EP1259987A1 - Wärmeleitende klebstoffverbindung und verfahren zum herstellen einer wärmeleitenden klebstoffverbindung - Google Patents

Wärmeleitende klebstoffverbindung und verfahren zum herstellen einer wärmeleitenden klebstoffverbindung

Info

Publication number
EP1259987A1
EP1259987A1 EP01907338A EP01907338A EP1259987A1 EP 1259987 A1 EP1259987 A1 EP 1259987A1 EP 01907338 A EP01907338 A EP 01907338A EP 01907338 A EP01907338 A EP 01907338A EP 1259987 A1 EP1259987 A1 EP 1259987A1
Authority
EP
European Patent Office
Prior art keywords
layer
workpieces
heat
flat
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01907338A
Other languages
English (en)
French (fr)
Inventor
Herbert Schwarzbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1259987A1 publication Critical patent/EP1259987A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the invention relates to a heat-conducting adhesive connection between two workpieces and a method for producing a heat-conducting adhesive connection between two workpieces.
  • Electronic components in particular power semiconductor components such as, for example, IGBTs, MOS-FETs, diodes, thyristors, etc. generate large power losses during operation, which have to be dissipated efficiently in order not to exceed the maximum operating temperature.
  • power semiconductor components such as, for example, IGBTs, MOS-FETs, diodes, thyristors, etc.
  • This poor thermal conductivity of the adhesives can be improved by particles with good thermal conductivity, which are suspended in the poorly conductive adhesive.
  • a heat-conducting powder for example nickel powder.
  • this document describes a heat-conducting, electrically insulating adhesive connection between two workpieces, which has a layer of ceramic material and a layer of adhesive.
  • the layer of ceramic material has two flat surfaces facing away from one another, openings are defined on each flat surface by cavities in the layer, and the layer is arranged between the two workpieces in such a way that one of the two flat surfaces is one of the two workpieces, the m shape of a heat sink is formed, contacted flat.
  • at least the openings on the other flat-side surface, which faces away from the one flat-side surface, are filled with electrically insulating material.
  • the layer of adhesive is arranged between the layer of ceramic material and the other workpiece, which forms an electronic power component, and has two flat surfaces facing away from one another.
  • the other workpiece flat and adheres to it.
  • the other surface flatly contacts and adheres to the other flat-side surface of the layer of ceramic material.
  • a thermally conductive powder for example nickel powder, is added to the layer of adhesive.
  • This known adhesive connection is produced as follows: The ceramic layer is produced on one workpiece by thermal spraying, the openings defined by cavities in the layer automatically forming on the flat surfaces of this layer.
  • At least the openings on the other flat-side surface facing away from the one flat-side surface and the one workpiece are filled with electrically insulating material.
  • the layer of ceramic material which has the electrically insulating material is connected to the other workpiece by the adhesive layer to which the heat-conducting powder is admixed.
  • the layer made of the sintered metal powder has two flat surfaces facing away from one another, each of which has openings defined by cavities in this layer.
  • the layer is arranged between the two workpieces in such a way that one of the two flat surfaces is sintered on one of the two workpieces and the other flat surface is sintered on the other workpiece.
  • the sintered metal powder of the layer is connected from one of the flat surfaces to the other flat surface.
  • the adhesive-free connection according to DE 34 14 065 AI is produced by the steps:
  • a paste which consists of a mixture of a metal powder sinterable at a specific sintering temperature and a liquid, is applied to one workpiece and / or the other workpiece.
  • the two workpieces are brought together in such a way that the paste is between the two workpieces and contacts both workpieces.
  • the paste is dried and the dried powder is sintered by heating to the sintering temperature.
  • This sintering is carried out in a non-oxidizing atmosphere, for example in N2 or H2, and the sintering temperature is about 400 ° C.
  • a mechanical pressure for example 80 to 90 N / cm 2 , can be exerted during the sintering process.
  • a paste is applied to a workpiece and consists of a mixture of a metal powder that can be sintered at a specific sintering temperature and a liquid.
  • the paste is dried.
  • the other workpiece is placed on the dry powder.
  • the entire arrangement is then heated to the sintering temperature while simultaneously exerting a mechanical pressure of at least 900 N / cm 2.
  • the sintering temperature is approximately
  • the invention has for its object to provide a thermally conductive adhesive connection between two workpieces, which has a greater thermal conductivity than a connection with a layer of adhesive, which is mixed with a thermally conductive powder.
  • the heat-conducting adhesive connection has: a layer of heat-conducting material
  • heat-conducting material in the layer of heat-conducting material, this material extends from one of the flat-side surfaces towards the other flat-side surface of the layer outside the cavities this layer is at least connected or forms a unit as is the case in a layer of sintered powder made of heat-conducting material.
  • a connection which is favorable for the thermal conductivity, does not exist with a thermally and electrically poorly conductive layer of adhesive, to which heat-conductive powder is added, since heat-conductive paths are formed in this layer only at comparatively few points of contact of the particles of the admixed powder.
  • thermally conductive material of the layer The higher the thermal conductivity of the thermally conductive material of the layer, the more favorable this is for the thermally conductive adhesive connection according to the invention.
  • An advantage of the adhesive connection according to the invention is that it can optionally be implemented as an electrically conductive or electrically insulating connection, depending on whether the heat-conducting material selected for the layer is electrically conductive, for example metal or is electrically insulating, for example heat-conductive ceramic material.
  • the strength of the adhesive connection according to the invention is advantageously composed of the inherent strength of the layer of heat-conducting material and the strength of the adhesive, so it can be significantly greater than that of an adhesive connection made of pure adhesive or adhesive ⁇ mixed with powder made of heat-conducting material. At high temperatures, the strength of the layer of heat-conducting material usually dominates.
  • the adhesive advantageously protects the layer of heat-conducting material, in particular at high temperatures, against a reaction of the layer with oxygen or another oxidizing gas.
  • the layer made of the thermally conductive material has only cavities, the openings at the Define the flat surfaces of the layer.
  • the layer can be a film of heat-conducting material with holes, each of which defines an opening on both flat surfaces of layer e.
  • the layer of the heat-conducting material is preferably sponge-like interspersed with cavities, so that cavities are also present in the interior of the layer that do not directly adjoin the flat surfaces of the layer and do not define openings on these surfaces.
  • the hard stretcher of liquid adhesive can advantageously be introduced essentially automatically by capillary suction from the outside through the layer and into the openings on the flat surfaces of this layer, regardless of whether the surfaces are already in contact with a workpiece or Not.
  • the hard stretcher of liquid adhesive with pressure support can be introduced into the layer.
  • the heat-conducting material of the layer is from the group of metals, in particular from the group of noble and Semi-precious metals selected. It is particularly advantageous if the heat-conducting material has silver.
  • the layer preferably consists of sintered metal powder.
  • a layer which is electrically conductive, has, for example, the following advantages: it is easy to produce, it may be sintered onto a workpiece or onto both workpieces to be connected and already form a thermally conductive connection with one or both workpieces, which supports the connection made by the adhesive, it is designed in such a way that it has openings on its flat surfaces defined by cavities and is sponge-like interspersed with cavities, the cavities being connected to one another and referring to a hardenable liquid Glue can be dimensioned so small that they exert capillary suction on this glue, etc.
  • the adhesive connection according to the invention is particularly well suited for attaching an electronic component, in particular a power component, to a carrier body, i.e., with this connection, the electronic component, in particular the power component, and the other workpiece is the carrier body for the electronic component.
  • the carrier body preferably has a heat sink for the electronic component.
  • the invention also provides a method for producing a thermally conductive adhesive bond between two workpieces, which has a greater thermal conductivity than a compound with a layer of adhesive which is admixed with a thermally conductive powder and which comprises the steps of: - producing a layer of thermally conductive material .
  • a layer with good thermal conductivity is first produced which is in contact with the two workpieces, and only then is the layer bonded to the workpieces.
  • a paste to a workpiece and / or the other workpiece, which consists of a mixture of a powder sinterable at a certain sintering temperature made of heat-conducting material and a liquid, - Bringing the two workpieces together in such a way that the paste is between the two workpieces and the paste contacts both workpieces,
  • Layer of sintered metal powder are described, that is, it is easy to manufacture, it can under certain circumstances
  • Workpiece or be sintered to both workpieces to be connected and already form a thermally conductive connection with one or both workpieces, which supports the connection made by the adhesive it is designed in such a way that it has openings defined by cavities on its flat surfaces and is sponge-like interspersed with cavities, the cavities being connected to one another and being so small in relation to a hardenable liquid adhesive that they exert a capillary suction effect on this adhesive, etc.
  • a higher density and thus higher thermal conductivity of the sintered layer made of the heat-conducting powder can be obtained if very fine and / or much coarser powders of heat-conducting material are added to the powder.
  • Coarse-grained powders can consist of metal or other materials with good thermal conductivity, for example SiC or diamond.
  • a high density and thus good thermal conductivity of the sintered layer of heat-conducting material can also be achieved with the step of exerting a certain mechanical pressure on the powder during the sintering process or after this process has been completed.
  • Em is preferably selected from the group of metals, insbesonde ⁇ of precious and semi-precious metals selected re sinterable powder.
  • a sinterable powder containing silver It is particularly advantageous to use a sinterable powder containing silver. If a powder containing silver particles is used and the sintering of this powder is carried out in an oxidizing atmosphere, a sintering temperature between 100 ° C. and
  • the sintering of an oxidizing atmosphere can also be advantageous for sinterable powders that contain substances other than silver.
  • Figure 1 in cross section two separate workpieces, each with a paste consisting of sinterable heat-conducting material and a liquid applied
  • FIG. 2 shows the workpieces according to FIG. 1 in the same representation but in the state brought together in such a way that the paste forms a continuous layer between the workpieces contacting both workpieces,
  • FIG. 3 shows the workpieces according to FIG. 2 in the same representation, but after the paste has dried and the powder has been sintered from heat-conducting material to form a sintered layer which is arranged between the workpieces and contacts both workpieces,
  • FIG. 4 shows the section A m of FIG. 3 m enclosed in a circular enlarged view
  • FIG. 5 shows the detail A of Figure 4 after filling the
  • FIG. 6 shows the section A according to FIG. 5 after the adhesive has hardened.
  • the workpiece 1 is an electronic component, e.g. B. a power component, in particular a power semiconductor component, and the workpiece 2 em support body for the electronic component, which may in particular be a heat sink for this element or at least include one.
  • a power component in particular a power semiconductor component
  • the workpiece 2 em support body for the electronic component which may in particular be a heat sink for this element or at least include one.
  • a paste 5 is applied to the surface section 21 of the workpiece 2 and / or the surface section 11 of the workpiece 1, which paste consists of a mixture of a powder of heat-conducting material and a liquid that can be sintered at a specific sintering temperature T.
  • paste 5 is shown applied to each workpiece 1 and 2, but it is sufficient to apply paste 5 only to one workpiece, for example workpiece 2.
  • the two workpieces 1 and 2 are brought together in such a way that the paste 5 is located between the two workpieces 1 and 2 and the paste 5 contacts the surface section 11 and 21 of each workpiece 1 and 2 as completely as possible and a thin layer 3 ⁇ forms between these sections 11 and 21, after which the intermediate stage of the method shown in FIG. 2 has arisen.
  • the layer of paste 5 is then dried and, after heating to the sintering temperature T, is sintered.
  • the paste 5 consists of at least one workpiece, for example the workpiece 1 swells out in a small bulge 51 that surrounds this workpiece.
  • the paste 5 is dried, for example, by allowing the liquid contained in the paste 5 to evaporate, which can be carried out by heating the paste 5, for example during the heating to the sintering temperature T and / or under reduced pressure, for example in a vacuum.
  • the bead 51 advantageously contributes to the fact that the liquid can evaporate without residue and without the formation of bubbles.
  • This intermediate stage has the sintered layer 3 of the dried powder which is arranged between the surface sections 11 and 21 of the workpieces 1 and 2 and which has two flat surfaces 31, 31 facing away from one another and a bead 30 surrounding at least one workpiece which originated from the bead 51 is.
  • One of the flat-side surfaces 31, 31 flatly adjoins the surface section 11 of the workpiece 1, the other flatly adjoins the surface section 21 of the workpiece 2.
  • certain mechanical pressure p can be exerted on the powder between the workpieces 1 and 2 during the sintering process.
  • the sintering temperature T is determined by the powder material.
  • the detail A of FIG. 3 shown enlarged in FIG. 4 shows an example and schematically the structure of the sintered layer 3.
  • the obliquely hatched part 34 of the layer 3 contains sintered powder of heat-conducting material, which is connected from one flat surface 31 in the direction 35 to the other flat surface 31 of the layer 3
  • All non-hatched white areas 32 of layer 3 represent cavities of layer 3. Although all these white areas had to be provided with the reference number 32, for the sake of clarity only a few of these areas are designated with this reference number 32.
  • the cavities 32 penetrate the layer 3 like a sponge and are largely connected to one another, although not in the cutting plane shown. Cavities 32, which adjoin a flat-side surface 31, each define an opening 33 m of this surface 31.
  • the method described so far is similar to the method described in DE 34 14 065 AI for producing an adhesive-free connection and also the method described in EP 0 242 626 A2 for producing such a connection, and all the workpieces and materials specified there can be used for this Workpieces, the liquid of the paste and the powder of the paste as well as the sintering temperatures and prints specified therein can also be used in the method described here for producing the adhesive connection according to the invention.
  • the entire disclosure of DE 34 14 065 AI and the entire disclosure of EP 0 242 626 A2 are part of the present application.
  • the sintered layer consists of metal and is on both Sintered workpieces.
  • a sinterable powder selected from the group of metals can also be used to produce layer 3 according to the invention.
  • a sinterable powder selected from the group of precious and semi-precious metals can be used.
  • Such a layer 3 can be sintered onto the workpiece 1 and / or 2. Sinterable powders which do not adhere to workpieces 1 and / or 2 can advantageously also be used.
  • the layer 3 can also be produced with a heat-conducting, non-metallic sinterable powder, for example a powder comprising ceramic material, SiC, diamond, etc.
  • the surface section 11 or 21 of a workpiece 1 and / or 2 is smooth, in particular polished, since in this case the particles of the sintered layer 3 come into particularly close contact with the surface section 11 or 21 concerned and for a good one Ensure heat transfer between workpiece 1 and / or 2 and sintered layer 3.
  • the openings 33 on the flat-side surfaces 31 of the sintered layer 3 arranged between the workpieces 1 and 2 are now filled with hardenable liquid adhesive which wets the surface sections 11 and 21 of the workpieces 1 and 2.
  • the openings 33 can be filled with liquid adhesive by sucking this adhesive into the layer 3 until all the cavities 32 and openings 33 are filled with the adhesive ,
  • the adhesive can be sucked in by capillary action of the cavities 32 which are connected to the liquid adhesive and / or supported by pressure. It is beneficial if the adhesive is as thin as possible.
  • Liquid epoxy resin for example, is suitable as the hardenable liquid adhesive 4.
  • the bead 30 is advantageous for sucking in the adhesive in the layer 3, since it provides the adhesive to be sucked in with a relatively large area.
  • FIG. 5 which, like FIG. 4, shows section A of FIG. 3 enlarged.
  • the adhesive which is sucked into layer 3 and fills the cavities 32 and openings 33 of layer 3 is indicated by dashed lines in FIG. 5 and is designated by 4.
  • the adhesive 4 wets the surface sections 11 and 21 of the workpieces 1 and 2.
  • FIG. 6 which, like FIGS. 4 and 5, shows section A of FIG. 3 on an enlarged scale.
  • the figure 6 obliquely and alternately thin and thick indicated by hatching and denoted ⁇ by 4.
  • the openings 33 of the adhesive 4 gehartete ⁇ adheres to the upper flat portions 11 and 21 of the workpieces 1 and 2.
  • a particularly preferred embodiment of the adhesive connection according to the invention has a layer 3 of sintered silver powder, which is particularly suitable for the method described above for producing this adhesive connection, since according to the above-mentioned thesis silver is already present at low temperatures between 100 ° C. and 250 ° C, preferably between about 150 ° C and 250 ° C terbrucken can form.
  • suitable fine-grained silver powders are mixed with, for example, an organic liquid, e.g. B. Terp eol or ethylene glycol ether to a paste 5, which can be processed like a conductive adhesive paste.
  • paste 5 for example with a dispenser
  • the two workpieces 1 or 2 which is, for example, a carrier body for an electronic component in the form of a chip
  • the other workpiece 2 or 1 in the example of FIG Chip
  • a layer 3 and a bead 30 of dry silver powder have formed between the workpieces 1 and 2, which are sintered.
  • An oxidizing atmosphere is essential for sintering silver at less than 250 ° C.
  • the thin layer 3 of silver powder of less than 100 .mu.m between the workpieces 1 and 2 of the oxygen can diffuse sufficiently quickly so that even in areas of up to 5 ⁇ 5 cm 2 or more, the silver powder is versed. For example, silver powder takes place in areas of 2x2 cm 2 within about 15 minutes.
  • This adhesion also occurs on many smooth surfaces such as silicon, glass, corundum, polyimide, which is strong enough to sinter a chip on glass and cool down to room temperature, for example, for sucking in curable liquid adhesive and, for example, for wire bonding , It also applies to silver that polished surfaces are particularly suitable for this, since the silver particles come into close contact with the surface. At a high temperature, the adherence decreases again.
  • the sintered layer 3 of silver powder produced in this way is sponge-like interspersed with cavities 32 and has openings 31 on its flat surfaces.
  • the density of this layer 3 is between 40-50 vol. % Silver and can be further increased by adding very fine and also much coarser powder.
  • other materials with good thermal conductivity but low thermal expansion coefficients such as SiC or diamond can also be used as coarse-grained powders, for example in order to better adapt the thermal expansion coefficient of the sintered layer 3 of silver powder to a chip.
  • a high silver density and thus good thermal conductivity can also be achieved by applying pressure at 150 ° C. to 250 ° C., pressure and time being able to remain far lower than in the known method according to EP 0 242 626 A2.
  • the sintered layer 3 made of silver powder has a large capillary suction force, so that each thin adhesive 4 can be sucked into the layer 3 or pressed in with pressure support.
  • the strength of the adhesive connection after hardening of the sucked-in adhesive 4 is then composed of the inherent strength of the sintered layer 3 made of silver powder and that of the cured adhesive 4 can thus be significantly larger than with a pure adhesive. At high temperatures, the strength of the sintered layer 3 made of silver powder dominates. Since, after the adhesive 4 has hardened, further access of oxygen to the sintered layer 3 of silver powder is prevented, the sintered structure of this layer 3 then advantageously no longer changes at high temperatures.
  • the adhesive connection according to the invention can also be produced differently.
  • a layer 3 of heat-conducting material for example metal, can be used, which has cavities 32 in the form of holes, each of which passes through layer 3 from one to the other flat-side surface 31 of layer 3, and which has one of the two flat-side surfaces 31, 31 of this layer 3 is applied flat to the surface section 11 or 21 of one of the two workpieces 1 and 2.
  • Each hole 32 defines an opening 33 for each of the two flat-side surfaces 31, 31.
  • This layer 3 can be, for example, a thin film of heat-conducting material, for example metal, applied flat to the upper flat section 11 or 21 of one of the two workpieces 1 and 2 and having the holes 32 and openings 33 from the front.
  • a layer 3 of heat-conducting material can also be used, which is applied to this surface section 11 or 21 by vapor deposition, sputtering, thermal spraying, etc. of the surface section 11 or 21 of one of the two workpieces 1 or 2, and then the holes 32 and openings 33 are produced, for example photolithographically and by etching the layer 3 with an etchant.
  • the holes 32 and openings 33 of the applied layer 3 are filled with curable liquid adhesive 4 through the flat-side surface 31 of the layer 3 facing away from the surface section 11 or 21 of the one workpiece 1 or 2, respectively 1 or 2 wetted.
  • the flat surface surface 31 of the layer 3 filled with the liquid adhesive 4 is turned away from this surface section 11 or 21 of the one workpiece 1 or 2
  • the adhesive 4 is then cured so that it adheres to the two surface sections 11 and 21 of the two workpieces 1 and 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Die Bonding (AREA)

Abstract

Die wärmeleitende Klebstoffverbindung zwischen zwei Werkstücken (1, 2) weist eine gesinterte Schicht (3) aus wärmeleitendem Pulver auf, die zwischen den beiden Werkstücken angeordnet ist und jedes Werkstück flächig kontaktiert, und einen Klebstoff (4`), der Öffnungen (33) an der Oberfläche (31) der Schicht ausfüllt und an beiden Werkstücken haftet. Vorzugsweise besteht die gesinterte Schicht aus Silberpulver. Zuerst wird die gesinterte Schicht zwischen den Werkstücken hergestellt, danach diese Schicht mit härtbarem flüssigen Klebstoff (4) gefüllt, der dann gehärtet wird.

Description

Beschreibung
Wärmeleitende Klebstoffverbindung und Verfahren zum Herstellen einer wärmeleitenden Klebstoffverbindung
Die Erfindung betrifft eine wärmeleitende Klebstoffverbindung zwischen zwei Werkstucken und ein Verfahren zum Herstellen einer wärmeleitenden Klebstoffverbindung zwischen zwei Werkstucken.
Elektronische Bauelemente, insbesondere Leistungshalbleiter- Bauelemente wie beispielsweise IGBTs, MOS-FETs, Dioden, Thyristoren usw. erzeugen im Betrieb große Verlustleistungen, die effizient abgeführt werden müssen, um die maximale Be- tπebstemperatur nicht zu überschreiten.
Für Halbleiterchips bis zu maximal 2x2 cm Große hat sich m der Technik die Weichlotung mit Zinn, Blei und deren Legierungen auf Tragerkorpern aus Keramik- oder Metall völlig durchgesetzt. Andere Verfahren wie beispielsweise mit Goldloten, Glasplasten usw. haben aus Kostengrunden nur einen sehr engen Einsatzbereich gefunden.
Die Entwicklungstendenzen fuhren einerseits zu immer höheren Betriebstemperaturen bis nahe zu den Schmelzpunkten der Lote bei gleichzeitig erhöhter Zuverlässigkeit, andererseits soll Blei aus Umweltschutzgrunden verdrangt werden, insbesondere auch per Gesetz.
Das sonst m der Chipaufbautechnik sehr gebrauchliche Kleben leidet an der schlechten Wärmeleitfähigkeit und auch schlechten elektrischen Leitfähigkeit der Klebstoffe.
Diese schlechte Wärmeleitfähigkeit der Klebstoffe kann durch gut wärmeleitende Partikel verbessert werden, die im schlecht leitenden Klebstoff suspendiert sind. So ist es beispielsweise aus der DE-A-195 29 627 (95P1762 DE; bekannt, die Wärmeleitfähigkeit des Klebstoffs durch Beimischung eines wärmeleitenden Pulvers, beispielsweise Nickel- Pulver, zu verbessern.
Konkret beschreibt diese Druckschrift eine wärmeleitende, e- lektrisch isolierende Klebstoffverbindung zwischen zwei Werkstucken, die eine Schicht aus Keramikmaterial und eine Schicht aus Klebstoff aufweist.
Die Schicht aus Keramikmaterial weist zwei voneinander abgekehrte flachseitige Oberflachen auf, an ^eder flachseitigen Oberflache sind durch Hohlräume m der Schicht definierte Offnungen vorhanden, und die Schicht ist zwischen den beiden Werkstucken so angeordnet, dass eine der beiden flachseitigen Oberflachen eines der beiden Werkstucke, das m Form eines Kühlkörpers ausgebildet ist, flachig kontaktiert. Überdies sind zumindest die Offnungen auf der anderen flachseitigen Oberflache, die von der einen flachseitigen Oberflache abge- kehrt ist, mit elektrisch isolierendem Material gef llt.
Die Schicht aus Klebstoff ist zwischen der Schicht aus Keramikmaterial und dem anderen Werkst ck, das em elektronisches Leistungsbauelement bildet, angeordnet und weist zwei vonem- ander abgekehrte flachseitige Oberflachen auf. Eine dieser
Oberflachen kontaktiert flachig das andere Werkstuck und haftet an diesem. Die andere Oberflache kontaktiert flachig die andere flachseitige Oberflache der Schicht aus Keramikmaterial und haftet an dieser.
Der Schicht aus Klebstoff ist zur Verbesserung der Wärmeleitfähigkeit dieser Schicht ein wärmeleitendes Pulver, beispielsweise Nickelpulver, beigemischt.
Diese bekannte Klebstoffverbindung wird wie folgt hergestellt: Auf dem einen Werkstuck wird die Keramikschicht durch thermisches Spritzen hergestellt, wobei an den flachseitigen Ober¬ flachen dieser Schicht von selbst die durch Hohlräume der Schicht definierten Offnungen entstehen.
Zumindest die Offnungen auf der von der einen flachseitigen Oberflache und dem einen Werkstuck abgekehrten anderen flach- seitigen Oberflache werden mit elektrisch isolierendem Material gefüllt.
Die das elektrisch isolierende Material aufweisende Schicht aus dem Keramikmaterial wird durch die KlebstoffSchicht, der das wärmeleitende Pulver beigemischt ist, mit dem anderen Werkstuck verbunden.
Aus der DE 34 14 065 AI (84 P 1304) und der EP 0 242 626 A2 (86 P 1242) geht jeweils eine andersartige, klebstofffreie Verbindung zwischen einem Werkstuck in Form eines elektronischen Bauelements und einem Werkstück m Form eines Substrats hervor, die eine Schicht aus wärmeleitendem Material m Form eines gesinterten Metallpulvers aufweist und damit sowohl wärmeleitend als auch elektrisch leitend ist.
Die Schicht aus dem gesinterten Metallpulver weist zwei von- einander abgekehrte flachseitige Oberflachen auf, deren jede durch Hohlräume in dieser Schicht definierte Offnungen aufweist .
Die Schicht ist zwischen den beiden Werkstucken so angeord- net, dass eine der beiden flachseitigen Oberflachen an einem der beiden Werkstucke und die andere flachseitige Oberflache am anderen Werkstuck angesintert ist.
Das gesinterte Metallpulver der Schicht ist von einer der flachseitigen Oberflachen m Richtung zur anderen flachseiti- gen Oberflache zusammenhangend. Die Herstellung der klebstofffreien Verbindung nach der DE 34 14 065 AI erfolgt durch die Schritte:
Auf das eine Werkstuck und/oder das andere Werkstuck wird ei- ne Paste aufgebracht, die aus einer Mischung aus einem bei einer bestimmten Sintertemperatur sinterbaren Metallpulver und einer Flüssigkeit besteht.
Die beiden Werkstucke werden derart zusammengebracht, dass sich die Paste zwischen den beiden Werkstucken befindet und beide Werkstucke kontaktiert.
Die Paste wird getrocknet und das getrocknete Pulver durch Erwarmen auf die Sintertemperatur gesintert. Dieses Sintern wird in nicht oxidierender Atmosphäre, beispielsweise in N2 oder H2 durchgeführt, und die Sintertemperatur betragt dabei etwa 400 °C. Wahrend des Sintervorganges kann ein mechanischer Druck, beispielsweise 80 bis 90 N/cm2, ausgeübt werden.
Die Herstellung der klebstofffreien Verbindung nach der EP 0 242 626 A2 wird durch die Schritte durchgeführt:
Auf ein Werkstuck wird eine Paste aufgebracht, die aus einer Mischung aus einem bei einer bestimmten Sintertemperatur sm- terbaren Metallpulver und einer Flüssigkeit besteht.
Die Paste wird getrocknet.
Das andere Werkstück wird auf das trockene Pulver aufgesetzt.
Danach wird die gesamte Anordnung unter gleichzeitiger Ausübung eines mechanischen Druckes von mindestens 900 N/cm2 auf Sintertemperatur erwärmt. Die Sintertemperatur betragt etwa
In der Dissertation von Sven Klaka: „Eine Niedertemperatur- Verbindungstechnik zum Aufbau von Leistungshalbleitermodu- len*, Cuvillier Verlag, Göttingen 1997 ist in diesem Zusammenhang der Sintervorgang bei Silberpulver bei niedrigen Sintertemperaturen zwischen 100 °C und 250°C untersucht und festgestellt, dass dieses Pulver zwischen 200°C und 250°C Sinterbrücken ausbilden kann.
Der Erfindung liegt die Aufgabe zugrunde, eine wärmeleitende Klebstoffverbindung zwischen zwei Werkstücken bereitzustellen, die eine größere Wärmeleitfähigkeit aufweist als eine Verbindung mit einer Schicht aus Klebstoff, der ein wärmeleitendes Pulver beigemischt ist.
Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.
Danach weist die erfindungsgemäße wärmeleitende Klebstoffverbindung auf: - Eine Schicht aus wärmeleitendem Material,
- die zwei voneinander abgekehrte flachseitige Oberflächen aufweist, - die an jeder flachseitigen Oberfläche durch Hohlräume in der Schicht definierte Öffnungen aufweist,
- die zwischen den beiden Werkstücken so angeordnet ist, dass eine der beiden flachseitigen Oberflächen eines der beiden Werkstücke und die andere flachseitige Oberfläche das andere Werkstück flächig kontaktiert, und
- deren wärmeleitendes Material von einer der flachseitigen Oberflächen in Richtung zur anderen flachseitigen Oberfläche zusammenhängend ist, sowie - einen Klebstoff,
- der die Öffnungen der Schicht ausfüllt und
- der an beiden Werkstücken haftet.
Der Begriff „zusammenhängend'" ist so zu verstehen, dass in der Schicht aus wärmeleitendem Material dieses Material von einer der flachseitigen Oberflächen in Richtung zur anderen flachseitigen Oberfläche der Schicht außerhalb der Hohlräume dieser Schicht mindestens so zusammenhängt oder eine Einheit bildet, wie dies in einer Schicht aus gesintertem Pulver aus wärmeleitendem Material der Fall ist. Ein solcher für die Wärmeleitfähigkeit günstiger Zusammenhang liegt bei einer thermisch und elektrisch schlecht leitenden Schicht aus Klebstoff, der wärmeleitendes Pulver beigemischt ist, nicht vor, da sich in dieser Schicht nur an vergleichsweise wenigen Berührungspunkten der Partikel des beigemischten Pulvers wärme- leitfähige Pfade ausbilden.
Je höher die Wärmeleitfähigkeit des wärmeleitenden Materials der Schicht ist, desto günstiger ist dies für die erfindungsgemäße wärmeleitende Klebstoffverbindung.
Ein Vorteil der erfindungsgemäßen Klebstoffverbindung besteht darin, dass sie wahlweise als elektrisch leitende oder elektrisch isolierende Verbindung realisiert werden kann, je nachdem, ob das für die Schicht gewählte wärmeleitende Material elektrisch leitend, beispielsweise Metall ist oder elektrisch isolierend, beispielsweise wärmeleitendes Keramikmaterial ist.
Die Festigkeit der erfindungsgemäßen Klebstoffverbindung setzt sich vorteilhafterweise zusammen aus der Eigenfestig- keit der Schicht aus wärmeleitendem Material und der Festigkeit des Klebstoffs, kann also bedeutend größer werden als bei einer Klebstoffverbindung aus reinem Klebstoff oder Kleb¬ stoff, dem Pulver aus wärmeleitendem Material beigemischt ist. Bei hohen Temperaturen dominiert in der Regel die Fes- tigkeit der Schicht aus wärmeleitendem Material. Der Klebstoff schützt vorteilhafterweise die Schicht aus wärmeleitendem Material, insbesondere bei hohen Temperaturen, gegen eine Reaktion der Schicht mit Sauerstoff oder einem anderen oxi- dierenden Gas.
Prinzipiell reicht es aus, wenn die Schicht aus dem wärmeleitenden Material nur Hohlräume aufweist, die Öffnungen an den flachseitigen Oberflachen der Schicht definieren. Beispielsweise kann die Schicht eine Folie aus wärmeleitendem Material mit Lochern sein, deren jedes auf beiden flachseitigen Oberflachen der Schicht e eine Öffnung definiert.
Bevorzugterweise ist die Schicht aus dem wärmeleitenden Material schwammartig mit Hohlräumen durchsetzt, so dass auch im Innern der Schicht Hohlräume vorhanden sind, die nicht unmittelbar an die flachseitigen Oberflachen der Schicht grenzen und keine Offnungen an diesen Oberflachen definieren.
Dabei st es vorteilhaft, wenn zumindest Hohlräume der Schicht, die Offnungen an einer flachseitigen Oberflache der Schicht definieren, miteinander m Verbindung stehen. Durch diese Hohlräume kann auf einfache Weise hartbarem flüssiger Klebstoff von außen m die Offnungen an einer flachseitigen Oberflache der Schicht auch dann eingebracht werden, wenn diese Oberflache bereits in Kontakt mit einem Werkstuck steht.
Gunstig ist es, wenn möglichst alle vorhandenen Hohlräume m Verbindung miteinander stehen und m Bezug auf den hartbaren flüssigen Klebstoff so klein bemessen sind, dass sie für diesen Klebstoff wie Kapillaren wirken, die eine Saugwirkung auf ihn ausüben. In diesem Fall kann der Hartbahre flussige Klebstoff vorteilhafterweise im Wesentlichen von selbst durch kapillare Saugwirkung von außen durch die Schicht und in die Offnungen an den flachseitigen Oberflachen dieser Schicht eingebracht werden, unabhängig davon, ob die Oberflachen be- reits m Kontakt mit einem Werkstuck stehen oder nicht. Alternativ oder zusätzlich zur kapillaren Saugwirkung kann der Hartbahre flussige Klebstoff mit Druckunterstutzung m die Schicht eingebracht werden.
Bei einer bevorzugten Ausführung der erfmdungsgemaßen Verbindung ist das wärmeleitende Material der Schicht aus der Gruppe der Metalle, insbesondere aus der Gruppe der Edel- und Halbedelmetalle gewählt. Besonders vorteilhaft ist es dabei, wenn das wärmeleitende Material Silber aufweist.
Bevorzugter- und vorteilhafterweise besteht die Schicht aus gesintertem Metallpulver. Eine solche Schicht, die elektrisch leitend ist, hat beispielsweise folgende Vorteile: Sie ist leicht herstellbar, sie kann unter Umstanden an ein Werkstuck oder an beide zu verbindenden Werkstucken angesintert sein und bereits von sich aus eine wärmeleitende Verbindung mit einem oder beiden Werkstucken bilden, welche die vom Klebstoff hergestellte Verbindung unterstutzt, sie ist von selbst so ausgebildet, dass sie an ihren flachseitigen Oberflachen durch Hohlräume definierte Offnungen aufweist und schwammar- tig mit Hohlräumen durchsetzt ist, wobei die Hohlräume mit- einander in Verb dug stehen und Bezug auf einen hartbaren flussigen Klebstoff so klein bemessen sein können, dass sie auf diesen Klebstoff e kapillare Saugwirkung ausüben usw.
Die erfmdungsgemaße Klebstoffverbindung ist besonders gut zum Befestigen eines elektronischen Bauelements, insbesondere eines Leistungsbauelements auf einem Tragerkorper geeignet, d.h., bei dieser Verbindung ist em Werkstuck das elektronisches Bauelement, insbesondere das Leistungsbauelement, und das andere Werkstuck der Tragerkorper für das elektronische Bauelement. Der Tragerkorper weist bevorzugterweise einen Kühlkörper für das elektronische Bauelement auf.
Die Erfindung stellt auch em Verfahren zum Herstellen einer wärmeleitenden Klebstoffverbindung zwischen zwei Werkstucken bereit, die eine größere Wärmeleitfähigkeit aufweist als eine Verbindung mit einer Schicht aus Klebstoff, der em wärmeleitendes Pulver beigemischt ist, und das die Schritte aufweist: - Herstellen einer Schicht aus wärmeleitendem Material,
- die zwei voneinander abgekehrte flachseitige Oberflachen aufweist,
- die an jeder flachseitigen Oberflache durch Hohlräume m der Schicht definierte Offnungen aufweist, - die zwischen den beiden Werkstücken so angeordnet ist, dass eine der beiden flachseitigen Oberflächen eines der beiden Werkstücke und die andere flachseitige Oberfläche das andere Werkstück jeweils flächig kontaktiert, und - deren wärmeleitendes Material von einer der flachseitigen Oberflächen in Richtung zur anderen flachseitigen Oberfläche zusammenhängend ist,
- Einbringen von flüssigem härtbaren Klebstoff in die Öffnungen der auf diese Weise zwischen den beiden Werkstücken ange- ordneten Schicht so, daß der eingebrachte flüssige Klebstoff jedes Werkstück benetzt, und
- Härten des so eingebrachten Klebstoffs.
Gemäß diesem Verfahren wird zuerst eine gut wärmeleitende Schicht hergestellt, die mit den beiden Werkstücken in Kontakt steht, und erst danach wird die Schicht mit den Werkstücken verklebt.
Die wärmeleitende Schicht wird bevorzugter und vorteilhafter- weise hergestellt durch die Schritte:
- Aufbringen einer Paste auf ein Werkstück und/oder das andere Werkstück, die aus einer Mischung aus einem bei einer bestimmten Sintertemperatur sinterbaren Pulver aus wärmeleitendem Material und einer Flüssigkeit besteht, - Zusammenbringen der beiden Werkstücke derart, dass sich die Paste zwischen den beiden Werkstücken befindet und die Paste beide Werkstücke kontaktiert,
- Trocknen der Paste und
- Sintern des getrockneten Pulvers durch Erwärmen auf die Sintertemperatur.
Die Schicht aus gesintertem Pulver kann vorteilhafterweise abhängig vom gewählten wärmeleitenden Material des Pulvers elektrisch leitend oder nicht leitend sein und überdies die gleichen Vorteile aufweisen, wie sie oben in Bezug auf die
Schicht aus gesintertem Metallpulver beschrieben sind, d.h., sie ist leicht herstellbar, sie kann unter Umständen an ein Werkstuck oder an beide zu verbindenden Werkstucken angesintert sein und bereits von sich aus eine wärmeleitende Verbindung mit einem oder beiden Werkstucken bilden, welche die vom Klebstoff hergestellte Verbindung unterstutzt, sie ist von selbst so ausgebildet, dass sie an ihren flachseitigen Oberflachen durch Hohlräume definierte Offnungen aufweist und schwammartig mit Hohlräumen durchsetzt ist, wobei die Hohlräume miteinander m Verbmdug stehen und in Bezug auf einen hartbaren flussigen Klebstoff so klein bemessen sein können, dass sie auf diesen Klebstoff eine kapillare Saugwirkung ausüben, usw.
Eine höhere Dichte und damit höhere Wärmeleitfähigkeit der gesinterten Schicht aus dem wärmeleitenden Pulver kann erhal- ten werden, wenn dem Pulver sehr feinere und/oder sehr viel gröbere Pulver aus wärmeleitendem Material beigemischt sind. Grobkörnige Pulver können aus Metall oder anderen Stoffen mit guter Wärmeleitfähigkeit bestehen, beispielsweise aus SiC o- der Diamant.
Eine hohe Dichte und damit gute Wärmeleitfähigkeit der gesinterten Schicht aus wärmeleitendem Material kann auch mit dem Schritt des Ausubens eines bestimmten mechanischen Drucks auf das Pulver wahrend des Sintervorgangs oder nach Abschluss dieses Vorgangs erreicht werden.
Vorzugsweise wird em aus der Gruppe der Metalle, insbesonde¬ re der Edel- und Halbedelmetalle gewähltes sinterbares Pulver verwendet .
Besonders vorteilhaft ist es, em Silber aufweisendes sinterbares Pulver zu verwenden. Wird em Silberpartikeln aufweisendes Pulver verwendet und das Sintern dieses Pulvers m o- xidierender Atmosphäre durchgeführt, reicht zum Sintern vor- teilhafterweise eine Sintertemperatur zwischen 100°C und
250°C aus. Das Sintern oxidierender Atmosphäre kann auch bei sinterbaren Pulvern von Vorteil sein, die von Silber verschiedene Stoffe enthalten.
Die Erfindung wird der nachfolgenden Beschreibung anhand der Zeichnungen beispielhaft naher erläutert: Es zeigen:
Figur 1 im Querschnitt zwei getrennte Werkstucke, auf die jeweils eine aus sinterbaren wärmeleitenden Material und einer Flüssigkeit bestehende Paste aufgebracht
Figur 2 die Werkstucke nach Figur 1 m der gleichen Darstellung aber im derart zusammengebrachten Zustand, dass die Paste eine beide Werkstucke kontaktierende emzi- ge durchgehende Schicht zwischen den Werkstucken bildet,
Figur 3 die Werkstucke nach Figur 2 m der gleichen Darstellung, aber nach dem Trocknen der Paste und dem Sm- tern des Pulvers aus wärmeleitenden Material zu einer gesinterten Schicht, die zwischen den Werkstucken angeordnet ist und beide Werkstucke kontaktiert,
Figur 4 den kreisförmig umschlossenen Ausschnitt A m der Fi- gur 3 m vergrößerter Darstellung,
Figur 5 den Ausschnitt A nach Figur 4 nach dem Füllen der
Offnungen und Hohlräume der gesinterten Schicht mit hartbarem flüssigen Klebstoff, und
Figur 6 den Ausschnitt A nach Figur 5 nach dem Harten des Klebstoffs.
Die Figuren sind schematisch und nicht maßstäblich. Die erf dungsgemaße wärmeleitende Klebstoffverbindung zwischen zwei Werkstucken wird am Beispiel eines bevorzugten speziellen Herstellungsverfahrens naher erläutert.
Die Figur 1 zeigt als Ausgangsstufe dieses Verfahrens zwei voneinander getrennte Werkstucke 1 und 2 die einander gegenüberliegende und for mußig einander angepasste, beispielsweise ebene Oberflachenabschnitte 11 bzw. 21 aufweisen.
Beispielsweise sei das Werkstuck 1 ein elektronisches Bauelement, z. B. em Leistungsbauelement, insbesondere em Leis- tungshalbleiter-Bauelement, und das Werkstuck 2 em Tragerkorper für das elektronische Bauelement, der insbesondere em Kühlkörper für dieses Element sein oder zumindest einen sol- chen umfassen kann.
Auf den Oberflachenabschnitt 21 des Werkstucks 2 und/oder den Oberflachenabschnitt 11 des Werkstucks 1 ist eine Paste 5 aufgebracht, die aus einer Mischung aus einem bei einer be- stimmten Sintertemperatur T sinterbaren Pulver aus wärmeleitendem Material und einer Flüssigkeit besteht. In der Figur 1 ist die Paste 5 auf jedes Werkstuck 1 und 2 aufgebracht dargestellt, es reicht aber aus, die Paste 5 nur auf em Werkstuck, beispielsweise das Werkstuck 2 aufzubringen.
Die beiden Werkstucke 1 und 2 werden nach dem Aufbringen der Paste 5 derart zusammengebracht, dass sich die Paste 5 zwischen den beiden Werkstucken 1 und 2 befindet und die Paste 5 den Oberflachenabschnitt 11 und 21 jedes Werkstucks 1 und 2 möglichst ganzflachig kontaktiert und eine dünne Schicht 3λ zwischen diesen Abschnitten 11 und 21 bildet, wonach die m der Figur 2 dargestellte Zwischenstufe des Verfahrens entstanden ist.
Danach wird die Schicht aus der Paste 5 getrocknet und nach Erwarmen auf die Sintertemperatur T gesintert. Für das Trocknen der Paste 5 und auch ein spateres Einbringen von hartbarem flüssigem Klebstoff m die gesinterte Schicht ist es von Vorteil, wenn die beiden zusammengebrachten Werkstucke 1 und 2 gegeneinander gedruckt werden, so dass die Paste 5 aus zumindest einem Werkstuck, beispielsweise dem Werkstuck 1 in einem kleinen Wulst 51 herausquillt, der dieses Werkstuck umgibt.
Das Trocknen der Paste 5 erfolgt beispielsweise durch Ver- dunstenlassen der m der Paste 5 enthaltenen Flüssigkeit, das durch Erwarmen der Paste 5, beispielsweise wahrend des Erwärmens auf Sintertemperatur T und/oder bei Unterdruck, beispielsweise im Vakuum vorgenommen werden kann. Der Wulst 51 tragt vorteilhafterweise dazu bei, dass die Flüssigkeit ruck- standsfrei und ohne Blasenbildung verdunsten kann.
Nach dem Sintern des getrockneten Pulvers ist die in Figur 3 dargestellte Zwischenstufe des Verfahrens entstanden.
Diese Zwischenstufe weist die zwischen den Oberflachenabschnitten 11 und 21 der Werkstucke 1 und 2 angeordnete gesinterte Schicht 3 aus dem getrockneten Pulver auf, die zwei voneinander abgekehrten flachseitigen Oberflachen 31, 31 und einen zumindest em Werkstuck umgebenden Wulst 30 aufweist, der aus dem Wulst 51 entstanden ist.
Eine der flachseitigen Oberflachen 31, 31 grenzt flachig an den Oberflachenabschnitt 11 des Werkstucks 1, die andere flachig an den Oberflachenabschnitt 21 des Werkstucks 2.
Zur Erhöhung der Dichte der gesinterten Schicht 3 kann wahrend des Sintervorgangs em bestimmter mechanischer Druck p auf das Pulver zwischen den Werkstucken 1 und 2 ausgeübt werden.
Die Sintertemperatur T wird vom Pulvermaterial bestimmt. Der in der Figur 4 vergrößert dargestellte Ausschnitt A der Figur 3 zeigt beispielhaft und schematisch die Struktur der gesinterten Schicht 3.
In der Figur 4 enthalt der schräg schraffierte Teil 34 der Schicht 3 gesintertes Pulver aus wärmeleitendem Material, das von einer flachseitigen Oberflache 31 in Richtung 35 zur anderen flachseitigen Oberflache 31 der Schicht 3 zusammenhan
Alle nicht schraffierten weißen Bereiche 32 der Schicht 3 stellen Hohlräume der Schicht 3 dar. Obgleich alle diese weißen Bereiche jeweils mit dem Bezugszeichen 32 versehen sein mußten, sind der Übersichtlichkeit halber nur einige wenige dieser Bereiche mit diesem Bezugszeichen 32 bezeichnet.
Die Hohlräume 32 durchsetzen die Schicht 3 schwammartig und sind zum größten Teil miteinander verbunden, wenngleich nicht m der dargestellten Schnittebene. Hohlräume 32, die an eine flachseitige Oberflachen 31 grenzen, definieren jeweils eine Öffnung 33 m dieser Oberflache 31.
Das bis hierher beschriebene Verfahren ist ähnlich dem in der DE 34 14 065 AI beschriebenen Verfahren zum Herstellen einer klebstofffreien Verbindung und auch dem m der EP 0 242 626 A2 beschriebenen Verfahren zum Herstellen einer solchen Verbindung und es können alle dort angegebenen Werkstucke und Materialien für diese Werkstucke, die Flüssigkeit der Paste und das Pulver der Paste sowie die dort angegebenen Sinter- te peraturen und Drucke auch bei dem hier beschriebenen Verfahren zum Herstellen der erf dungsgemaßen Klebstoffverbindung verwendet werden. Die gesamte Offenbarung der DE 34 14 065 AI und die gesamte Offenbarung der EP 0 242 626 A2 sind Bestandteil der vorliegenden Anmeldung.
Bei den aus diesen beiden Druckschriften bekannten Verfahren besteht die gesinterte Schicht aus Metall und ist an beide Werkstucke angesintert. Auch zum Herstellen der erf dungsgemaßen Schicht 3 kann e aus der Gruppe der Metalle gewähltes sinterbares Pulver verwendet werden. Insbesondere kann em aus der Gruppe der Edel- und Halbedelmetalle gewähltes sin- terbares Pulver verwendet werden. Eine solche Schicht 3 kann an das Werkstuck 1 und/oder 2 angesintert sein. Es können vorteilhafterweise auch sinterbare Pulver verwendet werden, die nicht an em Werkstuck 1 und/oder 2 ansmtern. Die Schicht 3 kann auch mit einem wärmeleitenden nichtmetalli- sehen sinterbaren Pulver, beispielsweise einem Keramikmaterial, SiC, Diamant usw. aufweisenden Pulver hergestellt sein.
Gunstig ist es, wenn der Oberflachenabschnitt 11 bzw. 21 eines Werkstucks 1 und/oder 2 glatt, insbesondere poliert ist, da m diesem Fall die Partikel der gesinterten Schicht 3 in besonders engen Kontakt mit dem betreffenden Oberflachenabschnitt 11 oder 21 kommen und für eine gute Wärmeübertragung zwischen Werkstuck 1 und/oder 2 und gesinterter Schicht 3 sorgen.
Die Offnungen 33 auf den flachseitigen Oberflachen 31 der zwischen den Werkstücken 1 und 2 angeordneten gesinterten Schicht 3 werden nun mit hartbarem flussigen Klebstoff gefüllt, der die Oberflachenabschnitte 11 und 21 der Werkstucke 1 und 2 benetzt.
Aufgrund der schwammartig mit miteinander m Verbindung stehenden Hohlräumen 32 durchsetzten Struktur der Schicht 3 kann das Füllen der Offnungen 33 mit flussigem Klebstoff durch Einsaugen dieses Klebstoffs in die Schicht 3 solange, bis möglichst alle Hohlräume 32 und Offnungen 33 mit dem Klebstoff gefüllt sind, durchgeführt werden.
Das Einsaugen des Klebstoffs kann durch Kapillarwirkung der m Verbindung miteinander stehenden Hohlräumen 32 auf den flussigen Klebstoff und/oder druckunterstutzt erfolgen. Gunstig ist es, wenn der Klebstoff möglichst dünnflüssig ist. Als hartbarer flüssiger Klebstoff 4 ist beispielsweise flussiges Epoxidharz geeignet.
Vorteilhaft für das Einsaugen des Klebstoffs m die Schicht 3 ist der Wulst 30, da er dem einzusaugenden Klebstoff eine relativ große Flache bietet.
Nach einem derartigen Füllen der Offnungen 33 der Schicht 3 ist eine Verfahrenszwischenstufe entstanden, die m der Figur 5, welche wie die Figur 4 den Ausschnitt A der Figur 3 vergrößert zeigt, dargestellt ist. Der m die Schicht 3 eingesaugte und die Hohlräume 32 und Offnungen 33 der Schicht 3 füllende Klebstoff ist der Figur 5 waagrecht gestrichelt angedeutet und mit 4 bezeichnet. In den Offnungen 33 benetzt der Klebstoff 4 die Oberflachenabschnitte 11 und 21 der Werkstucke 1 und 2.
Nach dem Harten des eingesaugten Klebstoffs 4 ist die fertige erfmdungsgemaße Klebstoffverbindung entstanden, die m der Figur 6, welche wie die Figuren 4 und 5 den Ausschnitt A der Figur 3 vergrößert zeigt, dargestellt ist. Der die Hohlräume 32 und Offnungen 33 der Schicht 3 füllende gehartete Klebstoff ist m der Figur 6 schräg und abwechselnd dünn und dick schraffiert angedeutet und mit 4λ bezeichnet. In den Offnungen 33 haftet der gehartete Klebstoff 4 λ an den Oberflachenabschnitten 11 und 21 der Werkstucke 1 und 2.
Eine besonders bevorzugte Ausfuhrungsform der erfmdungsgema- ßen Klebstoffverbindung weist eine Schicht 3 aus gesintertem Silberpulver auf, das für das vorstehend beschriebene Verfahren zum Herstellen dieser Klebstoffverbindung besonders geeignet ist, da gemäß der oben erwähnten Dissertation Silber schon bei niedrigen Temperaturen zwischen 100°C und 250°C, vorzugsweise zwischen etwa 150°C und 250°C S terbrucken ausbilden kann. Zur Herstellung dieser Klebstoffverbindung werden beispielsweise geeignete feinkornige Silberpulver mit einer beispielsweise organischen Flüssigkeit, z. B. Terp eol oder Ethylen- glykolether zu einer Paste 5 angerührt, die wie eine Leitkle- berpaste verarbeitet werden kann.
Nach Auftrag der Paste 5, zum Beispiel mit einem Dispenser, auf wenigsten eines der beiden Werkstucke 1 oder 2, das beispielsweise em Tragerkorper für em elektronisches Bauele- ment m Form eines Chips ist, wird das andere Werkstuck 2 bzw. 1, im Beispiel der Chip, so auf die Paste 5 gesetzt, daß sie ringsum in einem kleinen Wulst 51 herausquillt. So kann bei langsamem Erwarmen der Paste 5 die Flüssigkeit ruck- standsfrei und ohne Blasenbildung verdunsten und die Paste 5 trocknen.
Nach dem Trocknen ist zwischen den Werkstucken 1 und 2 eine Schicht 3 und em Wulst 30 aus trockenem Silberpulver entstanden, die gesintert werden.
Für die Sinterung von Silber bei weniger als 250°C ist eine oxidierende Atmosphäre unabdingbar. Überraschenderweise kann m der dünnen Schicht 3 aus Silberpulver von weniger als 100 um zwischen den Werkstucken 1 und 2 der Sauerstoff genügend rasch emdiffundieren, so daß auch m Flachen von bis zu 5x5 cm2 oder mehr eine Vers terung des Silberpulvers stattfindet. Beispielsweise findet in Flachen von 2x2 cm2 innerhalb von ca. 15 Minuten eine Versmterung des Silberpulvers stattfindet .
Es wurde die Erkenntnis gewonnen, dass Silberpulver in Ö2~ haltiger Atmosphäre, beispielsweise in Luft, überraschenderweise schon bei niedrigen Temperaturen ab 150 °C beginnt zu versmtern. Der Vorgang des Versmterns zeigt sich in diesem fall dadurch, dass das Silberpulver sich zu einem Hohlräume aufweisenden Schwamm verfestigt und em auffallendes Anhaf- tungsvermogen erlangt. Beispielsweise haftet eine heiße Pm- zettenspitze bei leichtem Druck am verfestigten Schwamm aus dem Silberpulver an. Auch auf vielen glatten Oberflächen wie zum Beispiel Silizium, Glas, Korund, Polyimid tritt diese An- haftung auf, die fest genug ist, um zum Beispiel einen Chip auf Glas anzusintern und auf Raumtemperatur abzukühlen, zum Einsaugen von härtbarem flüssigen Klebstoff und beispielsweise zum Drahtbonden. Auch für Silber gilt, dass polierte Oberflächen hierfür besonders geeignet sind, da die Silberpartikel in engen Kontakt zur Oberfläche kommen. Bei hoher Tempe- ratur geht das Anhaftvermögen wieder zurück.
Die so erzeugte gesinterte Schicht 3 aus Silberpulver ist schwammartig von Hohlräumen 32 durchsetzt und weist an ihren flachseitigen Oberflächen 31 Öffnungen auf. Die Dichte dieser Schicht 3 liegt je nach Ausgangspulver zwischen 40-50 Vol . % Silber und kann durch Beimischung sehr feiner und auch sehr viel gröberer Pulver weiter erhöht werden. Als grobkörnige Pulver können statt Silber auch andere Stoffe mit guter Wärmeleitfähigkeit, aber geringem thermischen Ausdehnungskoeffi- zienten wie zum Beispiel SiC oder Diamant eingesetzt werden, beispielsweise um den Wärmeausdehnungskoeffizienten der gesinterten Schicht 3 aus Silberpulver besser an einen Chip anzupassen.
Eine hohe Silberdichte und damit gute Wärmeleitfähigkeit kann auch durch Druckanwendung bei 150°C bis 250°C erreicht werden, wobei Druck und Zeit bei weitem niedriger bleiben können als bei beim bekannten Verfahren nach der EP 0 242 626 A2.
Die gesinterte Schicht 3 aus Silberpulver weist eine große kapillare Saugkraft auf, so daß jeder dünnflüssige Klebstoff 4 in die Schicht 3 eingesaugt oder mit Druckunterstützung eingepreßt werden kann.
Die Festigkeit der Klebstoffverbindung nach dem Härten des eingesaugten Klebstoffs 4 setzt sich dann zusammen aus der Eigenfestigkeit der gesinterten Schicht 3 aus Silberpulver und der des gehärteten Klebstoffs 4 kann also bedeutend größer werden als bei einer reinen Klebung. Bei hohen Temperaturen dominiert die Festigkeit der gesinterten Schicht 3 aus Silberpulver. Da nach dem Harten des Klebstoffs 4 der weitere Zutritt von Sauerstoff zur gesinterten Schicht 3 aus Silberpulver unterbunden ist, ändert sich vorteilhafterweise das Sintergefuge dieser Schicht 3 bei hohen Temperaturen dann nicht mehr.
Die erfindungsgemäße Klebstoffverbindung kann auch anders hergestellt werden. Beispielsweise kann eine Schicht 3 aus wärmeleitendem Material, beispielsweise Metall, verwendet werden, die Hohlräume 32 in Form von Lochern aufweist, deren jedes durch die Schicht 3 von einer zur anderen flachseitigen Oberflache 31 der Schicht 3 hindurchgeht, und die mit einer der beiden flachseitigen Oberflachen 31, 31 dieser Schicht 3 flach auf den Oberflachenabschnitt 11 bzw. 21 eines der beiden Werkstucke 1 und 2 aufgebracht ist.
Jedes Loch 32 definiert jeder der beiden flachseitigen 0- berflachen 31, 31 je eine Öffnung 33.
Diese Schicht 3 kann beispielsweise eine flach auf den Ober- flachenabschnitt 11 bzw. 21 eines der beiden Werkstuck 1 und 2 aufgebrachte und von vornehere die Locher 32 und Offnungen 33 aufweisende dünne Folie aus wärmeleitendem Material, beispielsweise Metall, sein.
Anstelle der dünnen Folie kann auch eine Schicht 3 aus warme- leitendem Material verwendet werden, die durch Bedampfen, Sputtern, thermisches Bespritzen usw. des Oberflachenabschnitts 11 bzw. 21 eines der beiden Werkstuck 1 oder 2 auf diesen Oberflachenabschnitt 11 bzw. 21 aufgebracht wird, und der dann die Locher 32 und Offnungen 33 erzeugt werden, beispielsweise photolithografisch und durch Atzen der Schicht 3 mit einem Atzmittel. Die Löcher 32 und Öffnungen 33 der aufgebrachten Schicht 3 werden durch die in der vom Oberflächenabschnitt 11 oder 21 des einen Werkstücks 1 bzw. 2 abgekehrten flachseitigen Oberfläche 31 der Schicht 3 mit härtbarem flüssigen Klebstoff 4 gefüllt, der den Oberflächenabschnitt 11 oder 21 des einen Werkstücks 1 bzw. 2 benetzt.
Auf die von diesem Oberflächenabschnitt 11 oder 21 des einen Werkstücks 1 bzw. 2 abgekehrte flachseitige Oberfläche 31 der mit dem flüssigen Klebstoff 4 gefüllten Schicht 3 wird der
Oberflächenabschnitt 21 bzw. 11 des anderen Werkstück 2 bzw.l flach aufgesetzt, so dass der flüssige Klebstoff 4 diesen O- berflächenabschnitt 21 bzw. 11 benetzt.
Danach wird der Klebstoff 4 gehärtet, so dass er an den beiden Oberflächenabschnitten 11 und 21 der beiden Werkstücke 1 und 2 haftet.

Claims

Patentansprüche
1. Wärmeleitende Klebstoffverbindung zwischen zwei Werkstücken (1, 2), aufweisend: - Eine Schicht (3) aus wärmeleitendem Material,
- die zwei voneinander abgekehrte flachseitige Oberflächen (31) aufweist,
- die an jeder flachseitigen Oberfläche (31) durch Hohlräume (32) in der Schicht (3) definierte Öffnungen (33) auf- weist,
- die zwischen den beiden Werkstücken (1, 2) so angeordnet ist, dass eine der beiden flachseitigen Oberflächen (31) eines (1; 2) der beiden Werkstücke (1, 2) und die andere flachseitige Oberfläche (31) das andere Werkstück (2; 1) flächig kontaktiert, und
- deren wärmeleitendes Material von einer der flachseitigen Oberflächen (31) in Richtung (34) zur anderen flachseitigen Oberfläche (31) zusammenhängend ist, sowie - einen Klebstoff (4),
- der die Öffnungen (33) der Schicht (3) ausfüllt und
- der an beiden Werkstücken (1, 2) haftet.
2. Verbindung nach Anspruch 1, wobei die Schicht (3) schwamm- artig mit Hohlräumen (32) durchsetzt ist.
3. Verbindung nach Anspruch 1 oder 2, wobei zumindest Hohlräume (32) der Schicht (3), die Öffnungen (33) an einer flachseitigen Oberfläche (31) der Schicht (3) definieren, miteinander in Verbindung stehen.
4. Verbindung nach einem der vorhergehenden Ansprüche, wobei das wärmeleitende Material aus der Gruppe der Metalle gewählt ist .
5. Verbindung nach Anspruch 4, wobei das wärmeleitende Material aus der Gruppe der Edel- und Halbedelmetalle gewählt ist.
6. Verbindung nach Anspruch 5, wobei das wärmeleitende Material Silber aufweist.
7. Verbindung nach einem der Ansprüche 4 bis 6, wobei die wärmeleitende Schicht (3) aus gesintertem Metallpulver be- steht.
8. Verbindung nach einem der vorhergehenden Ansprüche, wobei em Werkstuck (1; 2) em elektronisches Bauelement und das andere Werkstuck (2; 1) em Tragerkorper für das elektroni- sehe Bauelement ist.
9. Verbindung nach Anspruch 8, wobei das elektronische Bauelement (1; 2) em Leistungsbauelement ist.
10. Verbindung nach Anspruch 8 oder 9, wobei der Tragerkorper (2; 1) einen Kühlkörper für das elektronische Bauelement (1; 2) aufweist.
11. Verfahren zum Herstellen einer wärmeleitenden Klebstoff- Verbindung zwischen zwei Werkstucken, aufweisend die Schritte: - Herstellen einer Schicht (3) aus wärmeleitendem Material,
- die zwei voneinander abgekehrte flachseitige Oberflachen (31) aufweist, - die an jeder flachseitigen Oberflache (31) durch Hohlräume (32) m der Schicht (3) definierte Offnungen (33) aufweist,
- die zwischen den beiden Werkstucken (1, 2) so angeordnet ist, dass eine der beiden flachseitigen Oberflachen (31) eines (1; 2) der beiden Werkstucke (1, 2) und die andere flachseitige Oberflache (31) das andere Werkstuck (2; 1) jeweils flachig kontaktiert, und - deren wärmeleitendes Material von einer der flachseitigen Oberflächen (31) in Richtung (34) zur anderen flachseitigen Oberfläche (31) zusammenhängend ist,
- Einbringen von flüssigem härtbaren Klebstoff (4) in die Öffnungen (33) der auf diese Weise zwischen den beiden Werkstücken (1, 2) angeordneten Schicht (3) so, daß der eingebrachte flüssige Klebstoff (4) jedes Werkstück (1,2) benetzt und
- Härten des so eingebrachten Klebstoffs (4).
12. Verfahren nach Anspruch 11, mit einem Herstellen der wärmeleitenden Schicht (3) durch die Schritte:
- Aufbringen einer Paste (P) auf ein Werkstück (1; 2) und/oder das andere Werkstück (2; 1), die aus einer Mischung aus einem bei einer bestimmten Sintertemperatur (T) sinterbaren Pulver aus wärmeleitendem Material und einer Flüssigkeit besteht,
- Zusammenbringen der beiden Werkstücke (1, 2) derart, dass sich die Paste (5) zwischen den beiden Werkstücken (1, 2) be- findet und beide Werkstücke (1, 2) kontaktiert,
- Trocknen der Paste (P) und
- Sintern des getrockneten Pulvers () durch Erwärmen auf die Sintertemperatur (T) .
13. Verfahren nach Anspruch 12, mit dem Schritt:
- Ausüben eines bestimmten mechanischen Drucks (p) auf das Pulver während des Sintervorgangs.
14. Verfahren nach Anspruch 12 oder 13, wobei ein aus der Gruppe der Metalle gewähltes sinterbares Pulver verwendet wird.
15. Verfahren nach Anspruch 14, wobei ein aus der Gruppe der Edel- und Halbedelmetalle gewähltes sinterbares Pulver ver- wendet wird.
16. Verfahren nach Anspruch 15, wobei ein Silber aufweisendes sinterbares Metallpulver verwendet wird.
17. Verfahren nach einem der Ansprüche 11 bis 16, wobei das Sintern des Pulvers in oxidierender Atmosphäre durchgeführt wird.
18. Verfahren nach Anspruch 16 und 17, wobei eine Sintertemperatur (T) zwischen 100°C und 250°C verwendet wird.
EP01907338A 2000-02-29 2001-01-09 Wärmeleitende klebstoffverbindung und verfahren zum herstellen einer wärmeleitenden klebstoffverbindung Withdrawn EP1259987A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10009678 2000-02-29
DE10009678A DE10009678C1 (de) 2000-02-29 2000-02-29 Wärmeleitende Klebstoffverbindung und Verfahren zum Herstellen einer wärmeleitenden Klebstoffverbindung
PCT/DE2001/000054 WO2001065603A1 (de) 2000-02-29 2001-01-09 Wärmeleitende klebstoffverbindung und verfahren zum herstellen einer wärmeleitenden klebstoffverbindung

Publications (1)

Publication Number Publication Date
EP1259987A1 true EP1259987A1 (de) 2002-11-27

Family

ID=7632917

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01907338A Withdrawn EP1259987A1 (de) 2000-02-29 2001-01-09 Wärmeleitende klebstoffverbindung und verfahren zum herstellen einer wärmeleitenden klebstoffverbindung

Country Status (6)

Country Link
US (1) US6823915B2 (de)
EP (1) EP1259987A1 (de)
JP (1) JP2003525974A (de)
KR (1) KR100735933B1 (de)
DE (1) DE10009678C1 (de)
WO (1) WO2001065603A1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10016129A1 (de) * 2000-03-31 2001-10-18 Siemens Ag Verfahren zum Herstellen einer wärmeleitenden Verbindung zwischen zwei Werkstücken
US7311967B2 (en) * 2001-10-18 2007-12-25 Intel Corporation Thermal interface material and electronic assembly having such a thermal interface material
US6946190B2 (en) * 2002-02-06 2005-09-20 Parker-Hannifin Corporation Thermal management materials
DE10222284B4 (de) * 2002-05-18 2008-07-03 Leoni Ag Bauteilpaarung und Verfahren zur Einstellung der Materialfließfähigkeit zumindest eines Bauteils einer Bauteilpaarung
JP4271112B2 (ja) * 2004-09-21 2009-06-03 株式会社東芝 半導体装置
DE102007037538A1 (de) 2007-08-09 2009-02-12 Robert Bosch Gmbh Baugruppe sowie Herstellung einer Baugruppe
JP5123633B2 (ja) * 2007-10-10 2013-01-23 ルネサスエレクトロニクス株式会社 半導体装置および接続材料
CN101911219B (zh) 2008-01-17 2015-12-16 日亚化学工业株式会社 导电性材料及其制造方法、电子设备、发光装置及其制造方法
DE102008055137A1 (de) * 2008-12-23 2010-07-01 Robert Bosch Gmbh Elektrisches oder elektronisches Verbundbauteil sowie Verfahren zum Herstellen eines elektrischen oder elektronischen Verbundbauteils
DE102008055134A1 (de) * 2008-12-23 2010-07-01 Robert Bosch Gmbh Elektrisches oder elektronisches Verbundbauteil sowie Verfahren zum Herstellen eines elektrischen oder elektronischen Verbundbauteils
JP2010171271A (ja) * 2009-01-23 2010-08-05 Renesas Technology Corp 半導体装置およびその製造方法
US8535787B1 (en) * 2009-06-29 2013-09-17 Juniper Networks, Inc. Heat sinks having a thermal interface for cooling electronic devices
JP2011014556A (ja) * 2009-06-30 2011-01-20 Hitachi Ltd 半導体装置とその製造方法
US8223498B2 (en) 2009-11-11 2012-07-17 Juniper Networks, Inc. Thermal interface members for removable electronic devices
DE102010021764B4 (de) * 2010-05-27 2014-09-25 Semikron Elektronik Gmbh & Co. Kg Verfahren zur Niedertemperatur Drucksinterverbindung zweier Verbindungspartner
JP5429092B2 (ja) * 2010-07-21 2014-02-26 株式会社デンソー 半導体装置および半導体装置の製造方法
JP5707896B2 (ja) * 2010-11-24 2015-04-30 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
DE102010063021A1 (de) * 2010-12-14 2012-06-14 Robert Bosch Gmbh Elektronische Baugruppe mit verbesserter Sinterverbindung
JP2012178513A (ja) * 2011-02-28 2012-09-13 Mitsubishi Materials Corp パワーモジュールユニット及びパワーモジュールユニットの製造方法
US8569109B2 (en) 2011-06-30 2013-10-29 Infineon Technologies Ag Method for attaching a metal surface to a carrier, a method for attaching a chip to a chip carrier, a chip-packaging module and a packaging module
US9282638B2 (en) * 2012-01-13 2016-03-08 Zycube Co., Ltd. Electrode, electrode material, and electrode formation method
DE102015100868B4 (de) * 2015-01-21 2021-06-17 Infineon Technologies Ag Integrierte Schaltung und Verfahren zum Herstellen einer integrierten Schaltung
EP3758048B1 (de) * 2015-10-02 2022-11-09 Mitsui Mining & Smelting Co., Ltd. Eine bindungsübergangsstruktur
JP6780457B2 (ja) * 2016-11-10 2020-11-04 株式会社デンソー 半導体装置およびその製造方法
DE102016124215A1 (de) * 2016-12-13 2018-06-14 Semikron Elektronik Gmbh & Co. Kg Verfahren zur Niedertemperatur-Drucksinterverbindung zweier Verbindungspartner und hiermit hergestellte Anordnung
KR20190130148A (ko) * 2017-05-12 2019-11-21 헤레우스 도이칠란트 게엠베하 운트 코. 카게 금속 페이스트에 의해 부품들을 연결하기 위한 방법
CN111226308A (zh) * 2018-02-09 2020-06-02 华为技术有限公司 一种具有高稳定性粘结层的半导体装置及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711363A (en) * 1970-04-21 1973-01-16 Ethyl Corp Foamed core sandwich construction
JPS54106173A (en) * 1978-02-08 1979-08-20 Nec Corp Semiconductor device
JPS6066843A (ja) 1983-09-22 1985-04-17 Hitachi Ltd 集積回路パツケ−ジ
DE3414065A1 (de) * 1984-04-13 1985-12-12 Siemens AG, 1000 Berlin und 8000 München Anordnung bestehend aus mindestens einem auf einem substrat befestigten elektronischen bauelement und verfahren zur herstellung einer derartigen anordnung
IN168174B (de) * 1986-04-22 1991-02-16 Siemens Ag
JPH03217048A (ja) * 1990-01-22 1991-09-24 Hitachi Ltd 接合部用伝熱材料
US5492623A (en) * 1991-10-07 1996-02-20 Nippon Seisen Co., Ltd. Laminated filter material, its fabricating method and filter using a laminated filter material
US5994144A (en) * 1992-03-04 1999-11-30 Fujitsu Limited Simplified environmental atmosphere measuring method
DE4315272A1 (de) * 1993-05-07 1994-11-10 Siemens Ag Leistungshalbleiterbauelement mit Pufferschicht
AU8126894A (en) 1993-10-29 1995-05-22 Advanced Refractory Technologies, Inc. Thermally-conductive di-electric composite materials, and methods of forming same
TW350194B (en) * 1994-11-30 1999-01-11 Mitsubishi Gas Chemical Co Metal-foil-clad composite ceramic board and process for the production thereof the invention relates to the metal-foil-clad composite ceramic board and process for the production
US6453899B1 (en) * 1995-06-07 2002-09-24 Ultimate Abrasive Systems, L.L.C. Method for making a sintered article and products produced thereby
DE19529627C1 (de) * 1995-08-11 1997-01-16 Siemens Ag Thermisch leitende, elektrisch isolierende Verbindung und Verfahren zu seiner Herstellung
JP3166060B2 (ja) * 1995-12-11 2001-05-14 三菱マテリアル株式会社 放熱シート
US5904796A (en) * 1996-12-05 1999-05-18 Power Devices, Inc. Adhesive thermal interface and method of making the same
JPH10308565A (ja) * 1997-05-02 1998-11-17 Shinko Electric Ind Co Ltd 配線基板
NL1007018C2 (nl) * 1997-09-11 1999-03-12 Hollandse Signaalapparaten Bv Vezel-kunststof composiet lichaam voor electromagnetische afscherming, voorzien van een elektrische contactstrip.
JPH11354692A (ja) * 1998-06-10 1999-12-24 Sumitomo Electric Ind Ltd 半導体機器材料とその製造方法及びそれを用いてなる半導体装置
US6869642B2 (en) * 2000-05-18 2005-03-22 Raymond G. Freuler Phase change thermal interface composition having induced bonding property

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0165603A1 *

Also Published As

Publication number Publication date
KR100735933B1 (ko) 2007-07-06
US6823915B2 (en) 2004-11-30
US20030020159A1 (en) 2003-01-30
WO2001065603A1 (de) 2001-09-07
JP2003525974A (ja) 2003-09-02
DE10009678C1 (de) 2001-07-19
KR20020086588A (ko) 2002-11-18

Similar Documents

Publication Publication Date Title
DE10009678C1 (de) Wärmeleitende Klebstoffverbindung und Verfahren zum Herstellen einer wärmeleitenden Klebstoffverbindung
DE69618458T2 (de) Halbleiterteil mit einem zu einem verdrahtungsträger elektrisch verbundenem chip
DE102013216633B4 (de) Vorgesinterte Halbleiterchip-Struktur und Verfahren zum Herstellen
DE102014222819B4 (de) Leistungshalbleiterkontaktstruktur mit Bondbuffer sowie Verfahren zu dessen Herstellung
DE102012105840B4 (de) Verfahren zum Befestigen einer Metallfläche auf einen Träger und Verfahren zum Befestigen eines Chips auf einen Chipträger
DE102010003533B4 (de) Substratanordnung, Verfahren zur Herstellung einer Substratanordnung, Verfahren zur Herstellung eines Leistungshalbleitermoduls und Verfahren zur Herstellung einer Leistungshalbleitermodulanordnung
EP1269533A1 (de) Verfahren zum herstellen einer wärmeleitenden verbindung zwischen zwei werkstücken
DE102007037538A1 (de) Baugruppe sowie Herstellung einer Baugruppe
DE102015104518B3 (de) Verfahren zur Herstellung einer Schaltungsträgeranordnung mit einem Träger, der eine durch ein Aluminium-Siliziumkarbid-Metallmatrixkompositmaterial gebildete Oberfläche aufweist
EP2743973A2 (de) Verfahren zur Kontaktierung eines Halbleiterelements mittels Schweißens eines Kontaktelements an eine Sinterschicht auf dem Halbleiterelement und Halbleiterbauelement mit erhöhter Stabilität gegenüber thermomechanischen Einflüssen
DE102014106714A1 (de) Bolzenkontakthügel und Packungsstruktur desselben sowie Verfahren zur Herstellung derselben
DE3442537A1 (de) Verfahren zum blasenfreien verbinden eines grossflaechigen halbleiter-bauelements mit einem als substrat dienenden bauteil mittels loeten
DE112015006583T5 (de) Leitfähige Klebstruktur des Festkörperkristalls des LED-Flip-Chips und ihr Montageverfahren
DE102009018541A1 (de) Kontaktierungsmittel und Verfahren zur Kontaktierung elektrischer Bauteile
DE102013108354A1 (de) Elektronikbauelement und Verfahren zum Herstellen eines Elektronikbauelements
DE102019211109A1 (de) Verfahren und Entwärmungskörper-Anordnung zur Entwärmung von Halbleiterchips mit integrierten elektronischen Schaltungen für leistungselektronische Anwendungen
DE112013001555B4 (de) Verfahren zum Herstellen einer Halbleitervorrichtung
DE10223738B4 (de) Verfahren zur Verbindung integrierter Schaltungen
DE102018115509A1 (de) Wärmedissipationsvorrichtung, Halbleiterpackagingsystem und Verfahren zum Herstellen derselben
DE102010025311B4 (de) Verfahren zum Aufbringen einer metallischen Schicht auf ein keramisches Substrat, Verwendung des Verfahrens und Materialverbund
DE102005046710B4 (de) Verfahren zur Herstellung einer Bauelementanordnung mit einem Träger und einem darauf montierten Halbleiterchip
DE102009000541A1 (de) Verfahren zur Reduzierung der Oberflächenrauigkeit einer metallischen Oberfläche
DE102007010882B4 (de) Verfahren zur Herstellung einer Lötverbindung zwischen einem Halbleiterchip und einem Substrat
DE102019126505B4 (de) Verfahren zum herstellen einer mehrchipvorrichtung
DE102017204887B4 (de) Verfahren mit Nutzung eines Flüssigmetalls zur Fügung thermoelektrischer Module in einem SLID-Prozess und damit hergestellte Anordnung und Verwendung zur Fügung thermoelektrischer Module

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020807

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 20070222

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080729