EP1285105B1 - Elektrochemische erzeugte schichten zum korrosionsschutz oder als haftgrund - Google Patents

Elektrochemische erzeugte schichten zum korrosionsschutz oder als haftgrund Download PDF

Info

Publication number
EP1285105B1
EP1285105B1 EP01933902A EP01933902A EP1285105B1 EP 1285105 B1 EP1285105 B1 EP 1285105B1 EP 01933902 A EP01933902 A EP 01933902A EP 01933902 A EP01933902 A EP 01933902A EP 1285105 B1 EP1285105 B1 EP 1285105B1
Authority
EP
European Patent Office
Prior art keywords
layer
metal
conductive surface
deposited
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01933902A
Other languages
English (en)
French (fr)
Other versions
EP1285105A1 (de
Inventor
Matthias Schweinsberg
Bernd Mayer
Frank Wiechmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to EP03025080A priority Critical patent/EP1394292A3/de
Publication of EP1285105A1 publication Critical patent/EP1285105A1/de
Application granted granted Critical
Publication of EP1285105B1 publication Critical patent/EP1285105B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials

Definitions

  • the invention is in the field of coating surfaces to these to protect against corrosion and / or to provide them with a primer for a subsequent organic coating.
  • the Surfaces are electrically conductive, for example surfaces of metals or surfaces which have been made conductive by an appropriate treatment Represent glass or plastics.
  • a common technical task is metallic or not to provide metallic substrates with a first coating that has a corrosion-inhibiting effect and / or has a primer for an over it represents coating to be applied with organic polymers.
  • metals are pretreated before painting. This is what technology stands for different procedures available. Examples include one layer-forming or non-layer-forming phosphating, a chromating or a chrome-free conversion treatment, for example with complex ones Fluorides from titanium, zirconium, boron or silicon. Technically easier to carry out, but a simple application of a primer coat is less effective a metal before painting it. An example of this is the application of Redlead.
  • An alternative to the "wet" process is "dry" Procedures in which a corrosion protection or adhesive layer from a Gas phase is deposited. Such methods are for example as PVD or CVD process known. They can be electrical, for example through a Plasma discharge, be supported.
  • a layer produced or applied in this way can be used as serve as a corrosion protective primer for subsequent painting.
  • the Layer can also be a primer for subsequent gluing represent.
  • metallic substrates, but also substrates made of Plastic or glass are often chemically or mechanically pretreated to ensure the adhesion of the adhesive to the substrate improve.
  • metal or Plastic parts in each case, but also glued together. Front and Today rear windows of vehicles are usually directly in the body glued.
  • Further examples of the use of adhesive layers can be found in the production of rubber-metal composites.
  • the Metal substrates are usually mechanically or chemically pretreated before an adhesive layer is applied for gluing with rubber.
  • That thin layers of metal compounds, such as oxide layers, be generated electrochemically on an electrically conductive surface is known in the art.
  • the influence of the deposition conditions was particularly important investigated the morphology of the oxide layers. A practical application of the Layers do not emerge from this work.
  • An electrochemical formation of an oxide layer also takes place with the as Known processes take place anodizing.
  • US-A-2 081 121 describes a process for the electrolytic coating of metallic Substrates such as iron, steel, copper and brass with a thin layer of copper (I) oxide described.
  • the alkaline baths used for this contain in addition to, for example Copper sulfate is a compound that forms a soluble complex with the copper.
  • Examples of such substances are: organic acids such as lactic acid, citric acid, Glycolic acid, tartaric acid, salicylic acid also sugar, glycerin and inorganic Compounds such as pyrophosphate or borax.
  • the colored layers obtained in this way can be used as the basis for subsequent painting, varnishing or enamelling serve.
  • US-A-4 094 750 discloses the electrodeposition of metal oxides of Al, Cu, Co and Ni on titanium, magnesium, aluminum or steel substrates at current densities of 0.02 to 0.5 A / in 2 in 5 to 60 seconds using appropriate metal salts in alcoholic solution. According to the examples, metal oxide layer thicknesses in the range from 700 to 1600 A result. These layers serve as an adhesive layer for an adhesive bonding of parts.
  • the present invention relates to a method for producing an at least two-layer coating on an electrically conductive surface, characterized in that in a step a) on the electrically conductive surface a chromium-free layer of at least one X-ray crystalline inorganic compound of at least one metal A with a mass per unit area of 1.1 to 10 g / m 2 from a solution which contains the metal A in dissolved form, is deposited electrochemically, the metal A being a different metal than the main component of the electrically conductive surface and being selected from Mg. Ca. Sr.
  • step b) at least one layer of a cathodically or anodically depositable electrodeposition paint or a powder paint is applied to the layer deposited in step a).
  • the solution containing metal A in dissolved form is also referred to below as "Electrolyte” called.
  • a conductive salt such as a tetraalkylammonium halide.
  • the Ions of the conductive salt are not or only to a minor extent in the Layer installed, but increase the electrical conductivity of the electrolyte.
  • the electrically conductive surface can be intrinsic act conductive surface such as a metallic surface.
  • layer can also be on a surface of an electrically little or not conductive material are deposited if the Surface is made electrically conductive.
  • plastics for example done by first electrically chemical deposits conductive metal layer, which then forms the basis for the electrochemical Deposition of a compound of metal A.
  • a glass surface can be made electrically conductive, for example, by using them with a Powdered an electrically conductive substance or a conductive layer through the gas phase, for example as a chemical Vapor Deposition (CVD). It is for the use according to the invention however preferred that the electrically conductive surface be a metal surface represents.
  • the inorganic compound of metal A is separated from a solution that contains the metal A in dissolved form. It can be a one- or multi-component aqueous or a non-aqueous solution act.
  • non-aqueous solvents with a good one Solvent for suitable metal compounds are liquid ammonia, Dimethyl sulfoxide or organic phosphine derivatives.
  • one multicomponent aqueous solution are water-alcohol mixtures.
  • the electrochemical deposition can be carried out cathodically or anodically, a cathodic deposition can be used more universally and is therefore preferred is.
  • the deposition of the inorganic compound of at least one metal A from a corresponding solution can be done according to 2 different mechanisms respectively.
  • the deposition can be coupled with a change in the Oxidation level of metal A, with a on the electrically conductive surface Layer of a poorly soluble compound of metal A in the opposite of the Solution changed oxidation level grows up.
  • Another separation mechanism is based on the fact that the pH value through electrochemical processes on the electrically conductive surface shifts near the surface.
  • the electrical conductive surface an inorganic compound of at least one metal A grow up that are hard on the surface under local pH conditions is soluble. It is not necessary that the oxidation state of the metal A changes during the deposition process.
  • a shift in pH can take place on the electrically conductive surface, for example, in that Hydrogen ions are discharged and the pH value rises locally as a result.
  • the inorganic compound of at least one metal This means that this connection is definitely the metal A must contain. However, it can also contain other metals B, C, ... This other metals can be present in the solution in addition to metal A. and be deposited with it. These other metals can however, also be components of the electrically conductive surface and at Formation of the layer of an inorganic compound of at least one metal A. can be built directly into this connection.
  • inorganic Compounds that contain another metal in addition to metal A Mixed oxides, for example the structure type of the spinels or the Perovskite can belong. Examples include titanates and niobates.
  • the in step a) deposited compound is an oxide.
  • This can also be a mixed oxide different metals.
  • the use according to the invention is not limited to oxides. It also includes non-oxide inorganic Compounds such as, for example, selenides, sulfides or nitrides suitable, possibly anhydrous, solvents can be separated.
  • the inorganic Connection of at least one metal A is only binary or ternary Represents connection. Rather, this connection can also be set up in a more complex manner be, for example, ions or molecules from the solution into the compound can also be installed. Oxide hydrates or sulfates are an example of this.
  • the use according to the invention does not include a pure galvanization, since a plating layer is not an "inorganic compound" in the sense of this Represents invention.
  • To the layer of at least one inorganic Connection of at least one metal A is rather the condition that at least part of the metal A is in an oxidation state> 0.
  • any layer can be used for the use according to the invention at least one inorganic compound of at least one metal A are used, which can be deposited electrochemically and which are sufficient is chemically stable to act as a corrosion protection layer.
  • the Layer with or without applied varnish better corrosion protection delivers as the uncoated metal surface.
  • the metal A selected from Mg, Ca, Sr, Ba, Si, Sn, Pb, Sb, Bi, Ti, Zr, Nb, Ta, Mn, Fe, Co, Ni, Zn, Cu.
  • the for The most important metal for practical purposes are Si, Ti, Zr, Mn, Fe, Co, Ni, Zn and Cu.
  • the electrochemical deposition can be potentiostatic or galvanostatic.
  • the galvanostatic deposition is technically easier to carry out and is therefore preferred.
  • the layer formation preferably takes place in that the inorganic compound on the electrically conductive surface at a potential compared to a standard hydrogen electrode between ⁇ 0.1 and ⁇ 300 V or a current density in the range of ⁇ 0.1 to ⁇ 10000 mA per cm 2 electrically conductive surface is deposited. It is preferred to work at potentials between ⁇ 0.1 and ⁇ 100 V or at a current density in the range from ⁇ 0.5 to ⁇ 100 mA per cm 2 .
  • the signs in front of voltage and current density express that the deposition can be cathodic or anodic. Cathodic deposition, ie a negative potential compared to the standard hydrogen electrode, is preferred.
  • the morphology, the chemical composition and the crystal structure of the deposited Layer depend on the deposition conditions and thus by choice of Conditions can be affected.
  • the above mentioned Layer parameters from the concentration of the metal ions A and possibly further Components in the solution, the flow rate of the solution relative to the electrically conductive surface, the set potential and / or the set current density.
  • the layer properties can thus be chosen specifically change this parameter.
  • the deposition is carried out here under such conditions that the inorganic compound deposits in X-ray crystalline form.
  • X-ray crystalline means that the inorganic compound in a sharp X-ray diffraction experiment X-ray reflexes delivers.
  • the resulting highly structured surface is particularly favorable as a primer for an organic coating.
  • Electrolytes relative to the metallic conductive surface can form layers accelerate and influence the morphology of the layer. For example this is done by stirring the electrolyte or in the Pumped around electrolysis vessel. Furthermore, the electrolyte can be blown through a Gases, especially air, are mixed and moved.
  • a cathodically or anodically depositable electrodeposition paint can be applied.
  • the layer is deposited between the layers inorganic compound and the application of electrocoat preferably rinsed with water. This can be done by dipping or spraying respectively. It can be advantageous, at least in the last rinsing step rinse low-salt or deionized water.
  • a chemical Post-passivation of the inorganic layer before the electrical one Dip painting, as is usually the case with phosphating, for example is not necessary in the method according to the invention.
  • a powder coating can also be used in sub-step b) be applied.
  • the inorganic layer on the electrical conductive surface can no longer be electrically conductive to the extent that for Subsequent electrocoating is required.
  • a powder paint is preferably applied to molded objects that are not strong exposed to corrosive loads. Examples of this are items such as Household appliances or electronic devices used in enclosed spaces be kept.
  • the advantages of the invention lies in the fact that thickness, composition and inner and outer structure of the inorganic layer by the choice of Deposition parameters are easier to control than with purely chemical ones Process management. Less will be needed to apply the layer Process stages are required than for phosphating and they generally fall less sludge than with a purely chemical layer formation. Compared The deposition process from the gas phase is electrochemical Separation faster and with less equipment and Energy consumption connected. Furthermore, it is not necessary as the Vapor deposition to provide volatile starting compounds.
  • Another advantage of electrochemical layer formation is that Layer growth over the electrical resistance on the metallic conductive Surface is controllable. Unless the growing layer has a higher one has electrical resistance than the electrically conductive surface - what in the The rule is the case - so the layer growth slows down when the electrical resistance becomes too high due to the layer formation. As long as it is there are still unoccupied areas of the metallic conductive surface or the layer is so thin that a current still flows at the set voltage the layer growth at these points. Is the metallic conductive surface almost completely covered with a layer of such a thickness that the electrical resistance increases significantly, the process of layer formation can be ended. With galvanostatically controlled layer growth it shows up the almost complete layer formation in that the terminal voltage rises sharply. The process can then automatically run at a preselected value the terminal voltage can be interrupted.
  • Electrolyte 0.4 M CuSO 4 + 3 M lactic acid, pH 10, 60 ° C, with 400 revolutions per minute stirring
  • the layers formed are closed after a treatment time of approx. 50 s and consist of fine ( ⁇ 1 ⁇ m) crystals of Cu 2 O:
  • the layer properties are very easy to control even without interfering with the electrolyte composition.
  • Corrosion tests (10 cycles VDA alternating climate test, cathodic dip painting) show a significant improvement in corrosion protection through the coating depending on the applied layer thickness: Process time (seconds) Alternating climate test: infiltration U / 2 (mm) 10 4.8 30 4.5 60 3.9 120 3.6 300 2.6

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Laminated Bodies (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Paints Or Removers (AREA)

Description

Die Erfindung liegt auf dem Gebiet der Beschichtung von Oberflächen, um diese gegen Korrosion zu schützen und/oder um sie mit einem Haftgrund für eine nachfolgende organische Beschichtung zu versehen. Hierzu müssen die Oberflächen elektrisch leitend sein, also beispielsweise Oberflächen von Metallen oder durch eine entsprechende Behandlung leitfähig gemachte Oberflächen von Glas oder Kunststoffen darstellen.
Eine weit verbreitete technische Aufgabe besteht darin, metallische oder nicht metallische Untergründe mit einer ersten Beschichtung zu versehen, die korrosionshemmend wirkt und/oder die einen Haftgrund für eine darüber aufzubringende Beschichtung mit organischen Polymeren darstellt. Beispielsweise werden Metalle vor einer Lackierung vorbehandelt. Hierfür stehen in der Technik unterschiedliche Verfahren zur Verfügung. Beispielsweise genannt seien eine schichtbildende oder nicht schichtbildende Phosphatierung, eine Chromatierung oder eine chromfreie Konversionsbehandlung, beispielsweise mit komplexen Fluoriden von Titan, Zirkon, Bor oder Silicium. Technisch einfacher durchführbar, aber weniger wirkungsvoll ist ein einfacher Auftrag einer Grundierungsschicht auf ein Metall vor dessen Lackierung. Ein Beispiel hierfür ist das Auftragen von Menninge. Eine Alternative zu den "nassen" Verfahren stellen "trockene" Verfahren dar, bei denen eine Korrosionsschutz- oder Haftschicht aus einer Gasphase abgeschieden wird. Solche Verfahren sind beispielsweise als PVDoder CVD-Verfahren bekannt. Sie können elektrisch, beispielsweise durch eine Plasmaentladung, unterstützt sein.
Eine derart erzeugte oder aufgebrachte Schicht kann zum einen als korrosionsschützender Haftgrund für eine nachfolgende Lackierung dienen. Die Schicht kann aber auch einen Haftgrund für eine nachfolgende Verklebung darstellen. Insbesondere metallische Untergründe, aber auch Untergründe aus Kunststoff oder Glas werden vor einer Verklebung häufig chemisch oder mechanisch vorbehandelt, um die Haftung des Klebstoffs auf dem Substrat zu verbessern. Beispielsweise werden im Fahrzeug- oder Gerätebau Metall- oder Kunststoffteile jeweils untereinander, jedoch auch miteinander verklebt. Front- und Heckscheiben von Fahrzeugen werden heute in der Regel direkt in die Karosserie eingeklebt. Weitere Beispiele für die Verwendung von Haftschichten findet man bei der Herstellung von Gummi-Metall-Verbunden. Auch hierbei wird der Metalluntergrund in der Regel mechanisch oder chemisch vorbehandelt, bevor eine Haftschicht zur Verklebung mit Gummi aufgebracht wird.
Die herkömmlichen nassen oder trockenen Beschichtungsverfahren bringen jeweils spezielle Nachteile mit sich. Beispielsweise sind Chromatierverfahren durch die toxischen Eigenschaften des Chroms und der Entstehung hochgiftiger Schlämme aus ökologischen und ökonomischen Gesichtspunkten nachteilig. Aber auch chromfreie nasse Verfahren wie beispielsweise eine Phosphatierung sind in der Regel mit der Entstehung schwermetallhaltiger Schlämme verbunden, die aufwendig entsorgt werden müssen. Ein weiterer Nachteil herkömmlicher nasser Beschichtungsverfahren besteht darin, daß der eigentliche Beschichtungsschritt häufig vor- oder nachbereitende weitere Schritte benötigt. Hierdurch erhöht sich der Platzbedarf für die Behandlungslinie, und der Verbrauch an Chemikalien steigt. Beispielsweise ist die im Automobilbau nahezu ausschließlich eingesetzte Phosphatierung mit mehreren Reinigungsschritten, einem Aktivierungsschritt und in der Regel einem Nachpassivierungsschritt verbunden. In all diesen Schritten werden Chemikalien verbraucht und zu entsorgende Abfälle gebildet.
Trockene Beschichtungsverfahren bringen zwar weniger Abfallprobleme mit sich, haben aber den Nachteil einer technisch aufwendigen Verfahrensführung (beispielsweise durch das Erfordernis von Vakuum) oder sind energetisch aufwendig. Hohe Betriebskosten sind also vor allem durch Anlagenkosten und Energieverbrauch bedingt.
Daher besteht ein Bedarf nach neuen Beschichtungsverfahren zum Herstellen von Korrosionsschutz- oder Haftgrundschichten, die apparativ weniger aufwendig sind als trockene Verfahren und die im Vergleich zu nassen Verfahren mit einem geringeren Chemikalienverbrauch und einem geringeren Abfallvolumen auskommen.
Daß dünne Schichten von Metallverbindungen, beispielsweise Oxidschichten, elektrochemisch auf einem elektrisch leitenden Untergrund erzeugt werden können, ist im Stand der Technik bekannt. Beispielsweise beschreibt der Artikel Y. Zhou, J.A. Switzer: "Electrochemical Deposition and Microstructure of Copper (I) Oxide Films", Scripta Materialia Vol. 38, No. 11, Seiten 1731-1738 (1998) die elektrochemische Abscheidung und Mikrostruktur von Kupfer(I)oxidfilmen auf Edelstahl. Dabei wurde vor allem der Einfluß der Abscheidungsbedingungen auf die Morphologie der Oxidschichten untersucht. Eine praktische Anwendung der Schichten geht aus dieser Arbeit nicht hervor.
Der Artikel M. Yoshimura, W. Suchanek, K-S. Han: "Recent developments in soft, solution processing: one step fabrication of functional double oxide films by hydrothermal-electrochemical methods", J. Mater. Chem. Vol. 9, Seiten 77-82 (1999) untersucht die Herstellung von dünnen Filmen von Doppeloxiden durch eine Kombination von hydrothermalen mit elektrochemischen Methoden. Eine Anwendung wird in der Herstellung keramischer Materialien gesehen. Der Artikel enthält keine Hinweise auf die Verwendbarkeit solcher Schichten als Korrosionsschutz und als Haftgrund.
Eine elektrochemische Bildung einer Oxidschicht findet auch bei den als Anodisieren bekannten Prozessen statt. Hiervon unterscheidet sich die vorliegende Erfindung darin, daß auf einem Substrat Schichten von Metallverbindungen abgeschieden werden, wobei das Metall der Metallverbindung im wesentlichen ein anderes Metall darstellt als dasjenige, das den möglicherweise metallischen Untergrund ausmacht.
Ebenfalls ist es bekannt, die Bildung kristalliner Zinkphosphatschichten elektrochemisch zu unterstützen. Die Nachteile einer Phosphatierung (mehrere Teilschritte wie Aktivierung, Phosphatierung, Nachpassivierung; Anfall von Phosphatierschlamm) werden hierdurch jedoch nicht überwunden. Die elektrochemische Unterstützung der Ausbildung von Zinkphosphatschichten gehört nicht zum Umfang der vorliegenden Erfindung.
In US-A-2 081 121 wird ein Verfahren zur elektrolytischen Beschichtung von metallischen Substraten wie Eisen, Stahl, Kupfer und Messing mit einer dünnen Schicht aus Kupfer(I)-oxid beschrieben. Die hierzu eingesetzten alkalischen Bäder enthalten neben beispielsweise Kupfersulfat eine Verbindung, die mit dem Kupfer einen löslichen Komplex bildet. Als solche kommen beispielsweise in Frage: organische Säuren wie Milchsäure, Citronensäure, Glykolsäure, Weinsäure, Salicylsäure ferner Zucker, Glycerin und anorganische Verbindungen wie Pyrophosphat oder Borax. Die so gewonnenen farbigen Schichten können als Grundlage für einen nachfolgenden Anstrich, Lackierung oder Emaillierung dienen.
Die US-A-4 094 750 offenbart die elektrolytische Abscheidung von Metalloxiden von Al, Cu, Co und Ni auf Titan-, Magnesium-, Aluminium- oder Stahlsubstraten bei Stromdichten von 0,02 bis 0,5 A/in2 in 5 bis 60 Sekunden unter Verwendung entsprechender Metallsalze in alkoholischer Lösung. Gemäß den Beispielen resultieren Metalloxid-Schichtdicken im Bereich von 700 bis 1600 A. Diese Schichten dienen als Haftschicht für ein adhäsives Verbinden von Teilen.
Demgegenüber betrifft die vorliegende Erfindung ein Verfahren zur Herstellung einer mindestens zweilagigen Beschichtung auf einer elektrisch leitenden Oberfläche, dadurch gekennzeichnet, daß
in einem Schritt a) auf der elektrisch leitenden Oberfläche eine chromfreie Schicht aus mindestens einer röntgenkristallinen anorganischen Verbindung mindestens eines Metalls A mit einer flächenbezogonenen Masse von 1,1 bis 10 g/m2 aus einer Lösung, die das Metall A in gelöster Form enthält, elektrochemisch abgeschieden wird, wobei das Metall A ein anderes Metall darstellt als die Hauptkomponente der elektrisch leitenden Oberfläche und ausgewählt ist aus Mg. Ca. Sr. Ba, Si, Sn, Pb, Sb, Bi, Ti, Zr, Nb, Ta, Mn, Fe, Co, Ni, Zn, Cu und wobei die anorganische Verbindung weniger als 20 Gew.-% Phosphationen enthält, und
in einem nachfolgenden Schritt b) auf die im Schritt a) abgeschiedene Schicht mindestens eine Schicht eines kathodisch oder anodisch abscheidbaren Elektrotauchlacks oder eines Pulverlacks aufgebracht wird.
Die Lösung, die das Metall A in gelöster Form enthält, wird nachstehend auch als "Elektrolyt" bezeichnet. Stellt diese Wasser dar, in der Salz des Metalls A gelöst ist, ist die Leitfähigkeit dieser Lösung für den erfindungsgemäßen Zweck in der Regel ausreichend. Sollte ein nicht wäßriges Lösungsmittel verwendet werden oder die Leitfähigkeit einer wäßrigen Lösung nicht ausreichen, kann ein Leitsalz wie beispielsweise ein Tetraalkylammoniumhalogenid zugesetzt werden. Die Ionen des Leitsalzes werden nicht oder nur in untergeordnetem Maße in die Schicht eingebaut, erhöhen aber die elektrische Leitfähigkeit des Elektrolyten.
Dabei kann es sich bei der elektrisch leitenden Oberfläche um eine intrinsisch leitende Oberfläche wie beispielsweise eine metallische Oberfläche handeln. Die Schicht kann jedoch auch auf einer Oberfläche eines elektrisch wenig oder nicht leitenden Materials abgeschieden werden, wenn durch geeignete Maßnahmen die Oberfläche elektrisch leitfähig gemacht wird. Bei Kunststoffen kann dies beispielsweise dadurch erfolgen, daß man zunächst auf chemischem Wege eine elektrisch leitende Metallschicht abscheidet, die dann die Basis für die elektrochemische Abscheidung einer Verbindung des Metalls A darstellt. Eine Glasoberfläche kann beispielsweise dadurch elektrisch leitend gemacht werden, daß man sie mit einem Pulver einer elektrisch leitfähigen Substanz bestäubt oder eine leitfähige Schicht über die Gasphase aufbringt, beispielsweise als chemische Gasphasenabscheidung (CVD). Für die erfindungsgemäße Verwendung ist es jedoch bevorzugt, daß die elektrisch leitende Oberfläche eine Metalloberfläche darstellt.
Die Abscheidung der anorganischen Verbindung des Metalls A geschieht aus einer Lösung, die das Metall A in gelöster Form enthält. Dabei kann es sich um eine ein- oder mehrkomponentige wäßrige oder eine nicht wäßrige Lösung handeln. Beispiele nicht wäßriger Lösungsmittel mit einem guten Lösungsvermögen für geeignete Metallverbindungen sind flüssiges Ammoniak, Dimethylsulfoxid oder organische Phosphanderivate. Beispiele einer mehrkomponentigen wäßrigen Lösung sind Wasser-Alkohol-Gemische.
Die elektrochemische Abscheidung kann kathodisch oder anodisch erfolgen, wobei eine kathodische Abscheidung universeller einsetzbar und daher bevorzugt ist. Die Abscheidung der anorganischen Verbindung mindestens eines Metalls A aus einer entsprechenden Lösung kann nach 2 unterschiedlichen Mechanismen erfolgen. Zum einen kann die Abscheidung gekoppelt sein mit einer Änderung der Oxidationsstufe des Metalls A, wobei auf der elektrisch leitenden Oberfläche eine Schicht einer schwerlöslichen Verbindung des Metalls A in der gegenüber der Lösung geänderten Oxidationsstufe aufwächst. Beispielsweise läßt sich kathodisch aus einer wäßrigen Lösung, die Kupfer(II)-lonen enthält, Kupfer(I)-Oxid abscheiden. Ein anderer Abscheidungsmechanismus beruht darauf, daß sich durch elektrochemische Prozesse an der elektrisch leitenden Oberfläche der pH-Wert in Oberflächennähe verschiebt. Als Folge hiervon kann auf der elektrisch leitenden Oberfläche eine anorganische Verbindung mindestens eines Metalls A aufwachsen, die unter den lokalen pH-Bedingungen an der Oberfläche schwer löslich ist. Hierbei ist es nicht erforderlich, daß sich die Oxidationsstufe des Metalls A während des Abscheidungsprozesses ändert. Eine Verschiebung des pH-Werts an der elektrisch leitenden Oberfläche kann beispielsweise dadurch erfolgen, daß Wasserstoffionen entladen werden und hierdurch der pH-Wert lokal ansteigt.
Wenn hierbei von einer anorganischen Verbindung mindestens eines Metalls A die Rede ist, so bedeutet dies, daß diese Verbindung auf jeden Fall das Metall A enthalten muß. Daneben kann sie jedoch weitere Metalle B, C, ... enthalten. Diese weiteren Metalle können zusätzlich zu dem Metall A in der Lösung vorhanden sein und mit diesem zusammen abgeschieden werden. Diese anderen Metalle können jedoch auch Komponenten der elektrisch leitenden Oberfläche sein und bei der Bildung der Schicht einer anorganischen Verbindung mindestens eines Metalls A direkt in diese Verbindung mit eingebaut werden. Beispiele anorganischer Verbindungen, die neben dem Metall A ein weiteres Metall enthalten, sind Mischoxide, die beispielsweise dem Strukturtyp der Spinelle oder der Perovskite angehören können. Beispielsweise genannt seien Titanate und Niobate.
Wegen der einfachen Durchführbarkeit und der Möglichkeit, Wasser als Lösungsmittel zu verwenden, ist es bevorzugt, daß die im Schritt a) abgeschiedene Verbindung ein Oxid darstellt. Dieses kann auch ein Mischoxid unterschiedlicher Metalle sein. Die erfindungsgemäße Verwendung ist jedoch nicht auf Oxide beschränkt. Sie umfaßt weiterhin nichtoxidische anorganische Verbindungen wie beispielsweise Selenide, Sulfide oder Nitride, die aus geeigneten, ggf. wasserfreien, Lösungsmitteln abgeschieden werden können.
Dabei ist es im Sinne der Erfindung nicht zwingend, daß die anorganische Verbindung mindestens eines Metalls A eine lediglich binäre oder ternäre Verbindung darstellt. Vielmehr kann diese Verbindung auch komplexer aufgebaut sein, indem beispielsweise lonen oder Moleküle aus der Lösung in die Verbindung mit eingebaut werden. Ein Beispiel hierfür sind Oxidhydrate oder -sulfate.
Die erfindungsgemäße Verwendung umfaßt nicht eine reine Galvanisierung, da eine Galvanisierschicht keine "anorganische Verbindung" im Sinne dieser Erfindung darstellt. An die Schicht aus mindestens einer anorganischen Verbindung mindestens eines Metalls A wird vielmehr die Bedingung gestellt, daß zumindest ein Teil des Metalls A in einer Oxidationsstufe > 0 vorliegt.
Prinzipiell kann für die erfindungsgemäße Verwendung jede Schicht aus mindestens einer anorganischen Verbindung mindestens eines Metalls A eingesetzt werden, die sich elektrochemisch abscheiden läßt und die hinreichend chemisch stabil ist, um als Korrosionsschutzschicht zu wirken. Dies heißt, daß die Schicht mit oder ohne aufgebrachtem Lack einen besseren Korrosionsschutz liefert als die unbeschichtete Metalloberfläche. Aus Gründen von Preis und Verfügbarkeit ist das Metall A ausgewählt aus Mg, Ca, Sr, Ba, Si, Sn, Pb, Sb, Bi, Ti, Zr, Nb, Ta, Mn, Fe, Co, Ni, Zn, Cu. Die für praktische Zwecke wichtigsten Metall hieraus sind Si, Ti, Zr, Mn, Fe, Co, Ni, Zn und Cu.
Die elektrochemische Abscheidung kann potentiostatisch oder galvanostatisch erfolgen. Dabei ist die galvanostatische Abscheidung technisch einfacher durchzuführen und daher bevorzugt. Die Schichtbildung erfolgt vorzugsweise dadurch, daß die anorganische Verbindung auf der elektrisch leitenden Oberfläche bei einem Potential gegenüber einer Standard-Wasserstoff-Elektrode zwischen ±0,1 und ±300 V oder einer Stromdichte im Bereich von ±0,1 bis ±10000 mA pro cm2 elektrisch leitende Oberfläche abgeschieden wird. Vorzugsweise arbeitet man bei Potentialen zwischen ±0,1 und ±100 V oder bei einer Stromdichte im Bereich von ±0,5 bis ±100 mA pro cm2. Die Vorzeichen vor Spannung und Stromdichte drücken aus, daß die Abscheidung kathodisch oder anodisch erfolgen kann. Eine kathodische Abscheidung, d. h. ein negatives Potential gegenüber der Standard-Wasserstoff-Elektrode, ist bevorzugt.
Aus den einleitend zitierten Literaturstellen ist es bekannt, daß die Morphologie, die chemische Zusammensetzung und die Kristallstruktur der abgeschiedenen Schicht von den Abscheidungsbedingungen abhängen und somit durch Wahl der Bedingungen beeinflußt werden Konnen. Beispielsweise hangen die genannten Schichtparameter ab von der Konzentration der Metallionen A und ggf. weiterer Bestandteile in der Lösung, der Strömungsgeschwindigkeit der Lösung relativ zur elektrisch leitenden Oberfläche, dem eingestellten Potential und/oder der eingestellten Stromdichte. Die Schichteigenschaften lassen sich also durch Wahl dieser Parameter gezielt verändern. Dabei betreibt man die Abscheidung unter solchen Bedingungen, daß sich die anorganische Verbindung in röntgenkristalliner Form abscheidet. Dabei bedeutet röntgenkristallin, daß die anorganische Verbindung bei einem Röntgenbeugungsexperiment scharfe Röntgenreflexe liefert. Die hierbei entstehende stark strukturierte Oberfläche ist besonders günstig als Haftgrund für eine organische Beschichtung.
Eine Durchmischung des Elektrolyten und/oder eine Relativbewegung des Elektrolyten relativ zur metallisch leitenden Oberfläche kann die Schichtausbildung beschleunigen und die Morphologie der Schicht beeinflussen. Beispielsweise kann dies dadurch erfolgen, daß man den Elektrolyten rührt oder ihn im Elektrolysegefäß umpumpt. Weiterhin kann der Elektrolyt durch Einblasen eines Gases, insbesondere Luft, durchmischt und bewegt werden.
Vorstehend war von einer Abscheidung bei einem bestimmten Potential gegenüber einer Standard-Wasserstoff-Elektrode die Rede. Eine solche Potentialangabe setzt die Verwendung einer Bezugselektrode voraus, die sich möglichst nahe bei der elektrisch leitenden Substratoberfläche befindet. Beim praktischen Betrieb ist es jedoch einfacher, galvanostatisch zu arbeiten und die gewünschte Stromdichte durch Variation der Klemmenspannung von elektrisch leitender Oberfläche als Arbeitselektrode und einer beliebigen Gegenelektrode einzustellen. Beispielsweise sind Gegenelektroden geeignet, die unter den gewählten Elektrolysebedingungen hinreichend lange stabil sind. Beispiele sind Edelstahl, Gold, Silber, Platin, Graphit oder glasartiger Kohlenstoff
Bei dem erfindungsgemäßen Verfahren zur Herstellung einer mindestens zweilagigen Beschichtung kann in einer Ausführungsform im Teilschritt b) ein kathodisch oder anodisch abscheidbarer Elektrotauchlack aufgebracht werden. Dies setzt allerdings voraus, daß die elektrische Leitfähigkeit der Schicht groß genug ist, einen Elektrotauchlack abzuscheiden. Bei einer Schicht aus Kupfer(I)-Oxid mit einer flächenbezogenen Masse unterhalb von 10 g/m2 ist dies beispielsweise der Fall.
In dieser Ausführungsform wird zwischen dem Abscheiden der Schicht der anorganischen Verbindung und dem Aufbringen des Elektrotauchlacks vorzugsweise mit Wasser gespült. Dies kann durch Eintauchen oder Absprühen erfolgen. Dabei kann es vorteilhaft sein, zumindest im letzten Spülschritt mit salzarmem oder vollentsalztem Wasser zu spülen. Eine chemische Nachpassivierung der anorganischen Schicht vor der elektrischen Tauchlackierung, wie sie beispielsweise bei einer Phosphatierung in der Regel erfolgt, ist in dem erfindungsgemäßen Verfahren nicht notwendig.
Weiterhin kann im Teilschritt b) ein Pulverlack aufgebracht werden. Hierfür muß die anorganische Schicht auf der elektrisch leitenden Oberfläche nicht mehr in dem Maße elektrisch leitend sein, wie dies für eine nachfolgende Elektrotauchlackierung erforderlich ist. Ein Pulverlack wird bevorzugt auf ausgeformte Gegenstände aufgebracht, die keiner starken korrosiven Belastung ausgesetzt sind. Beispiele hierfür sind Gegenstände wie Haushaltsgeräte oder elektronische Geräte, die in geschlossenen Räumen aufbewahrt werden.
Die Vorteile des erfindungsgemäßen Verfahrens liegen insbesondere darin, daß Dicke, Zusammensetzung sowie innere und äußere Struktur der anorganischen Schicht durch die Wahl der Abscheidungsparameter leichter steuerbar sind als bei rein chemischer Verfahrensführung. Für das Aufbringen der Schicht werden weniger Verfahrensstufen benötigt als bei einer Phosphatierung und es fallen generell weniger Schlämme an als bei einer rein chemischen Schichtbildung. Im Vergleich zu Abscheidungsverfahren aus der Gasphase ist die elektrochemische Abscheidung schneller und mit einem geringeren apparativen Aufwand und Energieverbrauch verbunden. Weiterhin ist es nicht erforderlich, wie der Gasphasen-Abscheidung flüchtige Ausgangsverbindungen bereit zu stellen.
Ein weiterer Vorteil einer elektrochemischen Schichtbildung liegt darin, daß das Schichtwachstum über den elektrischen Widerstand an der metallisch leitenden Oberfläche steuerbar ist. Sofern die aufwachsende Schicht einen höheren elektrischen Widerstand hat als die elektrisch leitende Oberfläche - was in der Regel der Fall ist - so verlangsamt sich das Schichtwachstum, wenn der elektrische Widerstand aufgrund der Schichtbildung zu hoch wird. Solange es noch unbelegte Stellen der metallisch leitenden Oberfläche gibt oder die Schicht noch so dünn ist, daß bei der eingestellten Spannung noch ein Strom fließt, erfolgt das Schichtwachstum an diesen Stellen. Ist die metallisch leitende Oberfläche nahezu vollständig mit einer Schicht einer derartigen Dicke bedeckt, daß der elektrische Widerstand deutlich ansteigt, kann der Prozeß der Schichtausbildung beendet werden. Bei galvanostatisch kontrolliertem Schichtwachstum zeigt sich die nahezu vollständige Schichtausbildung dadurch, daß die Klemmenspannung stark ansteigt. Der Prozeß kann dann automatisch bei einem vorgewählten Wert der Klemmenspannung abgebrochen werden.
Ausführungsbeispiel Kathodische Abscheidung von Kupfer(I)-Oxid auf Stahl aus wäßriger Lösung
Auf kaltgewalztem Stahl wurde ein Pilotprozeß zum Korrosionsschutz mittels kathodischer Abscheidung von Cu2O ohne Aktivierungsschritt (Verkürzung der Prozeßkette) durchgführt. Folgende Prozeßparameter wurden eingestellt :
  • Reinigung : schwach alkalisch (RidolineR 1559, 2.5 %, 75°C, 5-10 min.)
  • Spülung : Leitungswasser, entionisiertes Wasser
  • Aktivierung : KEINE
  • Konversion : Elekrolyt: 0.4 M CuSO4 + 3 M Milchsäure, pH 10, 60°C, mit 400 Umdrehungen pro Minute Rühren
    Abscheidung sowohl potentiostatisch (0.2 V vs. Standard-Wasserstoff-Elektrode) als auch galvanostatisch (-0.8 bis -2.6 mAcm-2)
    Behandlungszeit : 10-300 Sekunden
    Nachspülung : entionisiertes Wasser
    Trocknung : Druckluft
    Charakterisierung : Rasterelektronenmikroskopie, Röntgen-Photoelektronenspektroskopie, Korrosionstest (Wechselklimatest)
    Lackierung : kathodischer Tauchlack ED 5000
    Die gebildeten Schichten sind ab einer Behandlungszeit von ca. 50 s geschlossen und bestehen aus feinen (< 1µm) Kristallen von Cu2O :
    Die Schichteigenschaften sind aufgrund der elektrochemischen Natur des Prozesses auch ohne Eingriffe in die Elektrolytzusammensetzung sehr einfach zu kontrollieren. So ist z.B. die Schichtdicke bei konstantem Gesamtstrom präzise durch die geflossene Gesamtladung kontrollierbar, z.B für i= -800
    mA :
    Prozeßzeit (Sekunden) Schichtgewicht (gm-2)
    10 0.4
    30 0.7
    60 1.1
    120 2..4
    300 5.6
    In Korrosionstests (10 Zyklen VDA-Wechselklimatest, kathodische Tauchlackierung) zeigt sich eine deutliche Verbesserung des Korrosionsschutzes durch die Beschichtung in Abhängigkeit von der applizierten Schichtdicke :
    Prozeßzeit (Sekunden) Wechselklimatest: Unterwanderung U/2 (mm)
    10 4.8
    30 4.5
    60 3.9
    120 3.6
    300 2.6

    Claims (3)

    1. Verfahren zur Herstellung einer mindestens zweilagigen Beschichtung auf einer elektrisch leitenden Oberfläche, dadurch gekennzeichnet, daß in einem Schritt a) auf der elektrisch leitenden Oberfläche eine chromfreie Schicht aus mindestens einer röntgenkristallinen anorganischen Verbindung mindestens eines Metalls A mit einer flächenbezogenenen Masse von 1,1 bis 10 g/m2 aus einer Lösung, die das Metall A in gelöster Form enthält, elektrochemisch abgeschieden wird, wobei das Metall A ein anderes Metall darstellt als die Hauptkomponente der elektrisch leitenden Oberfläche und ausgewählt ist aus Mg, Ca, Sr, Ba, Si, Sn, Pb, Sb, Bi, Ti, Zr, Nb, Ta, Mn, Fe, Co, Ni, Zn, Cu und wobei die anorganische Verbindung weniger als 20 Gew.-% Phosphationen enthält, und
      in einem nachfolgenden Schritt b) auf die im Schritt a) abgeschiedene Schicht mindestens eine Schicht eines kathodisch oder anodisch abscheidbaren Elektrotauchlacks oder eines Pulverlacks aufgebracht wird.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die im Schritt a) abgeschiedene Verbindung ein Oxid darstellt.
    3. Verfahren nach einem oder beiden der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die anorganische Verbindung auf der elektrisch leitenden Oberfläche bei einem Potential gegenüber einer Standard-Wasserstoff-Elektrode zwischen ±0,1 und ±300 V oder einer Stromdichte im Bereich von ±0,1 bis ±10000 mA pro cm2 elektrisch leitenden Oberfläche abgeschieden wird.
    EP01933902A 2000-05-06 2001-04-27 Elektrochemische erzeugte schichten zum korrosionsschutz oder als haftgrund Expired - Lifetime EP1285105B1 (de)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    EP03025080A EP1394292A3 (de) 2000-05-06 2001-04-27 Elektrochemisch erzeugte TiO2-Schichten zum Korrosionsschutz oder als Haftgrund

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10022074A DE10022074A1 (de) 2000-05-06 2000-05-06 Elektrochemisch erzeugte Schichten zum Korrosionsschutz oder als Haftgrund
    DE10022074 2000-05-06
    PCT/EP2001/004780 WO2001086029A1 (de) 2000-05-06 2001-04-27 Elektrochemisch erzeugte schichten zum korrosionsschutz oder als haftgrund

    Related Child Applications (1)

    Application Number Title Priority Date Filing Date
    EP03025080A Division EP1394292A3 (de) 2000-05-06 2001-04-27 Elektrochemisch erzeugte TiO2-Schichten zum Korrosionsschutz oder als Haftgrund

    Publications (2)

    Publication Number Publication Date
    EP1285105A1 EP1285105A1 (de) 2003-02-26
    EP1285105B1 true EP1285105B1 (de) 2004-03-17

    Family

    ID=7640989

    Family Applications (2)

    Application Number Title Priority Date Filing Date
    EP03025080A Withdrawn EP1394292A3 (de) 2000-05-06 2001-04-27 Elektrochemisch erzeugte TiO2-Schichten zum Korrosionsschutz oder als Haftgrund
    EP01933902A Expired - Lifetime EP1285105B1 (de) 2000-05-06 2001-04-27 Elektrochemische erzeugte schichten zum korrosionsschutz oder als haftgrund

    Family Applications Before (1)

    Application Number Title Priority Date Filing Date
    EP03025080A Withdrawn EP1394292A3 (de) 2000-05-06 2001-04-27 Elektrochemisch erzeugte TiO2-Schichten zum Korrosionsschutz oder als Haftgrund

    Country Status (7)

    Country Link
    US (3) US20040099535A1 (de)
    EP (2) EP1394292A3 (de)
    AT (1) ATE262056T1 (de)
    AU (1) AU2001260260A1 (de)
    DE (2) DE10022074A1 (de)
    ES (1) ES2218415T3 (de)
    WO (1) WO2001086029A1 (de)

    Families Citing this family (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7452454B2 (en) * 2001-10-02 2008-11-18 Henkel Kgaa Anodized coating over aluminum and aluminum alloy coated substrates
    US7820300B2 (en) * 2001-10-02 2010-10-26 Henkel Ag & Co. Kgaa Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating
    US7578921B2 (en) * 2001-10-02 2009-08-25 Henkel Kgaa Process for anodically coating aluminum and/or titanium with ceramic oxides
    US7569132B2 (en) * 2001-10-02 2009-08-04 Henkel Kgaa Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
    EP1548157A1 (de) * 2003-12-22 2005-06-29 Henkel KGaA Korrosionsschutz durch elektrochemisch abgeschiedene Metalloxidschichten auf Metallsubstraten
    FR2885370B1 (fr) * 2005-05-03 2007-09-28 Commissariat Energie Atomique Procede de depot electrochimique, source de rayonnements alpha et x, fabriquee par ce procede, et dispositif d'analyse pixe-xrf, utilisant cette source.
    EP1893791A2 (de) * 2005-06-22 2008-03-05 Henkel Kommanditgesellschaft Auf Aktien Material zur elektroabscheidung, verfahren zur bereitstellung einer korrosionsschützenden schicht von tio2 auf einem elektrisch leitenden substrat und mit einer tio2-schicht beschichtetes metallsubstrat
    WO2006136335A1 (en) * 2005-06-22 2006-12-28 Henkel Kommanditgesellschaft Auf Aktien PROCESS FOR PROVIDING A CORROSION-PROTECTIVE LAYER OF TiO2 ON AN ELECTRICALLY CONDUCTIVE SUBSTRATE AND METAL SUBSTRATE COATED WITH A LAYER OF TiO2
    WO2006136334A2 (en) * 2005-06-22 2006-12-28 Henkel Kommanditgesellschaft Auf Aktien Electrodeposition material, process for providing a corrosion-protective layer of tio2 on an electrically conductive substrate and metal substrate coated with a layer of tio2
    US20080131709A1 (en) * 2006-09-28 2008-06-05 Aculon Inc. Composite structure with organophosphonate adherent layer and method of preparing
    US20090169903A1 (en) * 2007-12-27 2009-07-02 Kansai Paint Co., Ltd. Process for producing metal substrate with multilayer film, metal substrate with multilayer film obtained by the process, and coated article
    US8882983B2 (en) 2008-06-10 2014-11-11 The Research Foundation For The State University Of New York Embedded thin films
    US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
    US9493541B2 (en) 2010-06-07 2016-11-15 Joshua Rabbani Antibodies specific for sulfated sclerostin
    US20150010707A1 (en) * 2013-07-02 2015-01-08 Jian- Liang LIN Method for Marking a Tool
    CN105112967A (zh) * 2015-09-11 2015-12-02 西南交通大学 一种具有骨诱导和抗菌性能的导电涂层的制备方法
    DE102018107563B4 (de) 2018-03-29 2022-03-03 Infineon Technologies Austria Ag Halbleitervorrichtung mit kupferstruktur und verfahren zur herstellung einer halbleitervorrichung
    WO2020160531A1 (en) * 2019-02-01 2020-08-06 Lumishield Technologies Incorporated Methods and compositions for improved adherence of organic coatings to materials
    MX2022006167A (es) * 2019-11-22 2022-06-14 Ppg Ind Ohio Inc Metodos para depositar electrolicamente composiciones de pretratamiento.

    Family Cites Families (93)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE655700C (de) * 1935-01-08 1938-01-21 Max Schenk Dr Verfahren zur Herstellung opaker, emailaehnlicher Schutzschichten auf Aluminium und dessen Legierungen
    US2081121A (en) * 1935-08-06 1937-05-18 Kansas City Testing Lab Decorating metals
    US2275223A (en) * 1936-10-20 1942-03-03 Robert H Hardoen Rustproof material and process
    US2231372A (en) * 1937-04-03 1941-02-11 Telefunken Gmbh Amplifier tube arrangement
    FR845549A (fr) * 1937-12-01 1939-08-25 Fides Gmbh Procédé de fabrication de couches protectrices dures et étanches sur le magnésium et les alliages de magnésium
    US2880148A (en) * 1955-11-17 1959-03-31 Harry A Evangelides Method and bath for electrolytically coating magnesium
    US2901409A (en) * 1956-08-03 1959-08-25 Dow Chemical Co Anodizing magnesium
    US2925125A (en) * 1956-10-18 1960-02-16 Kenneth D Curry Tire tread cutting machine
    GB1051665A (de) * 1962-06-15
    US3345276A (en) * 1963-12-23 1967-10-03 Ibm Surface treatment for magnesiumlithium alloys
    US4166777A (en) * 1969-01-21 1979-09-04 Hoechst Aktiengesellschaft Corrosion resistant metallic plates particularly useful as support members for photo-lithographic plates and the like
    US3620940A (en) * 1970-05-12 1971-11-16 Us Army Method of inducing polarization of active magnesium surfaces
    JPS4919979B1 (de) * 1970-12-15 1974-05-21
    GB1386234A (en) * 1971-04-28 1975-03-05 Imp Metal Ind Kynoch Ltd Preparation of titanium oxide and method of coating with an oxide
    AT309942B (de) * 1971-05-18 1973-09-10 Isovolta Verfahren zum anodischen Oxydieren von Gegenständen aus Aluminium oder seinen Legierungen
    JPS5319974B2 (de) * 1972-10-04 1978-06-23
    US3956080A (en) * 1973-03-01 1976-05-11 D & M Technologies Coated valve metal article formed by spark anodizing
    US3945899A (en) * 1973-07-06 1976-03-23 Kansai Paint Company, Limited Process for coating aluminum or aluminum alloy
    US4075135A (en) * 1975-07-28 1978-02-21 Ppg Industries, Inc. Method and resinous vehicles for electrodeposition
    US3996115A (en) * 1975-08-25 1976-12-07 Joseph W. Aidlin Process for forming an anodic oxide coating on metals
    US4110147A (en) * 1976-03-24 1978-08-29 Macdermid Incorporated Process of preparing thermoset resin substrates to improve adherence of electrolessly plated metal deposits
    JPS5326236A (en) * 1976-08-25 1978-03-10 Toyo Kohan Co Ltd Surface treated steel sheet for coating
    US4082626A (en) * 1976-12-17 1978-04-04 Rudolf Hradcovsky Process for forming a silicate coating on metal
    US4094750A (en) * 1977-10-05 1978-06-13 Northrop Corporation Cathodic deposition of oxide coatings
    SE440089B (sv) * 1978-06-05 1985-07-15 Nippon Steel Corp Ytbehandlat stalmaterial och sett for dess framstellning
    US4188270A (en) * 1978-09-08 1980-02-12 Akiyoshi Kataoka Process for electrolytically forming glossy film on articles of aluminum or alloy thereof
    US4184926A (en) * 1979-01-17 1980-01-22 Otto Kozak Anti-corrosive coating on magnesium and its alloys
    US4227976A (en) * 1979-03-30 1980-10-14 The United States Of America As Represented By The Secretary Of The Army Magnesium anodize bath control
    US4370538A (en) * 1980-05-23 1983-01-25 Browning Engineering Corporation Method and apparatus for ultra high velocity dual stream metal flame spraying
    US4452674A (en) * 1980-09-26 1984-06-05 American Hoechst Corporation Electrolytes for electrochemically treated metal plates
    US4448647A (en) * 1980-09-26 1984-05-15 American Hoechst Corporation Electrochemically treated metal plates
    US4383897A (en) * 1980-09-26 1983-05-17 American Hoechst Corporation Electrochemically treated metal plates
    CA1162504A (en) * 1980-11-25 1984-02-21 Mobuyuki Oda Treating tin plated steel sheet with composition containing titanium or zirconium compounds
    US4438287A (en) * 1981-03-27 1984-03-20 Uop Inc. Preparation of alcohols
    DE3211782A1 (de) * 1982-03-30 1983-10-06 Siemens Ag Bad und verfahren zum anodisieren von aluminierten teilen
    IT1212859B (it) * 1983-03-21 1989-11-30 Centro Speriment Metallurg Laminati piatti di acciaio rivestiti perfezionati
    US4551211A (en) * 1983-07-19 1985-11-05 Ube Industries, Ltd. Aqueous anodizing solution and process for coloring article of magnesium or magnesium-base alloy
    JPS60208494A (ja) * 1984-03-31 1985-10-21 Kawasaki Steel Corp 溶接性に優れたシ−ム溶接缶用表面処理鋼板
    NL189310C (nl) * 1984-05-18 1993-03-01 Toyo Kohan Co Ltd Beklede stalen plaat met verbeterde lasbaarheid en werkwijze voor de vervaardiging.
    US4578156A (en) * 1984-12-10 1986-03-25 American Hoechst Corporation Electrolytes for electrochemically treating metal plates
    US4659440A (en) * 1985-10-24 1987-04-21 Rudolf Hradcovsky Method of coating articles of aluminum and an electrolytic bath therefor
    US4620904A (en) * 1985-10-25 1986-11-04 Otto Kozak Method of coating articles of magnesium and an electrolytic bath therefor
    US4668347A (en) * 1985-12-05 1987-05-26 The Dow Chemical Company Anticorrosive coated rectifier metals and their alloys
    GB8602582D0 (en) * 1986-02-03 1986-03-12 Alcan Int Ltd Porous anodic aluminium oxide films
    US4775600A (en) * 1986-03-27 1988-10-04 Nippon Kokan Kabushiki Kaisha Highly corrosion-resistant surface-treated steel plate
    US4744872A (en) * 1986-05-30 1988-05-17 Ube Industries, Ltd. Anodizing solution for anodic oxidation of magnesium or its alloys
    JPS6335798A (ja) * 1986-07-31 1988-02-16 Nippon Steel Corp カチオン電着塗装用有機複合鋼板
    US4861441A (en) * 1986-08-18 1989-08-29 Nippon Steel Corporation Method of making a black surface treated steel sheet
    JPS6387716A (ja) * 1986-09-30 1988-04-19 Nippon Steel Corp 非晶質合金材料の表面処理方法
    JPS63100194A (ja) * 1986-10-16 1988-05-02 Kawasaki Steel Corp 電解化成処理亜鉛系めつき鋼板およびその製造方法
    DE3870925D1 (de) * 1987-02-02 1992-06-17 Friebe & Reininghaus Ahc Verfahren zur herstellung dekorativer ueberzuege auf metallen.
    US4839002A (en) * 1987-12-23 1989-06-13 International Hardcoat, Inc. Method and capacitive discharge apparatus for aluminum anodizing
    US4869936A (en) * 1987-12-28 1989-09-26 Amoco Corporation Apparatus and process for producing high density thermal spray coatings
    US4882014A (en) * 1988-02-24 1989-11-21 Union Oil Company Of California Electrochemical synthesis of ceramic films and powders
    DE3808609A1 (de) * 1988-03-15 1989-09-28 Electro Chem Eng Gmbh Verfahren zur erzeugung von korrosions- und verschleissbestaendigen schutzschichten auf magnesium und magnesiumlegierungen
    DE3808610A1 (de) * 1988-03-15 1989-09-28 Electro Chem Eng Gmbh Verfahren zur oberflaechenveredelung von magnesium und magnesiumlegierungen
    FR2649359B1 (fr) * 1989-07-06 1993-02-12 Cebal Bande ou portion de bande pour emboutissage ou emboutissage-etirage, et son utilisation
    DE69016433T2 (de) * 1990-05-19 1995-07-20 Papyrin Anatolij Nikiforovic Beschichtungsverfahren und -vorrichtung.
    US5275713A (en) * 1990-07-31 1994-01-04 Rudolf Hradcovsky Method of coating aluminum with alkali metal molybdenate-alkali metal silicate or alkali metal tungstenate-alkali metal silicate and electroyltic solutions therefor
    US5776892A (en) * 1990-12-21 1998-07-07 Curative Health Services, Inc. Anti-inflammatory peptides
    US5283131A (en) * 1991-01-31 1994-02-01 Nihon Parkerizing Co., Ltd. Zinc-plated metallic material
    US5240589A (en) * 1991-02-26 1993-08-31 Technology Applications Group, Inc. Two-step chemical/electrochemical process for coating magnesium alloys
    US5470664A (en) * 1991-02-26 1995-11-28 Technology Applications Group Hard anodic coating for magnesium alloys
    JP2697351B2 (ja) * 1991-04-03 1998-01-14 日本鋼管株式会社 電解処理絶縁被膜を有する電磁鋼板およびその製造方法
    US5264113A (en) * 1991-07-15 1993-11-23 Technology Applications Group, Inc. Two-step electrochemical process for coating magnesium alloys
    US5266412A (en) * 1991-07-15 1993-11-30 Technology Applications Group, Inc. Coated magnesium alloys
    DK187391D0 (da) * 1991-11-15 1991-11-15 Inst Produktudvikling Fremgangsmaade til efterbehandling af zinkbelagte materialer samt behandlingsoploesning til brug ved fremgangsmaaden
    DE4139006C3 (de) * 1991-11-27 2003-07-10 Electro Chem Eng Gmbh Verfahren zur Erzeugung von Oxidkeramikschichten auf sperrschichtbildenden Metallen und auf diese Weise erzeugte Gegenstände aus Aluminium, Magnesium, Titan oder deren Legierungen mit einer Oxidkeramikschicht
    US5281282A (en) * 1992-04-01 1994-01-25 Henkel Corporation Composition and process for treating metal
    EP0754058B1 (de) * 1994-03-29 1999-11-03 The Victoria University Of Manchester Wundheilung
    GB2298870B (en) * 1995-03-13 1998-09-30 British Steel Plc Passivation treatment of tinplate
    US5792335A (en) * 1995-03-13 1998-08-11 Magnesium Technology Limited Anodization of magnesium and magnesium based alloys
    FR2733998B1 (fr) * 1995-05-12 1997-06-20 Satma Societe Anonyme De Trait Procede de polissage electrolytique en deux etapes de surfaces metalliques pour obtenir des proprietes optiques ameliorees et produits resultants
    US5958604A (en) * 1996-03-20 1999-09-28 Metal Technology, Inc. Electrolytic process for cleaning and coating electrically conducting surfaces and product thereof
    RU2077611C1 (ru) * 1996-03-20 1997-04-20 Виталий Макарович Рябков Способ обработки поверхностей и устройство для его осуществления
    US5981084A (en) * 1996-03-20 1999-11-09 Metal Technology, Inc. Electrolytic process for cleaning electrically conducting surfaces and product thereof
    DE19621818A1 (de) * 1996-05-31 1997-12-04 Henkel Kgaa Kurzzeit-Heißverdichtung anodisierter Metalloberflächen mit tensidhaltigen Lösungen
    US5793335A (en) * 1996-08-14 1998-08-11 L-3 Communications Corporation Plural band feed system
    US6153080A (en) * 1997-01-31 2000-11-28 Elisha Technologies Co Llc Electrolytic process for forming a mineral
    JP2981184B2 (ja) * 1997-02-21 1999-11-22 トーカロ株式会社 ボイラ伝熱管および管内面デポジット付着抑制効果に優れるボイラ伝熱管の製造方法
    FR2764310B1 (fr) * 1997-06-10 1999-07-09 Commissariat Energie Atomique Materiau multicouches a revetement anti-erosion, anti-abrasion, et anti-usure sur substrat en aluminium, en magnesium ou en leurs alliages
    US6090490A (en) * 1997-08-01 2000-07-18 Mascotech, Inc. Zirconium compound coating having a silicone layer thereon
    DE69913049D1 (de) * 1998-02-23 2004-01-08 Mitsui Mining & Smelting Co Produkt auf magnesiumbasis mit erhöhtem glanz des basismetalls und korrosionsbeständigkeit und verfahren zu dessen herstellung
    JP2000248398A (ja) * 1999-02-26 2000-09-12 Toyo Kohan Co Ltd 表面処理鋼板の製造方法および表面処理鋼板
    US6197178B1 (en) * 1999-04-02 2001-03-06 Microplasmic Corporation Method for forming ceramic coatings by micro-arc oxidation of reactive metals
    JP2000328292A (ja) * 1999-05-11 2000-11-28 Honda Motor Co Ltd Si系アルミニウム合金の陽極酸化処理方法
    ATE417947T1 (de) * 2001-06-28 2009-01-15 Alonim Holding Agricultural Co Behandlung für verbesserte oberflächenkorrosionsbeständigkeit von magnesium
    US6916414B2 (en) * 2001-10-02 2005-07-12 Henkel Kommanditgesellschaft Auf Aktien Light metal anodization
    US20030070935A1 (en) * 2001-10-02 2003-04-17 Dolan Shawn E. Light metal anodization
    US6861101B1 (en) * 2002-01-08 2005-03-01 Flame Spray Industries, Inc. Plasma spray method for applying a coating utilizing particle kinetics
    US6863990B2 (en) * 2003-05-02 2005-03-08 Deloro Stellite Holdings Corporation Wear-resistant, corrosion-resistant Ni-Cr-Mo thermal spray powder and method
    US6869703B1 (en) * 2003-12-30 2005-03-22 General Electric Company Thermal barrier coatings with improved impact and erosion resistance
    US6875529B1 (en) * 2003-12-30 2005-04-05 General Electric Company Thermal barrier coatings with protective outer layer for improved impact and erosion resistance

    Also Published As

    Publication number Publication date
    EP1285105A1 (de) 2003-02-26
    AU2001260260A1 (en) 2001-11-20
    US20070144914A1 (en) 2007-06-28
    EP1394292A3 (de) 2004-06-16
    US20090162563A1 (en) 2009-06-25
    ATE262056T1 (de) 2004-04-15
    US20040099535A1 (en) 2004-05-27
    ES2218415T3 (es) 2004-11-16
    EP1394292A2 (de) 2004-03-03
    DE50101713D1 (de) 2004-04-22
    DE10022074A1 (de) 2001-11-08
    WO2001086029A1 (de) 2001-11-15

    Similar Documents

    Publication Publication Date Title
    EP1285105B1 (de) Elektrochemische erzeugte schichten zum korrosionsschutz oder als haftgrund
    DE3816265C2 (de)
    DE3116743A1 (de) &#34;verfahren zum vorbehandeln eines nicht leitfaehigen substrats fuer nachfolgendes galvanisieren&#34;
    DE102016205814A1 (de) Verfahren zur gezielten Einstellung der elektrischen Leitfähigkeit von Konversionsbeschichtungen
    EP2588645B1 (de) Verfahren zur abscheidung einer nickel-metall-schicht
    EP0760871B1 (de) Verfahren zur beschichtung phosphatierter metallsubstrate
    EP0261519B1 (de) Schichtbildende Passivierung bei Multimetall-Verfahren
    EP0366941B1 (de) Verfahren zur elektrophoretischen Tauchlackierung von chromatierbaren Metalloberflächen
    EP0219779B1 (de) Verfahren zur Phosphatierung elektrolytisch verzinkter Metallwaren
    EP1675975A2 (de) ELEKTROLYTISCHES VERFAHREN ZUM PHOSPHATIEREN VON METALLOBERFL&amp;Auml;CHEN UND DAMIT PHOSPHATIERTE METALLSCHICHT
    DE3211782A1 (de) Bad und verfahren zum anodisieren von aluminierten teilen
    DE10159890B4 (de) Verfahren für das Beschichten von Aluminiumwerkstoffen mit Funktionsschichten aus Eisen
    EP3728693B1 (de) Verfahren zur korrosionsschützenden und reinigenden vorbehandlung von metallischen bauteilen
    DE102010033785A1 (de) Verfahren zum Beschichten von Substraten auf Magnesiumbasis
    DE19934323B4 (de) Metallisiertes Bauteil, Verfahren zu seiner Herstellung und seine Verwendung
    WO2015090418A1 (de) Verfahren zur beschichtung elektrisch leitfähiger substrate
    EP1433879B1 (de) Verfahren zur Beschichtung von Metalloberflächen mit einer Alkaliphosphatierungslösung, wässeriges Konzentrat und Verwendung der derart beschichteten Metalloberflächen
    EP1273679A1 (de) Metallisches Bauteil mit äusserer Funktionsschicht und Verfahren zu seiner Herstellung
    DE3111369A1 (de) Bad und verfahren zum galvanischen aluminieren von polytetrafluoraethylenteilen
    DE2650611B2 (de) Verfahren zur Herstellung beschichteter Stahl-Verbundbleche
    EP0505886A1 (de) Erzeugung dekorativer Aluminiumbeschichtungen
    WO2001059180A1 (de) Verfahren zur beschichtung von metalloberflächen, wässeriges konzentrat hierzu und verwendung der beschichteten metallteile
    WO2008064954A2 (de) Elektrolyt zur galvanischen abscheidung von aluminium aus aprotischen lösungsmitteln in einer galvanisiertrommel
    WO2011036260A2 (de) Verfahren zum galvanisieren und zur passivierung
    DE102018216216A1 (de) Verfahren zur Verbesserung der Phosphatierbarkeit von metallischen Oberflächen, welche mit einer temporären Vor- bzw. Nachbehandlung versehen werden

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20021026

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    17Q First examination report despatched

    Effective date: 20030530

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040317

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040317

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040317

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040317

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040317

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50101713

    Country of ref document: DE

    Date of ref document: 20040422

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040427

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040427

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040430

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040617

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040617

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040617

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040624

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20040317

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    BERE Be: lapsed

    Owner name: HENKEL K.G.A.A.

    Effective date: 20040430

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2218415

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20041220

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040817

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20090508

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20090428

    Year of fee payment: 9

    Ref country code: FR

    Payment date: 20090417

    Year of fee payment: 9

    Ref country code: IT

    Payment date: 20090423

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20090422

    Year of fee payment: 9

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20100427

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20101230

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101103

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100427

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100427

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20110714

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110704

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100428

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100430