EP1271602B1 - Source à rayons X avec cible à métal liquide - Google Patents

Source à rayons X avec cible à métal liquide Download PDF

Info

Publication number
EP1271602B1
EP1271602B1 EP02100714A EP02100714A EP1271602B1 EP 1271602 B1 EP1271602 B1 EP 1271602B1 EP 02100714 A EP02100714 A EP 02100714A EP 02100714 A EP02100714 A EP 02100714A EP 1271602 B1 EP1271602 B1 EP 1271602B1
Authority
EP
European Patent Office
Prior art keywords
pressure
liquid metal
zone
arrangement
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02100714A
Other languages
German (de)
English (en)
Other versions
EP1271602B8 (fr
EP1271602A1 (fr
Inventor
Geoffrey c/o Philips Corp Intel Prop GmbH Harding
Jens-Peter c/o Philips Cor Int Prop GmbH Schlomka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Intellectual Property and Standards GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property and Standards GmbH, Koninklijke Philips Electronics NV filed Critical Philips Intellectual Property and Standards GmbH
Publication of EP1271602A1 publication Critical patent/EP1271602A1/fr
Publication of EP1271602B1 publication Critical patent/EP1271602B1/fr
Application granted granted Critical
Publication of EP1271602B8 publication Critical patent/EP1271602B8/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/12Cooling non-rotary anodes
    • H01J35/13Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/081Target material
    • H01J2235/082Fluids, e.g. liquids, gases

Definitions

  • the invention relates to an arrangement for generating X-radiation upon impact of electrons with a liquid metal region, in which a liquid metal is arranged as X-ray target such that it can flow past an electron incident zone. Moreover, the invention relates to an X-ray source with an electron source for the emission of electrons and with such an arrangement for the generation of X-radiation. Finally, the invention also relates to an X-ray device with an X-ray detector and such an X-ray source.
  • Such an arrangement and such an X-ray source are known from US 6,185,277 B1.
  • the electrons emitted by an electron source enter through a thin window in the liquid metal and generate there X-radiation.
  • the liquid metal which has a high atomic number, circulates there under the action of a pump, so that the heat generated by the interaction with the electrons in the window and in the liquid metal can be dissipated.
  • the heat generated in this area is dissipated by a turbulent flow, which ensures effective cooling.
  • an X-ray source When used in a computed tomography scanner, an X-ray source is required which can deliver high pulse power of, for example, about 80 kW for only a short time of, for example, about 20 seconds.
  • high pulse power for example, about 80 kW
  • a lower power of, for example, about 30 kW is required, but must be supplied continuously, that is, for several hours.
  • the present invention is therefore based on the object to provide an arrangement for generating X-radiation with a liquid metal target, which can be used for various applications and manages with a relatively low pumping power for the liquid metal.
  • This object is achieved on the basis of the above-mentioned arrangement in that a separate from the liquid metal region pressure region is provided with a pressure medium such that by means of the pressure medium, a pressure on the liquid metal located in the liquid metal area for driving and passing the liquid metal at the Elektronenauf Economicszone is exercisable, wherein the pressure region has a rechargeable pressure accumulator for applying the pressure.
  • the liquid metal is not circulated by means of a pump as in the known X-ray source, but is only in a liquid metal region in which it can be reciprocated, but does not circulate.
  • a separate pressure area which also has a pressure accumulator in which energy can be stored, which is retrievable with the desired performance for moving the liquid metal in the liquid metal region, that is, for passing the liquid metal at the electron impact zone.
  • a recharging device for example a pump, which has a much lower power than the pump in the known X-ray source, since the energy in the pressure accumulator at any time, including in the operating pauses of the X-ray source, can be replenished, while in the known X-ray source, the pumping power must be made available in full during operation.
  • a reloading device can thus be made much more space-saving and cost-effective and allows a universal use of such an X-ray source.
  • the liquid metal region and the pressure region preferably adjoin one another at two locations, two so-called separation regions, in each of which a pressure can be exerted on the liquid metal by means of the pressure medium.
  • These separation areas can be configured, for example, as separation chambers, each with a liquid metal chamber and a pressure medium chamber, wherein the liquid metal and the pressure medium are separated by a flexible membrane, via which the pressure of the pressure medium can be transferred to the liquid metal. Depending on the set pressure ratio can thus both expand the liquid metal and the pressure medium into the respective separation chamber.
  • the separation regions could thus also be designed as cylinders, each with a movable piston, wherein the piston serves both as a release agent between the liquid metal and pressure medium and in principle can be designed drivable in any way.
  • a gas in particular air
  • the implementation of the accumulator that is, the storage of energy to exert pressure in retrievable form, can be solved in various ways.
  • using a gas as a pressure medium offers a gas pressure chamber which is closed off by controllable valves and whose pressure can be kept continuously at a certain level by means of a conventional pump.
  • control means For controlling the pressurization of the liquid metal and thus thus for determining the flow rate of the liquid metal in the electron impact zone, corresponding control means are provided, as indicated in claim 8.
  • These control means may in particular comprise the previously mentioned controllable valves, via which the pressure supply from the pressure accumulator to the liquid metal region, in particular to the separation regions, can be controlled.
  • the liquid metal region may have a constriction there.
  • This constriction can be designed asymmetrically on both sides of the electron impact zone, for example, to approximate the outer shape of a water drop, so that the flowing through the constriction liquid metal undergoes the lowest possible pressure loss.
  • the liquid metal is always in one Direction should flow through the constriction to achieve the maximum desired effect.
  • cooling means for example in the form of cooling channels running around the separation region, are arranged on at least one of the two separation regions, in which the liquid metal is preferably after an application phase.
  • the arrangement for generating X-radiation according to claim 1 is preferably part of an X-ray source having an electron source for emitting electrons, as specified in claim 12.
  • Such an X-ray source is preferably used together with an X-ray detector in an X-ray device, as specified in claim 13.
  • 1 denotes an electrically, preferably grounded, tubular envelope, which is closed off in a vacuum-tight manner through a window 5.
  • an electron source in the form of a cathode 3, which emits an electron beam 4 in the operating state, which passes through the window 5 on a liquid metal 9, which is in an inventive arrangement 2 for generating X-radiation.
  • Arrangement 2 essentially comprises a liquid metal region 7, in which a liquid metal 9 is located, onto which the electron beam 4 impinges in an electron incident zone 8.
  • a pressure region 10 Also located in the assembly 2 is a pressure region 10 through which pressure can be applied to the liquid metal 9 in the liquid metal region 7 to allow the liquid metal 9 to flow past the electron impact region 8 at a desired rate during operation.
  • FIG. 2 a shows the initial state of the arrangement 2 immediately before the start of operation
  • FIG. 2 b shows the operating state during operation
  • FIG. 2 c shows the final state after use
  • An exemplary dimensioning can provide a pressure of 200 bar in the pressure accumulator R3.
  • the pump 13 can then be configured as a gas compressor, which operates with a 50 Hz motor, a piston of 25 mm radius and a lifting height of 60 mm.
  • the pumping volume is therefore 118 cm 3 and the volume of compressed gas (at 200 bar) delivered per second is about 30 cm 3 .
  • the separation chambers R1 and R2 can be configured with a volume of 41 and can withstand a maximum pressure of 100 bar. These parameters require a radius of the separation chambers R1 and R2 of about 10 cm and a weight of about 3 kg.
  • the liquid metal used is preferably an alloy consisting of 35.6% Bi (eutectic), 22.9% Pb, 19.6% In and 21.9% Sn (in percent by weight).
  • the melting point of this alloy is then 56.5 ° C.
  • the separation chamber R1 is virtually empty and the separation chamber R2 practically full.
  • the liquid metal can then be in the Separation chamber R2 by means not shown heating elements at a temperature of about 65 ° C, ie in the liquid state, are held.
  • a first step (S1 in FIG. 3) it is ensured that the initial state shown in FIG. 2a is reached before the data acquisition begins.
  • the pressure P2 in the pressure chamber G2 of the separation chamber R2 is increased by a few bar, for example to 3 bar, so that the liquid metal completely flows out of the separation chamber R2 and collects completely in the separation chamber R1.
  • the valve V2 is slightly opened to bring a small pressure from the pressure accumulator R3 in the separation chamber R2.
  • the valve V1 is opened to the atmosphere, so that there is atmospheric pressure in the gas pressure chamber G1.
  • the valve V1 When the initial state shown in Figure 2a is reached, the valve V1 is opened to the accumulator R3 a few seconds before the start of the data acquisition, so that the pressure P1 in the gas pressure chamber G1 very quickly reaches the working pressure. Thereby, the liquid metal 9 completely located in the liquid metal chamber L1 of the separation chamber R1 is squeezed out of the separation chamber R1 by the influence of the pressure acting on the membrane M1 and flows at high speed through the restriction 8 in the electron incident region. In order to prevent possibly occurring due to the Bernoulli effect cavitations in the constriction 8, a back pressure P2 is preferably simultaneously generated in the gas pressure chamber G2 of the separation chamber R2.
  • valve V2 is also opened to the pressure accumulator R3 at the same time as the valve V1 is opened (step S2 in FIG. 3).
  • a pressure P2 in the separation chamber R2 for example, 20 bar (or less up to 1 bar) are set, so that there is a pressure difference P1-P2 of preferably 20 to 50 bar sets.
  • step S3 in FIG. 3 the X-ray emitter according to the invention is produced operated, the electron beam is thus turned on and it is generated X-rays.
  • the liquid metal 9 flows at the desired speed of, for example, 100 cm 3 / s for the duration of the data acquisition, for example 20 s at CT, from the separation chamber R1 into the separation chamber R2.
  • the valves V1 and V2 are continuously open (or fully or partially closed) to apply the required working pressure.
  • the pressure accumulator R3 must of course have sufficient capacity to maintain the high pressure P1, for example, 40 to 70 bar for a sufficient period of time, so that the liquid metal 9 sufficiently long and fast enough from the Separation chamber R1 flows into the separation chamber R2.
  • the pressure accumulator R3 has a volume of about 31 at a maximum pressure of 200 bar.
  • step S4 When the data acquisition is completed, the electron beam 4 is turned off and the valves V1 and V2 are opened to the atmosphere, so that the pressure P1 and P2 drops back to atmospheric pressure (step S4).
  • the liquid metal 9 is now largely or completely in the separation chamber R2, as shown in Figure 2c. Since the liquid metal 9 has heated due to the incident electrons 4 in the electron impact zone 8, cooling channels 14 are provided, with which the liquid metal 9 can be cooled in the separation chamber R2, preferably to a temperature of 60 to 65 ° C, so that the liquid metal 9 remains in a liquid state.
  • a final step (S5) it is also ensured by means of the pump 13 that the pressure in the pressure accumulator R3 is again “reloaded” so that sufficient pressure is again available for the next run.
  • the power of the pump 13 does not need to be turned off to the highest required power that must be provided during operation of the X-ray source, but must only be designed so that the pressure in the pressure accumulator R3 during the downtime again to a sufficiently high Pressure can be adjusted.
  • the pump must be designed with the known X-ray source for full operating performance.
  • the constriction 8 behind the window 5 is designed asymmetrically to extend to the separation chambers R 1 and R 2. This is intended to ensure that the pressure loss which the liquid metal 9 flowing from the separation chamber R1 to the separation chamber R2 undergoes the lowest possible pressure loss during operation and thus achieves the highest possible flow velocity in the electron impact zone.
  • the arrangement shown is thus only to operate so that the liquid metal 9 is always pressed during operation of the separation chamber R1 in the separation chamber R2.
  • the constriction 8 may also be designed symmetrically, and cooling channels 14 may also be provided around the separation chamber R1, so that the liquid metal 9 can be pressed in operation in both directions.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • X-Ray Techniques (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Claims (13)

  1. Dispositif de production de rayons X en cas d'impact d'électrons (4) avec une zone à métal liquide (7) dans laquelle un métal liquide (9) est disposé comme une cible de rayons X de telle sorte qu'il puisse s'écouler sur une zone d'impact des électrons (8),
    caractérisé en ce
    qu'une zone de pression (10) séparée de la zone à métal liquide (7) est prévue avec un moyen de pression (11) de telle sorte qu'une pression puisse être exercée à l'aide du moyen de pression (11) sur le métal liquide (9) se trouvant dans la zone à métal liquide (7) en vue de l'entraînement et de l'écoulement du métal liquide (9) sur la zone d'impact des électrons (8), la zone de pression (10) présentant un réservoir de pression (R3) rechargeable en vue de l'application de la pression.
  2. Dispositif selon la revendication 1,
    caractérisé en ce
    que la zone à métal liquide (7) et la zone de pression (10) séparées chacune par un moyen de séparation (M1, M2) en deux zones de séparation (R1, R2), sont adjacentes l'une à l'autre, les moyens de séparation (M1, M2) étant conçus de manière mobile de telle sorte qu'une pression puisse être exercée sur le métal liquide (9) par l'intermédiaire des moyens de séparation (M1, M2) dans les deux zones de séparation (R1, R2).
  3. Dispositif selon la revendication 2,
    caractérisé en ce
    que les zones de séparation sont conçues comme des compartiments de séparation (R1, R2) divisés en deux avec, à chaque fois, un compartiment à métal liquide (L1, L2) et un compartiment à moyen de pression (G1, G2) qui sont séparés par une membrane flexible (M1, M2).
  4. Dispositif selon la revendication 2,
    caractérisé en ce
    que les zones de séparation (R1, R2) sont conçues comme des cylindres avec un piston mobile.
  5. Dispositif selon la revendication 1,
    caractérisé en ce
    qu'un gaz, en particulier l'air, est utilisé comme moyen de pression (11) et qu'il est prévu comme réservoir de pression (R3) un compartiment à pression de gaz, une pompe (13) étant prévue pour recharger le réservoir de pression (R3).
  6. Dispositif selon la revendication 1,
    caractérisé en ce
    qu'un liquide hydraulique, en particulier une huile hydraulique, est utilisé comme moyen de pression (11) et qu'un compartiment de pression hydraulique est prévu comme réservoir de pression (R3).
  7. Dispositif selon la revendication 1,
    caractérisé en ce
    qu'un liquide, en particulier l'eau, est utilisé comme moyen de pression (11) et qu'il est prévu un compartiment à vapeur comme réservoir de pression (R3), le liquide étant vaporisé dans le réservoir de vapeur pour recharger le réservoir de pression.
  8. Dispositif selon la revendication 1,
    caractérisé en ce
    que des moyens de commande (15 ; V1, V2) sont prévus pour la commande de l'alimentation en pression du métal liquide (9) à une pression souhaitée de telle sorte que le métal liquide (9) s'écoule à une vitesse d'écoulement souhaitée sur la zone d'impact des électrons (8).
  9. Dispositif selon la revendication 8,
    caractérisé en ce
    que les moyens de commande présentent des soupapes commandables (V1, V2) dans la zone de pression (10) pour la commande de la pression qui est exercée à partir de réservoir de pression (R3) sur le métal liquide (9) dans la zone à métal liquide (7).
  10. Dispositif selon la revendication 1,
    caractérisé en ce
    que la zone à métal liquide (7) présente dans la zone d'impact des électrons un rétrécissement (8) et que le rétrécissement (8) est conçu asymétriquement de part et d'autre de la zone d'impact des électrons.
  11. Dispositif selon la revendication 2,
    caractérisé en ce
    qu'au moins l'une des deux zones de séparation (R1, R2) présente des moyens de refroidissement (14) pour le refroidissement du métal liquide (9) chauffé en fonctionnement.
  12. Générateur de rayons X avec une source d'électrons (3) pour l'émission d'électrons et avec un dispositif (2) de production de rayons X selon la revendication 1.
  13. Appareil à rayons X avec un détecteur de rayons X et avec un générateur de rayons X selon la revendication 12.
EP02100714A 2001-06-19 2002-06-17 Source à rayons X avec cible à métal liquide Expired - Lifetime EP1271602B8 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10129463A DE10129463A1 (de) 2001-06-19 2001-06-19 Röntgenstrahler mit einem Flüssigmetall-Target
DE10129463 2001-06-19

Publications (3)

Publication Number Publication Date
EP1271602A1 EP1271602A1 (fr) 2003-01-02
EP1271602B1 true EP1271602B1 (fr) 2006-11-15
EP1271602B8 EP1271602B8 (fr) 2007-05-30

Family

ID=7688644

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02100714A Expired - Lifetime EP1271602B8 (fr) 2001-06-19 2002-06-17 Source à rayons X avec cible à métal liquide

Country Status (4)

Country Link
US (1) US6647094B2 (fr)
EP (1) EP1271602B8 (fr)
JP (1) JP4338943B2 (fr)
DE (2) DE10129463A1 (fr)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10130070A1 (de) * 2001-06-21 2003-01-02 Philips Corp Intellectual Pty Röntgenstrahler mit Flüssigmetall-Target
DE10147473C2 (de) * 2001-09-25 2003-09-25 Siemens Ag Drehanodenröntgenröhre
AU2003252819A1 (en) * 2002-03-08 2003-09-22 Koninklijke Philips Electronics N.V. A device for generating x-rays having a liquid metal anode
US8275091B2 (en) 2002-07-23 2012-09-25 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US7963695B2 (en) 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US8243876B2 (en) 2003-04-25 2012-08-14 Rapiscan Systems, Inc. X-ray scanners
US8451974B2 (en) 2003-04-25 2013-05-28 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
GB0525593D0 (en) 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
GB0309385D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray monitoring
US8804899B2 (en) 2003-04-25 2014-08-12 Rapiscan Systems, Inc. Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
US8223919B2 (en) 2003-04-25 2012-07-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US6954515B2 (en) * 2003-04-25 2005-10-11 Varian Medical Systems, Inc., Radiation sources and radiation scanning systems with improved uniformity of radiation intensity
US7949101B2 (en) 2005-12-16 2011-05-24 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
GB0309379D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray scanning
US6928141B2 (en) 2003-06-20 2005-08-09 Rapiscan, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
DE102004013620B4 (de) * 2004-03-19 2008-12-04 GE Homeland Protection, Inc., Newark Elektronenfenster für eine Flüssigmetallanode, Flüssigmetallanode, Röntgenstrahler und Verfahren zum Betrieb eines solchen Röntgenstrahlers
DE102004013618B4 (de) * 2004-03-19 2007-07-26 Yxlon International Security Gmbh Verfahren zum Betrieb einer magnetohydrodynamischen Pumpe, Flüssigmetallanode für eine Röntgenquelle sowie Röntgenstrahler
DE102004015590B4 (de) * 2004-03-30 2008-10-09 GE Homeland Protection, Inc., Newark Anodenmodul für eine Flüssigmetallanoden-Röntgenquelle sowie Röntgenstrahler mit einem Anodenmodul
JP2007533093A (ja) * 2004-04-13 2007-11-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 液体金属アノードを有するx線発生装置
DE102004031973B4 (de) * 2004-07-01 2006-06-01 Yxlon International Security Gmbh Abschirmung einer Röntgenquelle
US7319733B2 (en) * 2004-09-27 2008-01-15 General Electric Company System and method for imaging using monoenergetic X-ray sources
US7471764B2 (en) 2005-04-15 2008-12-30 Rapiscan Security Products, Inc. X-ray imaging system having improved weather resistance
GB0803644D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0803641D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0809110D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Gantry scanner systems
DE102008026938A1 (de) 2008-06-05 2009-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Strahlungsquelle und Verfahren zum Erzeugen von Röntgenstrahlung
RU2454840C2 (ru) * 2008-08-12 2012-06-27 Альбина Александровна Корнилова Способ получения рентгеновского излучения и устройство для его осуществления
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
GB2523942B (en) 2013-01-31 2018-07-04 Rapiscan Systems Inc Portable security inspection system
EP3214635A1 (fr) * 2016-03-01 2017-09-06 Excillum AB Source de rayons x cible liquide avec outil de mélange à jet
US11170965B2 (en) 2020-01-14 2021-11-09 King Fahd University Of Petroleum And Minerals System for generating X-ray beams from a liquid target

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246146A (en) * 1963-07-11 1966-04-12 Ass Elect Ind Apparatus for the X-ray analysis of a liquid suspension of specimen material
JPS494577U (fr) * 1972-04-15 1974-01-15
JPS5512720B2 (fr) * 1973-04-23 1980-04-03
JPS5326594A (en) * 1976-08-24 1978-03-11 Mitsubishi Electric Corp Radiation generator
JPS61153935A (ja) * 1984-12-26 1986-07-12 Toshiba Corp プラズマx線発生装置
DE3586244T2 (de) * 1984-12-26 2000-04-20 Toshiba Kawasaki Kk Vorrichtung zur Erzeugung von Weich-Röntgenstrahlen durch ein Hochenergiebündel.
JPH0640160B2 (ja) * 1985-04-25 1994-05-25 住友重機械工業株式会社 放射性同位元素18f製造用ターゲット装置
JPS63164199A (ja) * 1986-12-25 1988-07-07 Shimadzu Corp X線発生装置用タ−ゲツト装置
US4953191A (en) * 1989-07-24 1990-08-28 The United States Of America As Represented By The United States Department Of Energy High intensity x-ray source using liquid gallium target
US5052034A (en) * 1989-10-30 1991-09-24 Siemens Aktiengesellschaft X-ray generator
JP2948163B2 (ja) * 1996-02-29 1999-09-13 株式会社東芝 X線装置
DE19821939A1 (de) * 1998-05-15 1999-11-18 Philips Patentverwaltung Röntgenstrahler mit einem Flüssigmetall-Target
DE19905802A1 (de) * 1999-02-12 2000-08-17 Philips Corp Intellectual Pty Röntgenröhre
DE19955392A1 (de) * 1999-11-18 2001-05-23 Philips Corp Intellectual Pty Monochromatische Röntgenstrahlenquelle
JP2001338798A (ja) * 2000-05-26 2001-12-07 Mitsubishi Heavy Ind Ltd 中性子散乱装置におけるターゲット容器

Also Published As

Publication number Publication date
JP4338943B2 (ja) 2009-10-07
DE50208680D1 (de) 2006-12-28
EP1271602B8 (fr) 2007-05-30
US20030016789A1 (en) 2003-01-23
US6647094B2 (en) 2003-11-11
JP2003066200A (ja) 2003-03-05
EP1271602A1 (fr) 2003-01-02
DE10129463A1 (de) 2003-01-02

Similar Documents

Publication Publication Date Title
EP1271602B1 (fr) Source à rayons X avec cible à métal liquide
EP2044968B1 (fr) Evaporateur de liquide
DE60007852T2 (de) Verfahren und vorrichtung zum verlängern der lebenszeit einer röntgenanode
DE102007046278A1 (de) Röntgenröhre mit Transmissionsanode
DE102005043372B4 (de) Röntgenstrahler
DE102009003673A1 (de) Elektronenquelle auf der Basis von Feldemittern mit minimierten Strahl-Emittanzwachstum
DE10334606A1 (de) Kathode für Hochemissions-Röntgenröhre
DE102008033150A1 (de) Röntgenquelle sowie Röntgenanlage mit einer solchen Röntgenquelle
DE112009001604T5 (de) Thermionenemitter zur Steuerung des Elektronenstrahlprofils in zwei Dimensionen
DE102008050352B4 (de) Multi-Strahl-Röntgenvorrichtung
DE102012204766A1 (de) Röntgendetektor mit photonenzählenden direktwandelnden Detektorelementen und Verfahren zur Temperaturkonstanthaltung des Röntgendetektors
DE2525119C3 (de) Vorrichtung zur Kontrolle eines Störfalls in Kernkraftwerken
DE102006024436B4 (de) Röntgeneinheit
DE602004010934T2 (de) Röntgenquelle
EP3629361B1 (fr) Émetteur de rayons x, emploi d'un émetteur de rayons x et procédé de fabrication d'un émetteur de rayons x
EP3793330A1 (fr) Émetteur de rayons x
EP1215707B1 (fr) Source à rayons X avec cible à métal liquide et appareil à rayons X
DE10130070A1 (de) Röntgenstrahler mit Flüssigmetall-Target
DE10310623B4 (de) Verfahren und Vorrichtung zum Erzeugen eines Plasmas durch eletrische Entladung in einem Entladungsraum
DE102008050353B3 (de) Kreisförmige Multi-Strahl-Röntgenvorrichtung
DE112016007160T5 (de) Elektronenmikroskop
DE60131117T2 (de) Röntgenröhre
DE102008026938A1 (de) Strahlungsquelle und Verfahren zum Erzeugen von Röntgenstrahlung
DE102008034568A1 (de) Röntgenröhre
WO2015052039A1 (fr) Source de rayons x et procédé permettant de produire un rayonnement x

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

17P Request for examination filed

Effective date: 20030702

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50208680

Country of ref document: DE

Date of ref document: 20061228

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070329

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

EN Fr: translation not filed
EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090630

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120830

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208680

Country of ref document: DE

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101