building articles
SE461203B (sv) * 1983-01-24 1990-01-22 Svanholm Engineering Ab G Foerfarande och anlaeggning foer framstaellning av element av gasbetong
DE4135119A1 (de) * 1991-10-24 1993-05-19 Hebel Ag Verfahren zum autoklavieren von poroesem, stueckigem gut, insbesondere formkoerper aus porenbeton.
DE4316307A1 (de) * 1993-05-14 1994-11-17 Ytong Ag Verfahren zur Herstellung von dampfgehärteten Bauteilen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE556531A (de) *
CH281682A (de) * 1949-07-11 1952-03-31 Messerschmitt Willy Ing Dr Anlage für die Herstellung von Betonplatten, insbesondere von Leichtbetonplatten.
FR1360763A (fr) * 1963-03-28 1964-05-15 Procédé de fabrication en autoclave d'éléments de construction traités de grande dimension en silicate gazeux, ou béton-gaz et installation pour exécution de ce procédé
DE3015245A1 (de) * 1980-04-21 1981-10-22 Pfister Gmbh, 8900 Augsburg Verfahren zur herstellung von form- und/oder bauteilen aus leichtbeton sowie daraus hergestellte form- und/oder bauteile, insbesondere zur verwendung als isolierungs- und/oder brandschutzelemente

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105082329A (zh) * 2014-05-05 2015-11-25 艾乐迈铁科公司 浇筑混凝土制品的方法和装置

Also Published As

Publication number Publication date
DE19627019A1 (de) 1998-01-08
PL330955A1 (en) 1999-06-21
EP1295691A3 (de) 2003-04-02
PL185199B1 (pl) 2003-03-31
DE19627019B4 (de) 2008-01-31
EP1295691B1 (de) 2004-04-14
CZ294145B6 (cs) 2004-10-13
WO1998001273A1 (de) 1998-01-15
CZ300675B6 (cs) 2009-07-15
DE59711522D1 (de) 2004-05-19
CZ9804335A3 (cs) 2000-11-15
AU2772197A (en) 1998-02-02
EP0918604A1 (de) 1999-06-02
DE59710424D1 (de) 2003-08-14
EP0918604B1 (de) 2003-07-09

Similar Documents

Publication Publication Date Title
DE3402145C2 (de)
EP0979713B1 (de) Verfahren und Vorrichtung zur variablen Fertigung von Betonschwellen
DE2322542A1 (de) Vorrichtung zur herstellung von gegossenen betonbauteilen
EP1295691B1 (de) Anlage zum Herstellen von dampfgehärteten Baustoffen
EP0927615B1 (de) Anlage zum Herstellen von dampfgehärteten Baustoffen
CH281682A (de) Anlage für die Herstellung von Betonplatten, insbesondere von Leichtbetonplatten.
DE2040263A1 (de) Verfahren und technologischer Weg zur Herstellung von Erzeugnissen aus Spannbeton und Stahlbeton
DE2423979A1 (de) Einrichtung fuer die herstellung und foerderung von bauelementen
DE60114375T2 (de) Verfahren und anlage zur herstellung von vorbelasteten betonprodukten
DE19639985A1 (de) Verfahren und Vorrichtung sowie Anlage zum Herstellen von Kalksandsteinen
EP0011060B1 (de) Einrichtung zum Fertigen von Elementen, insbesondere Bauelementen, wie Formsteinen
EP0010547A1 (de) Einrichtung zur Herstellung von Bauelementen auf palettenartigen Formen
DE3540962C2 (de)
DE19545936C1 (de) Anlage zum Herstellen von Porenbeton-Bauelementen
EP0335057B1 (de) Vorrichtung zur Herstellung von Formkörpern und Verfahren zum Betrieb der Vorrichtung
DE3316673C2 (de)
EP2567916A1 (de) Verladebrücke zum Be- und Entladen von Lastkraftwagen sowie Verfahren zu deren Herstellung
DE1683985A1 (de) Betonsteinherstellungsanlage
DE202011110455U1 (de) Vorrichtung zur Herstellung eines Bauteils aus Sichtbeton
DE2430941C3 (de) Verfahren und Vorrichtung zur Herstellung von großformatigen Betonbauelementen
DE1097881B (de) Anlage zum Herstellen von Leichtbetonkoerpern
DE19525073A1 (de) Abnehmbare Seitenwand für Porenbeton-Gießformen
CH421816A (de) Verfahren und Vorrichtung zum Fördern von Platten aus einer waagrechten Lage zu einer anderen
CH397969A (de) Verfahren und Anlage zur kontinuierlichen Herstellung von Gussstücken
CH418944A (de) Verfahren und Einrichtung zum Herstellen von Betonfertigteilen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 20020801

AC Divisional application: reference to earlier application

Ref document number: 0918604

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR IT

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GUIDO BAILLEUL

Inventor name: DR. DIETER HUMS

Inventor name: PETER BAYER

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: XELLA PORENBETON AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE FR IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

EL Fr: translation of claims filed
AC Divisional application: reference to earlier application

Ref document number: 0918604

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 59711522

Country of ref document: DE

Date of ref document: 20040519

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050117

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160226

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160318

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160630

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59711522

Country of ref document: DE