EP1285105B1 - Electrochemically produced layers for providing corrosion protection or wash primers - Google Patents
Electrochemically produced layers for providing corrosion protection or wash primers Download PDFInfo
- Publication number
- EP1285105B1 EP1285105B1 EP01933902A EP01933902A EP1285105B1 EP 1285105 B1 EP1285105 B1 EP 1285105B1 EP 01933902 A EP01933902 A EP 01933902A EP 01933902 A EP01933902 A EP 01933902A EP 1285105 B1 EP1285105 B1 EP 1285105B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- metal
- conductive surface
- deposited
- electrically conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/22—Servicing or operating apparatus or multistep processes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
Definitions
- the invention is in the field of coating surfaces to these to protect against corrosion and / or to provide them with a primer for a subsequent organic coating.
- the Surfaces are electrically conductive, for example surfaces of metals or surfaces which have been made conductive by an appropriate treatment Represent glass or plastics.
- a common technical task is metallic or not to provide metallic substrates with a first coating that has a corrosion-inhibiting effect and / or has a primer for an over it represents coating to be applied with organic polymers.
- metals are pretreated before painting. This is what technology stands for different procedures available. Examples include one layer-forming or non-layer-forming phosphating, a chromating or a chrome-free conversion treatment, for example with complex ones Fluorides from titanium, zirconium, boron or silicon. Technically easier to carry out, but a simple application of a primer coat is less effective a metal before painting it. An example of this is the application of Redlead.
- An alternative to the "wet" process is "dry" Procedures in which a corrosion protection or adhesive layer from a Gas phase is deposited. Such methods are for example as PVD or CVD process known. They can be electrical, for example through a Plasma discharge, be supported.
- a layer produced or applied in this way can be used as serve as a corrosion protective primer for subsequent painting.
- the Layer can also be a primer for subsequent gluing represent.
- metallic substrates, but also substrates made of Plastic or glass are often chemically or mechanically pretreated to ensure the adhesion of the adhesive to the substrate improve.
- metal or Plastic parts in each case, but also glued together. Front and Today rear windows of vehicles are usually directly in the body glued.
- Further examples of the use of adhesive layers can be found in the production of rubber-metal composites.
- the Metal substrates are usually mechanically or chemically pretreated before an adhesive layer is applied for gluing with rubber.
- That thin layers of metal compounds, such as oxide layers, be generated electrochemically on an electrically conductive surface is known in the art.
- the influence of the deposition conditions was particularly important investigated the morphology of the oxide layers. A practical application of the Layers do not emerge from this work.
- An electrochemical formation of an oxide layer also takes place with the as Known processes take place anodizing.
- US-A-2 081 121 describes a process for the electrolytic coating of metallic Substrates such as iron, steel, copper and brass with a thin layer of copper (I) oxide described.
- the alkaline baths used for this contain in addition to, for example Copper sulfate is a compound that forms a soluble complex with the copper.
- Examples of such substances are: organic acids such as lactic acid, citric acid, Glycolic acid, tartaric acid, salicylic acid also sugar, glycerin and inorganic Compounds such as pyrophosphate or borax.
- the colored layers obtained in this way can be used as the basis for subsequent painting, varnishing or enamelling serve.
- US-A-4 094 750 discloses the electrodeposition of metal oxides of Al, Cu, Co and Ni on titanium, magnesium, aluminum or steel substrates at current densities of 0.02 to 0.5 A / in 2 in 5 to 60 seconds using appropriate metal salts in alcoholic solution. According to the examples, metal oxide layer thicknesses in the range from 700 to 1600 A result. These layers serve as an adhesive layer for an adhesive bonding of parts.
- the present invention relates to a method for producing an at least two-layer coating on an electrically conductive surface, characterized in that in a step a) on the electrically conductive surface a chromium-free layer of at least one X-ray crystalline inorganic compound of at least one metal A with a mass per unit area of 1.1 to 10 g / m 2 from a solution which contains the metal A in dissolved form, is deposited electrochemically, the metal A being a different metal than the main component of the electrically conductive surface and being selected from Mg. Ca. Sr.
- step b) at least one layer of a cathodically or anodically depositable electrodeposition paint or a powder paint is applied to the layer deposited in step a).
- the solution containing metal A in dissolved form is also referred to below as "Electrolyte” called.
- a conductive salt such as a tetraalkylammonium halide.
- the Ions of the conductive salt are not or only to a minor extent in the Layer installed, but increase the electrical conductivity of the electrolyte.
- the electrically conductive surface can be intrinsic act conductive surface such as a metallic surface.
- layer can also be on a surface of an electrically little or not conductive material are deposited if the Surface is made electrically conductive.
- plastics for example done by first electrically chemical deposits conductive metal layer, which then forms the basis for the electrochemical Deposition of a compound of metal A.
- a glass surface can be made electrically conductive, for example, by using them with a Powdered an electrically conductive substance or a conductive layer through the gas phase, for example as a chemical Vapor Deposition (CVD). It is for the use according to the invention however preferred that the electrically conductive surface be a metal surface represents.
- the inorganic compound of metal A is separated from a solution that contains the metal A in dissolved form. It can be a one- or multi-component aqueous or a non-aqueous solution act.
- non-aqueous solvents with a good one Solvent for suitable metal compounds are liquid ammonia, Dimethyl sulfoxide or organic phosphine derivatives.
- one multicomponent aqueous solution are water-alcohol mixtures.
- the electrochemical deposition can be carried out cathodically or anodically, a cathodic deposition can be used more universally and is therefore preferred is.
- the deposition of the inorganic compound of at least one metal A from a corresponding solution can be done according to 2 different mechanisms respectively.
- the deposition can be coupled with a change in the Oxidation level of metal A, with a on the electrically conductive surface Layer of a poorly soluble compound of metal A in the opposite of the Solution changed oxidation level grows up.
- Another separation mechanism is based on the fact that the pH value through electrochemical processes on the electrically conductive surface shifts near the surface.
- the electrical conductive surface an inorganic compound of at least one metal A grow up that are hard on the surface under local pH conditions is soluble. It is not necessary that the oxidation state of the metal A changes during the deposition process.
- a shift in pH can take place on the electrically conductive surface, for example, in that Hydrogen ions are discharged and the pH value rises locally as a result.
- the inorganic compound of at least one metal This means that this connection is definitely the metal A must contain. However, it can also contain other metals B, C, ... This other metals can be present in the solution in addition to metal A. and be deposited with it. These other metals can however, also be components of the electrically conductive surface and at Formation of the layer of an inorganic compound of at least one metal A. can be built directly into this connection.
- inorganic Compounds that contain another metal in addition to metal A Mixed oxides, for example the structure type of the spinels or the Perovskite can belong. Examples include titanates and niobates.
- the in step a) deposited compound is an oxide.
- This can also be a mixed oxide different metals.
- the use according to the invention is not limited to oxides. It also includes non-oxide inorganic Compounds such as, for example, selenides, sulfides or nitrides suitable, possibly anhydrous, solvents can be separated.
- the inorganic Connection of at least one metal A is only binary or ternary Represents connection. Rather, this connection can also be set up in a more complex manner be, for example, ions or molecules from the solution into the compound can also be installed. Oxide hydrates or sulfates are an example of this.
- the use according to the invention does not include a pure galvanization, since a plating layer is not an "inorganic compound" in the sense of this Represents invention.
- To the layer of at least one inorganic Connection of at least one metal A is rather the condition that at least part of the metal A is in an oxidation state> 0.
- any layer can be used for the use according to the invention at least one inorganic compound of at least one metal A are used, which can be deposited electrochemically and which are sufficient is chemically stable to act as a corrosion protection layer.
- the Layer with or without applied varnish better corrosion protection delivers as the uncoated metal surface.
- the metal A selected from Mg, Ca, Sr, Ba, Si, Sn, Pb, Sb, Bi, Ti, Zr, Nb, Ta, Mn, Fe, Co, Ni, Zn, Cu.
- the for The most important metal for practical purposes are Si, Ti, Zr, Mn, Fe, Co, Ni, Zn and Cu.
- the electrochemical deposition can be potentiostatic or galvanostatic.
- the galvanostatic deposition is technically easier to carry out and is therefore preferred.
- the layer formation preferably takes place in that the inorganic compound on the electrically conductive surface at a potential compared to a standard hydrogen electrode between ⁇ 0.1 and ⁇ 300 V or a current density in the range of ⁇ 0.1 to ⁇ 10000 mA per cm 2 electrically conductive surface is deposited. It is preferred to work at potentials between ⁇ 0.1 and ⁇ 100 V or at a current density in the range from ⁇ 0.5 to ⁇ 100 mA per cm 2 .
- the signs in front of voltage and current density express that the deposition can be cathodic or anodic. Cathodic deposition, ie a negative potential compared to the standard hydrogen electrode, is preferred.
- the morphology, the chemical composition and the crystal structure of the deposited Layer depend on the deposition conditions and thus by choice of Conditions can be affected.
- the above mentioned Layer parameters from the concentration of the metal ions A and possibly further Components in the solution, the flow rate of the solution relative to the electrically conductive surface, the set potential and / or the set current density.
- the layer properties can thus be chosen specifically change this parameter.
- the deposition is carried out here under such conditions that the inorganic compound deposits in X-ray crystalline form.
- X-ray crystalline means that the inorganic compound in a sharp X-ray diffraction experiment X-ray reflexes delivers.
- the resulting highly structured surface is particularly favorable as a primer for an organic coating.
- Electrolytes relative to the metallic conductive surface can form layers accelerate and influence the morphology of the layer. For example this is done by stirring the electrolyte or in the Pumped around electrolysis vessel. Furthermore, the electrolyte can be blown through a Gases, especially air, are mixed and moved.
- a cathodically or anodically depositable electrodeposition paint can be applied.
- the layer is deposited between the layers inorganic compound and the application of electrocoat preferably rinsed with water. This can be done by dipping or spraying respectively. It can be advantageous, at least in the last rinsing step rinse low-salt or deionized water.
- a chemical Post-passivation of the inorganic layer before the electrical one Dip painting, as is usually the case with phosphating, for example is not necessary in the method according to the invention.
- a powder coating can also be used in sub-step b) be applied.
- the inorganic layer on the electrical conductive surface can no longer be electrically conductive to the extent that for Subsequent electrocoating is required.
- a powder paint is preferably applied to molded objects that are not strong exposed to corrosive loads. Examples of this are items such as Household appliances or electronic devices used in enclosed spaces be kept.
- the advantages of the invention lies in the fact that thickness, composition and inner and outer structure of the inorganic layer by the choice of Deposition parameters are easier to control than with purely chemical ones Process management. Less will be needed to apply the layer Process stages are required than for phosphating and they generally fall less sludge than with a purely chemical layer formation. Compared The deposition process from the gas phase is electrochemical Separation faster and with less equipment and Energy consumption connected. Furthermore, it is not necessary as the Vapor deposition to provide volatile starting compounds.
- Another advantage of electrochemical layer formation is that Layer growth over the electrical resistance on the metallic conductive Surface is controllable. Unless the growing layer has a higher one has electrical resistance than the electrically conductive surface - what in the The rule is the case - so the layer growth slows down when the electrical resistance becomes too high due to the layer formation. As long as it is there are still unoccupied areas of the metallic conductive surface or the layer is so thin that a current still flows at the set voltage the layer growth at these points. Is the metallic conductive surface almost completely covered with a layer of such a thickness that the electrical resistance increases significantly, the process of layer formation can be ended. With galvanostatically controlled layer growth it shows up the almost complete layer formation in that the terminal voltage rises sharply. The process can then automatically run at a preselected value the terminal voltage can be interrupted.
- Electrolyte 0.4 M CuSO 4 + 3 M lactic acid, pH 10, 60 ° C, with 400 revolutions per minute stirring
- the layers formed are closed after a treatment time of approx. 50 s and consist of fine ( ⁇ 1 ⁇ m) crystals of Cu 2 O:
- the layer properties are very easy to control even without interfering with the electrolyte composition.
- Corrosion tests (10 cycles VDA alternating climate test, cathodic dip painting) show a significant improvement in corrosion protection through the coating depending on the applied layer thickness: Process time (seconds) Alternating climate test: infiltration U / 2 (mm) 10 4.8 30 4.5 60 3.9 120 3.6 300 2.6
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Laminated Bodies (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Secondary Cells (AREA)
- Paints Or Removers (AREA)
- Prevention Of Electric Corrosion (AREA)
Abstract
Description
Die Erfindung liegt auf dem Gebiet der Beschichtung von Oberflächen, um diese gegen Korrosion zu schützen und/oder um sie mit einem Haftgrund für eine nachfolgende organische Beschichtung zu versehen. Hierzu müssen die Oberflächen elektrisch leitend sein, also beispielsweise Oberflächen von Metallen oder durch eine entsprechende Behandlung leitfähig gemachte Oberflächen von Glas oder Kunststoffen darstellen.The invention is in the field of coating surfaces to these to protect against corrosion and / or to provide them with a primer for a subsequent organic coating. To do this, the Surfaces are electrically conductive, for example surfaces of metals or surfaces which have been made conductive by an appropriate treatment Represent glass or plastics.
Eine weit verbreitete technische Aufgabe besteht darin, metallische oder nicht metallische Untergründe mit einer ersten Beschichtung zu versehen, die korrosionshemmend wirkt und/oder die einen Haftgrund für eine darüber aufzubringende Beschichtung mit organischen Polymeren darstellt. Beispielsweise werden Metalle vor einer Lackierung vorbehandelt. Hierfür stehen in der Technik unterschiedliche Verfahren zur Verfügung. Beispielsweise genannt seien eine schichtbildende oder nicht schichtbildende Phosphatierung, eine Chromatierung oder eine chromfreie Konversionsbehandlung, beispielsweise mit komplexen Fluoriden von Titan, Zirkon, Bor oder Silicium. Technisch einfacher durchführbar, aber weniger wirkungsvoll ist ein einfacher Auftrag einer Grundierungsschicht auf ein Metall vor dessen Lackierung. Ein Beispiel hierfür ist das Auftragen von Menninge. Eine Alternative zu den "nassen" Verfahren stellen "trockene" Verfahren dar, bei denen eine Korrosionsschutz- oder Haftschicht aus einer Gasphase abgeschieden wird. Solche Verfahren sind beispielsweise als PVDoder CVD-Verfahren bekannt. Sie können elektrisch, beispielsweise durch eine Plasmaentladung, unterstützt sein.A common technical task is metallic or not to provide metallic substrates with a first coating that has a corrosion-inhibiting effect and / or has a primer for an over it represents coating to be applied with organic polymers. For example metals are pretreated before painting. This is what technology stands for different procedures available. Examples include one layer-forming or non-layer-forming phosphating, a chromating or a chrome-free conversion treatment, for example with complex ones Fluorides from titanium, zirconium, boron or silicon. Technically easier to carry out, but a simple application of a primer coat is less effective a metal before painting it. An example of this is the application of Redlead. An alternative to the "wet" process is "dry" Procedures in which a corrosion protection or adhesive layer from a Gas phase is deposited. Such methods are for example as PVD or CVD process known. They can be electrical, for example through a Plasma discharge, be supported.
Eine derart erzeugte oder aufgebrachte Schicht kann zum einen als korrosionsschützender Haftgrund für eine nachfolgende Lackierung dienen. Die Schicht kann aber auch einen Haftgrund für eine nachfolgende Verklebung darstellen. Insbesondere metallische Untergründe, aber auch Untergründe aus Kunststoff oder Glas werden vor einer Verklebung häufig chemisch oder mechanisch vorbehandelt, um die Haftung des Klebstoffs auf dem Substrat zu verbessern. Beispielsweise werden im Fahrzeug- oder Gerätebau Metall- oder Kunststoffteile jeweils untereinander, jedoch auch miteinander verklebt. Front- und Heckscheiben von Fahrzeugen werden heute in der Regel direkt in die Karosserie eingeklebt. Weitere Beispiele für die Verwendung von Haftschichten findet man bei der Herstellung von Gummi-Metall-Verbunden. Auch hierbei wird der Metalluntergrund in der Regel mechanisch oder chemisch vorbehandelt, bevor eine Haftschicht zur Verklebung mit Gummi aufgebracht wird.A layer produced or applied in this way can be used as serve as a corrosion protective primer for subsequent painting. The Layer can also be a primer for subsequent gluing represent. In particular metallic substrates, but also substrates made of Plastic or glass are often chemically or mechanically pretreated to ensure the adhesion of the adhesive to the substrate improve. For example, metal or Plastic parts in each case, but also glued together. Front and Today rear windows of vehicles are usually directly in the body glued. Further examples of the use of adhesive layers can be found in the production of rubber-metal composites. Here too the Metal substrates are usually mechanically or chemically pretreated before an adhesive layer is applied for gluing with rubber.
Die herkömmlichen nassen oder trockenen Beschichtungsverfahren bringen jeweils spezielle Nachteile mit sich. Beispielsweise sind Chromatierverfahren durch die toxischen Eigenschaften des Chroms und der Entstehung hochgiftiger Schlämme aus ökologischen und ökonomischen Gesichtspunkten nachteilig. Aber auch chromfreie nasse Verfahren wie beispielsweise eine Phosphatierung sind in der Regel mit der Entstehung schwermetallhaltiger Schlämme verbunden, die aufwendig entsorgt werden müssen. Ein weiterer Nachteil herkömmlicher nasser Beschichtungsverfahren besteht darin, daß der eigentliche Beschichtungsschritt häufig vor- oder nachbereitende weitere Schritte benötigt. Hierdurch erhöht sich der Platzbedarf für die Behandlungslinie, und der Verbrauch an Chemikalien steigt. Beispielsweise ist die im Automobilbau nahezu ausschließlich eingesetzte Phosphatierung mit mehreren Reinigungsschritten, einem Aktivierungsschritt und in der Regel einem Nachpassivierungsschritt verbunden. In all diesen Schritten werden Chemikalien verbraucht und zu entsorgende Abfälle gebildet.Bring the traditional wet or dry coating processes each with special disadvantages. Examples are chromating processes due to the toxic properties of chromium and the formation of highly toxic Sludges disadvantageous from an ecological and economic point of view. But chrome-free wet processes such as phosphating are also in generally associated with the formation of sludges containing heavy metals, the have to be disposed of at great expense. Another disadvantage of conventional wet Coating process is that the actual coating step often preparatory or follow-up steps are required. This increases the space required for the treatment line and the consumption of chemicals increases. For example, the one used almost exclusively in automotive engineering Phosphating with several cleaning steps, one activation step and usually associated with a post-passivation step. In all of these steps chemicals are consumed and waste to be disposed of.
Trockene Beschichtungsverfahren bringen zwar weniger Abfallprobleme mit sich, haben aber den Nachteil einer technisch aufwendigen Verfahrensführung (beispielsweise durch das Erfordernis von Vakuum) oder sind energetisch aufwendig. Hohe Betriebskosten sind also vor allem durch Anlagenkosten und Energieverbrauch bedingt.While dry coating processes pose fewer waste problems, but have the disadvantage of a technically complex process (e.g. due to the requirement of vacuum) or are energetic consuming. High operating costs are mainly due to system costs and Conditional on energy consumption.
Daher besteht ein Bedarf nach neuen Beschichtungsverfahren zum Herstellen von Korrosionsschutz- oder Haftgrundschichten, die apparativ weniger aufwendig sind als trockene Verfahren und die im Vergleich zu nassen Verfahren mit einem geringeren Chemikalienverbrauch und einem geringeren Abfallvolumen auskommen.There is therefore a need for new coating processes for the manufacture of Corrosion protection or adhesive base layers, which are less expensive in terms of equipment as a dry process and the one compared to wet processes lower chemical consumption and lower waste volume get along.
Daß dünne Schichten von Metallverbindungen, beispielsweise Oxidschichten, elektrochemisch auf einem elektrisch leitenden Untergrund erzeugt werden können, ist im Stand der Technik bekannt. Beispielsweise beschreibt der Artikel Y. Zhou, J.A. Switzer: "Electrochemical Deposition and Microstructure of Copper (I) Oxide Films", Scripta Materialia Vol. 38, No. 11, Seiten 1731-1738 (1998) die elektrochemische Abscheidung und Mikrostruktur von Kupfer(I)oxidfilmen auf Edelstahl. Dabei wurde vor allem der Einfluß der Abscheidungsbedingungen auf die Morphologie der Oxidschichten untersucht. Eine praktische Anwendung der Schichten geht aus dieser Arbeit nicht hervor.That thin layers of metal compounds, such as oxide layers, be generated electrochemically on an electrically conductive surface is known in the art. For example, article Y. Zhou, J.A. Switzer: "Electrochemical Deposition and Microstructure of Copper (I) Oxide Films ", Scripta Materialia Vol. 38, No. 11, pages 1731-1738 (1998) electrochemical deposition and microstructure of copper (I) oxide films Stainless steel. The influence of the deposition conditions was particularly important investigated the morphology of the oxide layers. A practical application of the Layers do not emerge from this work.
Der Artikel M. Yoshimura, W. Suchanek, K-S. Han: "Recent developments in soft, solution processing: one step fabrication of functional double oxide films by hydrothermal-electrochemical methods", J. Mater. Chem. Vol. 9, Seiten 77-82 (1999) untersucht die Herstellung von dünnen Filmen von Doppeloxiden durch eine Kombination von hydrothermalen mit elektrochemischen Methoden. Eine Anwendung wird in der Herstellung keramischer Materialien gesehen. Der Artikel enthält keine Hinweise auf die Verwendbarkeit solcher Schichten als Korrosionsschutz und als Haftgrund.The article M. Yoshimura, W. Suchanek, K-S. Han: "Recent developments in soft, solution processing: one step fabrication of functional double oxide films by hydrothermal-electrochemical methods ", J. Mater. Chem. Vol. 9, pages 77-82 (1999) examines the production of thin films of double oxides a combination of hydrothermal with electrochemical methods. A Application is seen in the manufacture of ceramic materials. The item contains no evidence of the usability of such layers as Corrosion protection and as a primer.
Eine elektrochemische Bildung einer Oxidschicht findet auch bei den als Anodisieren bekannten Prozessen statt. Hiervon unterscheidet sich die vorliegende Erfindung darin, daß auf einem Substrat Schichten von Metallverbindungen abgeschieden werden, wobei das Metall der Metallverbindung im wesentlichen ein anderes Metall darstellt als dasjenige, das den möglicherweise metallischen Untergrund ausmacht.An electrochemical formation of an oxide layer also takes place with the as Known processes take place anodizing. The differs from this present invention in that on a substrate layers of Metal compounds are deposited, the metal being the metal compound is essentially a different metal than that which the possibly metallic surface.
Ebenfalls ist es bekannt, die Bildung kristalliner Zinkphosphatschichten elektrochemisch zu unterstützen. Die Nachteile einer Phosphatierung (mehrere Teilschritte wie Aktivierung, Phosphatierung, Nachpassivierung; Anfall von Phosphatierschlamm) werden hierdurch jedoch nicht überwunden. Die elektrochemische Unterstützung der Ausbildung von Zinkphosphatschichten gehört nicht zum Umfang der vorliegenden Erfindung.It is also known to form crystalline zinc phosphate layers to support electrochemically. The disadvantages of phosphating (several Substeps such as activation, phosphating, post-passivation; Bout of Phosphating sludge) will not be overcome by this. The electrochemical Support for the formation of zinc phosphate layers is not part of the scope present invention.
In US-A-2 081 121 wird ein Verfahren zur elektrolytischen Beschichtung von metallischen Substraten wie Eisen, Stahl, Kupfer und Messing mit einer dünnen Schicht aus Kupfer(I)-oxid beschrieben. Die hierzu eingesetzten alkalischen Bäder enthalten neben beispielsweise Kupfersulfat eine Verbindung, die mit dem Kupfer einen löslichen Komplex bildet. Als solche kommen beispielsweise in Frage: organische Säuren wie Milchsäure, Citronensäure, Glykolsäure, Weinsäure, Salicylsäure ferner Zucker, Glycerin und anorganische Verbindungen wie Pyrophosphat oder Borax. Die so gewonnenen farbigen Schichten können als Grundlage für einen nachfolgenden Anstrich, Lackierung oder Emaillierung dienen.US-A-2 081 121 describes a process for the electrolytic coating of metallic Substrates such as iron, steel, copper and brass with a thin layer of copper (I) oxide described. The alkaline baths used for this contain in addition to, for example Copper sulfate is a compound that forms a soluble complex with the copper. Examples of such substances are: organic acids such as lactic acid, citric acid, Glycolic acid, tartaric acid, salicylic acid also sugar, glycerin and inorganic Compounds such as pyrophosphate or borax. The colored layers obtained in this way can be used as the basis for subsequent painting, varnishing or enamelling serve.
Die US-A-4 094 750 offenbart die elektrolytische Abscheidung von Metalloxiden von Al, Cu, Co und Ni auf Titan-, Magnesium-, Aluminium- oder Stahlsubstraten bei Stromdichten von 0,02 bis 0,5 A/in2 in 5 bis 60 Sekunden unter Verwendung entsprechender Metallsalze in alkoholischer Lösung. Gemäß den Beispielen resultieren Metalloxid-Schichtdicken im Bereich von 700 bis 1600 A. Diese Schichten dienen als Haftschicht für ein adhäsives Verbinden von Teilen.US-A-4 094 750 discloses the electrodeposition of metal oxides of Al, Cu, Co and Ni on titanium, magnesium, aluminum or steel substrates at current densities of 0.02 to 0.5 A / in 2 in 5 to 60 seconds using appropriate metal salts in alcoholic solution. According to the examples, metal oxide layer thicknesses in the range from 700 to 1600 A result. These layers serve as an adhesive layer for an adhesive bonding of parts.
Demgegenüber betrifft die vorliegende Erfindung ein Verfahren zur Herstellung einer
mindestens zweilagigen Beschichtung auf einer elektrisch leitenden Oberfläche, dadurch
gekennzeichnet, daß
in einem Schritt a) auf der elektrisch leitenden Oberfläche eine chromfreie Schicht aus
mindestens einer röntgenkristallinen anorganischen Verbindung mindestens eines Metalls
A mit einer flächenbezogonenen Masse von 1,1 bis 10 g/m2 aus einer Lösung, die das
Metall A in gelöster Form enthält, elektrochemisch abgeschieden wird, wobei das Metall A
ein anderes Metall darstellt als die Hauptkomponente der elektrisch leitenden Oberfläche
und ausgewählt ist aus Mg. Ca. Sr. Ba, Si, Sn, Pb, Sb, Bi, Ti, Zr, Nb, Ta, Mn, Fe, Co, Ni,
Zn, Cu und wobei die anorganische Verbindung weniger als 20 Gew.-% Phosphationen
enthält, und
in einem nachfolgenden Schritt b) auf die im Schritt a) abgeschiedene Schicht mindestens
eine Schicht eines kathodisch oder anodisch abscheidbaren Elektrotauchlacks oder eines
Pulverlacks aufgebracht wird. In contrast, the present invention relates to a method for producing an at least two-layer coating on an electrically conductive surface, characterized in that
in a step a) on the electrically conductive surface a chromium-free layer of at least one X-ray crystalline inorganic compound of at least one metal A with a mass per unit area of 1.1 to 10 g / m 2 from a solution which contains the metal A in dissolved form, is deposited electrochemically, the metal A being a different metal than the main component of the electrically conductive surface and being selected from Mg. Ca. Sr. Ba, Si, Sn, Pb, Sb, Bi, Ti, Zr, Nb, Ta, Mn, Fe, Co, Ni, Zn, Cu and wherein the inorganic compound contains less than 20% by weight of phosphate ions, and
in a subsequent step b) at least one layer of a cathodically or anodically depositable electrodeposition paint or a powder paint is applied to the layer deposited in step a).
Die Lösung, die das Metall A in gelöster Form enthält, wird nachstehend auch als "Elektrolyt" bezeichnet. Stellt diese Wasser dar, in der Salz des Metalls A gelöst ist, ist die Leitfähigkeit dieser Lösung für den erfindungsgemäßen Zweck in der Regel ausreichend. Sollte ein nicht wäßriges Lösungsmittel verwendet werden oder die Leitfähigkeit einer wäßrigen Lösung nicht ausreichen, kann ein Leitsalz wie beispielsweise ein Tetraalkylammoniumhalogenid zugesetzt werden. Die Ionen des Leitsalzes werden nicht oder nur in untergeordnetem Maße in die Schicht eingebaut, erhöhen aber die elektrische Leitfähigkeit des Elektrolyten.The solution containing metal A in dissolved form is also referred to below as "Electrolyte" called. This represents water, dissolved in the salt of metal A. is, the conductivity of this solution for the purpose of the invention in the Usually sufficient. Should use a non-aqueous solvent or the conductivity of an aqueous solution is insufficient, a conductive salt such as a tetraalkylammonium halide. The Ions of the conductive salt are not or only to a minor extent in the Layer installed, but increase the electrical conductivity of the electrolyte.
Dabei kann es sich bei der elektrisch leitenden Oberfläche um eine intrinsisch leitende Oberfläche wie beispielsweise eine metallische Oberfläche handeln. Die Schicht kann jedoch auch auf einer Oberfläche eines elektrisch wenig oder nicht leitenden Materials abgeschieden werden, wenn durch geeignete Maßnahmen die Oberfläche elektrisch leitfähig gemacht wird. Bei Kunststoffen kann dies beispielsweise dadurch erfolgen, daß man zunächst auf chemischem Wege eine elektrisch leitende Metallschicht abscheidet, die dann die Basis für die elektrochemische Abscheidung einer Verbindung des Metalls A darstellt. Eine Glasoberfläche kann beispielsweise dadurch elektrisch leitend gemacht werden, daß man sie mit einem Pulver einer elektrisch leitfähigen Substanz bestäubt oder eine leitfähige Schicht über die Gasphase aufbringt, beispielsweise als chemische Gasphasenabscheidung (CVD). Für die erfindungsgemäße Verwendung ist es jedoch bevorzugt, daß die elektrisch leitende Oberfläche eine Metalloberfläche darstellt.The electrically conductive surface can be intrinsic act conductive surface such as a metallic surface. The However, layer can also be on a surface of an electrically little or not conductive material are deposited if the Surface is made electrically conductive. With plastics, for example done by first electrically chemical deposits conductive metal layer, which then forms the basis for the electrochemical Deposition of a compound of metal A. A glass surface can be made electrically conductive, for example, by using them with a Powdered an electrically conductive substance or a conductive layer through the gas phase, for example as a chemical Vapor Deposition (CVD). It is for the use according to the invention however preferred that the electrically conductive surface be a metal surface represents.
Die Abscheidung der anorganischen Verbindung des Metalls A geschieht aus einer Lösung, die das Metall A in gelöster Form enthält. Dabei kann es sich um eine ein- oder mehrkomponentige wäßrige oder eine nicht wäßrige Lösung handeln. Beispiele nicht wäßriger Lösungsmittel mit einem guten Lösungsvermögen für geeignete Metallverbindungen sind flüssiges Ammoniak, Dimethylsulfoxid oder organische Phosphanderivate. Beispiele einer mehrkomponentigen wäßrigen Lösung sind Wasser-Alkohol-Gemische.The inorganic compound of metal A is separated from a solution that contains the metal A in dissolved form. It can be a one- or multi-component aqueous or a non-aqueous solution act. Examples of non-aqueous solvents with a good one Solvent for suitable metal compounds are liquid ammonia, Dimethyl sulfoxide or organic phosphine derivatives. Examples of one multicomponent aqueous solution are water-alcohol mixtures.
Die elektrochemische Abscheidung kann kathodisch oder anodisch erfolgen, wobei eine kathodische Abscheidung universeller einsetzbar und daher bevorzugt ist. Die Abscheidung der anorganischen Verbindung mindestens eines Metalls A aus einer entsprechenden Lösung kann nach 2 unterschiedlichen Mechanismen erfolgen. Zum einen kann die Abscheidung gekoppelt sein mit einer Änderung der Oxidationsstufe des Metalls A, wobei auf der elektrisch leitenden Oberfläche eine Schicht einer schwerlöslichen Verbindung des Metalls A in der gegenüber der Lösung geänderten Oxidationsstufe aufwächst. Beispielsweise läßt sich kathodisch aus einer wäßrigen Lösung, die Kupfer(II)-lonen enthält, Kupfer(I)-Oxid abscheiden. Ein anderer Abscheidungsmechanismus beruht darauf, daß sich durch elektrochemische Prozesse an der elektrisch leitenden Oberfläche der pH-Wert in Oberflächennähe verschiebt. Als Folge hiervon kann auf der elektrisch leitenden Oberfläche eine anorganische Verbindung mindestens eines Metalls A aufwachsen, die unter den lokalen pH-Bedingungen an der Oberfläche schwer löslich ist. Hierbei ist es nicht erforderlich, daß sich die Oxidationsstufe des Metalls A während des Abscheidungsprozesses ändert. Eine Verschiebung des pH-Werts an der elektrisch leitenden Oberfläche kann beispielsweise dadurch erfolgen, daß Wasserstoffionen entladen werden und hierdurch der pH-Wert lokal ansteigt. The electrochemical deposition can be carried out cathodically or anodically, a cathodic deposition can be used more universally and is therefore preferred is. The deposition of the inorganic compound of at least one metal A from a corresponding solution can be done according to 2 different mechanisms respectively. On the one hand, the deposition can be coupled with a change in the Oxidation level of metal A, with a on the electrically conductive surface Layer of a poorly soluble compound of metal A in the opposite of the Solution changed oxidation level grows up. For example, Cathodic from an aqueous solution containing copper (II) ions, copper (I) oxide deposit. Another separation mechanism is based on the fact that the pH value through electrochemical processes on the electrically conductive surface shifts near the surface. As a result, the electrical conductive surface an inorganic compound of at least one metal A grow up that are hard on the surface under local pH conditions is soluble. It is not necessary that the oxidation state of the metal A changes during the deposition process. A shift in pH can take place on the electrically conductive surface, for example, in that Hydrogen ions are discharged and the pH value rises locally as a result.
Wenn hierbei von einer anorganischen Verbindung mindestens eines Metalls A die Rede ist, so bedeutet dies, daß diese Verbindung auf jeden Fall das Metall A enthalten muß. Daneben kann sie jedoch weitere Metalle B, C, ... enthalten. Diese weiteren Metalle können zusätzlich zu dem Metall A in der Lösung vorhanden sein und mit diesem zusammen abgeschieden werden. Diese anderen Metalle können jedoch auch Komponenten der elektrisch leitenden Oberfläche sein und bei der Bildung der Schicht einer anorganischen Verbindung mindestens eines Metalls A direkt in diese Verbindung mit eingebaut werden. Beispiele anorganischer Verbindungen, die neben dem Metall A ein weiteres Metall enthalten, sind Mischoxide, die beispielsweise dem Strukturtyp der Spinelle oder der Perovskite angehören können. Beispielsweise genannt seien Titanate und Niobate.If here the inorganic compound of at least one metal This means that this connection is definitely the metal A must contain. However, it can also contain other metals B, C, ... This other metals can be present in the solution in addition to metal A. and be deposited with it. These other metals can however, also be components of the electrically conductive surface and at Formation of the layer of an inorganic compound of at least one metal A. can be built directly into this connection. Examples of inorganic Compounds that contain another metal in addition to metal A. Mixed oxides, for example the structure type of the spinels or the Perovskite can belong. Examples include titanates and niobates.
Wegen der einfachen Durchführbarkeit und der Möglichkeit, Wasser als Lösungsmittel zu verwenden, ist es bevorzugt, daß die im Schritt a) abgeschiedene Verbindung ein Oxid darstellt. Dieses kann auch ein Mischoxid unterschiedlicher Metalle sein. Die erfindungsgemäße Verwendung ist jedoch nicht auf Oxide beschränkt. Sie umfaßt weiterhin nichtoxidische anorganische Verbindungen wie beispielsweise Selenide, Sulfide oder Nitride, die aus geeigneten, ggf. wasserfreien, Lösungsmitteln abgeschieden werden können.Because of the easy feasibility and the ability to use water as a To use solvents, it is preferred that the in step a) deposited compound is an oxide. This can also be a mixed oxide different metals. However, the use according to the invention is not limited to oxides. It also includes non-oxide inorganic Compounds such as, for example, selenides, sulfides or nitrides suitable, possibly anhydrous, solvents can be separated.
Dabei ist es im Sinne der Erfindung nicht zwingend, daß die anorganische Verbindung mindestens eines Metalls A eine lediglich binäre oder ternäre Verbindung darstellt. Vielmehr kann diese Verbindung auch komplexer aufgebaut sein, indem beispielsweise lonen oder Moleküle aus der Lösung in die Verbindung mit eingebaut werden. Ein Beispiel hierfür sind Oxidhydrate oder -sulfate.It is not imperative in the sense of the invention that the inorganic Connection of at least one metal A is only binary or ternary Represents connection. Rather, this connection can also be set up in a more complex manner be, for example, ions or molecules from the solution into the compound can also be installed. Oxide hydrates or sulfates are an example of this.
Die erfindungsgemäße Verwendung umfaßt nicht eine reine Galvanisierung, da eine Galvanisierschicht keine "anorganische Verbindung" im Sinne dieser Erfindung darstellt. An die Schicht aus mindestens einer anorganischen Verbindung mindestens eines Metalls A wird vielmehr die Bedingung gestellt, daß zumindest ein Teil des Metalls A in einer Oxidationsstufe > 0 vorliegt. The use according to the invention does not include a pure galvanization, since a plating layer is not an "inorganic compound" in the sense of this Represents invention. To the layer of at least one inorganic Connection of at least one metal A is rather the condition that at least part of the metal A is in an oxidation state> 0.
Prinzipiell kann für die erfindungsgemäße Verwendung jede Schicht aus mindestens einer anorganischen Verbindung mindestens eines Metalls A eingesetzt werden, die sich elektrochemisch abscheiden läßt und die hinreichend chemisch stabil ist, um als Korrosionsschutzschicht zu wirken. Dies heißt, daß die Schicht mit oder ohne aufgebrachtem Lack einen besseren Korrosionsschutz liefert als die unbeschichtete Metalloberfläche. Aus Gründen von Preis und Verfügbarkeit ist das Metall A ausgewählt aus Mg, Ca, Sr, Ba, Si, Sn, Pb, Sb, Bi, Ti, Zr, Nb, Ta, Mn, Fe, Co, Ni, Zn, Cu. Die für praktische Zwecke wichtigsten Metall hieraus sind Si, Ti, Zr, Mn, Fe, Co, Ni, Zn und Cu.In principle, any layer can be used for the use according to the invention at least one inorganic compound of at least one metal A are used, which can be deposited electrochemically and which are sufficient is chemically stable to act as a corrosion protection layer. This means that the Layer with or without applied varnish better corrosion protection delivers as the uncoated metal surface. For the sake of price and Availability is the metal A selected from Mg, Ca, Sr, Ba, Si, Sn, Pb, Sb, Bi, Ti, Zr, Nb, Ta, Mn, Fe, Co, Ni, Zn, Cu. The for The most important metal for practical purposes are Si, Ti, Zr, Mn, Fe, Co, Ni, Zn and Cu.
Die elektrochemische Abscheidung kann potentiostatisch oder galvanostatisch erfolgen. Dabei ist die galvanostatische Abscheidung technisch einfacher durchzuführen und daher bevorzugt. Die Schichtbildung erfolgt vorzugsweise dadurch, daß die anorganische Verbindung auf der elektrisch leitenden Oberfläche bei einem Potential gegenüber einer Standard-Wasserstoff-Elektrode zwischen ±0,1 und ±300 V oder einer Stromdichte im Bereich von ±0,1 bis ±10000 mA pro cm2 elektrisch leitende Oberfläche abgeschieden wird. Vorzugsweise arbeitet man bei Potentialen zwischen ±0,1 und ±100 V oder bei einer Stromdichte im Bereich von ±0,5 bis ±100 mA pro cm2. Die Vorzeichen vor Spannung und Stromdichte drücken aus, daß die Abscheidung kathodisch oder anodisch erfolgen kann. Eine kathodische Abscheidung, d. h. ein negatives Potential gegenüber der Standard-Wasserstoff-Elektrode, ist bevorzugt.The electrochemical deposition can be potentiostatic or galvanostatic. The galvanostatic deposition is technically easier to carry out and is therefore preferred. The layer formation preferably takes place in that the inorganic compound on the electrically conductive surface at a potential compared to a standard hydrogen electrode between ± 0.1 and ± 300 V or a current density in the range of ± 0.1 to ± 10000 mA per cm 2 electrically conductive surface is deposited. It is preferred to work at potentials between ± 0.1 and ± 100 V or at a current density in the range from ± 0.5 to ± 100 mA per cm 2 . The signs in front of voltage and current density express that the deposition can be cathodic or anodic. Cathodic deposition, ie a negative potential compared to the standard hydrogen electrode, is preferred.
Aus den einleitend zitierten Literaturstellen ist es bekannt, daß die Morphologie, die chemische Zusammensetzung und die Kristallstruktur der abgeschiedenen Schicht von den Abscheidungsbedingungen abhängen und somit durch Wahl der Bedingungen beeinflußt werden Konnen. Beispielsweise hangen die genannten Schichtparameter ab von der Konzentration der Metallionen A und ggf. weiterer Bestandteile in der Lösung, der Strömungsgeschwindigkeit der Lösung relativ zur elektrisch leitenden Oberfläche, dem eingestellten Potential und/oder der eingestellten Stromdichte. Die Schichteigenschaften lassen sich also durch Wahl dieser Parameter gezielt verändern. Dabei betreibt man die Abscheidung unter solchen Bedingungen, daß sich die anorganische Verbindung in röntgenkristalliner Form abscheidet. Dabei bedeutet röntgenkristallin, daß die anorganische Verbindung bei einem Röntgenbeugungsexperiment scharfe Röntgenreflexe liefert. Die hierbei entstehende stark strukturierte Oberfläche ist besonders günstig als Haftgrund für eine organische Beschichtung.From the references cited at the beginning, it is known that the morphology, the chemical composition and the crystal structure of the deposited Layer depend on the deposition conditions and thus by choice of Conditions can be affected. For example, the above mentioned Layer parameters from the concentration of the metal ions A and possibly further Components in the solution, the flow rate of the solution relative to the electrically conductive surface, the set potential and / or the set current density. The layer properties can thus be chosen specifically change this parameter. The deposition is carried out here under such conditions that the inorganic compound deposits in X-ray crystalline form. X-ray crystalline means that the inorganic compound in a sharp X-ray diffraction experiment X-ray reflexes delivers. The resulting highly structured surface is particularly favorable as a primer for an organic coating.
Eine Durchmischung des Elektrolyten und/oder eine Relativbewegung des Elektrolyten relativ zur metallisch leitenden Oberfläche kann die Schichtausbildung beschleunigen und die Morphologie der Schicht beeinflussen. Beispielsweise kann dies dadurch erfolgen, daß man den Elektrolyten rührt oder ihn im Elektrolysegefäß umpumpt. Weiterhin kann der Elektrolyt durch Einblasen eines Gases, insbesondere Luft, durchmischt und bewegt werden.Mixing of the electrolyte and / or a relative movement of the Electrolytes relative to the metallic conductive surface can form layers accelerate and influence the morphology of the layer. For example this is done by stirring the electrolyte or in the Pumped around electrolysis vessel. Furthermore, the electrolyte can be blown through a Gases, especially air, are mixed and moved.
Vorstehend war von einer Abscheidung bei einem bestimmten Potential gegenüber einer Standard-Wasserstoff-Elektrode die Rede. Eine solche Potentialangabe setzt die Verwendung einer Bezugselektrode voraus, die sich möglichst nahe bei der elektrisch leitenden Substratoberfläche befindet. Beim praktischen Betrieb ist es jedoch einfacher, galvanostatisch zu arbeiten und die gewünschte Stromdichte durch Variation der Klemmenspannung von elektrisch leitender Oberfläche als Arbeitselektrode und einer beliebigen Gegenelektrode einzustellen. Beispielsweise sind Gegenelektroden geeignet, die unter den gewählten Elektrolysebedingungen hinreichend lange stabil sind. Beispiele sind Edelstahl, Gold, Silber, Platin, Graphit oder glasartiger Kohlenstoff Above was a deposition at a certain potential compared to a standard hydrogen electrode. Such Potential indication requires the use of a reference electrode, which is as close as possible to the electrically conductive substrate surface. At the practical operation, however, it is easier to work and the galvanostatic desired current density by varying the terminal voltage from electrical conductive surface as the working electrode and any counter electrode adjust. For example, counter electrodes are suitable, which are among the selected electrolysis conditions are stable for a sufficiently long time. examples are Stainless steel, gold, silver, platinum, graphite or glassy carbon
Bei dem erfindungsgemäßen Verfahren zur Herstellung einer mindestens zweilagigen Beschichtung kann in einer Ausführungsform im Teilschritt b) ein kathodisch oder anodisch abscheidbarer Elektrotauchlack aufgebracht werden. Dies setzt allerdings voraus, daß die elektrische Leitfähigkeit der Schicht groß genug ist, einen Elektrotauchlack abzuscheiden. Bei einer Schicht aus Kupfer(I)-Oxid mit einer flächenbezogenen Masse unterhalb von 10 g/m2 ist dies beispielsweise der Fall.In the process according to the invention for producing an at least two-layer coating, in one embodiment in sub-step b) a cathodically or anodically depositable electrodeposition paint can be applied. However, this presupposes that the electrical conductivity of the layer is large enough to deposit an electrodeposition paint. This is the case, for example, with a layer of copper (I) oxide with a mass per unit area of less than 10 g / m 2 .
In dieser Ausführungsform wird zwischen dem Abscheiden der Schicht der anorganischen Verbindung und dem Aufbringen des Elektrotauchlacks vorzugsweise mit Wasser gespült. Dies kann durch Eintauchen oder Absprühen erfolgen. Dabei kann es vorteilhaft sein, zumindest im letzten Spülschritt mit salzarmem oder vollentsalztem Wasser zu spülen. Eine chemische Nachpassivierung der anorganischen Schicht vor der elektrischen Tauchlackierung, wie sie beispielsweise bei einer Phosphatierung in der Regel erfolgt, ist in dem erfindungsgemäßen Verfahren nicht notwendig. In this embodiment, the layer is deposited between the layers inorganic compound and the application of electrocoat preferably rinsed with water. This can be done by dipping or spraying respectively. It can be advantageous, at least in the last rinsing step rinse low-salt or deionized water. A chemical Post-passivation of the inorganic layer before the electrical one Dip painting, as is usually the case with phosphating, for example is not necessary in the method according to the invention.
Weiterhin kann im Teilschritt b) ein Pulverlack aufgebracht werden. Hierfür muß die anorganische Schicht auf der elektrisch leitenden Oberfläche nicht mehr in dem Maße elektrisch leitend sein, wie dies für eine nachfolgende Elektrotauchlackierung erforderlich ist. Ein Pulverlack wird bevorzugt auf ausgeformte Gegenstände aufgebracht, die keiner starken korrosiven Belastung ausgesetzt sind. Beispiele hierfür sind Gegenstände wie Haushaltsgeräte oder elektronische Geräte, die in geschlossenen Räumen aufbewahrt werden. A powder coating can also be used in sub-step b) be applied. For this, the inorganic layer on the electrical conductive surface can no longer be electrically conductive to the extent that for Subsequent electrocoating is required. A powder paint is preferably applied to molded objects that are not strong exposed to corrosive loads. Examples of this are items such as Household appliances or electronic devices used in enclosed spaces be kept.
Die Vorteile des erfindungsgemäßen Verfahrens liegen insbesondere darin, daß Dicke, Zusammensetzung sowie innere und äußere Struktur der anorganischen Schicht durch die Wahl der Abscheidungsparameter leichter steuerbar sind als bei rein chemischer Verfahrensführung. Für das Aufbringen der Schicht werden weniger Verfahrensstufen benötigt als bei einer Phosphatierung und es fallen generell weniger Schlämme an als bei einer rein chemischen Schichtbildung. Im Vergleich zu Abscheidungsverfahren aus der Gasphase ist die elektrochemische Abscheidung schneller und mit einem geringeren apparativen Aufwand und Energieverbrauch verbunden. Weiterhin ist es nicht erforderlich, wie der Gasphasen-Abscheidung flüchtige Ausgangsverbindungen bereit zu stellen. The advantages of the invention The method lies in the fact that thickness, composition and inner and outer structure of the inorganic layer by the choice of Deposition parameters are easier to control than with purely chemical ones Process management. Less will be needed to apply the layer Process stages are required than for phosphating and they generally fall less sludge than with a purely chemical layer formation. Compared The deposition process from the gas phase is electrochemical Separation faster and with less equipment and Energy consumption connected. Furthermore, it is not necessary as the Vapor deposition to provide volatile starting compounds.
Ein weiterer Vorteil einer elektrochemischen Schichtbildung liegt darin, daß das Schichtwachstum über den elektrischen Widerstand an der metallisch leitenden Oberfläche steuerbar ist. Sofern die aufwachsende Schicht einen höheren elektrischen Widerstand hat als die elektrisch leitende Oberfläche - was in der Regel der Fall ist - so verlangsamt sich das Schichtwachstum, wenn der elektrische Widerstand aufgrund der Schichtbildung zu hoch wird. Solange es noch unbelegte Stellen der metallisch leitenden Oberfläche gibt oder die Schicht noch so dünn ist, daß bei der eingestellten Spannung noch ein Strom fließt, erfolgt das Schichtwachstum an diesen Stellen. Ist die metallisch leitende Oberfläche nahezu vollständig mit einer Schicht einer derartigen Dicke bedeckt, daß der elektrische Widerstand deutlich ansteigt, kann der Prozeß der Schichtausbildung beendet werden. Bei galvanostatisch kontrolliertem Schichtwachstum zeigt sich die nahezu vollständige Schichtausbildung dadurch, daß die Klemmenspannung stark ansteigt. Der Prozeß kann dann automatisch bei einem vorgewählten Wert der Klemmenspannung abgebrochen werden.Another advantage of electrochemical layer formation is that Layer growth over the electrical resistance on the metallic conductive Surface is controllable. Unless the growing layer has a higher one has electrical resistance than the electrically conductive surface - what in the The rule is the case - so the layer growth slows down when the electrical resistance becomes too high due to the layer formation. As long as it is there are still unoccupied areas of the metallic conductive surface or the layer is so thin that a current still flows at the set voltage the layer growth at these points. Is the metallic conductive surface almost completely covered with a layer of such a thickness that the electrical resistance increases significantly, the process of layer formation can be ended. With galvanostatically controlled layer growth it shows up the almost complete layer formation in that the terminal voltage rises sharply. The process can then automatically run at a preselected value the terminal voltage can be interrupted.
Auf kaltgewalztem Stahl wurde ein Pilotprozeß zum Korrosionsschutz mittels
kathodischer Abscheidung von Cu2O ohne Aktivierungsschritt (Verkürzung der
Prozeßkette) durchgführt. Folgende Prozeßparameter wurden eingestellt :
Abscheidung sowohl potentiostatisch (0.2 V vs. Standard-Wasserstoff-Elektrode)
als auch galvanostatisch (-0.8 bis -2.6 mAcm-2)
Behandlungszeit : 10-300 Sekunden
Nachspülung : entionisiertes Wasser
Trocknung : Druckluft
Charakterisierung : Rasterelektronenmikroskopie, Röntgen-Photoelektronenspektroskopie,
Korrosionstest (Wechselklimatest)
Lackierung : kathodischer Tauchlack ED 5000Deposition both potentiostatic (0.2 V vs. standard hydrogen electrode) and galvanostatic (-0.8 to -2.6 mAcm -2 )
Treatment time: 10-300 seconds
Rinse : deionized water
Drying: compressed air
Characterization : Scanning electron microscopy, X-ray photoelectron spectroscopy, corrosion test (alternating climate test)
Painting: cathodic dip paint ED 5000
Die gebildeten Schichten sind ab einer Behandlungszeit von ca. 50 s geschlossen und bestehen aus feinen (< 1µm) Kristallen von Cu2O :The layers formed are closed after a treatment time of approx. 50 s and consist of fine (<1 µm) crystals of Cu 2 O:
Die Schichteigenschaften sind aufgrund der elektrochemischen Natur des
Prozesses auch ohne Eingriffe in die Elektrolytzusammensetzung sehr einfach zu
kontrollieren. So ist z.B. die Schichtdicke bei konstantem Gesamtstrom präzise
durch die geflossene Gesamtladung kontrollierbar, z.B für i= -800
mA :
mA:
In Korrosionstests (10 Zyklen VDA-Wechselklimatest, kathodische
Tauchlackierung) zeigt sich eine deutliche Verbesserung des Korrosionsschutzes
durch die Beschichtung in Abhängigkeit von der applizierten Schichtdicke :
Claims (3)
- Process for producing a coating comprising at least two layers on an electrically conductive surface, characterised in that, in a stage a), a chromium-free layer of at least one X-ray crystalline inorganic compound of at least one metal A having a weight per unit area of 1.1 to 10 g/m2 is electrochemically deposited on the electrically conductive surface from a solution containing the metal A in dissolved form, wherein the metal A is a different metal from the main component of the electrically conductive surface and is selected from Mg, Ca, Sr, Ba, Si, Sn, Pb, Sb, Bi, Ti, Zr, Nb, Ta, Mn, Fe, Co, Ni, Zn, Cu and wherein the inorganic compound contains less than 20% by weight phosphate ions and, in a subsequent stage b), at least one layer of a cathodically or anodically depositable electrocoating lacquer or a powder coating is applied to the layer deposited in stage a).
- Process according to claim 1, characterised in that the compound deposited in stage a) is an oxide.
- Process according to one or both of claims 1 and 2, characterised in that the inorganic compound is deposited on the electrically conductive surface at a potential relative to a standard hydrogen electrode of between ± 0.1 and ± 300 V or a current density of from ± 0.1 to ± 10,000 mA per cm2 of electrically conductive surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03025080A EP1394292A3 (en) | 2000-05-06 | 2001-04-27 | Electrochemically produced TiO2 layers for providing corrosion protection or wash primers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10022074 | 2000-05-06 | ||
DE10022074A DE10022074A1 (en) | 2000-05-06 | 2000-05-06 | Protective or priming layer for sheet metal, comprises inorganic compound of different metal with low phosphate ion content, electrodeposited from solution |
PCT/EP2001/004780 WO2001086029A1 (en) | 2000-05-06 | 2001-04-27 | Electrochemically produced layers for providing corrosion protection or wash primers |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03025080A Division EP1394292A3 (en) | 2000-05-06 | 2001-04-27 | Electrochemically produced TiO2 layers for providing corrosion protection or wash primers |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1285105A1 EP1285105A1 (en) | 2003-02-26 |
EP1285105B1 true EP1285105B1 (en) | 2004-03-17 |
Family
ID=7640989
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01933902A Expired - Lifetime EP1285105B1 (en) | 2000-05-06 | 2001-04-27 | Electrochemically produced layers for providing corrosion protection or wash primers |
EP03025080A Withdrawn EP1394292A3 (en) | 2000-05-06 | 2001-04-27 | Electrochemically produced TiO2 layers for providing corrosion protection or wash primers |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03025080A Withdrawn EP1394292A3 (en) | 2000-05-06 | 2001-04-27 | Electrochemically produced TiO2 layers for providing corrosion protection or wash primers |
Country Status (7)
Country | Link |
---|---|
US (3) | US20040099535A1 (en) |
EP (2) | EP1285105B1 (en) |
AT (1) | ATE262056T1 (en) |
AU (1) | AU2001260260A1 (en) |
DE (2) | DE10022074A1 (en) |
ES (1) | ES2218415T3 (en) |
WO (1) | WO2001086029A1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7452454B2 (en) * | 2001-10-02 | 2008-11-18 | Henkel Kgaa | Anodized coating over aluminum and aluminum alloy coated substrates |
US7569132B2 (en) * | 2001-10-02 | 2009-08-04 | Henkel Kgaa | Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating |
US7820300B2 (en) * | 2001-10-02 | 2010-10-26 | Henkel Ag & Co. Kgaa | Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating |
US7578921B2 (en) * | 2001-10-02 | 2009-08-25 | Henkel Kgaa | Process for anodically coating aluminum and/or titanium with ceramic oxides |
EP1548157A1 (en) * | 2003-12-22 | 2005-06-29 | Henkel KGaA | Corrosion-protection by electrochemical deposition of metal oxide layers on metal substrates |
FR2885370B1 (en) * | 2005-05-03 | 2007-09-28 | Commissariat Energie Atomique | ELECTROCHEMICAL DEPOSITION METHOD, ALPHA AND X RAY SOURCE, MANUFACTURED THEREBY, AND PIXE-XRF ANALYSIS DEVICE USING THE SOURCE |
WO2006136334A2 (en) * | 2005-06-22 | 2006-12-28 | Henkel Kommanditgesellschaft Auf Aktien | Electrodeposition material, process for providing a corrosion-protective layer of tio2 on an electrically conductive substrate and metal substrate coated with a layer of tio2 |
WO2006136335A1 (en) * | 2005-06-22 | 2006-12-28 | Henkel Kommanditgesellschaft Auf Aktien | PROCESS FOR PROVIDING A CORROSION-PROTECTIVE LAYER OF TiO2 ON AN ELECTRICALLY CONDUCTIVE SUBSTRATE AND METAL SUBSTRATE COATED WITH A LAYER OF TiO2 |
EP1893791A2 (en) * | 2005-06-22 | 2008-03-05 | Henkel Kommanditgesellschaft Auf Aktien | ELECTRODEPOSITION MATERIAL, PROCESS FOR PROVIDING A CORROSION-PROTECTIVE LAYER OF TiO2 ON AN ELECTRICALLY CONDUCTIVE SUBSTRATE AND METAL SUBSTRATE COATED WITH A LAYER OF TiO2 |
US20080131709A1 (en) * | 2006-09-28 | 2008-06-05 | Aculon Inc. | Composite structure with organophosphonate adherent layer and method of preparing |
US20090169903A1 (en) * | 2007-12-27 | 2009-07-02 | Kansai Paint Co., Ltd. | Process for producing metal substrate with multilayer film, metal substrate with multilayer film obtained by the process, and coated article |
US8882983B2 (en) | 2008-06-10 | 2014-11-11 | The Research Foundation For The State University Of New York | Embedded thin films |
US9701177B2 (en) | 2009-04-02 | 2017-07-11 | Henkel Ag & Co. Kgaa | Ceramic coated automotive heat exchanger components |
US9493541B2 (en) | 2010-06-07 | 2016-11-15 | Joshua Rabbani | Antibodies specific for sulfated sclerostin |
US20150010707A1 (en) * | 2013-07-02 | 2015-01-08 | Jian- Liang LIN | Method for Marking a Tool |
CN105112967A (en) * | 2015-09-11 | 2015-12-02 | 西南交通大学 | Preparation method of conductive coating layer having bone induction and antibacterial performances |
DE102018107563B4 (en) | 2018-03-29 | 2022-03-03 | Infineon Technologies Austria Ag | SEMICONDUCTOR DEVICE WITH COPPER STRUCTURE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE |
US20220127744A1 (en) * | 2019-02-01 | 2022-04-28 | Lumishield Technologies Incorporated | Methods and Compositions for Improved Adherence of Organic Coatings to Materials |
US20220403540A1 (en) * | 2019-11-22 | 2022-12-22 | Ppg Industries Ohio, Inc. | Methods for electrolytically depositing pretreatment compositions |
Family Cites Families (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE655700C (en) * | 1935-01-08 | 1938-01-21 | Max Schenk Dr | Process for the production of opaque, enamel-like protective layers on aluminum and its alloys |
US2081121A (en) * | 1935-08-06 | 1937-05-18 | Kansas City Testing Lab | Decorating metals |
US2275223A (en) * | 1936-10-20 | 1942-03-03 | Robert H Hardoen | Rustproof material and process |
US2231372A (en) * | 1937-04-03 | 1941-02-11 | Telefunken Gmbh | Amplifier tube arrangement |
FR845549A (en) * | 1937-12-01 | 1939-08-25 | Fides Gmbh | Manufacturing process for hard and waterproof protective layers on magnesium and magnesium alloys |
US2880148A (en) * | 1955-11-17 | 1959-03-31 | Harry A Evangelides | Method and bath for electrolytically coating magnesium |
US2901409A (en) * | 1956-08-03 | 1959-08-25 | Dow Chemical Co | Anodizing magnesium |
US2925125A (en) * | 1956-10-18 | 1960-02-16 | Kenneth D Curry | Tire tread cutting machine |
GB1051665A (en) * | 1962-06-15 | |||
US3345276A (en) * | 1963-12-23 | 1967-10-03 | Ibm | Surface treatment for magnesiumlithium alloys |
US4166777A (en) * | 1969-01-21 | 1979-09-04 | Hoechst Aktiengesellschaft | Corrosion resistant metallic plates particularly useful as support members for photo-lithographic plates and the like |
US3620940A (en) * | 1970-05-12 | 1971-11-16 | Us Army | Method of inducing polarization of active magnesium surfaces |
JPS4919979B1 (en) * | 1970-12-15 | 1974-05-21 | ||
GB1386234A (en) * | 1971-04-28 | 1975-03-05 | Imp Metal Ind Kynoch Ltd | Preparation of titanium oxide and method of coating with an oxide |
AT309942B (en) * | 1971-05-18 | 1973-09-10 | Isovolta | Process for anodic oxidation of objects made of aluminum or its alloys |
JPS5319974B2 (en) * | 1972-10-04 | 1978-06-23 | ||
US3956080A (en) * | 1973-03-01 | 1976-05-11 | D & M Technologies | Coated valve metal article formed by spark anodizing |
US3945899A (en) * | 1973-07-06 | 1976-03-23 | Kansai Paint Company, Limited | Process for coating aluminum or aluminum alloy |
US4075135A (en) * | 1975-07-28 | 1978-02-21 | Ppg Industries, Inc. | Method and resinous vehicles for electrodeposition |
US3996115A (en) * | 1975-08-25 | 1976-12-07 | Joseph W. Aidlin | Process for forming an anodic oxide coating on metals |
US4110147A (en) * | 1976-03-24 | 1978-08-29 | Macdermid Incorporated | Process of preparing thermoset resin substrates to improve adherence of electrolessly plated metal deposits |
JPS5326236A (en) * | 1976-08-25 | 1978-03-10 | Toyo Kohan Co Ltd | Surface treated steel sheet for coating |
US4082626A (en) * | 1976-12-17 | 1978-04-04 | Rudolf Hradcovsky | Process for forming a silicate coating on metal |
US4094750A (en) * | 1977-10-05 | 1978-06-13 | Northrop Corporation | Cathodic deposition of oxide coatings |
SE440089B (en) * | 1978-06-05 | 1985-07-15 | Nippon Steel Corp | COATED STABLE MATERIAL AND SET FOR ITS MANUFACTURING |
US4188270A (en) * | 1978-09-08 | 1980-02-12 | Akiyoshi Kataoka | Process for electrolytically forming glossy film on articles of aluminum or alloy thereof |
US4184926A (en) * | 1979-01-17 | 1980-01-22 | Otto Kozak | Anti-corrosive coating on magnesium and its alloys |
US4227976A (en) * | 1979-03-30 | 1980-10-14 | The United States Of America As Represented By The Secretary Of The Army | Magnesium anodize bath control |
US4370538A (en) * | 1980-05-23 | 1983-01-25 | Browning Engineering Corporation | Method and apparatus for ultra high velocity dual stream metal flame spraying |
US4383897A (en) * | 1980-09-26 | 1983-05-17 | American Hoechst Corporation | Electrochemically treated metal plates |
US4448647A (en) * | 1980-09-26 | 1984-05-15 | American Hoechst Corporation | Electrochemically treated metal plates |
US4452674A (en) * | 1980-09-26 | 1984-06-05 | American Hoechst Corporation | Electrolytes for electrochemically treated metal plates |
CA1162504A (en) * | 1980-11-25 | 1984-02-21 | Mobuyuki Oda | Treating tin plated steel sheet with composition containing titanium or zirconium compounds |
US4438287A (en) * | 1981-03-27 | 1984-03-20 | Uop Inc. | Preparation of alcohols |
DE3211782A1 (en) * | 1982-03-30 | 1983-10-06 | Siemens Ag | BATH AND METHOD FOR ANODIZING ALUMINATED PARTS |
IT1212859B (en) * | 1983-03-21 | 1989-11-30 | Centro Speriment Metallurg | LAMINATED STEEL PLATES PERFECTED COATED |
US4551211A (en) * | 1983-07-19 | 1985-11-05 | Ube Industries, Ltd. | Aqueous anodizing solution and process for coloring article of magnesium or magnesium-base alloy |
JPS60208494A (en) * | 1984-03-31 | 1985-10-21 | Kawasaki Steel Corp | Surface-treated steel sheet for seam welding can having excellent weldability |
NL189310C (en) * | 1984-05-18 | 1993-03-01 | Toyo Kohan Co Ltd | COATED STEEL SHEET WITH IMPROVED WELDABILITY AND METHOD FOR MANUFACTURING. |
US4578156A (en) * | 1984-12-10 | 1986-03-25 | American Hoechst Corporation | Electrolytes for electrochemically treating metal plates |
US4659440A (en) * | 1985-10-24 | 1987-04-21 | Rudolf Hradcovsky | Method of coating articles of aluminum and an electrolytic bath therefor |
US4620904A (en) * | 1985-10-25 | 1986-11-04 | Otto Kozak | Method of coating articles of magnesium and an electrolytic bath therefor |
US4668347A (en) * | 1985-12-05 | 1987-05-26 | The Dow Chemical Company | Anticorrosive coated rectifier metals and their alloys |
GB8602582D0 (en) * | 1986-02-03 | 1986-03-12 | Alcan Int Ltd | Porous anodic aluminium oxide films |
US4775600A (en) * | 1986-03-27 | 1988-10-04 | Nippon Kokan Kabushiki Kaisha | Highly corrosion-resistant surface-treated steel plate |
US4744872A (en) * | 1986-05-30 | 1988-05-17 | Ube Industries, Ltd. | Anodizing solution for anodic oxidation of magnesium or its alloys |
JPS6335798A (en) * | 1986-07-31 | 1988-02-16 | Nippon Steel Corp | Organic composite steel sheet having excellent cation electrodeposition paintability |
US4861441A (en) * | 1986-08-18 | 1989-08-29 | Nippon Steel Corporation | Method of making a black surface treated steel sheet |
JPS6387716A (en) * | 1986-09-30 | 1988-04-19 | Nippon Steel Corp | Surface treatment of amorphous alloy material |
JPS63100194A (en) * | 1986-10-16 | 1988-05-02 | Kawasaki Steel Corp | Galvanized steel sheet subjected to chemical conversion treatment by electrolysis and production thereof |
EP0280886B1 (en) * | 1987-02-02 | 1992-05-13 | AHC-Oberflächentechnik Friebe & Reininghaus GmbH | Process for the production of decorative coatings on metals |
US4839002A (en) * | 1987-12-23 | 1989-06-13 | International Hardcoat, Inc. | Method and capacitive discharge apparatus for aluminum anodizing |
US4869936A (en) * | 1987-12-28 | 1989-09-26 | Amoco Corporation | Apparatus and process for producing high density thermal spray coatings |
US4882014A (en) * | 1988-02-24 | 1989-11-21 | Union Oil Company Of California | Electrochemical synthesis of ceramic films and powders |
DE3808610A1 (en) * | 1988-03-15 | 1989-09-28 | Electro Chem Eng Gmbh | PROCESS FOR SURFACE FINISHING OF MAGNESIUM AND MAGNESIUM ALLOYS |
DE3808609A1 (en) * | 1988-03-15 | 1989-09-28 | Electro Chem Eng Gmbh | METHOD OF GENERATING CORROSION AND WEAR RESISTANT PROTECTION LAYERS ON MAGNESIUM AND MAGNESIUM ALLOYS |
FR2649359B1 (en) * | 1989-07-06 | 1993-02-12 | Cebal | STRIP OR PORTION OF STRIP FOR STAMPING OR STAMPING, AND ITS USE |
DE69016433T2 (en) * | 1990-05-19 | 1995-07-20 | Papyrin Anatolij Nikiforovic | COATING METHOD AND DEVICE. |
US5275713A (en) * | 1990-07-31 | 1994-01-04 | Rudolf Hradcovsky | Method of coating aluminum with alkali metal molybdenate-alkali metal silicate or alkali metal tungstenate-alkali metal silicate and electroyltic solutions therefor |
US5776892A (en) * | 1990-12-21 | 1998-07-07 | Curative Health Services, Inc. | Anti-inflammatory peptides |
US5283131A (en) * | 1991-01-31 | 1994-02-01 | Nihon Parkerizing Co., Ltd. | Zinc-plated metallic material |
US5470664A (en) * | 1991-02-26 | 1995-11-28 | Technology Applications Group | Hard anodic coating for magnesium alloys |
US5240589A (en) * | 1991-02-26 | 1993-08-31 | Technology Applications Group, Inc. | Two-step chemical/electrochemical process for coating magnesium alloys |
JP2697351B2 (en) * | 1991-04-03 | 1998-01-14 | 日本鋼管株式会社 | Electrical steel sheet having electrolytically treated insulating film and method for producing the same |
US5266412A (en) * | 1991-07-15 | 1993-11-30 | Technology Applications Group, Inc. | Coated magnesium alloys |
US5264113A (en) * | 1991-07-15 | 1993-11-23 | Technology Applications Group, Inc. | Two-step electrochemical process for coating magnesium alloys |
DK187391D0 (en) * | 1991-11-15 | 1991-11-15 | Inst Produktudvikling | PROCEDURE FOR THE TREATMENT OF ZINC COATED MATERIALS AND TREATMENT SOLUTION FOR USE BY THE PROCEDURE |
DE4139006C3 (en) * | 1991-11-27 | 2003-07-10 | Electro Chem Eng Gmbh | Process for producing oxide ceramic layers on barrier layer-forming metals and objects produced in this way from aluminum, magnesium, titanium or their alloys with an oxide ceramic layer |
US5281282A (en) * | 1992-04-01 | 1994-01-25 | Henkel Corporation | Composition and process for treating metal |
CA2186269C (en) * | 1994-03-29 | 2008-06-03 | Mark William James Ferguson | Wound healing |
US5792335A (en) * | 1995-03-13 | 1998-08-11 | Magnesium Technology Limited | Anodization of magnesium and magnesium based alloys |
GB2298870B (en) * | 1995-03-13 | 1998-09-30 | British Steel Plc | Passivation treatment of tinplate |
FR2733998B1 (en) * | 1995-05-12 | 1997-06-20 | Satma Societe Anonyme De Trait | TWO-STAGE ELECTROLYTIC POLISHING PROCESS OF METALLIC SURFACES TO OBTAIN IMPROVED OPTICAL PROPERTIES AND RESULTING PRODUCTS |
US5958604A (en) * | 1996-03-20 | 1999-09-28 | Metal Technology, Inc. | Electrolytic process for cleaning and coating electrically conducting surfaces and product thereof |
US5981084A (en) * | 1996-03-20 | 1999-11-09 | Metal Technology, Inc. | Electrolytic process for cleaning electrically conducting surfaces and product thereof |
RU2077611C1 (en) * | 1996-03-20 | 1997-04-20 | Виталий Макарович Рябков | Method and apparatus for treating surfaces |
DE19621818A1 (en) * | 1996-05-31 | 1997-12-04 | Henkel Kgaa | Short-term hot compression of anodized metal surfaces with solutions containing surfactants |
US5793335A (en) * | 1996-08-14 | 1998-08-11 | L-3 Communications Corporation | Plural band feed system |
US6153080A (en) * | 1997-01-31 | 2000-11-28 | Elisha Technologies Co Llc | Electrolytic process for forming a mineral |
JP2981184B2 (en) * | 1997-02-21 | 1999-11-22 | トーカロ株式会社 | Boiler heat transfer tube and method for producing boiler heat transfer tube with excellent effect of suppressing deposit adhesion on inner surface of tube |
FR2764310B1 (en) * | 1997-06-10 | 1999-07-09 | Commissariat Energie Atomique | MULTI-LAYERED MATERIAL WITH ANTI-EROSION, ANTI-ABRASION, AND ANTI-WEAR COATING ON AN ALUMINUM, MAGNESIUM OR ALLOY SUBSTRATE |
US6090490A (en) * | 1997-08-01 | 2000-07-18 | Mascotech, Inc. | Zirconium compound coating having a silicone layer thereon |
DE69913049D1 (en) * | 1998-02-23 | 2004-01-08 | Mitsui Mining & Smelting Co | MAGNESIUM-BASED PRODUCT WITH INCREASED SHINE OF THE BASE METAL AND CORROSION RESISTANCE AND METHOD FOR THE PRODUCTION THEREOF |
JP2000248398A (en) * | 1999-02-26 | 2000-09-12 | Toyo Kohan Co Ltd | Production of surface treated steel sheet and surface treated steel sheet |
US6197178B1 (en) * | 1999-04-02 | 2001-03-06 | Microplasmic Corporation | Method for forming ceramic coatings by micro-arc oxidation of reactive metals |
JP2000328292A (en) * | 1999-05-11 | 2000-11-28 | Honda Motor Co Ltd | Anodic oxidation treatment of si-base aluminum alloy |
WO2003002773A2 (en) * | 2001-06-28 | 2003-01-09 | Algat Sherutey Gimur Teufati | Treatment for improved magnesium surface corrosion-resistance |
US6916414B2 (en) * | 2001-10-02 | 2005-07-12 | Henkel Kommanditgesellschaft Auf Aktien | Light metal anodization |
US20030070935A1 (en) * | 2001-10-02 | 2003-04-17 | Dolan Shawn E. | Light metal anodization |
US6861101B1 (en) * | 2002-01-08 | 2005-03-01 | Flame Spray Industries, Inc. | Plasma spray method for applying a coating utilizing particle kinetics |
US6863990B2 (en) * | 2003-05-02 | 2005-03-08 | Deloro Stellite Holdings Corporation | Wear-resistant, corrosion-resistant Ni-Cr-Mo thermal spray powder and method |
US6875529B1 (en) * | 2003-12-30 | 2005-04-05 | General Electric Company | Thermal barrier coatings with protective outer layer for improved impact and erosion resistance |
US6869703B1 (en) * | 2003-12-30 | 2005-03-22 | General Electric Company | Thermal barrier coatings with improved impact and erosion resistance |
-
2000
- 2000-05-06 DE DE10022074A patent/DE10022074A1/en not_active Ceased
-
2001
- 2001-04-27 EP EP01933902A patent/EP1285105B1/en not_active Expired - Lifetime
- 2001-04-27 AU AU2001260260A patent/AU2001260260A1/en not_active Abandoned
- 2001-04-27 DE DE50101713T patent/DE50101713D1/en not_active Expired - Fee Related
- 2001-04-27 ES ES01933902T patent/ES2218415T3/en not_active Expired - Lifetime
- 2001-04-27 US US10/275,504 patent/US20040099535A1/en not_active Abandoned
- 2001-04-27 WO PCT/EP2001/004780 patent/WO2001086029A1/en active IP Right Grant
- 2001-04-27 EP EP03025080A patent/EP1394292A3/en not_active Withdrawn
- 2001-04-27 AT AT01933902T patent/ATE262056T1/en not_active IP Right Cessation
-
2007
- 2007-03-01 US US11/681,122 patent/US20070144914A1/en not_active Abandoned
-
2008
- 2008-11-19 US US12/273,969 patent/US20090162563A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP1285105A1 (en) | 2003-02-26 |
US20040099535A1 (en) | 2004-05-27 |
US20090162563A1 (en) | 2009-06-25 |
AU2001260260A1 (en) | 2001-11-20 |
US20070144914A1 (en) | 2007-06-28 |
DE50101713D1 (en) | 2004-04-22 |
EP1394292A3 (en) | 2004-06-16 |
WO2001086029A1 (en) | 2001-11-15 |
EP1394292A2 (en) | 2004-03-03 |
ES2218415T3 (en) | 2004-11-16 |
DE10022074A1 (en) | 2001-11-08 |
ATE262056T1 (en) | 2004-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1285105B1 (en) | Electrochemically produced layers for providing corrosion protection or wash primers | |
DE3816265C2 (en) | ||
EP2507408A1 (en) | Multi-stage pre-treatment method for metal components having zinc and iron surfaces | |
DE3116743A1 (en) | "METHOD FOR PRE-TREATING A NON-CONDUCTIVE SUBSTRATE FOR FOLLOWING GALVANIZATION" | |
EP2588645B1 (en) | Method for depositing a nickel-metal layer | |
EP0760871B1 (en) | Process for coating phosphatized metal substrates | |
EP0366941B1 (en) | Process for the electrophoretic coating of chromizable metal surfaces | |
EP1675975A2 (en) | Electrolytic method for phosphating metal surfaces and phosphated metal layer | |
DE3211782A1 (en) | BATH AND METHOD FOR ANODIZING ALUMINATED PARTS | |
DE10159890B4 (en) | Process for coating aluminum materials with functional layers of iron | |
DE102018216216A1 (en) | Process for improving the phosphatability of metallic surfaces, which are provided with a temporary pretreatment or aftertreatment | |
EP3728693B1 (en) | Method for the corrosion protection and cleaning pretreatment of metallic components | |
EP1273679A1 (en) | Metallic component with outer function layer and method of production | |
DE19934323B4 (en) | Metallised component, process for its production and its use | |
DE2650611B2 (en) | Process for the production of coated steel composite sheets | |
DE68908471T2 (en) | Coated steel sheets and process for their manufacture. | |
EP1433879B1 (en) | Process for metal surface coating with an alkali phosphate solution, aqueous concentrate and use of such coated metal surfaces | |
WO2015090418A1 (en) | Method for coating electrically conductive substrates | |
DE3111369A1 (en) | Bath and process for the electrolytic aluminising of polytetrafluoroethylene components | |
EP0505886A1 (en) | Manufacture of decorative aluminium coatings | |
WO2001059180A1 (en) | Method for coating metal surfaces, aqueous concentrate used therefor and use of coated metal parts | |
WO2008064954A2 (en) | Electrolyte for the galvanic deposition of aluminium from aprotic solvents in a plating barrel | |
EP1141449A2 (en) | Method for darkening a superficial layer which contains zinc and which is of a material piece | |
WO2011036260A2 (en) | Method for galvanization and passivation | |
DE3340706A1 (en) | Process for treating aluminium materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021026 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20030530 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040317 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040317 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040317 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040317 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040317 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50101713 Country of ref document: DE Date of ref document: 20040422 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040427 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040617 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040617 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040617 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040624 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20040317 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
BERE | Be: lapsed |
Owner name: HENKEL K.G.A.A. Effective date: 20040430 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2218415 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20041220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040817 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20090508 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090428 Year of fee payment: 9 Ref country code: FR Payment date: 20090417 Year of fee payment: 9 Ref country code: IT Payment date: 20090423 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090422 Year of fee payment: 9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100427 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100427 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100427 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 |