EP0760871B1 - Verfahren zur beschichtung phosphatierter metallsubstrate - Google Patents

Verfahren zur beschichtung phosphatierter metallsubstrate Download PDF

Info

Publication number
EP0760871B1
EP0760871B1 EP95920868A EP95920868A EP0760871B1 EP 0760871 B1 EP0760871 B1 EP 0760871B1 EP 95920868 A EP95920868 A EP 95920868A EP 95920868 A EP95920868 A EP 95920868A EP 0760871 B1 EP0760871 B1 EP 0760871B1
Authority
EP
European Patent Office
Prior art keywords
organic
coating
metal substrates
phosphating
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95920868A
Other languages
English (en)
French (fr)
Other versions
EP0760871A1 (de
Inventor
Gabriele Büttner
Matthias Kimpel
Klausjörg Klein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axalta Coating Systems Germany GmbH and Co KG
Original Assignee
Herberts GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herberts GmbH filed Critical Herberts GmbH
Publication of EP0760871A1 publication Critical patent/EP0760871A1/de
Application granted granted Critical
Publication of EP0760871B1 publication Critical patent/EP0760871B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment

Definitions

  • the invention relates to a method for coating phosphated Metal substrates with organic coatings, in particular Electrocoat coatings.
  • Pretreatment of metallic substrates e.g. made of aluminium, but especially from galvanized or non-galvanized steel, for one Painting, in particular for an electrophoretically to be applied Dip painting, exists when good corrosion protection is desired and good substrate adhesion by electrophoretic deposition generated coating layer should be achieved from a phosphating and a passivating rinse. Then on this surface the electrocoat is applied and baked.
  • JP-A-58 130 282 describes the treatment of phosphated surfaces with aqueous, Fe, Zn, Ni, Mo, Co, W, Mg, Mn or Si solutions described before coating the surfaces receive.
  • the SU-A-914652 describes the increase in wear resistance and the electrical conductivity of castings by treating a porous Phosphate coating with aqueous solutions of the formates and / or oxalates of Ag, Cu, Pb and / or Bi and then heating the treated surfaces to the Decomposition temperature of the salts.
  • the object of the present invention is a coating method to provide for phosphated metal substrates, which the Corrosion protection increases beyond the level reached.
  • the Coating method should preferably be composed with simple and ecologically and health-friendly after-treatment materials be feasible. It should also allow a high one Generate level of corrosion protection if the previous one Phosphating is based on a concept for ecological reasons, which leads to only moderate corrosion protection. In particular, should the coating process allow chrome, nickel and nitrite free work.
  • this object can be achieved by a method for coating phosphated metal substrates with one or more organic coatings, which is characterized in that the phosphated metal substrates are free of nickel after phosphating in a phosphating solution and before application of the first organic coating can be treated with an aqueous solution which contains 5 to 10,000 ppm of dissolved bismuth in the form of inorganic and / or organic compounds, and deposits the element in a total amount of 5 to 100 mg / m 2 .
  • the phosphated metal substrates are preferred throughout or part of the Treatment time switched additionally as cathode.
  • metal parts can be used as metallic substrates, as they are common in the automotive industry, for example.
  • metallic substrates can be used as metallic substrates, as they are common in the automotive industry, for example.
  • components made of aluminum, magnesium or their alloys, iron and especially steel, e.g. non-galvanized or with pure zinc, zinc-nickel alloy or zinc-iron alloy galvanized.
  • the different Substrates can coexist on a workpiece (Mixed construction).
  • the metallic substrates are phosphated in the usual way, i.e. using phosphating solutions known per se. It can for example, such as those used by Horst Gehmecker in JOT, No. 5, 1992 pages 42 to 46. It is e.g. around Contains zinc, manganese, iron and / or nickel Phosphating materials.
  • Nickel ions proved to be particularly advantageous with regard to Generation of a high level of corrosion protection.
  • the Phosphating layers can be sprayed or immersed be applied.
  • the solutions become on the surface of the Metal substrate deposited a thin layer of phosphate crystals. This should be as dense and fine-grained as possible.
  • After phosphating the metal substrate is rinsed and optionally dried before it according to the invention before application of the organic coating with a aqueous solution containing 5 to 10,000 ppm of bismuth dissolved in Contains form of inorganic and / or organic compounds treated becomes.
  • the treatment with the aqueous solution can, for example, in Dipping method with an exposure time of, for example, between 1 and 120 seconds.
  • Dipping method with an exposure time of, for example, between 1 and 120 seconds.
  • the immersion process prefers.
  • the dipping process is particularly preferably carried out in such a way that aqueous solutions which contain 5 to 10,000 ppm of dissolved bismuth in the form of inorganic and / or organic compounds are used, the phosphated metal substrate being additionally connected as a cathode in a DC circuit during the treatment.
  • the treatment vessel can serve as an anode, and a counter electrode can be inserted.
  • This procedure also leads to the removal of interfering anions from the phosphate layer.
  • a DC voltage in the range from 3 to 100 V, preferably 5 to 50 V, is preferably used, current densities of 0.1 to 10 A / m 2 being used, the current flow being able to exist during the entire immersion period or the current only flows during part of the immersion period.
  • the current strength can be kept constant during the current flow or the current strength is varied.
  • aqueous solutions that can be used in the process according to the invention those containing 5 to 10,000 ppm, preferably above 10 and below 6000 ppm, dissolved bismuth in the form of inorganic and / or organic compounds included, calculated as an element.
  • the inorganic and / or organic compounds of the above Elements bismuth mentioned are readily water-soluble or they have one sufficient water solubility to maintain as a source a concentration of 5 to 10,000 ppm of the above Elements bismuth can be used in the aqueous solutions.
  • those used in the aqueous solutions Compounds as a finely divided colloidal solution or dispersion and have a depot effect for the element bismuth.
  • Inorganic or organic compounds are inorganic or organic complex compounds of bismuth.
  • An example of a chelating ligand is acetylacetone called.
  • Preferred inorganic or however, organic compounds are the corresponding salts inorganic or preferably organic acids.
  • salts inorganic acids are chlorides, sulfates and nitrates.
  • organic Acids serve, for example, mono- or polycarboxylic acids, e.g.
  • the salts of monocarboxylic acids such as, for example, are preferred Benzoates, formates, acetates, propionates, octoates, neodecanoates.
  • aqueous media which are 5 to 10000 ppm, preferably between 10 and 6000 ppm, of dissolved bismuth included, most preferred.
  • Bismuth is preferred in form a salt of a mono- or polycarboxylic acid.
  • suitable organic carboxylic acids of which in the invention Bismuth salts that can be used are aromatic, araliphatic and aliphatic mono- or dicarboxylic acids.
  • Prefers are the bismuth salts of organic monocarboxylic acids, especially with more than two carbon atoms, such as bismuth benzoate, propionate, -octoate, -neodecanoate.
  • the bismuth salts of are particularly preferred "Hydroxycarboxylic acids. Examples are bismuth salicylate, -4-hydroxybenzoate, lactate, dimethylol propionate.
  • aqueous solutions contain customary auxiliaries, e.g. Surfactants.
  • the phosphated metal substrates During the treatment of the phosphated metal substrates with the aqueous solution, the latter is depleted of the corresponding element by incorporating an appropriate amount of the same on the surface of the phosphated metal substrate. This does not result in galvanic deposition of the corresponding element or elements on the phosphate layer in the form of a closed coating, but rather the method according to the invention is carried out in such a way that the element is present in a total amount of 5 to 100 mg / m 2 on the surface of the phosphated one Deposit metal substrate.
  • the phosphate layer is doped with the element.
  • EDX energy-dispersive X-ray analysis
  • the composition of the aqueous solution is preferably continuous monitored analytically, for example using appropriate ion selective electrodes. According to the measured consumption Element in the aqueous solution must be replenished, for example by adding an appropriate aqueous concentrate. If you work with salt solutions of the element, see above the counter anion accumulates as a free acid in the consumption of Elements corresponding way. By dragging out when diving However, the substrates from the solution will accumulate free acid withdrawn from the system in sufficient quantities and it sets in Balance one. This dragging effect occurs in particular Wear when the phosphated metal substrates are concerned three-dimensional and thus creating objects.
  • the immersion bath with the aqueous solution can also with a Electrodialysis circuit to be coupled, which serves the purpose to remove enriching free acid from the immersion bath.
  • the substrates can be rinsed with solution, e.g. with deionized water, and dried before using according to the invention can be provided with an organic coating.
  • the Organic coatings can be made from aqueous or non-aqueous Coating agents, preferably stoving coating agents, are applied, for example by spraying, dipping or rolling. To be favoured the organic coatings by electrocoating (ETL), especially preferably applied by cataphoretic dip painting (KTL).
  • ETL electrocoating
  • KTL cataphoretic dip painting
  • electrodeposition paints in the process according to the invention per se known electrodeposition lacquers which can be deposited on the anode or are preferred cathodic electrodeposition coatings can be used. she are not subject to any limitation. You can use the usual additives and Contain catalysts.
  • Electrocoating paints are aqueous coating compositions with a solids content of for example 10-20% by weight.
  • the solids content consists of usual binders that are ionic or in ionic groups transferable substituents and those capable of chemical crosslinking Wear groups, and optionally pigments and / or fillers and other additives.
  • the ionic groups can be anionic or in groups convertible to anionic groups, e.g. -COOH groups or cationic or convertible basic groups, e.g. Amino, ammonium, e.g. quaternary ammonium, phosphonium and / or Be sulfonium groups. Binders with basic are preferred Groups.
  • Nitrogen-containing basic groups are particularly preferred. These groups can be quaternized or they can be combined with a usual neutralizing agents, e.g. an organic monocarboxylic acid, such as. Lactic acid, formic acid, acetic acid, as the expert common, converted into ionic groups.
  • a neutralizing agents e.g. an organic monocarboxylic acid, such as. Lactic acid, formic acid, acetic acid, as the expert common, converted into ionic groups.
  • anionic groups containing anodic electrodeposition paint binders and paints are described in DE-A-28 24 418. These are, for example, binders based on polyesters, epoxy resin esters, (meth) acrylic copolymers, maleate oils or polybutadiene oils with a weight average molecular weight of, for example, 300-10000 and an acid number of 35-300 mg KOH / g.
  • the binders carry -COOH, -SO 3 H and / or -PO 3 H 2 groups. After neutralization of at least some of the acidic groups, the resins can be converted into the water phase.
  • the lacquers can also contain customary crosslinking agents, for example triazine resins, crosslinking agents which contain groups capable of transesterification and / or transamidation, or blocked polyisocyanates.
  • cathodic electrocoat materials are preferred cationic or basic binders.
  • Such basic resins are for example primary, secondary and / or tertiary amino groups resins containing, the amine numbers e.g. at 20 to 250 mg KOH / g lie.
  • the weight average molecular weight (Mw) of the base resins is preferably from 300 to 10,000.
  • Examples of such base resins are Amino (meth) acrylic copolymer resins, amino epoxy resins, amino epoxy resins with terminal double bonds, amino epoxy resins with primary OH groups, Aminopolyurethane resins, amino group-containing polybutadiene resins or modified epoxy resin-carbon dioxide-amine reaction products.
  • This Base resins can be self-crosslinking or they are known Crosslinkers used in the mixture.
  • crosslinkers are Aminoplast resins, blocked polyisocyanates, crosslinkers with terminal Double bonds, polyepoxide compounds or crosslinkers contain groups capable of transesterification and / or transamidation.
  • Examples of cathodic dip lacquer (KTL) baths Base resins and crosslinking agents which can be used according to the invention, are in EP-A-0 082 291, EP-A-0 234 395, EP-A-0 209 857, EP-A-0 227 975, EP-A-0 178 531, EP-A-0 333 327, EP-A-0 310 971, EP-A-0 456 270, US 3,922,253, EP-A-0 261 385, EP-A-0 245 786, DE-33 24 211, EP-A-0 414 199, EP-A-0 476 514. These resins can be used alone or in Mixture can be used.
  • ETL coating agent pigments In addition to the base resins and any crosslinking agents present can the electrocoat (ETL) coating agent pigments, fillers and / or conventional paint additives. They come as pigments usual inorganic and / or organic pigments in question. Examples are carbon black, titanium dioxide, iron oxide, kaolin, talc or Silicon dioxide. It is also possible to use common anti-corrosion pigments to use. Examples include zinc phosphate, lead silicate or organic corrosion inhibitors. The type and amount of pigments depends on the intended use of the coating agent. Should be clear Coatings are obtained, so no or only transparent Pigments such as micronized titanium dioxide or silicon dioxide used. If opaque coatings are to be applied, so are preferably contain coloring pigments in the electrocoating bath.
  • the pigments can be dispersed into pigment pastes, e.g. under Use of known paste resins. Such resins are known to the person skilled in the art common. Examples of paste resins that can be used in KTL baths are in EP-A-0 183 025 and EP-A-0 469 497.
  • ETL coating agents include wetting agents, neutralizing agents, leveling agents, Catalysts, anti-foaming agents and conventional ones in coating agents solvents used.
  • the coating is applied Branding networked. If it is a primer, you can Subsequent layers are applied.
  • a coating is obtained with the process according to the invention excellent adhesion to the substrate and excellent Corrosion protection, which is the level of previously known coatings from phosphating, usual passivation and organic coating, exceed.
  • the method according to the invention avoids the use of Nickel, chrome and nitrite.
  • the phosphating agent can work free of environmental and metal compounds that are hazardous to health.
  • the invention allows the after-treatment of the phosphate layer with simple to carry out aqueous solutions.
  • Example 1 To 223 parts of the paste resin according to EP-A-0 469 497 Al Example 1 (55%) 15 parts of acetic acid (50%) are 30 parts of a commercial wetting agent (50%) and 374 parts given deionized water.
  • Example 3 4.5 parts are added to 815.5 parts of the dispersion from Example 2 Formic acid (50%) and 1760 parts of deionized water. Under 420 parts of pigment paste according to Example 3 are added with thorough stirring.
  • a non-galvanized steel sheet (ST 1405) Bonder R 26/60 / 0C (for testing purposes, a so-called “Bonder” sheet sold by Chemetall with a pretreatment of nickel-containing trication phosphating and chromic acid passivation) is coated with the KTL from Example 4 in a 20 ⁇ m dry layer thickness and Baked for 10 min at 175 ° C (object temperature).
  • a commercially available filler is then sprayed on in a 35 ⁇ m dry layer and baked for 15 minutes at 165 ° C (object temperature).
  • a single-coat topcoat suitable for automotive serial painting is applied by spraying in a thickness of 40 ⁇ m and baked for 30 minutes at 130 ° C (object temperature).
  • Example 5a is repeated, however, using a steel sheet (ST 1405) Bonder R 2640 / W / OC ("bonder" sheet sold for experimental purposes by Chemetall with a pretreatment consisting of nickel-free trication phosphating without passivation).
  • Bonder R 2640 / W / OC (“bonder” sheet sold for experimental purposes by Chemetall with a pretreatment consisting of nickel-free trication phosphating without passivation).
  • Example 5c (example according to the invention)
  • Example 5b is repeated with the difference that before the KTL is applied, the sheet is immersed for 10 seconds at room temperature in an aqueous solution of the bismuth salt from Example 1 with a bismuth content of 1000 ppm and then rinsed with deionized water and dried. During the immersion, the sheet is switched as a cathode at a voltage of 10 volts and a current density of 1.5 A / m 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paints Or Removers (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Beschichtung phosphatierter Metallsubstrate mit organischen Überzügen, insbesondere Elektrotauchlacküberzügen.
Die Vorbehandlung metallischer Substrate, z.B. aus Aluminium, insbesondere aber aus verzinktem oder unverzinktem Stahl, für eine Lackierung, insbesondere für eine elektrophoretisch zu applizierende Tauchlackierung, besteht, wenn ein guter Korrosionsschutz erwünscht ist und eine gute Substrathaftung der durch elektrophoretische Abscheidung erzeugten Lackschicht erreicht werden soll, aus einer Phosphatierung und einer passivierenden Nachspülung. Auf diese Oberfläche wird dann der Elektrotauchlacküberzug appliziert und eingebrannt.
In der Automobilserienlackierung hat es sich beispielsweise durchgesetzt, daß die gereinigten Rohkarossen aus verzinktem oder unverzinktem Stahl zunächst phosphatiert und anschließend mit einer passivierenden Nachspülung nachbehandelt werden, bevor durch kathodische Abscheidung ein sogenannter kathodischer Tauchlack (KTL) als Grundierungsschicht aufgebracht wird (vgl. Glasurit-Handbuch der Lacke und Farben, Seiten 454 ff., 11. Auflage, 1984, Curt R. Vincentz Verlag Hannover). Dabei ist der Passivierungsschritt ein notwendiger Verfahrensbestandteil.
Dieses bis heute so betriebene, prinzipielle Verfahren ist in den vergangenen Jahren hinsichtlich der Zusammensetzung von Phosphatierungs- und Passivierungsmaterialien sowie auch des KTL-Materials ständig verbessert worden. Beispielsweise sind Phosphatierungs- und Passivierungsmaterialien sowohl hinsichtlich ihrer technologischen Eigenschaften als auch unter ökologischen Gesichtspunkten weiterentwickelt worden, wie Horst Gehmecker in JOT, Heft 5, 1992, Seiten 42 bis 46 beschreibt.
Als Phosphatierungsvarianten sind beispielsweise die Eisenphosphatierung, Zinkphosphatierung, Niedrigzinkphosphatierung, Trikationphosphatierung, mangandotierte Phosphatierung, nickelfreie Phosphatierung und die nitritfreie Phosphatierung bekannt geworden, wie die umfangreiche Patentliteratur belegt. Dabei haben sich Phophatierungslösungen mit einem Gehalt an giftigen Nickelionen als in technologischer Hinsicht besonders vorteilhaft erwiesen. Handelsprodukte für die Phosphatierung werden beispielsweise von der Firma Henkel unter dem Namen GranodineR vertrieben, z.B. Granodine 950 als Trikationsystem, Granodine 1990 als nitritfreies Trikationsystem oder Granodine 2700 als nickelfreies Trikationsystem.
Bei der Suche nach ökologisch und gesundheitlich unbedenklicheren Alternativen zu den ursprünglichen und auch heute noch gebräuchlichen Chromat-haltigen Passivierungslösungen wurden Erfolge erzielt, wie z.B. die Patentliteratur beweist. Beispiele dafür sind Passivierungslösungen auf Zirkonfluorid- oder organischer Basis. So vertreibt beispielsweise die Firma Henkel Produkte für die Passivierung unter dem Namen DeoxylyteR, z.B. Deoxylyte 41 als Chromatsystem, Deoxylyte 54 NC als Zirkonfluoridsystem oder Deoxylyte 80 als System auf organischer Basis. Derartige Passivierungslösungen zeichnen sich durch eine komplizierte Zusammensetzung aus.
In Polym. Mater. Sci. Eng, Volume 58, 1988 (Seiten 176 bis 177) wird ein Verfahren zur Nachbehandlung von Phosphatschichten vor Aufbringung eines organischen Überzugs mit einer wäßrigen Lösung, die Zinn-Ionen enthält, beschrieben. In US-A-4 828 615 wird beschrieben, daß phosphatierte Oberflächen, bevor sie mit Überzugsmittel versehen werden, mit einer wäßrigen Lösung behandelt werden, die pentavalente Vanadiumverbindungen enthält, Die DE-A-23 34 342 ist auf ein wäßriges, seltene Erdmetalle enthaltendes Spülmittel gerichtet, mit dem unter anderem phosphatierte Oberflächen vor Aufbringung eines Farbanstriches behandelt werden. In der JP-A-58 130 282 wird die Behandlung von phosphatierten Oberflächen mit wäßrigen, Fe, Zn, Ni, Mo, Co, W, Mg, Mn oder Si-Lösungen beschrieben, bevor die Oberflächen einen Überzug erhalten. Die SU-A-914652 beschreibt die Steigerung der Verschleißfestigkeit und der elektrischen Leitfähigkeit von Gußstücken durch die Behandlung einer porösen Phosphatbeschichtung mit wässrigen Lösungen der Formiate und/oder Oxalate von Ag, Cu, Pb und/oder Bi und anschließendem Erhitzen der behandelten Oberflächen auf die Zersetzungstemperatur der Salze.
Aufgabe der vorliegenden Erfindung ist es, ein Beschichtungsverfahren für phosphatierte Metallsubstrate bereitzustellen, welches den Korrosionsschutz über das erreichte Niveau hinaus steigert. Das Beschichtungsverfahren soll bevorzugt mit einfach zusammengesetzten und ökologisch und gesundheitlich unbedenklichen Nachbehandlungsmaterialien durchführbar sein. Es soll gestatten auch dann ein hohes Korrosionsschutzniveau zu erzeugen, wenn der vorausgehenden Phosphatierung aus ökologischen Gründen ein Konzept zugrundeliegt, welches zu einem nur mäßigen Korrosionsschutz führt. Insbesondere soll das Beschichtungsverfahren erlauben, chrom-, nickel- und nitritfrei zu arbeiten.
Es hat sich gezeigt, daß diese Aufgabe gelöst werden kann, durch ein Verfahren zur Beschichtung phosphatierter Metallsubstrate mit einem oder mehreren organischen Überzügen, das dadurch gekennzeichnet ist, daß die phosphatierten Metallsubstrate nach der Phosphatierung in einer Phosphatierlösung die frei von Nickel ist und vor Aufbringung des ersten organischen Überzugs mit einer wäßrigen Lösung behandelt werden, die 5 bis 10000 ppm gelöstes Wismut in Form anorganischer und/oder organischer Verbindungen enthält, und das Element in einer Gesamtmenge von 5 bis 100 mg/m2 abscheidet.
Bevorzugt werden die phosphatierten Metallsubstrate während der gesamten oder eines Teils der Behandlungsdauer zusätzlich als Kathode geschaltet.
Als metallische Substrate können übliche Metallteile eingesetzt- werden, wie sie beispielsweise in der Automobilindustrie üblich sind. Beispiele sind Bauteile aus Aluminium, Magnesium oder deren Legierungen, Eisen und insbesondere Stahl, z.B. unverzinkt oder mit Reinzink, Zink-Nickel-Legierung oder Zink-Eisen-Legierung verzinkt. Die verschiedenen Substrate können gemeinschaftlich an einem Werkstück vorhanden sein (Gemischtbauweise).
Die metallischen Substrate sind in üblicher Weise phosphatiert, d.h. unter Verwendung an sich bekannter Phosphatierungslösungen. Es können beispielsweise solche verwendet werden, wie sie Horst Gehmecker in JOT, Heft 5, 1992 Seiten 42 bis 46 beschreibt. Es handelt sich dabei z.B. um Zink-, Mangan-, Eisen- und/oder Nickel-haltige Phosphatierungsmaterialien. Im Stand der Technik haben sich in der industriellen Praxis Phosphatierungslösungen mit einem Gehalt an Nickelionen als besonders vorteilhaft erwiesen hinsichtlich der Erzeugung eines hohen Korrosionsschutzniveaus. Im Rahmen der Erfindung hat es sich jedoch gezeigt, daß der Einsatz von toxischem Nickel in Phosphatierungslösungen vermieden werden kann, da es keine über die erfindungsgemäße Verwendung einer Wismut enthaltenden wäßrigen Lösung hinausgehenden Vorteile bringt. Bei Anwendung des erfindungsgemäßen Verfahrens kann daher die vorausgehende Phosphatierungsbehandlung mit weniger wirksamen, aber auch geringer toxischen Phosphatierungslösungen erfolgen. Die Phosphatierungsschichten können im Spritz- oder im Tauchverfahren aufgebracht werden. Aus den Lösungen wird dabei auf der Oberfläche des Metallsubstrats eine dünne Schicht an Phosphatkristallen abgeschieden. Diese soll möglichst dicht und feinkörnig sein. Nach dem Phosphatieren wird das Metallsubstrat gespült und gegebenenfalls getrocknet, bevor es erfindungsgemäß vor Aufbringung des organischen Überzugs mit einer wäßrigen Lösung, die 5 bis 10000 ppm gelöstes Wismut in Form anorganischer und/oder organischer Verbindungen enthält, behandelt wird.
Die Behandlung mit der wäßrigen Lösung kann beispielsweise, im Tauchverfahren bei einer Einwirkdauer von beispielsweise zwischen 1 und 120 Sekunden durchgeführt werden. Im Falle kompliziert geformter Metallsubstrate, wie z.B. Automobilkarossen, ist das Tauchverfahren bevorzugt.
Besonders bevorzugt wird das Tauchverfahren so durchgeführt, daß als wäßrige Lösungen solche eingesetzt werden, die 5 bis 10000 ppm gelöstes Wismut,in Form anorganischer und/oder organischer Verbindungen enthalten, wobei das phosphatierte Metallsubstrat während der Behandlung zusätzlich als Kathode in einen Gleichstromkreis geschaltet Wird. Als Anode kann beispielsweise das Behandlungsgefäß dienen, sowie eine Gegenelektrode eingeführt werden. Diese Verfahrensweise führt zusätzlich zu einer Entfernung störender Anionen aus der Phosphatschicht. Bevorzugt wird mit einer Gleichspannung im Bereich von 3 bis 100 V, bevorzugt 5 bis 50 V, gearbeitet, wobei Stromdichten von 0,1 bis 10 A/m2 zum Einsatz kommen, wobei der Stromfluß während der gesamten Eintauchdauer bestehen kann oder der Strom nur während eines Teils der Eintauchdauer fließt. Dabei kann die Stromstärke während des Stromflusses konstant gehalten werden oder die Stromstärke wird variiert.
Als im erfindungsgemäßen Verfahren einsetzbare wäßrige Lösungen dienen solche, die 5 bis 10000 ppm, bevorzugt über 10 und unter 6000 ppm, gelöstes Wismut in Form anorganischer und/oder organischer Verbindungen enthalten, berechnet als Element.
Die anorganischen und/oder organischen Verbindungen des vorstehend genannten Elements Wismut sind gut wasserlöslich oder sie besitzen eine ausreichende Wasserlöslichkeit, um als Quelle zur Aufrechterhaltung einer Konzentration von 5 bis 10000 ppm des vorstehend genannten Elements Wismut in den wäßrigen Lösungen eingesetzt werden zu können. In diesem Falle liegen die in den wäßrigen Lösungen eingesetzten Verbindungen als feinverteilte kolloidale Lösung oder Dispersion vor und besitzen eine Depotwirkung für das Element Wismut.
Als anorganische oder organische Verbindungen sind anorganische oder organische Komplexverbindungen des Wismuts geeignet. Als Beispiel für einen chelatbildenden Liganden sei Acetylaceton genannt. Es sind jedoch auch andere Komplexbildner mit einer oder mehreren komplexbildenden Gruppe möglich. Bevorzugte anorganische oder organische Verbindungen sind jedoch die entsprechenden Salze anorganischer oder bevorzugt organischer Säuren. Beispiele für Salze anorganischer Säuren sind Chloride, Sulfate und Nitrate. Als organische Säuren dienen beispielsweise Mono- oder Polycarbonsäuren, wie z.B. aromatische, araliphatische und aliphatische Mono- oder Dicarbonsäuren Bevorzugt sind die Salze von Monocarbonsäuren, wie beispielsweise die Benzoate, Formiate, Acetate, Propionate, Octoate, Neodekanoate. Als besonders geeignet haben sich die Salze von Hydroxycarbonsäuren und darunter die der aliphatischen Hydroxycarbonsäuren erwiesen. Beispiele hierfür sind die Salicylate, 4-Hydroxybenzoate, Lactate, Dimethylolpropionate.
Im Rahmen der vorliegenden Erfindung sind wäßrige Medien, die 5 bis 10000 ppm, bevorzugt zwischen 10 und 6000 ppm, gelöstes Wismut enthalten, am meisten bevorzugt. Dazu wird Wismut bevorzugt in Form eines Salzes einer Mono- oder Polycarbonsäure eingesetzt. Beispiele für geeignete organische Carbonsäuren, von denen sich im erfindungsgemäßen Verfahren einsetzbare Wismutsalze ableiten, sind aromatische, araliphatische und aliphatische Mono- oder Dicarbonsäuren. Bevorzugt sind die Wismutsalze von organischen Monocarbonsäuren, insbesondere mit mehr als zwei C-Atomen, wie beispielsweise Wismutbenzoat, -propionat, -octoat, -neodekanoat. Besonders bevorzugt werden die Wismutsalze von "Hydroxycarbonsäuren. Beispiele sind Wismutsalicylat, -4-hydroxybenzoat, -lactat, -dimethylolpropionat.
Weiterhin können die im erfindungsgemäßen Verfahren einsetzbaren wäßrigen Lösungen übliche Hilfsstoffe enthalten, wie z.B. Tenside.
Während der Behandlung der phosphatierten Metallsubstrate mit der wäßrigen Lösung verarmt diese am entsprechenden Element durch Einbau einer entsprechenden Menge desselben auf der Oberfläche des phosphatierten Metallsubstrats. Dabei kommt es nicht zu einer galvanischen Abscheidung des oder der entsprechenden Elemente auf der Phosphatschicht in Form eines geschlossenen Überzugs, sondern das erfindungsgemäße Verfahren wird so durchgeführt, daß sich das Element in einer Gesamtmenge von 5 bis 100 mg/m2 auf der Oberfläche des phosphatierten Metallsubstrats abscheiden. Dabei kommt es zu einer Dotierung der Phosphatschicht mit dem Element. Als Nachweismethode für derartig niedrige Mengen des Elements kann beispielsweise bevorzugt EDX (Energie-dispersive Röntgenanalyse) eingesetzt werden.
Bevorzugt wird die Zusammensetzung der wäßrigen Lösung laufend analytisch überwacht, beispielsweise unter Verwendung entsprechender ionenselektiver Elektroden. Entsprechend dem gemessenen Verbrauch an Element in der wäßrigen Lösung muß dieses nachdosiert werden, beispielsweise durch Zugabe eines entsprechenden wäßrigen Konzentrats. Wird mit Salzlösungen des Elements gearbeitet, so reichert sich das Gegenanion als freie Säure in der dem Verbrauch des Elements entsprechenden Weise an. Durch Ausschleppung beim Austauchen der Substrate aus der Lösung wird jedoch sich anreichernde freie Säure in ausreichender Menge dem System entzogen und es stellt sich ein Gleichgewicht ein. Dieser Ausschleppeffekt kommt insbesondere dann zum Tragen, wenn es sich bei den phosphatierten Metallsubstraten um dreidimensionale und damit schöpfende Gegenstände handelt. Das Tauchbad mit der wäßrigen Lösung kann jedoch auch mit einem Elektrodialysekreislauf gekoppelt sein, der dazu dient, die sich anreichernde freie Säure aus dem Tauchbad zu entfernen.
Nach Behandlung der phosphatierten metallsubstrate mit der wäßrigen Lösung können die Substrate, falls gewünscht, nachgespült werden, z.B. mit deionisiertem Wasser, und getrocknet werden, bevor sie erfindungsgemäß mit einem organischen Überzug versehen werden. Die organischen Überzüge können aus wäßrigen oder nicht-wäßrigen Überzugsmitteln, bevorzugt Einbrennüberzugsmitteln, aufgebracht werden, beispielsweise durch Spritzen, Tauchen oder Rollen. Bevorzugt werden die organischen Überzüge durch Elektrotauchlackierung (ETL), besonders bevorzugt durch kataphoretische Tauchlackierung (KTL), aufgebracht.
Als Elektrotauchlacke können beim erfindungsgemäßen Verfahren an sich bekannte, an der Anode abscheidbare Elektrotauchlacke oder bevorzugt kathodisch abscheidbare Elektrotauchlacke verwendet werden. Sie unterliegen keiner Beschränkung. Sie können die üblichen Additive und Katalysatoren enthalten.
Beispiele für die im erfindungsgemäßen Verfahren einsetzbaren Elektrotauchlacke sind wäßrige Überzugsmittel mit einem Festkörper von beispielsweise 10 - 20 Gew.-%. Der Festkörpergehalt besteht aus üblichen Bindemitteln, die ionische oder in ionische Gruppen überführbare Substituenten sowie zur chemischen Vernetzung fähige Gruppen tragen, sowie gegebenenfalls Pigmenten und/oder Füllstoffen und weiteren Additiven. Die ionischen Gruppen können anionische oder in anionische Gruppen überführbare Gruppen, z.B. -COOH-Gruppen oder kationische oder in kationische Gruppen überführbare basische Gruppen, z.B. Amino-, Ammonium-, z.B. quartäre Ammonium-, Phosphonium- und/oder Sulfonium-Gruppen sein. Bevorzugt sind Bindemittel mit basischen Gruppen. Besonders bevorzugt sind stickstoffhaltige basische Gruppen. Diese Gruppen können quarternisiert vorliegen oder sie werden mit einem üblichen Neutralisationsmittel, z.B. einer organischen Monocarbonsäure, wie z.B. Milchsäure, Ameisensäure, Essigsäure, wie dem Fachmann geläufig, in ionische Gruppen überführt.
Beispiele für anionische Gruppen enthaltende anodisch abscheidbare Elektrotauchlack-Bindemittel und Lacke (ATL) sind in der DE-A-28 24 418 beschrieben. Es handelt sich beispielsweise um Bindemittel auf Basis von Polyestern, Epoxidharzestern, (Meth)acrylcopolymeren, Maleinatölen oder Polybutadienölen mit einem Gewichtsmittel der Molmasse von beispielsweise 300 - 10000 und einer Säurezahl von 35 - 300 mg KOH/g. Die Bindemittel tragen -COOH, -SO3H und/oder -PO3H2-Gruppen. Die Harze können nach Neutralisation von mindestens einem Teil der sauren Gruppen in die Wasserphase überführt werden. Die Lacke können auch übliche Vernetzer enthalten, z.B. Triazinharze, Vernetzer, die umesterungsund/oder umamidierungsfähige Gruppen enthalten oder blockierte Polyisocyanate.
Bevorzugt sind jedoch kathodische Elektrotauchlacke (KTL) auf Basis kationischer bzw. basischer Bindemittel. Solche basischen Harze sind beispielsweise primäre, sekundäre und/oder tertiäre Aminogruppen enthaltende Harze, deren Aminzahlen z.B. bei 20 bis 250 mg KOH/g liegen. Das Gewichtsmittel der Molmasse (Mw) der Basisharze liegt bevorzugt bei 300 bis 10000. Beispiele für solche Basisharze sind Amino(meth)acrylcopolymerharze, Aminoepoxidharze, Aminoepoxidharze mit endständigen Doppelbindungen, Aminoepoxidharze mit primären OH-Gruppen, Aminopolyurethanharze, aminogruppenhaltige Polybutadienharze oder modifizierte Epoxidharz-Kohlendioxid-Amin-Umsetzungsprodukte. Diese Basisharze können selbstvernetzend sein oder sie werden mit bekannten Vernetzern im Gemisch eingesetzt. Beispiele für solche Vernetzer sind Aminoplastharze, blockierte Polyisocyanate, Vernetzer mit endständigen Doppelbindungen, Polyepoxidverbindungen oder Vernetzer, die umesterungsfähige und/oder umamidierungsfähige Gruppen enthalten.
Beispiele für in kathodischen Tauchlack (KTL)-Bädern eingesetzte Basisharze und Vernetzer, die erfindungsgemäß verwendet werden können, sind in der EP-A-0 082 291, EP-A-0 234 395, EP-A-0 209 857, EP-A-0 227 975, EP-A-0 178 531, EP-A-0 333 327, EP-A-0 310 971, EP-A-0 456 270, US 3 922 253, EP-A-0 261 385, EP-A-0 245 786, DE-33 24 211, EP-A-0 414 199, EP-A-0 476 514 beschrieben. Diese Harze können allein oder im Gemisch eingesetzt werden.
Zusätzlich zu den Basisharzen und gegebenenfalls vorhandenem Vernetzer kann das Elektrotauchlack (ETL)-Überzugsmittel Pigmente, Füllstoffe und/oder lackübliche Additive enthalten. Als Pigmente kommen die üblichen anorganischen und/oder organischen Pigmente in Frage. Beispiele sind Ruß, Titandioxid, Eisenoxid, Kaolin, Talkum oder Siliciumdioxid. Es ist auch möglich, übliche Korrosionsschutzpigmente zu verwenden. Beispiele dafür sind Zinkphosphat, Bleisilikat oder organische Korrosionsinhibitoren. Die Art und Menge der Pigmente richtet sich nach dem Verwendungszweck der Überzugsmittel. Sollen klare Überzüge erhalten werden, so werden keine oder nur transparente Pigmente, wie z.B. mikronisiertes Titandioxid oder Siliciumdioxid eingesetzt. Sollen deckende Überzüge appliziert werden, so sind bevorzugt farbgebende Pigmente im Elektrotauchlackbad enthalten.
Die Pigmente können zu Pigmentpasten dispergiert werden, z.B. unter Verwendung von bekannten Pastenharzen. Solche Harze sind dem Fachmann geläufig. Beispiele für in KTL-Bädern verwendbare Pastenharze sind in der EP-A-0 183 025 und in der EP-A-0 469 497 beschrieben.
Als Additive sind die üblichen Additive für ETL-Überzugsmittel möglich. Beispiele dafür sind Netzmittel, Neutralisationsmittel, Verlaufsmittel, Katalysatoren, Antischaummittel sowie übliche in Überzugsmitteln verwendete Lösemittel.
Nach der Beschichtung mit Elektrotauchlack wird der Überzug durch Einbrennen vernetzt. Handelt es sich dabei um eine Grundierung, können Folgeschichten aufgebracht werden.
Man erhält nach dem erfindungsgemäßen Verfahren eine Lackierung mit ausgezeichneter Haftung zum Untergrund und hervorragendem Korrosionsschutz, die das Niveau bisher bekannter Überzüge, bestehend aus Phosphatierung, üblicher Passivierung und organischer Beschichtung, übersteigen. Das erfindungsgemäße Verfahren vermeidet den Einsatz von Nickel, Chrom und Nitrit. Das Phosphatierungsmittel kann beim Arbeiten nach dem erfindungsgemäßen Verfahren frei von umwelt- und gesundheitsgefährdenden Metallverbindungen sein. Das erfindungsgemäße Verfahren erlaubt es, die Nachbehandlung der Phosphatschicht mit einfach zusammengesetzten wäßrigen Lösungen durchzuführen.
Beispiel 1 (Herstellung eines organischen Wismutsalzes)
2154 Teile deionisiertes Wasser und 938 Teile (7 Mol) Dimethylolpropionsäure werden vorgelegt und auf 70°C erwärmt. Unter Rühren werden 466 Teile (1 Mol) handelsübliches Wismutoxid (Bi2O3) portionsweise zugegeben. Nach weiteren 6 Stunden Rühren bei 70°C wird der Ansatz auf ca. 20°C gekühlt und 12 Stunden ohne Rühren belassen. Schließlich wird der Niederschlag abfiltriert, mit wenig Wasser und Ethanol gewaschen und bei einer Temperatur von 40 bis 60°C getrocknet.
Beispiel 2 Herstellung einer KTL-Dispersion)
  • a) 832 Teile des Monocarbonats eines Epoxidharzes auf der Basis von Bisphenol A (Handelsprodukt Epicote 828) werden mit 830 Teilen eines handelsüblichen Polycaprolactonpolyols (Handelsprodukt CAPA 205) und 712 Teilen Diglykoldimethylether gemischt und bei 70 bis 140°C mit ungefähr 0,3 % BF3-Etherat zur Reaktion gebracht bis eine Epoxidzahl von 0 erreicht wird. Zu diesem Produkt (Festkörper 70 %, 2 Äquivalente Carbonat) werden bei 40 bis 80°C in Gegenwart von 0,3 % Zn-Acetylacetonat als Katalysator 307 Teile eines Umsetzungsproduktes aus 174 Teilen Toluylendiisocyanat (2 Äquivalente NCO) mit 137 Teilen 2-Ethylhexanol unter Zugabe von 0,3 % Benzyltrimethylammoniumhydroxid (Triton B) mit einem NCO-Gehalt von ca. 12,8 % gegeben. Es wird bis zu einem NCO-Wert von ca. 0 umgesetzt und dann mit Diglykoldimethylether auf ca. 70 % Festkörper eingestellt.
  • b) Zu 1759 Teilen eines Biscarbonats eines Epoxidharzes auf der Basis von Bisphenol A (Handelsprodukt Epicote 1001 (R) werden bei 60 bis 80°C 618 Teile eines Umsetzungsproduktes aus 348 Teilen Toluylendiisocyanat (80 % 2,4-Isomeres; 20 % 2,6-Isomeres) mit 274 Teilen 2-Ethylhexanol unter Zugabe von 0,3 % Benzyltrimethylammoniumhydroxid als Katalysator mit einem Rest-NCO-Gehalt von 12,8 % langsam zugegeben unter Katalyse von 0,3 % eines nicht-ionischen Emulgators (Triton B(R). Die Reaktion wird bis zu einem NCO-Wert von ca. 0 fortgesetzt. Das Produkt hat einen Feststoffgehalt von 70 %. Zu 860 Teilen Bishexamethylentriamin in 2315 Teilen Methoxypropanol gelöst werden bei einer Temperatur von 20 bis 40°C 622 Teile des Umsetzungsproduktes aus 137 Teilen 2-Ethylhexanol mit 174 Teilen Toluylendiisocyanat unter Benzyltrimethylammoniumhydroxid-Katalyse (0,3 %) zugegeben (NCO-Gehalt ca. 12,8 %) und bis zu einem NCO-Gehalt von ungefähr 0 umgesetzt. Dann werden 4737 Teile des Umsetzungsproduktes b) und 3246 Teile des Reaktionsproduktes a) (jeweils 70 % in Diglykoldimethylether) zugegeben und bei 60 bis 90°C zur Reaktion gebracht. Bei einer Aminzahl von ca. 32 mg KOH/g wird die Reaktion beendet. Das entstehende Produkt wird im Vakuum auf einen Festkörper von ca. 85 % abdestilliert. Es wird mit 30 mmol Ameisensäure pro 100 g Harz neutralisiert und mit deionisiertem Wasser in eine Dispersion mit einem Festkörper von 40 Gew.-% überführt.
  • Beispiel 3 (Herstellung einer Pigmentpaste)
    Zu 223 Teilen des Pastenharzes nach EP-A-0 469 497 Al Beispiel 1 (55 %) werden unter einem schnellaufenden Rührwerk 15 Teile Essigsäure (50 %), 30 Teile eines handelsüblichen Netzmittels (50 %) und 374 Teile deionisiertes Wasser gegeben.
    Dazu werden 5 Teile Ruß, 5 Teile pyrogene Kieselsäure, 25 Teile Dibutylzinnoxidpulver, 38 Teile Bleisilikat und 560 Teile Titandioxid gegeben. Mit deionisiertem Wasser wird auf ca. 50 % Festkörper eingestellt und auf einer Perlmühle vermahlen. Es entsteht eine stabile Pigmentpaste.
    Beispiel 4 (Herstellung eines blei- und zinnhaltigen KTL)
    Zu 815,5 Teilen der Dispersion aus Beispiel 2 werden 4,5 Teile Ameisensäure (50 %) und 1760 Teile deionisiertes Wasser gegeben. Unter gutem Rühren werden 420 Teile Pigmentpaste nach Beispiel 3 zugesetzt.
    Herstellung von Mehrschichtlackierungen Beispiel 5a (Vergleichsversuch)
    Ein unverzinktes Stahlblech (ST 1405) BonderR 26/60/0C (zu Versuchszwecken von der Firma Chemetall vertriebenes sogenanntes "Bonder"-Blech mit einer Vorbehandlung aus nickelhaltiger Trikationphosphatierung und Chromsäurepassivierung) wird mit dem KTL aus Beispiel 4 in 20 µm Trockenschichtdicke beschichtet und 10 min bei 175°C (Objekttemperatur) eingebrannt. Anschließend wird ein handelsüblicher Füller in 35 µm Trockenschichtdicke aufgespritzt und 15 min bei 165°C (Objekttemperatur) eingebrannt. Danach wird ein für die Automobilserienlackierung geeigneter Einschichtdecklack durch Spritzen in 40 µm Trockenschichtdicke aufgetragen und 30 min bei 130°C (Objekttemperatur) eingebrannt.
    Beispiel 5b (Vergleichsversuch)
    Beispiel 5a wird wiederholt jedoch unter Verwendung eines Stahlblechs (ST 1405) BonderR 2640/W/OC (zu Versuchszwecken von der Firma Chemetall vertriebenes sogenanntes "Bonder"-Blech mit einer Vorbehandlung bestehend aus nickelfreier Trikationphosphatierung ohne Passivierung).
    Beispiel 5c (erfindungsgemäßes Beispiel)
    Beispiel 5b wird wiederholt mit dem Unterschied, daß vor Auftrag des KTL das Blech 10 Sekunden bei Raumtemperatur eingetaucht wird in eine wäßrige Lösung des Wismutsalzes aus Beispiel 1 mit einem Wismutgehalt von 1000 ppm und danach mit deionisiertem Wasser abgespült und getrocknet wird. Während des Eintauchens wird das Blech bei einer Spannung von 10 Volt und einer Stromdichte von 1,5 A/m2 als Kathode geschaltet.
    Geprüft wurde der Korrosionsschutz nach VDA-Richtlinie 621-415, Prüfdauer 10 Zyklen. Angabe der Unterwanderung als Bereich aus jeweils 5 Versuchen nach DIN 53 167 in mm. Die erhaltenen Ergebnisse sind in der Tabelle 1 aufgeführt.
    Beispiel Korrosionsschutzprüfung
    5a Vergleichsversuch 1,2 - 1,8 mm
    5b Vergleichsversuch 3,7 - 4,5 mm
    5c erfindungsgemäß 1,1 - 1,4 mm
    Es zeigt sich, daß mit der erfindungsgemäße Verfahrensweise die Unterwanderung eines KTL-Überzuges selbst einem Vergleich mit einem vorher einer Phosphatierung unter Verwendung nickelhaltiger Phosphatierlösungen unterzogenen Substrat standhält und sogar verringert wird.

    Claims (7)

    1. Verfahren zur Beschichtung von Metallsubstraten mit einem oder mehreren organischen Überzügen, wobei man die Metallsubstrate in einer Phosphatierungslösung phosphatiert, die frei von Nickel ist und die so phosphatierten Metallsubstrate nach der Phosphatierung und vor Aufbringung des ersten organischen Überzugs mit einer wäßrigen Lösung behandelt, dadurch gekennzeichnet, daß man mit einer wäßrigen Lösung behandelt, die 5 bis 10000 ppm gelöstes Wismut in Form anorganischer und/oder organischer Verbindungen enthält und das Element in einer Gesamtmenge von 5 bis 100 mg/m2 abscheidet.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die phosphatierten Metallsubstrate während der gesamten Behandlung oder eines Teils der Behandlungsdauer zusätzlich als Kathode geschaltet werden.
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die wäßrige Lösung ein oder mehrere Salze organischer und/oder anorganischer Säuren von Wismut enthält.
    4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man als organische Säuren Mono- oder Polycarbonsäuren verwendet.
    5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die wäßrige Lösung Wismutsalze von Hydroxycarbonsäuren enthält.
    6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die organischen Überzüge unter Verwendung eines Einbrenn-Überzugsmittels aufgetragen werden.
    7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als organischer Überzug ein Elektrotauchlack durch Elektrotauchlackierung aufgetragen wird.
    EP95920868A 1994-05-27 1995-05-23 Verfahren zur beschichtung phosphatierter metallsubstrate Expired - Lifetime EP0760871B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4418491 1994-05-27
    DE4418491 1994-05-27
    PCT/EP1995/001957 WO1995033083A1 (de) 1994-05-27 1995-05-23 Verfahren zur beschichtung phosphatierter metallsubstrate

    Publications (2)

    Publication Number Publication Date
    EP0760871A1 EP0760871A1 (de) 1997-03-12
    EP0760871B1 true EP0760871B1 (de) 1998-05-06

    Family

    ID=6519086

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95920868A Expired - Lifetime EP0760871B1 (de) 1994-05-27 1995-05-23 Verfahren zur beschichtung phosphatierter metallsubstrate

    Country Status (10)

    Country Link
    US (1) US5773090A (de)
    EP (1) EP0760871B1 (de)
    JP (1) JPH10501027A (de)
    KR (1) KR970703447A (de)
    AT (1) ATE165874T1 (de)
    BR (1) BR9507776A (de)
    CA (1) CA2190945A1 (de)
    DE (1) DE59502118D1 (de)
    MX (1) MX9605901A (de)
    WO (1) WO1995033083A1 (de)

    Families Citing this family (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19511573A1 (de) * 1995-03-29 1996-10-02 Henkel Kgaa Verfahren zur Phosphatierung mit metallhaltiger Nachspülung
    DE19606017A1 (de) * 1996-02-19 1997-08-21 Henkel Kgaa Zinkphosphatierung mit geringen Gehalten an Kupfer und Mangan
    US5972189A (en) * 1998-05-29 1999-10-26 Ppg Industries Ohio, Inc. Electrodepositable coating composition containing bismuth diorganodithiocarbamates and method of electrodeposition
    US6156823A (en) * 1998-12-04 2000-12-05 E. I. Du Pont De Nemours And Company Bismuth oxide catalyst for cathodic electrocoating compositions
    DE10001222A1 (de) 2000-01-14 2001-08-09 Basf Coatings Ag Beschichtung, enthaltend kolloidal verteiltes metallisches Bismut
    DE10010758A1 (de) * 2000-03-04 2001-09-06 Henkel Kgaa Korrosionsschutzverfahren für Metalloberflächen
    DE10144531B4 (de) * 2001-09-11 2006-01-19 Henkel Kgaa UV-härtende anti-fingerprint Beschichtungen, Verfahren zum Beschichten und Verwendung eines lösmittelfreien Überzugsmittels
    ATE259005T1 (de) * 2001-10-11 2004-02-15 Franz Oberflaechentechnik Gmbh Erzeugung eines metallisch leitfähigen oberflächenbereichs auf oxidierten al-mg- legierungen
    US7829340B2 (en) * 2007-08-06 2010-11-09 Oft Labs, Llc Oral fluid assays for the detection of heavy metal exposure
    US20090169903A1 (en) * 2007-12-27 2009-07-02 Kansai Paint Co., Ltd. Process for producing metal substrate with multilayer film, metal substrate with multilayer film obtained by the process, and coated article
    US8192801B2 (en) * 2008-04-25 2012-06-05 GM Global Technology Operations LLC Self-deposited coatings on magnesium alloys
    CN104790014B (zh) * 2008-05-29 2017-08-25 日本帕卡濑精株式会社 带有铋被膜的金属材料及其制造方法、在其中所使用的表面处理液以及阳离子电沉积涂覆金属材料及其制造方法
    US8187439B2 (en) * 2009-08-05 2012-05-29 GM Global Technology Operations LLC Electrocoating process for mixed-metal automotive bodies-in-white
    WO2015195661A1 (en) * 2014-06-16 2015-12-23 Latitude 18, Inc Inorganic-organic phosphate ceramics and coatings
    US20160229386A1 (en) * 2015-02-06 2016-08-11 GM Global Technology Operations LLC Transmission assembly with electrical noise reduction and method of making and using the same
    CN107735511B (zh) * 2015-04-07 2022-05-10 凯密特尔有限责任公司 无镍磷化金属表面的方法
    KR102414361B1 (ko) 2017-07-27 2022-06-30 도쿄 오카 고교 가부시키가이샤 방향족 아민 화합물, 에폭시 화합물용 경화제, 경화성 조성물, 경화물, 경화물의 제조 방법, 및 방향족 아민 화합물의 제조 방법
    CN116288302B (zh) * 2023-02-15 2025-04-11 中国民航大学 一种Hureaulite磷酸锰转化膜的制备方法

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS4964530A (de) * 1972-07-10 1974-06-22
    US3895970A (en) * 1973-06-11 1975-07-22 Pennwalt Corp Sealing rinse for phosphate coatings of metal
    SU914652A1 (ru) * 1980-04-07 1982-03-23 Inst Mekhaniki Metallopolimern Способ дополнительной обработки пористых фосфатных покрытий1
    JPS58130282A (ja) * 1982-01-29 1983-08-03 Nippon Steel Corp 塗装用金属の前処理方法
    AU572825B2 (en) * 1983-03-03 1988-05-19 Fmc Corporation (Uk) Limited Inhibition of corrosion and scale formation of metal surfaces
    DE3400339A1 (de) * 1984-01-07 1985-08-29 Gerhard Collardin GmbH, 5000 Köln Verfahren zur nachpassivierung von phosphatierten metalloberflaechen unter verwendung von nickel- und/oder kupfer-kationen enthaltenden loesungen
    JPS6232113A (ja) * 1985-08-05 1987-02-12 Shikoku Chem Corp ポリエポキシ樹脂の硬化方法
    US4828615A (en) * 1986-01-27 1989-05-09 Chemfil Corporation Process and composition for sealing a conversion coated surface with a solution containing vanadium
    US4881975A (en) * 1986-12-23 1989-11-21 Albright & Wilson Limited Products for treating surfaces
    AT394372B (de) * 1990-08-02 1992-03-25 Vianova Kunstharz Ag Verfahren zur herstellung von pigmentpastenharzen fuer kathodisch abscheidbare ueberzugsmittelzusammensetzungen
    DE4041091A1 (de) * 1990-12-21 1992-06-25 Metallgesellschaft Ag Verfahren zur nachspuelung von konversionsschichten
    US5385655A (en) * 1992-10-30 1995-01-31 Man-Gill Chemical Company Treatment of metal parts to provide rust-inhibiting coatings

    Also Published As

    Publication number Publication date
    US5773090A (en) 1998-06-30
    WO1995033083A1 (de) 1995-12-07
    ATE165874T1 (de) 1998-05-15
    KR970703447A (ko) 1997-07-03
    CA2190945A1 (en) 1995-12-07
    MX9605901A (es) 1997-12-31
    BR9507776A (pt) 1997-08-19
    JPH10501027A (ja) 1998-01-27
    DE59502118D1 (de) 1998-06-10
    EP0760871A1 (de) 1997-03-12

    Similar Documents

    Publication Publication Date Title
    EP0760871B1 (de) Verfahren zur beschichtung phosphatierter metallsubstrate
    EP0739389B1 (de) Vereinfachtes verfahren zur herstellung einer korrosionsschützenden, gut haftenden lackierung und die dabei erhaltenen werkstücke
    EP0783548B2 (de) Verfahren zur herstellung einer korrosionsschützenden, gut haftenden lackierung und die dabei erhaltenen werkstücke
    EP2292808B1 (de) Metallisierende Vorbehandlung von Zinkoberflächen
    DE3640662A1 (de) Hoch korrosionsbestaendiges, oberflaechenbehandeltes stahlblech
    WO2011067094A1 (de) Mehrstufiges vorbehandlungsverfahren für metallische bauteile mit zink- und eisenoberflächen
    DE60029378T2 (de) Kationisches elektroabscheidbares Beschichtungsmaterial
    DE112006000831T5 (de) Verfahren zur Herstellung eines Mehrschichtbeschichtungsfilms
    DE2814439C3 (de) Bad zur elektrophoretischen Abscheidung eines kationischen Harzes auf die Oberfläche eines Eisengegenstandes aus einer wäßrigen Dispersion
    EP3071658B1 (de) Zweistufiges verfahren zur tauchlack-beschichtung elektrisch leitfähiger substrate unter verwendung einer bi(iii)-haltigen zusammensetzung
    US7632386B2 (en) Process for producing coatings on electrically conductive substrates by cathodic electrodeposition coating
    DE2457437A1 (de) Beschichtungsbad fuer das kataphoretische beschichten von metalloberflaechen
    EP3071656B1 (de) Wässrige beschichtungszusammensetzung zur tauchlack-beschichtung elektrisch leitfähiger substrate enthaltend bismut sowohl in gelöst als auch ungelöst vorliegender form
    DE60015322T2 (de) Yttrium enthaltende elektrotauchlackbäder
    DE60319237T2 (de) Elektrotauchbäder mit metallsalzen sowie entsprechende verfahren
    DE3907542C1 (de)
    DE112007000542T5 (de) Neuer zusammengesetzter chemischer Umwandlungsbeschichtungsfilm, mehrschichtiger Beschichtungsfilm unter Verwendung desselben und Verfahren zur Bildung des mehrschichtigen Beschichtungsfilms
    DE4303787C1 (de) Verfahren zur Herstellung von Elektrotauchlacküberzügen, die frei von Oberflächenstörungen sind und Verwendung von wäßrigen Polyvinylalkohollösungen zur Nachbehandlung von elektrophoretisch abgeschiedenen Überzügen
    DE60312082T2 (de) Kationische Elektrotauchlacke enthaltende Bismutsalze zusammen mit Yttrium- und/oder Neodymverbindungen, deren Verfahren zur Herstellung und deren Verwendung
    EP0653467B1 (de) Wässriger kathodisch abscheidbarer Elektrotauchlack und Beschichtungsverfahren unter dessen Verwendung
    DE3932744C2 (de)
    DE2463089C2 (de) Beschichtungsbad und Verfahren für das kataphoretische Beschichten von Metalloberflächen
    DE2463089C1 (de)

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19961221

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE DE ES FR GB IT NL PT SE

    AX Request for extension of the european patent

    Free format text: SI PAYMENT 961221

    17Q First examination report despatched

    Effective date: 19970214

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE DE ES FR GB IT NL PT SE

    AX Request for extension of the european patent

    Free format text: SI PAYMENT 961221

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19980506

    Ref country code: ES

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19980506

    REF Corresponds to:

    Ref document number: 165874

    Country of ref document: AT

    Date of ref document: 19980515

    Kind code of ref document: T

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19980523

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19980531

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980507

    REF Corresponds to:

    Ref document number: 59502118

    Country of ref document: DE

    Date of ref document: 19980610

    ITF It: translation for a ep patent filed
    ET Fr: translation filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19980806

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19980806

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    BERE Be: lapsed

    Owner name: HERBERTS G.M.B.H.

    Effective date: 19980531

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 19990420

    Year of fee payment: 5

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 19990520

    Year of fee payment: 5

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000523

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20000523

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010131

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050523

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20100519

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59502118

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59502118

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111130