EP1235652A2 - Lichthärtung von strahlungshärtbaren massen unter schutzgas - Google Patents

Lichthärtung von strahlungshärtbaren massen unter schutzgas

Info

Publication number
EP1235652A2
EP1235652A2 EP00981286A EP00981286A EP1235652A2 EP 1235652 A2 EP1235652 A2 EP 1235652A2 EP 00981286 A EP00981286 A EP 00981286A EP 00981286 A EP00981286 A EP 00981286A EP 1235652 A2 EP1235652 A2 EP 1235652A2
Authority
EP
European Patent Office
Prior art keywords
radiation
protective gas
curable
weight
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00981286A
Other languages
English (en)
French (fr)
Other versions
EP1235652B1 (de
Inventor
Erich Beck
Oliver Deis
Peter Enenkel
Wolfgang Schrof
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP09151021A priority Critical patent/EP2047916A3/de
Publication of EP1235652A2 publication Critical patent/EP1235652A2/de
Application granted granted Critical
Publication of EP1235652B1 publication Critical patent/EP1235652B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/283Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun in combination with convection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0486Operating the coating or treatment in a controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/14Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects using gases or vapours other than air or steam, e.g. inert gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2210/00Drying processes and machines for solid objects characterised by the specific requirements of the drying good
    • F26B2210/12Vehicle bodies, e.g. after being painted

Definitions

  • the invention relates to a process for the production of molding compositions and coatings on substrates by curing radiation-curable compositions under protective gas by irradiation with light, characterized in that the protective gas is a gas which is heavier than air and the protective gas flows away during the process radiation curing is prevented by a suitable device or measures.
  • This oxygen inhibition effect can be achieved by using large amounts of photoinitiators, by using coinitiators, e.g. B. amines, high-dose UV radiation, e.g. with high-pressure mercury lamps or by adding barrier-forming waxes.
  • coinitiators e.g. B. amines
  • high-dose UV radiation e.g. with high-pressure mercury lamps
  • barrier-forming waxes e.g.
  • Radiation-curable compositions can be processed without water or organic solvents. Therefore, the process of radiation curing is suitable for paintwork that is carried out in medium or small craft businesses or in the home. So far, however, the complex implementation of the method and the devices required for this, in particular the UV lamps, have prevented the use of radiation curing in these areas.
  • the object of the invention was therefore a simple method of radiation curing which can also be used in small craft businesses or in the home and is generally suitable for curing three-dimensionally coated objects.
  • coatings on planar surfaces can be hardened on several sides or on all sides (three-dimensional hardening method).
  • a protective gas that is heavier than air is used in the process.
  • the molecular weight of the gas is therefore greater than 28.8 g / mol (corresponds to the molecular weight of a gas mixture of 20% oxygen and 80% nitrogen), preferably greater than 32, in particular greater than 35 g / mol.
  • Noble gases such as argon, hydrocarbons and halogenated hydrocarbons. Carbon dioxide is particularly preferred.
  • the supply of carbon dioxide can be obtained from pressure vessels, filtered combustion gases e.g. of natural gas or as dry ice.
  • the supply with dry ice is seen as advantageous, in particular for applications in the non-industrial or in the small industrial area. Because dry ice can be transported and stored as a solid in simple containers insulated with foam. The dry ice can be used as such, it is then gaseous at the usual use temperatures.
  • the protective gas is heavier than air, so air is displaced upwards. The lateral escape of the gas must be prevented.
  • One possibility is to use a container as a diving pool. This process is particularly suitable for the three-dimensional coating process.
  • the protective gas is filled into the container and the air is displaced from it.
  • the container now contains a protective gas atmosphere in which the substrate, which is coated with the radiation-curable composition, or the molded body can be immersed. Then can radiation curing is carried out, for example by sunlight or by means of suitable lamps.
  • the area to be hardened by te geeigne ⁇ devices, in particular partition walls are deferred, so that the protective gas during the irradiation time can not escape.
  • the method can also be used to coat printable or printed substrates and radiation-cure them.
  • Suitable substrates are e.g. Paper, cardboard, foils or textiles.
  • the radiation-curable coating can be the printing ink or an overprint varnish. Radiation curing can be used directly in the printing process, e.g. done in the printing press. His printing, offset, gravure, portrait, flexo or pad printing processes are mentioned as printing processes.
  • the oxygen content in the protective gas atmosphere is preferably less than 15% by weight, particularly preferably less than 10% by weight, very particularly preferably less than 5% by weight, based on the total amount of gas in the protective gas atmosphere; in particular, the method according to the invention can easily be used to set oxygen contents below 1%, below 0.1% and even below 0.01% by weight.
  • a protective gas atmosphere is understood to mean the gas volume which surrounds the substrate at a distance of up to 10 cm from its surface.
  • dry ice is used as protective gas, e.g. the plunge pools, which may also be storage containers for dry ice, can be easily loaded. Monitoring of carbon dioxide consumption must be determined directly from the consumption of dry ice solids. Dry ice evaporates directly to gaseous carbon dioxide at -78.5 ° C. In a pool, this causes air oxygen with little swirl to be displaced upwards out of the pool.
  • the residual oxygen can be determined using commercially available atmospheric oxygen measuring devices.
  • the basin can be covered to minimize gas losses and possibly also against heating during non-operating times. Appropriate safety measures should be taken due to the oxygen-reduced atmosphere in the immersion and storage basin and the associated choking hazard. Adequate ventilation and carbon dioxide drainage should also be ensured in adjacent work areas.
  • the painted objects can be lowered into the plunge pool for exposure individually using lifting and lowering devices or using assembly line-like devices in the case of series painting.
  • a slow lowering or lifting or the use of pre- and Nachflutern is suitable.
  • the upstream and downstream flooders are an extension of the inert gas basin to separate air turbulence zones from the radiation zone.
  • the inert gas basin can be expanded from the exposure zone both in height and in width on both sides.
  • the dimensions of the receiving water are primarily dependent on the speed of immersion and immersion and the geometry of the object.
  • the duration of the irradiation depends on the desired degree of hardening of the coating or of the shaped body.
  • the degree of hardening can be determined from the detackification or the scratch resistance, e.g. against the fingernail or against other objects such as pencil, metal or plastic tips.
  • resistance tests against chemicals e.g. Suitable solvents, inks, etc.
  • Spectroscopic methods, in particular Raman and infrared spectroscopy, or measurements of the dielectric or acoustic properties, etc. are particularly suitable without damaging the paint surfaces.
  • Radiation curing can be carried out by sunlight or by lamps, which are preferably installed in the immersion pool in such a way that the desired multi-sided or all-round curing of the coated substrates takes place.
  • the radiation-curable composition contains radiation-curable compounds as binders. These are compounds with free-radically or cationically polymerizable and therefore radiation-curable ethylenically unsaturated groups.
  • the radiation-curable composition 0.001 to 12, particularly preferably 0.1 to 8 and very particularly preferably 0.5 to 7 mol, radiation-curable ethylenically unsaturated groups per 1000 g of radiation-curable compounds.
  • (meth) acrylate compounds such as polyester (meth) acrylates, polyether (meth) acrylates, urethane (meth) acrylates, epoxy (meth) acylates, silicone (meth) acrylates, acrylated polyacrylates.
  • At least 40 mol%, particularly preferably at least 60 mol%, of the radiation-curable ethylenically unsaturated groups are (meth) acrylic groups.
  • the radiation curable compounds can contain other reactive groups, e.g. Melamine, isocyanate, epoxy, anhydride, alcohol, carboxylic acid groups for additional thermal curing, e.g. B. by chemical reaction of alcohol, carboxylic acid, amine, epoxy, anhydride, isocyanate or melamine groups, contain (dual your).
  • other reactive groups e.g. Melamine, isocyanate, epoxy, anhydride, alcohol, carboxylic acid groups for additional thermal curing, e.g. B. by chemical reaction of alcohol, carboxylic acid, amine, epoxy, anhydride, isocyanate or melamine groups, contain (dual your).
  • the radiation curable compounds can e.g. as a solution, e.g. in an organic solvent or water, as an aqueous dispersion, as a powder.
  • the radiation-curable compounds and thus also the radiation-curable compositions are preferably flowable at room temperature.
  • the radiation-curable compositions preferably contain less than 20% by weight, in particular less than 10% by weight, of organic solvents and / or water. They are preferably solvent-free and anhydrous (100% solids).
  • the radiation-curable compositions can contain further constituents as binders.
  • binders For example, Pigments, leveling agents, dyes, stabilizers etc.
  • Photoinitiators are generally used for curing with UV light.
  • suitable photoinitiators are benzophenone, alkylbenzophenones, halogen-methylated benzophenones, Michler's ketone, anthrone and halogenated benzophenones.
  • Benzoin and its derivatives are also suitable.
  • effective photoinitiators are anthraquinone and many of its derivatives, for example ⁇ -methylanthraquinone, tert.
  • acylphosphine oxide group such as acylphosphine oxides or bisacylphosphine oxides, for example 2,6-trimethylbenzoyldiphenylphosphine oxide (Lucirin® TPO).
  • Suitable photoinitiators for visible light which contains no UV components, are in particular the above-mentioned photoinitiators with acylphosphino oxide groups.
  • the content of the photoinitiators in the radiation-curable composition can be low or that photoinitiators can be dispensed with entirely.
  • the radiation-curable compositions preferably contain less than 10 parts by weight, in particular less than 4 parts by weight, particularly preferably less than 1.5 parts by weight of photoinitiator per 100 parts by weight of radiation-curable compounds.
  • the radiation-curable composition can be applied to the substrate to be coated by conventional methods or can be shaped accordingly.
  • Radiation curing can take place as soon as the substrate is surrounded by the protective gas.
  • Radiation curing can be carried out with all lamps that have previously been used for radiation curing. Radiation curing can be carried out using electron beams, X-rays or gamma rays, UV radiation or visible light. It is an advantage of the method according to the invention that radiation curing can be carried out with visible light which contains only little or no (wavelengths below 300 nm). The radiation curing in the method according to the invention can therefore be carried out with sunlight or with lamps which serve as a substitute for sunlight. These lamps radiate in the visible range above 400 nm and have no or hardly any UV light components below 5300 nm).
  • the proportion of radiation in the wavelength range below 300 nm is less than 20%, preferably less than 10%, particularly preferably less than 0%, in particular less than 1 or 0.5% or less than 0.1% of the integral of the emitted intensity over the entire wavelength range below 1000 nm.
  • the above radiation is the 5 radiation actually available for curing, that is, when filters are used, the radiation after filter passage.
  • Lamps that have a line spectrum come into consideration, that is to say emit only at certain wavelengths, e.g. B. LEDs 0 or lasers.
  • Lamps with a broadband spectrum that is to say a distribution of the emitted light over a wavelength range, are also suitable.
  • the intensity maximum is preferably in the visible range above 400 nm.
  • Incandescent lamps for example, Incandescent lamps, halogen lamps, xenon lamps.
  • Mercury vapor lamps with filters to avoid or reduce radiation below 300 nm may also be mentioned.
  • Pulsed lamps are also suitable, e.g. Photo flash lamps or high-performance flash lamps (from VISIT).
  • a particular advantage of the process is the ability to use lamps with low energy requirements and a low UV component, e.g. of 500 watt halogen lamps as used for general lighting purposes. This means that there is no need for a high-voltage unit for the power supply (for mercury vapor lamps) and, if necessary, for light protection measures, and halogen lamps also pose no risk in air due to ozone development, such as 0 with short-wave UV lamps. This makes radiation hardening easier with portable radiation devices and applications "on site", ie independent of fixed industrial hardening systems, are possible.
  • lamps in particular including lamp housings with reflectors, may be required.
  • existing cooling devices, radiation filters and power source connection suitable which have a low weight, for example less than 20 kg, preferably less than 8 kg.
  • Particularly light lamps are e.g. Halogen lamps, incandescent lamps, light-emitting diodes, portable lasers, photo flash lamps etc. These lamps are also characterized by their particularly easy installation in container interiors or container walls. Likewise, the technical effort for power supply is reduced, especially in comparison to mercury vapor lamps in the medium and high pressure range that have been customary in the industry to date.
  • the preferred current sources for the lamps are household AC, e.g. 220 V / 50 Hz or the supply of portable generators, batteries, accumulators, solar cells, etc.
  • the method according to the invention is suitable for the production of coatings on substrates and for the production of moldings.
  • Suitable substrates include z. B. those made of wood, plastics, metal, mineral or ceramic materials.
  • the z. B. contain radiation-curable mass impregnated fiber materials or fabrics, or moldings for stereolithography.
  • Another advantage of the method is that the distances between lamps and radiation-curable mass can be increased compared to curing in air. Overall, lower radiation doses can be used and a radiator unit can be used to harden larger areas.
  • the process enables new applications in the field of curing coatings and molding compounds of complicated three-dimensionally shaped objects, e.g. Furniture, vehicle bodies, housing and equipment construction, for mobile applications such as floor and hall floor painting. Because of the low technical and material expenditure, the process is also suitable for medium and small craft businesses, the home work and do it your soap area.
  • example 1 A radiation-curable composition was produced by mixing the following components.
  • Laromer® LR 8987 (BASF Aktiengesellschaft), a urethane acrylate
  • Laromer® LR 8863 38.5% by weight Laromer® LR 8863, a polyether acrylate 3.5% by weight Iragucure® 184 (Ciba Specialty Chemicals), a photoinitiator 0.5% by weight Lucirin® TPO (BASF) a photoinitiator
  • Tinuvin®400 Ciba Specialty Chemicals
  • UV absorber 1.5% by weight of Tinuvin® 292
  • UV absorber 1.5% by weight of Tinuvin® 292
  • a glass pane was coated with this material (layer thickness 50 ⁇ m).
  • the glass pane is placed on the 45 cm level and irradiated for 2 min with a 500 watt halogen lamp at a distance of 50 cm from the halogen lamp.
  • the paint is highly scratch-resistant and cannot be scratched with a wooden spatula and white typewriter paper under manual pressure and rubbing.
  • the radiation-curable composition corresponded to Example 1.
  • the radiation-curable composition was applied as a clear lacquer to the housing of an exterior car mirror and cured according to the invention as described in Example 1.
  • the paint obtained was highly scratch-resistant.

Description

Lichthärtung von s rahlungshärtbaren Massen unter Schutzgas
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Formmassen und Beschichtungen auf Substraten durch Härtung von strahlungshärtbaren Massen unter Schutzgas durch Bestrahlen mit Licht dadurch gekennzeichnet, daß es sich bei dem Schutzgas um ein Gas handelt, das schwerer ist als Luft und das seitliche Wegfließen des Schutzgases während der Strahlungshärtung durch eine geeignete Vorrichtung oder Maßnahmen verhindert wird.
Bei der Strahlungshärtung von radikalisch polymerisierbaren Verbindungen, z.B. von (Meth) acrylatverbindungen kann eine starke Inhibierung der Polymerisation bzw. Härtung durch Sauerstoff, auftreten. Diese Inhibierung führt zu einer unvollständigen Härtung an der Oberfläche und so z.B. zu klebrigen Beschichtungen.
Dieser Sauerstoffinhibierungseffekt kann durch den Einsatz hoher Fotoinitiatormengen, durch Mitverwendung von Coinitiatoren, z. B. Aminen, energiereicher UV-Strahlung hoher Dosis, z.B. mit Quecksilberhochdrucklampen oder durch Zusatz von barrierebildenden Wachsen vermindert werden.
Bekannt ist auch die Durchführung der Strahlungshärtung unter einem inerten Schutzgas, z.B. aus EP -A- 540884, aus Joachim Jung, RadTech Europe 99, Berlin 08. bis 10.11.1999 in Berlin (UV-Ap- plications in Europe Yesterday-Today Tomorrow) .
Gewünscht ist ein Verfahren der Strahlungshärtung bei dem auf energiereiche UV- ichtquellen und die damit verbundenen, notwendigen Sicherheitsmaßnahmen verzichtet werden kann. Gleichzeitig soll das Verfahren aber möglichst einfach durchzuführen sein.
Strahlungshärtbare Massen können ohne Wasser oder organische Lösungsmittel verarbeitet werden. Daher eignet sich das Verfahren der Strahlungshärtung für Lackierungen welche in mittleren oder kleinen Handwerksbetrieben oder im häuslichen Bereich durch- geführt werden. Bisher hat aber die aufwendige Durchführung des Verfahrens und die dazu benötigten Vorrichtungen, insbesondere die UV-Lampen, eine Anwendung der Strahlungshärtung in diesen Bereichen verhindert. Aufgabe der Erfindung war daher ein einfaches Verfahren der Strahlungshärtung, welches auch in kleinen Handwerksbetrieben oder im häuslichen Bereich anwendbar ist und generell geeignet ist, dreidimensional beschichtete Gegenstände auszuhärten.
Die Aufgabe wurde gelöst durch das eingangs definierte Verfahren.
Durch das erfindungsgemäße Verfahren können Beschichtungen auf planaren Flächen (zweidimensionales Härtungsverfahren) oder auch Beschichtungen auf dreidimensionale Formkörpern mehrseitig oder allseitig gehärtet werden (dreidimensionales Härtungsverfahren) ) .
Bei dem Verfahren wird ein Schutzgas verwendet, welches schwerer ist als Luft. Das Molgewicht des Gases ist daher größer als 28,8 g/mol (entspricht dem Molgewicht eines Gasgemisches von 20 % Sauerstoff und 80 % Stickstoff), vorzugsweise größer 32, insbesondere größer 35 g/mol. In Betracht kommen z.B. Edelgase wie Argon, Kohlenwasserstoffe und halogenierte Kohlenwasserstoffe. Besonders bevorzugt ist Kohlendioxid.
Die Versorgung mit Kohlendioxid kann aus Druckbehältern, gefilterten Verbrennungsgasen z.B. von Erdgas oder als Trockeneis erfolgen. Als vorteilhaft, insbesondere für Anwendungen im nicht industriellen oder im kleinindustriellen Bereich wird die Versor- gung mit Trockeneis gesehen. Da Trockeneis als Feststoff in einfachen mit Schaumstoffen isolierten Behältern transportiert und gelagert werden kann. Das Trockeneis kann als solches verwendet werden, bei den üblichen Verwendungstemperaturen liegt es dann gasförmig vor.
Das Schutzgas ist schwerer als Luft, Luft wird daher nach oben verdrängt. Verhindert werden muß das seitliche Entweichen des Gases .
Dazu können unterschiedlichste Vorrichtungen oder Maßnahmen geeignet sein.
Eine Möglichkeit ist die Verwendung eines Behälters als Tauchbek- ken. Dieses Verfahren ist insbesondere geeignet für das dreidi- mensionale Beschichtungsverf hren.
Das Schutzgas wird in den Behälter eingefüllt und die Luft daraus verdrängt .
Der Behälter enthält nun eine Schutzgasatmosphäre in die das Substrat, welches mit der strahlungshärtbaren Masse beschichtet ist, oder der Formkörper eingetaucht werden kann. Anschließend kann die Strahlungshärtung erfolgen, z.B. durch Sonnenlicht oder durch in geeigneter Weise angebrachte Lampen.
Bei der Strahlungshärtung von beschichteten Flächen, insbesondere Bodenflächen, kann die jeweilig zu härtende Fläche durch geeigne¬ te Vorrichtungen, insbesondere Stellwände abgegrenzt werden, so daß das Schutzgas während der Bestrahlungsdauer nicht entweichen kann.
Durch das Verfahren können weiterhin bedruckbare oder bedruckte Substrate beschichtet und strahlengehärtet werden. Als Substrate in Betracht kommen z.B. Papier, Karton, Folien oder Textilien. Bei der strahlungshärtbaren Beschichtung kann es sich um die Druckfarbe oder einen Überdrucklack handeln. Die Strahlungshär- tung kann unmittelbar beim Druckverfahren, z.B. in der Druckmaschine erfolgen. Als Druckverfahren genannt seine Offset-, Tief-, Hoch-, Flexo- oder Tampondruckverfahren.
Während der Strahlungshärtung beträgt der Sauerstoffgehalt in der Schutzgasatmosphäre vorzugsweise weniger als 15 Gew.-%, besonders bevorzugt weniger als 10 Gew.-%, ganz besonders bevorzugt weniger als 5 Gew.-%, bezogen auf die gesamte Gasmenge in der Schutzgasatmosphäre; insbesondere können mit dem erfindungsgemäßen Verfahren leicht Sauerstoffgehalte unter 1 % auch unter 0,1 % und sogar unter 0,01 Gew. -% eingestellt werden.
Unter Schutzgasatmosphäre wird dabei das Gasvolumen verstanden, welches das Substrat in einem Abstand von bis zu 10 cm von seiner Oberfläche umgibt.
Im Falle der Verwendung von Trockeneis als Schutzgas kann z.B. eine Beschickung der Tauchbecken, die unter Umständen gleichzeitig Lagerbehälter für Trockeneis sind, einfach erfolgen. Die Überwachung des Kohlendioxidverbrauchs ist unmittelbar am Ver- brauch des Trockeneisfeststoffes zu bestimmten. Trockeneis verdampft bei -78,5°C direkt zu gasförmigem Kohlendioxid. In einem Becken wird dadurch verwirbelungsarm Luftsauerstoff nach oben aus dem Becken verdrängt.
Der Restsauerstoff kann mit handelsüblichen Luftsauerstoffmeßgeräten bestimmt werden. Das Becken kann zur Minimierung von Gasverlusten und evtl. auch gegen Erwärmung bei Nichtbetriebszeiten abgedeckt werden. Wegen der Sauerstoffreduzierten Atmosphäre im Tauch- und Vorratsbecken und der damit verbundenen Erstickungsge- fahr sollten geeignete Sicherheitsmaßnahmen getroffen werden. Ebenso sollte in angrenzenden Arbeitsbereichen eine ausreichende Belüftung und Kohlendioxidabfluß sichergestellt werden.
Die lackierten Gegenstände können einzeln mit Hebe- und Senkvor- richtungen oder über fließbandähnliche Vorrichtungen bei Serien- lackierungen in das Tauchbecken zur Belichtung abgesenkt werden. Um ein möglichst vollständiges Fluten des Gegenstandes zu gewähr¬ leisten ohne zuviel Luft mit in die Bestrahlungszone zu reißen, ist entweder ein langsames Absenken bzw. Heben oder die Verwendung von Vor- und Nachflutern geeignet. Die Vor- bzw. Nach- fluter sind eine Erweiterung der Inertgasbecken, um Luftwirbe- lungszonen von der Bestrahlungszone zu trennen. Dazu kann das Inertgasbecken von der Belichtungszone ausgehend sowohl in die Höhe als auch beidseitig in die Breite erweitert werden. Die Ausmaße der Vorfluter sind in erster Linie abhängig von Ein- und Aus- tauchgeschwindigkeit und von der Geometrie des Gegenstandes.
Die Dauer der Bestrahlung hängt vom gewünschten Härtungsgrad der Beschichtung oder des Formkörpers ab. Der Härtungsgrad läßt sich im einfachsten Fall an der Entklebung oder an der Kratzfestigkeit z.B. gegenüber dem Fingernagel oder gegenüber anderen Gegenständen wie Bleistift-, Metall- oder Kunststoffspitzen bestimmen. Ebenso sind im Lackbereich übliche Beständigkeitsprüfungen gegenüber Chemikalien, z.B. Lösemittel, Tinten etc. geeignet. Ohne Be- Schädigung der Lackflächen sind vor allem spektroskopische Methoden, insbesondere die Raman- und Infrarotspektroskopie, oder Messungen der dielektrischen oder akustischen Eigenschaften usw. geeignet. Die Strahlungshärtung kann durch Sonnenlicht erfolgen oder durch Lampen, welche vorzugsweise im Tauchbecken so ange- bracht sind, dass die gewünschte mehrseitige oder allseitige Härtung der beschichteten Substrate erfolgt.
Für flächige immobile Substrate z.B. Fußböden oder am Boden fixierte Gegenstände können einfache Eindämmvorrichtungen zur Vermeidung des Abflusses von Kohlendioxid angebracht werden. Beispiele sind das Abdichten des Türbereichs in Räumen z.B. bis zu 40 cm Höhe ab Fußboden z.B. mit verklebten Folien, oder aus aufstellen von Wänden aus Holz, Kunststoff, aufgespannten Folien oder Papierbahnen. Das Kohlendioxidgas kann durch Einfüllen aus Gasflaschen oder als Trockeneis erfolgen. Weiterhin können Behälter mit Trockeneis hängend abgebracht werden, aus denen Kohlendioxid auf das zu härtende Material ausströmen kann.
Die strahlungshärtbare Masse enthält strahlungshärtbare Verbindungen als Bindemittel. Dies sind Verbindungen mit radikalisch oder kationisch polymerisierbaren und daher strahlungshärt- baren ethylenisch ungesättigten Gruppen. Vorzugsweise enthält die strahlungshärtbare Masse 0,001 bis 12, besonders bevorzugt 0,1 bis 8 und ganz besonders bevorzugt 0,5 bis 7 Mol, strahlungshärt- bare ethylenisch ungesättigte Gruppen auf 1000 g strahlungshärtbare Verbindungen.
Als strahlungshärtbare Verbindungen kommen z. B. (Meth)acryl- verbindungen, Vinylether, Vinylamide, ungesättigte Polyester z.B. auf Basis von Maleinsäure oder Fumarsäure gegebenenfalls mit Styrol als Reaktivverdünner oder Maleinimid/Vinylether- Systemen in Betracht.
Bevorzugt sind (Meth) acrylatverbindungen wie Polyester (meth) - acrylate, Polyether (meth) acrylate, Urethan (meth) acrylate, Epoxi (meth) acreylate, Silikon (meth) acrylate, acrylierte Poly- acrylate.
Vorzugsweise handelt es sich bei mindestens 40 Mol-% besonders bevorzugt bei mindestens 60 Mol-% der strahlungshärtbaren ethylenisch ungesättigten Gruppen um (Meth) acrylgruppen.
Die strahlungshärtbaren Verbindungen können weitere reaktive Gruppen, z.B. Melamin-, Isocyanat-, Epoxid- , Anhydrid-, Alkohol-, Carbonsäuregruppen für eine zusätzliche thermische Härtung, z. B. durch chemische Reaktion von Alkohol-, Carbonsäure- , Amin-, Epoxid-, Anhydrid-, Isocyanat- oder Melamingruppen, enthalten (dual eure) .
Die strahlungshärtbaren Verbindungen können z.B. als Lösung, z.B. in einem organischen Lösungsmittel oder Wasser, als wäßrige Dis- persion, als Pulver vorliegen.
Bevorzugt sind die strahlungshärtbaren Verbindungen und somit auch die strahlungshärtbaren Massen bei Raumtemperatur fließ - fähig. Die strahlungshärtbaren Massen enthalten vorzugsweise weniger als 20 Gew. -%, insbesondere weniger als 10 Gew. -% organische Lösemittel und/oder Wasser. Bevorzugt sind sie lösungsmittelfrei und wasserfrei (100 % Feststoff) .
Die strahlungshärtbaren Massen können neben den strahlungshärt- baren Verbindungen als Bindemittel weitere Bestandteile enthalten. In Betracht kommen z.B. Pigmente, Verlaufsmittel, Farbstoffe, Stabilisatoren etc.
Für die Härtung mit UV- icht werden im allgemeinen Photo - initiatoren verwendet. Als Photoinitiatoren in Betracht kommen z.B. Benzophenon, Alkyl- benzophenone, halogenmethylierte Benzophenone, Michlers Keton, Anthron und halogenierte Benzophenone. Ferner eignen sich Benzoin und seine Derivate. Ebenfalls wirksame Photoinitiatoren sind Anthrachinon und zahlreiche seiner Derivate, beispielsweise ß-Methylanthrachinon, tert. -Butylanthrachinon und Anthrachinon- carbonsäureester und, besonders wirksam, Photoinitiatoren mit einer Acylphosphinoxidgruppe wie Acylphosphinoxide oder Bisacyl- phosphinoxide, z.B. 2 , , 6 -Trimethylbenzoyldiphenylphosphinoxid (Lucirin® TPO) .
Soweit die strahlungshärtbaren Massen Photoinitiatoren enthalten, sollten diese Photoinitiatoren Absorbtionswellenlängen im Bereich des emittierten Lichts haben. Geeignete Photoinitiatoren für sichtbares Licht, welches keine UV-Anteile enthält, sind insbesondere die obengenannten Photoinitiatoren mit Acylphosphino- xidgruppen.
Es ist ein Vorteil der Erfindung, daß der Gehalt der Photo- initiatoren in der strahlungshärtbaren Masse gering sein kann oder auf Photoinitiatoren ganz verzichtet werden kann.
Vorzugsweise enthalten die strahlungshärtbaren Massen weniger als 10 Gew. -Teile, insbesondere weniger als 4 Gew. -Teile, besonders bevorzugt weniger als 1,5 Gew. -Teile Photoinitiator auf 100 Gew. - Teile strahlungshärtbare Verbindungen.
Ausreichend ist insbesondere eine Menge von 0 Gew. -Teilen bis 1,5 Gew. -Teilen, insbesondere 0,01 bis 1 Gew. -Teil Photo- initiator.
Die strahlungshärtbare Masse kann nach üblichen Verfahren auf das zu beschichtende Substrat aufgebracht werden oder in die entsprechende Form gebracht werden.
Die Strahlungshärtung kann dann erfolgen, sobald das Substrat von dem Schutzgas umgeben ist.
Die Strahlungshärtung kann mit allen Lampen, welche auch bisher für die Strahlungshartung eingesetzt wurden, erfolgen. Die Strahlungshärtung kann mit Elektronenstrahlen, Röntgen- oder Gammastrahlen, UV-Strahlung oder sichtbarem Licht erfolgen. Es ist ein Vorteil des erfindungsgemäßen Verfahrens, daß die Strahlungshartung mit sichtbarem Licht, welches nur geringe oder auch keine (Wellenlängen unter 300 nm enthält, erfolgen kann. Die Strahlungshartung beim erfindungsgemäßen Verfahren kann daher mit Sonnenlicht erfolgen oder mit Lampen, welche als Sonnenlichtersatz dienen. Diese La.mpen strahlen im sichtbaren Bereich oberhalb 400 nm ab und haben keine oder kaum UV-Lichtanteile unter 5 300 nm) .
Insbesondere beträgt beim erfindungsgemäßen Verfahren der Anteil von Strahlung im Wellenlängenbereich unter 300 nm weniger als 20 %, vorzugsweise weniger als 10 %, besonders bevorzugt weniger 0 als 5 %, insbesondere weniger als 1 bzw. 0,5 % oder weniger als 0,1 % des Integrals der abgestrahlten Intensität über den gesamten Wellenlängenbereich unterhalb 1000 nm.
Bei der vorstehenden Strahlung handelt es sich um die tatsächlich 5 für die Härtung zur Verfügung stehende Strahlung, also bei Verwendung von Filtern um die Strahlung nach Filterdurchgang.
In Betracht kommen Lampen, die ein Linienspektrum aufweisen, daß heißt nur bei bestimmten Wellenlängen abstrahlen, z. B. Leucht- 0 dioden oder Laser.
In Betracht kommen ebenfalls Lampen mit Breitbandspektrum, daß heißt, einer Verteilung des emittierten Lichts über einen Wellenlängenbereich. Das Intensitätsmaximum liegt dabei vorzugsweise im 5 sichtbaren Bereich oberhalb 400 nm.
Genannt seien z.B. Glühlampen, Halogenlampen, Xenonlampen. Genannt seien auch Quecksilberdampflampen mit Filtern zur Vermeidung oder Verringerung von Strahlung unter 300 nm. 0
Ebenso geeignet sind gepulste Lampen z.B. Fotoblitzlampen oder Hochleistungsblitzlampen (Fa. VISIT) . Ein besonderer Vorteil des Verfahrens ist die Einsetzbarkeit von Lampen mit niedrigem Energiebedarf und niedrigem UV-Anteil, z.B. von 500 Watt Halogen-Lam- 5 pen, wie sie zu allgemeinen Beleuchtungszwecken eingesetzt werden. Dadurch kann sowohl auf eine Hochspannungseinheit zur Stromversorgung (bei Quecksilberdampflampen) sowie gegebenenfalls auf Lichtschutzmaßnahmen verzichtet werden, auch besteht mit Halogenlampen auch an Luft keine Gefährdung durch Ozonentwicklung wie 0 bei kurzwelligen UV-Lampen. Dadurch wird die Strahlungshartung mit transportablen Bestrahlungsgeräten erleichtert und Anwendungen „vor Ort", also unabhängig von feststehenden industriellen Härtungsanlagen sind möglich.
5 Für den mobilen Einsatz und für Anwendungen, die eine Vielzahl von Lampen zur Ausleuchtung des Substrates benötigen sind besonders Lampen, beinhaltend Lampengehäuse mit Reflektor, evtl. vor- handenen Kühleinrichtungen, Strahlungsfiltern und Stromquellenanschluß geeignet, die ein geringes Gewicht z.B. unter 20 kg vorzugsweise unter 8 kg, haben.
Besonders leichte Lampen sind z.B. Halogenlampen, Glühlampen, Leuchtdioden, tragbare Laser, Fotoblitzlampen etc. Diese Lampen zeichnen sich auch durch besonders leichte Einbaumöglichkeit in Behälterinnenräume oder Behälterwandungen aus. Ebenso wird der technische Aufwand zur Stromversorgung vor allem im Vergleich zu bisher industrieüblichen QuecksilberdampfStrahlern im Mittel- und Hochdruckbereich verringert. Als bevorzugte Stromquellen der Lampen dienen neben Netzkraftstrom vor allem haushaltsübliche Wechselspannung, z.B. 220 V/50 Hz oder die Versorgung mit transportablen Generatoren, Batterien, Akkumulatoren, Solarzellen, etc.
Das erfindungsgemäße Verfahren eignet sich zur Herstellung von Beschichtungen auf Substraten und zur Herstellung von Formkörpern.
Als Substrate in Betracht kommen z. B. solche aus Holz, Kunststoffe, Metall, mineralische oder keramische Materialien.
Als Formkörper genannt seien z. B. Verbundwerkstoffe, die z. B. mit strahlungshärtbarer Masse getränkte Fasermaterialien oder Gewebe enthalten, oder Formkörper für die Stereolithographie.
Ein weiterer Vorteil des Verfahrens ist, daß die Abstände zwischen Lampen und strahlungshärtbarer Masse gegenüber der Härtung an Luft vergrößerbar sind. Insgesamt können geringere Strah- lungsdosen eingesetzt werden und eine Strahlereinheit kann zur Aushärtung größerer Flächen verwendet werden.
Damit ermöglicht das Verfahren zusätzlich zu üblichen Anwendungen der Strahlungshartung neue Anwendungen im Bereich der Härtung von Beschichtungen und Formmassen komplizierter dreidimensional geformter Gegenstände z.B. Möbel, Fahrzeugkarosserien, Gehäuse- und Gerätebau, bei mobilen Einsätzen wie Fuß- und Hallenbodenlackie- rung . Wegen des geringen technischen und materiellen Aufwandes ist das Verfahren auch geeignet für mittlere und kleine Hand- werksbetriebe, den Heimarbeits- und do it your seif -Bereich.
Beispiele
Beispiel 1 Es wurde eine strahlungshärtbare Masse durch Mischen folgender Bestandteile hergestellt.
35 Gew.-% Laromer® LR 8987 (BASF Aktiengesellschaft), ein Urethanacrylat
20 Gew. -% Hexandioldiacrylat,
38,5 Gew. -% Laromer® LR 8863, ein Polyetheracrylat 3,5 Gew.-% Iragucure® 184 (Ciba Spezialitätenchemie), ein Photoinitiator 0,5 Gew. -% Lucirin® TPO (BASF) ein Photoinitiator
2 Gew.-% Tinuvin®400 (Ciba Spezialitätenchemie), ein UV-Absorber 1,5 Gew.-% Tinuvin® 292, ein UV Absorber
Mit dieser Masse wurde eine Glasscheibe lackiert (Schichtdicke 50 μm) .
In einen Behälter der Tiefe 60 cm mit Durchmesser 40 cm werden 500 g Trockeneis eingefüllt. Nach ca. 60 min beträgt der Restsau- erstoffanteil ca. 10 cm unterhalb des oberen Behälterrandes
3 Gew. -% und bei 45 cm Tiefe 0,01 Gew.-%. Auf die 45 cm Ebene wird die Glasscheibe eingelegt und 2 min mit einer 500 Watt Halogenlampe im Abstand von 50 cm zur Halogenlampe bestrahlt. Die Lackierung ist hochkratzfest und kann mit einem Holzspatel sowie einem weißen Schreibmaschinenpapier unter manuellem Druck und Reiben nicht angekratzt werden.
Im Vergleich dazu wird unter gleichen Bedingungen an Luft bestrahlt. Die Lackierung blieb flüssig. Im Vergleich dazu wird auf einem Transportband bei 10 m/min Bandgeschwindigkeit unter einer Quecksilberhochdrucklampe mit 120 W/cm (Fa. IST) mit Lampenabstand 15 cm zweimal belichtet... Die Lackierung konnte nicht kratzfest ausgehärtet werden.
Beispiel 2
Die strahlungshärtbare Masse entsprach Beispiel 1.
Die strahlungshärtbare Masse wurde als Klarlack auf das Gehäuse eines Autoaußenspiegel aufgetragen und erfindungsgemäß wie in Beispiel 1 beschrieben gehärtet. Die erhaltene Lackierung war hochkratzfest.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Formmassen und Beschichtungen auf Substraten durch Härtung von strahlungshärtbaren Massen unter Schutzgas durch Bestrahlen mit Licht dadurch gekennzeichnet, daß es sich bei dem Schutzgas um ein Gas handelt, das schwerer ist als Luft, und das seitliche Wegfließen des Schutzgases während der Strahlungshartung durch eine geeig- nete Vorrichtung oder Maßnahmen verhindert wird.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß es sich um ein dreidimensionales Härtungsverfahren handelt.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Substrat oder die Formmasse in ein Tauchbecken, welches das Schutzgas enthält, eingetaucht wird.
4. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß es sich bei dem Substrat um eine Bodenfläche oder bedruckbare oder bedruckte Substrate handelt und das seitliche Wegfließen des Schutzgases durch seitliche Begrenzungen verhindert wird.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekenn- zeichnet, daß es sich bei dem Schutzgas um Kohlendioxid handelt.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Schutzgas durch Verdampfen von Trockeneis hergestellt wird.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Sauerstoffgehalt in der Schutzgas - atmosphäre, welche das Substrat in einem Abstand von bis zu 10 cm von seiner Oberfläche umgibt, kleiner 15 Gew. -%, bezogen auf die gesamte Gasmenge, beträgt.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die strahlungshärtbare Masse 0,001 bis 12 Mol strahlungshärtbare ethylenisch ungesättigte Gruppen auf 1000 g strahlungshärtbare Verbindungen enthält.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß es sich bei mindestens 60 mol-% der strahlungs- härtbaren ethylenisch ungesättigten Gruppen um (Meth)acryl- gruppen handelt.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die strahlungshärtbaren Massen weniger als
10 Gew. -Teile Photoinitiator, bezogen auf 100 Gew. -Teile der Gesamtmenge an strahlungshärtbaren Verbindungen enthalten. 5
11. Verfahren gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Bestrahlung mit einer Lichtquelle erfolgt, die Licht im sichtbaren Bereich oberhalb 300 nm abstrahlt und üblicherweise als Ersatz für Sonnenlicht verwendet wird.
10
12. Verfahren gemäß Anspruch 11, dadurch gekennzeichnet, daß die Bestrahlung mit Sonnenlicht, Halogenlampen oder Glühlampen Leuchtdioden oder Laser erfolgt.
15 13. Verfahren gemäß einem der Ansprüche 1 bis 12 zur Beschichtung von Kraftfahrzeugen, z.B. Straßen-, Schienen- und Luftfahrzeugen, insbesondere Kraftfahrzeugkarosserien und Kraftfahrzeugteilen.
20 14. Verfahren gemäß einem der Ansprüche 1 bis 13 zur Beschichtung von Formteilen aus Holz, Kunststoffen, Metall, mineralischen und keramischen Materialien.
15. Verfahren gemäß einem der Ansprüche 1 bis 11 zur Beschichtung 25 von Bodenbelägen.
16. Verfahren gemäß einem der Ansprüche 1 bis 11 zur Herstellung von Formkörpern, z.B. Verbundwerkstoffen oder Formkörpern für die Stereolithographie.
30
35
40
45
EP00981286A 1999-12-01 2000-11-21 Lichthärtung von strahlungshärtbaren massen unter schutzgas Expired - Lifetime EP1235652B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09151021A EP2047916A3 (de) 1999-12-01 2000-11-21 Lichthärtung von Strahlungshärtbaren Massen unter Schutzgas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19957900 1999-12-01
DE19957900A DE19957900A1 (de) 1999-12-01 1999-12-01 Lichthärtung von strahlungshärtbaren Massen unter Schutzgas
PCT/EP2000/011589 WO2001039897A2 (de) 1999-12-01 2000-11-21 Lichthärtung von strahlungshärtbaren massen unter schutzgas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP09151021A Division EP2047916A3 (de) 1999-12-01 2000-11-21 Lichthärtung von Strahlungshärtbaren Massen unter Schutzgas

Publications (2)

Publication Number Publication Date
EP1235652A2 true EP1235652A2 (de) 2002-09-04
EP1235652B1 EP1235652B1 (de) 2009-04-01

Family

ID=7931041

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09151021A Withdrawn EP2047916A3 (de) 1999-12-01 2000-11-21 Lichthärtung von Strahlungshärtbaren Massen unter Schutzgas
EP00981286A Expired - Lifetime EP1235652B1 (de) 1999-12-01 2000-11-21 Lichthärtung von strahlungshärtbaren massen unter schutzgas

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP09151021A Withdrawn EP2047916A3 (de) 1999-12-01 2000-11-21 Lichthärtung von Strahlungshärtbaren Massen unter Schutzgas

Country Status (7)

Country Link
US (2) US7105206B1 (de)
EP (2) EP2047916A3 (de)
JP (1) JP2003515445A (de)
AT (1) ATE427167T1 (de)
DE (2) DE19957900A1 (de)
ES (1) ES2321799T3 (de)
WO (1) WO2001039897A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013841A2 (es) 2010-07-29 2012-02-02 Lifitec, S.L.U. Aparato para permitir el curado del recubrimiento de una pieza por radicales libres generados mediante radiación ultravioleta (uv)
WO2012013842A2 (es) 2010-07-29 2012-02-02 Lifitec, S.L.U. Método y aparato para permitir el curado del recubrimiento de una pieza por radicales libres generados mediante radiación ultravioleta (uv)
WO2012038561A1 (es) 2010-07-29 2012-03-29 Lifitec, S.L.U. Método y aparato para permitir el curado del recubrimiento de una pieza por radicales libres generados mediante radiación ultravioleta (uv)

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20120721U1 (de) * 2001-10-21 2003-03-06 Hoenle Ag Dr UV-Bestrahlungssystem mit CO2
DE20203303U1 (de) * 2001-12-21 2003-02-27 Hoenle Ag Dr UV-Bestrahlungsvorrichtung zum stationären Bestrahlen in CO2
DE20201493U1 (de) * 2002-02-01 2003-04-17 Hoenle Ag Dr Bestrahlungsvorrichtung zum Bestrahlen eines Objekts mit Leuchtdioden
DE10207541A1 (de) * 2002-02-22 2003-09-04 Hoenle Ag Dr Verfahren zum Bestrahlen eines beschichteten bzw. auszuhärtenden Objektes zur Reparatur bzw. Teillackierung sowie Halteeinrichtung zum Durchführen des Verfahrens
AU2003228078A1 (en) * 2002-05-31 2003-12-19 Air Liquide Gmbh Process and apparatus for uv curing of coating materials with inertization
DE10241299A1 (de) 2002-09-04 2004-03-25 Basf Ag Strahlungshärtbare Polyurethane mit verkappten Aminogrupppen
DE10242719A1 (de) 2002-09-13 2004-03-18 Cetelon Lackfabrik Walter Stier Gmbh & Co.Kg Vorrichtung zur Härtung strahlungshärtbarer Beschichtungen
WO2005015102A2 (de) * 2003-07-24 2005-02-17 Eisenmann Maschinenbau Gmbh & Co. Kg Vorrichtung zur aushärtung einer aus einem material, das unter elektromagnetischer strahlung aushärtet, insbesondere aus einem uv-lack oder aus einem thermisch aushärtenden lack, bestehenden beschichtung eines gegenstandes
EP1651918B1 (de) 2003-07-24 2012-12-19 Eisenmann AG Vorrichtung zur aushärtung einer aus einem material, das unter elektromagnetischer strahlung aushärtet, insbesondere aus einem uv-lack oder aus einem thermisch aushärtenden lack, bestehenden beschichtung eines gegenstandes
DE102004023539A1 (de) * 2003-07-24 2005-03-03 EISENMANN Maschinenbau KG (Komplementär: Eisenmann-Stiftung) Vorrichtung zur Aushärtung einer aus einem Material, das unter elektromagnetischer Strahlung aushärtet, insbesondere aus einem UV-Lack oder aus einem thermisch aushärtenden Lack, bestehenden Beschichtung eines Gegenstandes
EP1651917B1 (de) * 2003-07-24 2012-03-21 Eisenmann AG Vorrichtung zur aushärtung einer aus einem material, das unter elektromagnetischer strahlung aushärtet, insbesondere aus einem uv-lack, oder aus einem thermisch aushärtenden lack, bestehenden beschichtung eines gegenstandes
WO2005021248A1 (ja) * 2003-08-27 2005-03-10 Fuji Photo Film Co., Ltd. 三次元造形物の製造方法
DE102004029667A1 (de) 2003-09-04 2005-04-07 Cetelon Lackfabrik Walter Stier Gmbh & Co.Kg Verfahren und Vorrichtung zur Härtung einer strahlenhärtbaren Beschichtung sowie Bestrahlungskammer
DE10354165B3 (de) * 2003-11-19 2004-11-04 EISENMANN Maschinenbau KG (Komplementär: Eisenmann-Stiftung) Vorrichtung und Verfahren zur Aushärtung einer Beschichtung in einem Schutzgas
DE102004009437A1 (de) * 2004-02-24 2005-09-15 Basf Ag Strahlungshärtbare Verbundschichtplatte oder -folie
DE102004025525B3 (de) * 2004-05-25 2005-12-08 Eisenmann Maschinenbau Gmbh & Co. Kg Verfahren und Vorrichtung zum Trocknen von Gegenständen, insbesondere von lackierten Fahrzeugkarosserien
DE102004035066A1 (de) * 2004-05-26 2006-03-02 Basf Ag Verfahren zur Strahlungshärtung von Beschichtungen
DE102004028727A1 (de) * 2004-06-14 2006-01-05 Basf Coatings Ag Verfahren zur Härtung radikalisch härtbarer Massen unter einer Schutzgasatmosphäre und Vorrichtung zu seiner Durchführung
DE102004030674A1 (de) * 2004-06-24 2006-01-19 Basf Ag Vorrichtung und Verfahren zum Härten mit energiereicher Strahlung unter Inertgasatmosphäre
JP4942483B2 (ja) * 2004-08-19 2012-05-30 関西ペイント株式会社 防曇性被膜形成用光硬化型組成物
DE102004050277A1 (de) 2004-10-14 2006-04-27 Basf Drucksysteme Gmbh Verfahren und Vorrichtung zur Herstellung von fotopolymerisierbaren, zylindrischen, endlos-nahtlosen Flexodruckelementen
DE102004063102A1 (de) 2004-12-22 2006-07-13 Basf Ag Strahlungshärtbare Verbindungen
US20080260959A1 (en) 2005-02-10 2008-10-23 Basf Aktiengesellschaft Patents, Trademarks And Licences Use of Dithiophosphinic Acid and/or Its Salts for Producing Anti-Corrosion Coatings that are Devoid of Chrome
KR101251244B1 (ko) 2005-02-24 2013-04-08 바스프 에스이 방사선 경화성 수성 폴리우레탄 분산액
DE102005010109A1 (de) 2005-03-02 2006-09-07 Basf Ag Modifizierte Polyolefinwachse
DE102005010327A1 (de) * 2005-03-03 2006-09-07 Basf Ag Ratikalisch härtbare Beschichtungsmassen
US20060201017A1 (en) * 2005-03-10 2006-09-14 Ellis Gregory P System, apparatus and method for curing of coatings in heavy gas
US20060201018A1 (en) * 2005-03-10 2006-09-14 Mckay Kevin System, apparatus and method for curing of coatings in heavy gas
EP1734589B1 (de) * 2005-06-16 2019-12-18 Panasonic Intellectual Property Management Co., Ltd. Herstellungsverfahren für Photovoltaik-Module
DE102005057683A1 (de) 2005-12-01 2007-06-06 Basf Ag Strahlungshärtbare wasserelmulgierbare Polyisocyanate
DE102006016500A1 (de) * 2006-04-07 2007-10-11 Linde Ag Verfahren und Vorrichtung zum Strahlungshärten
DE102006028640A1 (de) 2006-06-22 2008-01-03 Flint Group Germany Gmbh Fotopolymerisierbarer Schichtenverbund zur Herstellung von Flexodruckelementen
DE102007006378A1 (de) 2007-02-08 2008-08-14 Flint Group Germany Gmbh Fotopolymerisierbare zylindrische endlos-nahtlose Flexodruckelemente und daraus hergestellte harte Flexodruckformen
DE102007026196A1 (de) 2007-06-04 2008-12-11 Basf Se Verfahren zur Herstellung wasseremulgierbarer Polyurethanacrylate
DE102008002008A1 (de) 2007-06-04 2008-12-11 Basf Se Verfahren zur Herstellung wasseremulgierbarer Polyurethanacrylate
EP2160423A1 (de) 2007-06-21 2010-03-10 Basf Se Strahlungshärtbare beschichtungsmassen mit hoher haftung
US8193279B2 (en) 2007-06-21 2012-06-05 Basf Se Flexible, radiation-curable coating compositions
DE102008041654A1 (de) 2007-08-31 2009-03-05 Basf Se Neue Beschichtungsmittel
ES2578680T3 (es) * 2007-09-07 2016-07-29 Precision Rubber Plate Co., Inc Sistema y método para exponer un placa de polímero digital
DE102008043202A1 (de) 2007-10-29 2009-04-30 Basf Se Verfahren zur Kantenleimung von Textilien
DE102008054981A1 (de) 2008-01-14 2009-07-16 Basf Se Strahlungshärtbare Polyurethanbeschichtungsmassen
US8236479B2 (en) * 2008-01-23 2012-08-07 E I Du Pont De Nemours And Company Method for printing a pattern on a substrate
US20090191482A1 (en) * 2008-01-30 2009-07-30 E.I. Du Pont De Nemours And Company Device and method for preparing relief printing form
US8241835B2 (en) 2008-01-30 2012-08-14 E I Du Pont De Nemours And Company Device and method for preparing relief printing form
DE102008024214A1 (de) 2008-05-19 2009-11-26 Flint Group Germany Gmbh Fotopolymerisierbare Flexodruckelemente für den Druck mit UV-Farben
DE202008013959U1 (de) 2008-10-18 2009-01-29 Rippert Besitzgesellschaft Mbh & Co. Kg Vorrichtung zur Lichthärtung von auf Werkstücke aufgebrachten Beschichtungsstoffen
US8765217B2 (en) 2008-11-04 2014-07-01 Entrotech, Inc. Method for continuous production of (meth)acrylate syrup and adhesives therefrom
DE102009046713A1 (de) 2008-11-27 2010-06-02 Basf Se Strahlungshärtbare Beschichtungsmassen
DE102010001956A1 (de) 2009-02-17 2010-08-19 Basf Se Verfahren zur Herstellung wasseremulgierbarer Polyurethanacrylate
CN102361620B (zh) 2009-03-24 2014-09-03 巴斯夫欧洲公司 辐射固化的高官能聚氨酯(甲基)丙烯酸酯
DE102010003308A1 (de) 2009-03-31 2011-01-13 Basf Se Strahlungshärtbare wasseremulgierbare Polyurethan(meth)acrylate
US8329079B2 (en) 2009-04-20 2012-12-11 Entrochem, Inc. Method and apparatus for continuous production of partially polymerized compositions and polymers therefrom
US8648126B2 (en) 2009-04-22 2014-02-11 Basf Se Radiation-curable coating compositions
WO2011002967A1 (en) 2009-07-02 2011-01-06 E. I. Du Pont De Nemours And Company Method for printing a material onto a substrate
EP2454300B1 (de) 2009-07-17 2016-12-21 Basf Se Herstellung und verwendung von hydroxygruppen und acrylatgruppen aufweisenden polymeren
EP2350154B1 (de) 2009-08-05 2012-09-19 Basf Se (meth)acrylierte melamin-formaldehyd-harze
WO2011015540A1 (de) 2009-08-06 2011-02-10 Basf Se Strahlungshärtbare wasserdispergierbare polyurethane und polyurethandispersionen
DE102009048824A1 (de) 2009-10-09 2011-04-28 Linde Ag Vorrichtung zur Strahlungshärtung von Werkstücken
DE102010044206A1 (de) 2009-11-25 2011-05-26 Basf Se Verfahren zur Herstellung von strahlungshärtbaren (Meth)Acrylaten
DE102010044204A1 (de) 2009-11-25 2011-05-26 Basf Se Verfahren zur Herstellung von strahlungshärtbaren (Meth)Acrylaten
DK2569344T3 (da) 2010-05-10 2014-10-13 Basf Se Fremstilling og anvendelse af forgrenede polymerer med hydroxygrupper og acrylatgrupper
US9267053B2 (en) 2010-05-10 2016-02-23 Basf Se Preparation and use of branched polymers containing hydroxyl and acrylate groups
DE102010026490A1 (de) 2010-07-07 2012-01-12 Basf Se Verfahren zur Herstellung von feinstrukturierten Oberflächen
AU2011250831A1 (en) * 2010-12-03 2012-06-21 Bayer Intellectual Property Gmbh Security and/or valuable documents with a top layer with a scratch-resistant finish
ES2535938T3 (es) 2011-02-22 2015-05-19 Basf Se Agentes para modificar la reología para masas de recubrimiento que pueden curar por radiación
US9090736B2 (en) 2011-02-22 2015-07-28 Basf Se Rheological agent for radiation-curable coating compositions
WO2012171833A1 (de) 2011-06-14 2012-12-20 Basf Se Strahlungshärtbare wässrige polyurethandispersionen
EP2748678B1 (de) 2011-08-26 2018-07-04 E. I. du Pont de Nemours and Company Verfahren zur herstellung einer reliefdruckform
US9023431B2 (en) 2011-09-19 2015-05-05 Basf Se Method for coating light alloy rims
EP2570197A1 (de) 2011-09-19 2013-03-20 Basf Se Verfahren zur Beschichtung von Leichtmetallfelgen
US8728455B2 (en) 2012-01-27 2014-05-20 Basf Se Radiation-curable antimicrobial coatings
WO2013110566A1 (de) 2012-01-27 2013-08-01 Basf Se Strahlungshärtbare antimikrobielle beschichtungsmasse
WO2013139565A1 (en) 2012-03-19 2013-09-26 Basf Se Radiation-curable coating compositions
US9193888B2 (en) 2012-03-19 2015-11-24 Basf Se Radiation-curable aqueous dispersions
EP2828311A1 (de) 2012-03-19 2015-01-28 Basf Se Strahlungshärtbare wässrige dispersionen
ES2589132T3 (es) 2012-07-20 2016-11-10 Basf Se Masas de recubrimiento endurecibles por radiación de secado rápido
PL2882808T3 (pl) 2012-08-09 2017-04-28 Basf Se Radiacyjnie utwardzalne preparaty o wysokiej przyczepności
WO2014026925A1 (en) * 2012-08-16 2014-02-20 Basf Se Stable uv absorber composition
US9097974B2 (en) 2012-08-23 2015-08-04 E I Du Pont De Nemours And Company Method for preparing a relief printing form
WO2014063920A1 (de) 2012-10-24 2014-05-01 Basf Se Strahlungshärtbare wasserdispergierbare polyurethan(meth)acrylate
WO2014090647A2 (en) 2012-12-14 2014-06-19 Basf Se (meth)acrylated amino resins
KR20160051814A (ko) 2013-08-26 2016-05-11 바스프 에스이 방사선 경화성의 수분산성 폴리우레탄 (메트)아크릴레이트
EP3058008B1 (de) 2013-10-16 2017-06-14 Basf Se Verwendung wasseremulgierbarer polyurethanacrylate
EP3066161B1 (de) 2013-11-05 2017-07-05 Construction Research & Technology GmbH Beschichtungen zur verwendung als klebstoff
EP2942361A1 (de) 2014-05-06 2015-11-11 Basf Se Anfeuerung mit Tensiden in wässrigen, unter UV-Strahlung härtbaren Polyurethandispersionen
ES2715418T3 (es) 2014-10-01 2019-06-04 Basf Se Procedimiento para el curado de composiciones curables
JP2018505254A (ja) 2014-12-17 2018-02-22 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 連鎖延長且つ架橋ポリウレタンに基づく放射線硬化性コーティング組成物
US10683381B2 (en) 2014-12-23 2020-06-16 Bridgestone Americas Tire Operations, Llc Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes
US10431858B2 (en) 2015-02-04 2019-10-01 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
US20160223269A1 (en) 2015-02-04 2016-08-04 Outlast Technologies, LLC Thermal management films containing phase change materials
JP2018530639A (ja) 2015-08-17 2018-10-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリウレタン(メタ)アクリレートを含む水性ポリマー組成物
EP3173449A1 (de) 2015-11-27 2017-05-31 BASF Coatings GmbH Verbund aus zwei festkörpern
EP3390006B1 (de) 2015-12-17 2021-01-27 Bridgestone Americas Tire Operations, LLC Kartuschen zur generativen fertigung und verfahren zur herstellung gehärteter polymerprodukte durch generative fertigung
WO2018081053A1 (en) 2016-10-27 2018-05-03 Bridgestone Americas Tire Operations, Llc Processes for producing cured polymeric products by additive manufacturing
JP1609254S (de) 2017-04-03 2018-07-17
WO2019133999A1 (en) * 2017-12-30 2019-07-04 The Research Foundation For The State University Of New York Printable resins and uses of same
EP3820927A1 (de) 2018-07-13 2021-05-19 Miwon Austria Forschung und Entwicklung GmbH Wasserdispergierbare polyurethan(meth)acrylate für durch aktinische bestrahlung härtbare beschichtungen
EP3870618B1 (de) 2018-10-26 2023-07-12 Basf Se Wässrige bindemittelformulierung auf basis von funktioalisierten polyurethanen
CN114502668B (zh) 2019-10-08 2023-09-19 巴斯夫欧洲公司 可热固化的双组分涂料复配物

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798053A (en) * 1971-03-30 1974-03-19 Brien O Corp Control of atmospheric composition during radiation curing
AU6935674A (en) * 1973-05-25 1975-11-27 Union Carbide Corp Floor covering material
GB1466405A (en) * 1973-11-26 1977-03-09 Dainippon Printing Co Ltd Moulded articles of plastics having surface characteristics and process for producing the same
US4181752A (en) * 1974-09-03 1980-01-01 Minnesota Mining And Manufacturing Company Acrylic-type pressure sensitive adhesives by means of ultraviolet radiation curing
US3991230A (en) * 1974-12-31 1976-11-09 Ford Motor Company Plural coated article and process for making same
US4188455A (en) * 1978-01-03 1980-02-12 Lord Corporation Actinic radiation-curable formulations containing at least one unsaturated polyether-esterurethane oligomer
US4289798A (en) * 1980-04-14 1981-09-15 Armstrong World Industries, Inc. Method for reducing surface gloss
DE3270105D1 (en) * 1981-08-03 1986-04-30 Mitsubishi Rayon Co Method and apparatus for surface-hardening treatment of synthetic resin articles
US4999216A (en) * 1989-08-21 1991-03-12 Desoto, Inc. Method of coating concrete floors with photocurable coatings
JPH04258602A (ja) * 1991-02-13 1992-09-14 Brother Ind Ltd 光硬化性樹脂の硬化方法
DE4133290A1 (de) * 1991-10-08 1993-04-15 Herberts Gmbh Verfahren zur herstellung von mehrschichtlackierungen unter verwendung von radikalisch und/oder kationisch polymerisierbaren klarlacken
JP3150746B2 (ja) * 1992-03-06 2001-03-26 大阪酸素工業株式会社 立体構造物の表面に樹脂被膜を形成するための装置
IL110134A (en) * 1993-07-09 1998-07-15 Stockhausen Chem Fab Gmbh Polymers capable of adsorbing aqueous liquids and body fluids, their preparation and use
US5534310A (en) * 1994-08-17 1996-07-09 Rohm And Haas Company Method of improving adhesive of durable coatings on weathered substrates
WO1996034700A1 (de) * 1995-05-04 1996-11-07 Nölle Gmbh Verfahren und vorrichtung zum härten einer schicht auf einem substrat
US6197844B1 (en) * 1996-09-13 2001-03-06 3M Innovative Properties Company Floor finish compositions
US6096383A (en) * 1999-04-28 2000-08-01 Tennant Company Curing of floor coatings using long and short wave ultraviolet radiation
US6764719B2 (en) * 2000-09-18 2004-07-20 Ecolab Inc. Portable radiation cure device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0139897A2 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013841A2 (es) 2010-07-29 2012-02-02 Lifitec, S.L.U. Aparato para permitir el curado del recubrimiento de una pieza por radicales libres generados mediante radiación ultravioleta (uv)
WO2012013842A2 (es) 2010-07-29 2012-02-02 Lifitec, S.L.U. Método y aparato para permitir el curado del recubrimiento de una pieza por radicales libres generados mediante radiación ultravioleta (uv)
WO2012038561A1 (es) 2010-07-29 2012-03-29 Lifitec, S.L.U. Método y aparato para permitir el curado del recubrimiento de una pieza por radicales libres generados mediante radiación ultravioleta (uv)

Also Published As

Publication number Publication date
US7105206B1 (en) 2006-09-12
EP1235652B1 (de) 2009-04-01
ATE427167T1 (de) 2009-04-15
DE19957900A1 (de) 2001-06-07
ES2321799T3 (es) 2009-06-12
WO2001039897A2 (de) 2001-06-07
JP2003515445A (ja) 2003-05-07
US20060115602A1 (en) 2006-06-01
EP2047916A3 (de) 2009-04-29
EP2047916A2 (de) 2009-04-15
DE50015609D1 (de) 2009-05-14
WO2001039897A3 (de) 2002-03-14

Similar Documents

Publication Publication Date Title
EP1235652B1 (de) Lichthärtung von strahlungshärtbaren massen unter schutzgas
EP2527408B1 (de) Verfahren zum Herstellen einer Folie mit mattierter Oberfläche
DE10009822C1 (de) Verfahren zur Herstellung von Beschichtungen, Klebschichten oder Dichtungen für grundierte oder ungrundierte Substrate und Substrate
DE4133290A1 (de) Verfahren zur herstellung von mehrschichtlackierungen unter verwendung von radikalisch und/oder kationisch polymerisierbaren klarlacken
EP3046778B1 (de) Thermotransferfolien für die trockenlackierung von oberflächen
DE60029253T2 (de) Methode zum lackieren von smc-teilen
EP0668800B1 (de) Verfahren zur blitztrocknung und blitzhärtung und strahlungshärtbare produkte
EP1060029B1 (de) Verfahren zur mehrschichtlackierung mit strahlenhärtbaren beschichtungsmitteln
EP1290091A2 (de) Durch uv-strahlung härtbare beschichtungsmittel, verfahren zur herstellung von überzügen aus diesen beschichtungsmitteln und deren verwendung
EP2703092A1 (de) Verfahren zur Einstellung verschiedener Glanzgrade bei strahlengehärteten Lacken und deren Verwendung
DD244704A5 (de) Laser zum haerten von ueberzuegen und farben
EP1152841B1 (de) Verfahren zur mehrschichtlackierung
DE4336748C3 (de) Verfahren zur Blitztrocknung und Blitzhärtung, Verwendung des Verfahrens und dafür geeignete Vorrichtungen
DE602004005538T2 (de) Selbstoxydierbare architektonische Beschichtungszusammensetzungen
CN110788947A (zh) 一种木制品表面涂覆用防腐蚀剂及其制备方法
DE602004009925T2 (de) Örtliche reparatur von beschichteten substraten
DE102019113331A1 (de) Verfahren zum Beschichten einer Oberfläche
WO2006037578A2 (de) Gasentladungslampe, system und verfahren zum härten von durch uv-licht härtbare materialien sowie durch uv-licht gehärtetes material
WO2005016557A1 (de) Verfahren und vorrichtung zum beschichten bunter und unbunter substrate mit einer transparenten beschichtung
DE10321812B4 (de) Verfahren zur Herstellung von Lackschichten mittels Härtung durch UV-Licht sowie dessen Verwendung
DE102019103636A1 (de) Verfahren zur Herstellung einer dekorativen Oberfläche aus einer elektronenstrahl- oder UV-härtenden Lackschicht
EP2746352A1 (de) Polymere Schutzschicht gegen Sauerstoff-Inhibierung bei der radikalischen Vernetzung von flüssigen Acrylaten oder Methacrylaten und Verfahren zur Herstellung derselben
WO2002090003A2 (de) Verfahren zur beschichtung von holzmaterial
DE10314981A1 (de) Härtbare Massen, Verfahren zur ihrer Herstellung und ihre Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020507

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030122

17Q First examination report despatched

Effective date: 20030122

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50015609

Country of ref document: DE

Date of ref document: 20090514

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2321799

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100105

BERE Be: lapsed

Owner name: BASF SE

Effective date: 20091130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100601

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091121

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090702

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091121

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091122

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401