EP1060029B1 - Verfahren zur mehrschichtlackierung mit strahlenhärtbaren beschichtungsmitteln - Google Patents

Verfahren zur mehrschichtlackierung mit strahlenhärtbaren beschichtungsmitteln Download PDF

Info

Publication number
EP1060029B1
EP1060029B1 EP99958117A EP99958117A EP1060029B1 EP 1060029 B1 EP1060029 B1 EP 1060029B1 EP 99958117 A EP99958117 A EP 99958117A EP 99958117 A EP99958117 A EP 99958117A EP 1060029 B1 EP1060029 B1 EP 1060029B1
Authority
EP
European Patent Office
Prior art keywords
radiation
filter
irradiation
process according
coat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99958117A
Other languages
English (en)
French (fr)
Other versions
EP1060029A1 (de
Inventor
Wolfgang Feyrer
Christine Kimpel
Helmut Löffler
Karin Maag
Jens Zeyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of EP1060029A1 publication Critical patent/EP1060029A1/de
Application granted granted Critical
Publication of EP1060029B1 publication Critical patent/EP1060029B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/53Base coat plus clear coat type
    • B05D7/532Base coat plus clear coat type the two layers being cured or baked together, i.e. wet on wet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0209Multistage baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0263After-treatment with IR heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating

Definitions

  • the invention relates to a method for multi-layer coating of substrates Use of radiation-curable coating agents.
  • the method can be advantageous They are used in vehicle and industrial painting, preferably in the Vehicle refinishing.
  • a subsequent IR radiation is advantageous, for example, if in Lacquer contains, in addition to the radiation-curable binders, other binders that are used network an additional mechanism. In such a case, the downstream curing the full curing can be achieved quickly.
  • a combination of UV and IR radiation during the curing process further on Senses can be realized, for example, by using a UV radiation source or IR radiation source and / or the object to be irradiated is continuously guided past one another be discontinuous or by UV radiation source and IR radiation source be placed alternately in front of the object to be irradiated.
  • a disadvantage of the The procedures described is that, on the one hand, at least in the continuous process two drying or hardening zones to be passed through (UV zone and IR zone) be and UV and IR zones separated from each other, for example, by glare protection must, and that on the other hand in the discontinuous mode of operation UV and IR radiation source depending on the number of desired radiation intervals the object to be irradiated must be exchanged mutually, the UV lamp is generally not operated during the IR drying phase.
  • last-mentioned discontinuous mode of operation as well as the required burn-in times Radiation sources, especially UV lamps generally have a time-delay effect on the entire painting process. Especially when using discontinuous Working method e.g. in paint shops, the vehicle throughput and thus ultimately affect the profitability of the workshop.
  • the object of the invention was therefore to provide a process for multi-layer coating To provide the use of at least partially radiation-curable coating compositions, which makes it easy, economical and time-saving to harden the radiation-curable coatings to combine UV radiation and IR radiation, to operate without an undesirably high equipment and thus costly effort have to.
  • the object is achieved by the method for forming an object of the invention Multi-layer painting by applying one or more fillers and / or others Coating agent layers on an optionally precoated substrate and then of a topcoat layer from a basecoat / clearcoat structure or from a pigmented Single-layer topcoat, at least one of the layers of the multi-layer structure consisting of one created at least partially curable coating agent by means of high-energy radiation is and this layer (s) are irradiated with UV radiation and IR radiation, the thereby is characterized in that a UV radiation source for irradiation with UV and IR radiation is used, which has an IR radiation component in its emission spectrum and that by alternately connecting a UV filter and an IR filter and / or alternating upstream and omitting a UV filter or an IR filter in front of the UV radiation source at least two radiation intervals are formed during which different with UV radiation, IR radiation or simultaneously with UV radiation and IR radiation is irradiated.
  • UV filter and IR filter use it is possible to alternate between UV filter and IR filter use. It is also possible to use either a UV filter or an IR filter work and omit this alternately, so that with UV and IR radiation simultaneously is irradiated. Both ways of working can be combined so that alternating irradiation intervals with UV radiation, IR radiation or together UV and IR radiation are formed.
  • UV radiation sources can be used as the UV radiation source are used, provided they have an IR radiation component in their emission spectrum exhibit.
  • Such UV radiation sources are known to the person skilled in the art and generally accessible.
  • the one required in the emission spectrum of the UV radiation source IR radiation component is preferably a radiation component in the range of short-wave IR radiation. This is the wavelength range of around 700 up to about 2500 nm. This range essentially corresponds to the emission spectra more commonly IR radiators which can be used in paint drying and which are in the range from 500 to 2500 nm, are preferably from 800 to 2000 nm.
  • UV radiation sources that can be used according to the invention thus have, for example, an emission spectrum, including UV and IR emissions, in the range from 180 to 2500 nm, preferably from 200 to 2500 nm, particularly preferably from 200 to 2000 nm.
  • the UV radiation sources customary in practice and known to the person skilled in the art have generally a UV radiation component in the emission spectrum of about 25%. Besides there is a considerable proportion of IR radiation in the emission spectrum.
  • the IR radiation component can be up to about 60%, for example.
  • UV radiation sources which can be used well in the process according to the invention are e.g. High-pressure, medium-pressure and low-pressure mercury lamps. Are common Lamps between 5 and 200 cm lamp length. Depending on the special Use case and the required radiation energy are lamp and Reflector geometry coordinated in the usual way.
  • the respective lamp power can vary between 20 and 250 W / cm (watts per cm lamp length). Lamps with powers between 80 and 120 W / cm are preferably used.
  • the mercury lamps can also be introduced by introducing metal halides be endowed. Examples of doped emitters are iron or gallium mercury lamps.
  • UV radiation sources are gas discharge tubes, e.g. Xenon low pressure lamps.
  • discontinuous UV radiation sources can also be used.
  • Prefers these are so-called high-energy flash devices (in short: UV flash lamps).
  • the UV flash lamps can have a plurality of flash tubes, for example with inert gas, such as xenon, filled quartz tubes.
  • the UV flash lamps have, for example Illuminance of at least 10 megalux, preferably from 10 to 80 megalux per Lightning discharge on.
  • the energy per flash discharge can be, for example, 1 to 10 kJoules be.
  • the UV radiation sources that can be used in the method according to the invention are characterized by Upstream of a UV or IR filter modified before the UV radiation source.
  • a UV filter is to be understood as a filter that has essentially no radiation in the Wavelength range of UV radiation, i.e. especially in the range of about 180 to 380 nm, lets through, but is transparent to IR radiation.
  • IR filter is a filter be understood that essentially no radiation in the wavelength range of IR radiation, in particular in the range of about 700 to 2500 nm, however is permeable to UV radiation.
  • the wavelength portion of visible light can vary completely or partially filtered out or let through after selecting the appropriate filter become.
  • conventional UV and / or IR filters can be modified the UV radiation source. They are known to the person skilled in the art and are commercially available available.
  • the filters can, for example, be foils, e.g. IR transmission foils, or are glass filters with different transmission curves.
  • the filters are in different sizes, shapes and different thicknesses available.
  • the glass filter types GG e.g. GG 474 from the company Schott are used. So-called IR transmission foils can also be used.
  • the glass filter types FG e.g. FG 3, or BG, e.g. BG 26, BG 3, from Schott.
  • the equipment of the UV radiation sources that can be used in the method according to the invention can be used with the respective filter in any way. That's the way it is possible, for example, the filter via suitable connecting elements or brackets to attach that it can be folded away, plugged on or pushed forward. It is also possible the filter in a separate device separate from the UV radiation source or Position the bracket directly in front of the UV radiation source.
  • the UV radiation sources are generally integrated in a UV system usually from the UV radiation sources, the reflector system, the power supply, electrical controls, shielding, cooling system and ozone extraction.
  • Other arrangements are of course also possible, just as it is possible to use only parts of the here to use the specified components of a UV system.
  • the process according to the invention for multi-layer painting can be carried out using the Modified UV radiation sources described above be carried out in different ways. Irradiation intervals with UV radiation, IR radiation or UV and IR radiation can be combined with one another as desired. there can both the number and order of the respective radiation intervals as well as the Irradiation time per irradiation interval and the total irradiation time can be varied.
  • the curing process with irradiation intervals and IR irradiation subsequent UV radiation are explained.
  • this is done using high-energy radiation applied at least partially curable coating compositions.
  • the Application takes place in the usual way, for example by means of spray application.
  • To the application includes after a possibly allowed flash-off phase Drying phase or heating phase with IR radiation.
  • the drying phase should do that Accelerate ventilation, that is, by the action of heat, the evaporation of the in the Coating of organic solvents still present and / or in the case of water-based paints of the water take place in a relatively short time.
  • the IR radiation also has an effect achieved heating of the substrate surface also has a positive effect on the curing process by means of UV radiation because, in the case of binder systems curable by means of UV radiation, a higher Crosslinking density can be achieved if the crosslinking is started in the heat.
  • the IR radiation is realized by, as already described above, the used UV radiation source upstream a UV filter and irradiated accordingly becomes. During this irradiation interval, the Substrate surface, but no crosslinking using UV radiation.
  • the radiation duration with IR radiation can be, for example, 1 to 20 minutes.
  • IR radiation can also be triggered by triggering several Lightning discharges occur.
  • the duration of the radiation depends, for example, on the type and quantity the solvent still present in the coating after application. In dependence of Irradiation time and power of the radiation source can be on the substrate surface Temperatures of, for example, 40 to 200 ° C can be reached.
  • Settings are made so that temperatures of, for example, from 40 to 100 ° C can be reached on the substrate surface. If the desired temperature of the Reached the substrate surface or the intended irradiation time has expired, the UV filter removed. After removing the UV filter starts in the case of continuously working UV sources instantly UV crosslinking. In case of UV flash lamps to be operated discontinuously become the after removing the UV filter desired UV flashes triggered.
  • the exposure time with UV radiation can be when using UV flash lamps as a UV radiation source for example in the range from 1 millisecond to 400 seconds from 4 to 160 seconds, depending on the number of flash discharges selected.
  • the lightning can be triggered approximately every 4 seconds, for example.
  • the hardening can for example by 1 to 40 successive lightning discharges.
  • the duration of the radiation can be for example in the range from a few seconds to about 5 minutes, preferably less than 5 Minutes.
  • the distance between the UV radiation sources and the substrate surface to be irradiated can for example 5 to 60 cm.
  • the shielding of the UV radiation sources Avoiding radiation leakage can e.g. by using an accordingly lined protective housing around a portable lamp unit or with the help of other, safety measures known to the person skilled in the art.
  • the coupling of an IR radiation phase with a subsequent UV radiation phase using the UV radiation sources that can be used in the method according to the invention with an upstream UV filter offers the advantage that the Burn-in phase of a continuous UV radiation source for predrying or Heating the substrate surface can be used.
  • UV radiation curable binders still contain binders in the coating agent, which after network or harden an additional mechanism, then there is the advantage that A certain degree of crosslinking already takes place due to the IR radiation, which for example leads to leads to improved stability.
  • the curing process with radiation intervals and UV radiation subsequent IR radiation are explained.
  • this is done using high-energy radiation applied at least partially curable coating compositions.
  • the Application can take place in the usual way, for example by means of spray application.
  • the irradiation phase with UV radiation follows.
  • the Carrying out the UV irradiation corresponds to that already mentioned above Versions.
  • the Irradiation phase with IR radiation is realized by how already described above, the UV radiation source used is a UV filter upstream and is irradiated accordingly.
  • the subsequent IR radiation phase can be, for example, 0.5 to 30 minutes. Otherwise the above already apply made statements regarding IR radiation.
  • the coupling of a UV radiation phase with a subsequent IR radiation phase can be particularly advantageous if, in addition to the radiation-curable binders are also included, which have a network additional mechanism and / or are physically drying. The final one In these cases, the IR drying phase quickly leads to complete hardening of the applied coating.
  • Irradiation intervals are of course any other combinations of UV, IR or UV and IR radiation possible. Further conceivable examples of combinations are: IR irradiation-UV irradiation-IR irradiation; UV irradiation-IR irradiation UV irradiation-IR irradiation. Furthermore, it is also possible to use different ones Irradiation intervals in connection with the execution of several spray coats or Operations or in connection with radiation curing several to apply successive layers of the multilayer structure.
  • the multilayer structure it is also possible, initially in the multilayer structure, at least partially to apply radiation-curable basecoat and first an IR and then one Subject to UV radiation. Thereafter, an at least partially radiation-curable Clear varnish applied and again first a JR and then UV radiation subjected. If necessary, further IR radiation can occur in both cases connect.
  • the radiation curing of the individual layers of the multilayer structure as well the layers applied by means of a plurality of spray passes can in each case be the same or different radiation intensity and different radiation duration for each layer individually or for two or more layers together.
  • one or more layers of a conventional one Multi-layer structure in the vehicle paint can be hardened. It can be For example, a multi-layer structure consisting of primer, filler, basecoat, clearcoat or act from primer, filler, one-coat topcoat. One or more can be used Layers of the multilayer structure made of at least partially radiation-curable Coating agents are created.
  • At least those used in the method according to the invention by means of high-energy radiation partially curable coating agents are not subject to any limitation, they can aqueous, diluted with solvents or free of solvents and water. It can be by means of high-energy radiation, preferably by means of UV radiation, completely or only act partially curable coating agents.
  • At by means of high-energy radiation curable coating compositions are in particular known to those skilled in the art cationic and / or free radical curing coating agents. Radicals are preferred curing coating compositions. When exposed to high-energy radiation Coating agents generate radicals in the coating agent that crosslink trigger radical polymerization of olefinic double bonds.
  • the radically curing coating compositions which can preferably be used contain conventional ones Prepolymers, such as poly- or oligomers, the free-radically polymerizable olefinic Have double bonds, especially in the form of (meth) acryloyl groups in the molecule.
  • the prepolymers can be used in combination with conventional reactive diluents, i.e. reactive liquid monomers.
  • prepolymers or oligomers are (meth) acrylic functional (Meth) acrylic copolymers, epoxy resin (meth) acrylates, polyester (meth) acrylates, Polyether (meth) acrylates, polyurethane (meth) acrylates, unsaturated polyesters, unsaturated Polyurethanes or silicone (meth) acrylates with number average molecular weights (Mn) are preferred in the range from 200 to 10,000, particularly preferably from 500 to 3000 and with an average 2 to 20, preferably 3 to 10 radically polymerizable, olefinic double bonds per Molecule.
  • (Meth) acrylic here means acrylic and / or methacrylic.
  • reactive diluents are used, for example, in amounts of 1 to 50 % By weight, preferably from 5 to 30% by weight, based on the total weight of prepolymers and reactive thinners. It is defined as low molecular weight Compounds that can be mono-, di- or poly-unsaturated.
  • Reactive thinners examples include: (meth) acrylic acid and its esters, maleic acid and its half esters, Vinyl acetate, vinyl ether, substituted vinyl ureas, ethylene and Propylene glycol di (meth) acrylate, 1,3- and 1,4-butanediol di (meth) acrylate, vinyl (meth) acrylate, Allyl (meth) acrylate, glycerol tri, di and mono (meth) acrylate, trimethylolpropane tri, di and -mono (meth) acrylate, styrene, vinyl toluene, divinylbenzene, pentaerythritol and -tetra (meth) acrylate, di- and tripropylene glycol di (meth) acrylate, hexanediol di (meth) acrylate.
  • Reactive thinners can be used individually or in a mixture.
  • Reactive thinners diacrylates such as e.g. Dipropylene glycol diacrylate, tripropylene glycol diacrylate and / or hexanediol diacrylate used.
  • the free radical curing coating compositions contain photoinitiators, e.g. in quantities of 0.1 to 5 wt .-%, preferably from 0.5 to 3 wt .-%, based on the sum of radical polymerizable prepolymers, reactive diluents and photoinitiators.
  • photoinitiators such as benzoin and derivatives, acetophenone and derivatives, e.g. 2,2-diacetoxyacetophenone, benzophenone and derivatives, thioxanthone and derivatives, anthraquinone, 1-benzoylcyclohexanol, organophosphorus compounds, such as e.g. Acyl phosphine oxides.
  • the photoinitiators can be used alone or in combination.
  • other synergistic components e.g. tertiary amines used become.
  • Coating agents that can be partially hardened can be used in addition to that using high-energy radiation curable binder system contain one or more other binders.
  • Both any additional binders that may be present may be, for example usual binder systems curable by means of addition and / or condensation reactions and / or are conventional physically drying binder systems. It is also possible, that the binder system itself, which is curable by means of high-energy radiation, in addition to the radical polymerizable double bonds for crosslinking by addition and / or Has condensation reactions capable groups.
  • the addition and / or condensation reactions act in the aforementioned sense it is lacquer chemical crosslinking reactions known to the person skilled in the art, for example the ring-opening addition of an epoxy group to a carboxyl group to form a Ester and a hydroxyl group, the addition of a hydroxyl group to an isocyanate group to form a urethane group, the reaction of a hydroxyl group with a blocked Isocyanate group with formation of a urethane group and cleavage of the Blocking agent, the reaction of a hydroxyl group with an N-methylol group Dehydration, the reaction of a hydroxyl group with an N-methylol ether group Elimination of the etherification alcohol, the transesterification reaction with a hydroxyl group an ester group with elimination of the esterification alcohol, the Umurethanization reaction of a hydroxyl group with a carbamate group under Elimination of alcohol, the reaction of a carbamate group with an N-methylol ether group
  • Partly curable coating agents can additional, customary for the paint formulation Components included.
  • the additives are the usual additives that can be used in the paint sector. Examples of such Additives are leveling agents, anti-cratering agents, anti-foaming agents, catalysts, Adhesion promoter, rheology-influencing additives, thickeners, light stabilizers and Emulsifiers.
  • the additives are used in customary amounts known to the person skilled in the art.
  • the coating compositions which can be used in the process according to the invention can be slight Contain quantities of organic solvents and / or water. Solvents it is a common paint solvent. These can be made from the production of the Binders originate or are added separately. Examples of such solvents are or polyhydric alcohols, e.g. Propanol, butanol, hexanol; Glycol ethers or esters, e.g. Diethylene glycol dialkyl ether, dipropylene glycol dialkyl ether, each with Cl to C6 alkyl, Ethoxypropanol, butyl glycol; Glycols, e.g.
  • esters e.g. Butyl acetate and amyl acetate
  • N-methylpyrrolidone and ketones e.g. Methyl ethyl ketone, acetone, cyclohexanone
  • aromatic or aliphatic Hydrocarbons e.g. Toluene, xylene or linear or branched aliphatic C6-C12 hydrocarbons.
  • the coating compositions which can be used in the process according to the invention can be pigments and / or fillers. These are the usual ones in the paint industry usable fillers and organic or inorganic color and / or effect Pigments and anti-corrosion pigments.
  • inorganic or organic Color pigments are titanium dioxide, micronized titanium dioxide, iron oxide pigments, carbon black, Azo pigments, phthalocyanine pigments, quinacridone and pyrrolopyrrole pigments.
  • Effect pigments are: metal pigments, e.g. made of aluminum, copper or other metals; Interference pigments, e.g. metal oxide coated metal pigments, e.g. titanium dioxide coated or mixed oxide coated aluminum, coated mica, such as e.g. titanium dioxide coated mica and graphite effect pigments.
  • fillers are Silicon dioxide, aluminum silicate, barium sulfate and talc.
  • the general composition of the coating agents that can be used for example the type the pigmentation depends on which layer of the multilayer structure with the Coating agents should be created.
  • the invention is illustrated by the following example.
  • a water-based lacquer (produced in accordance with DE-A-196 43 802, production example 4) was applied to filler-coated KTL sheet metal in a resulting dry film layer thickness of approximately 15 ⁇ m. This was followed by IR radiation.
  • a UV flash lamp (power 3500 Ws, approx. 50% IR radiation component in the emission spectrum) provided with an attachable UV filter (glass filter GG 475 from Schott, size: 50 x 50 mm 2 , thickness: 2 mm) used.
  • the irradiation was carried out with 30 flashes, which were triggered at a distance of about 4 s, at an object distance of about 20 cm.
  • the applied clear lacquer was subjected to IR radiation.
  • the above-mentioned UV flash lamp modified with the UV filter was used.
  • the irradiation was carried out with 20 flashes, which were triggered at intervals of approx. 4 s, at an object distance of approximately 20 cm.
  • the UV radiation then took place.
  • the UV filter was removed from the UV flash lamp and an IR filter (glass filter FG 3 from Schott, size: 50 x 50 mm 2 , thickness: 2 mm) was attached.
  • the irradiation was carried out with 20 flashes, which were triggered at intervals of approx. 4 s, at an object distance of approximately 20 cm.

Description

Die Erfindung betrifft ein Verfahren zur Mehrschichtlackierung von Substraten unter Verwendung strahlungshärtbarer Beschichtungsmittel. Das Verfahren kann vorteilhaft Anwendung finden in der Fahrzeug- und Industrielackierung, bevorzugt in der Fahrzeugreparaturlackierung.
Insbesondere in der Holzbeschichtungsindustrie ist die UV-Technologie bei der Beschichtung und Härtung seit längerem Stand der Technik. Aber auch in anderen Anwendungsgebieten, so auch in der Fahrzeuglackierung, ist es bekannt geworden, mittels energiereicher Strahlung härtbare Beschichtungsmittel einzusetzen. Man nutzt auch hier die Vorteile strahlungshärtbarer Beschichtungsmittel, wie z.B. die sehr kurzen Härtungszeiten, die geringe Lösemittelemission der Beschichtungsmittel sowie die sehr gute Härte der daraus erhaltenen Beschichtungen.
Neben geeigneten strahlungshärtbaren Bindemitteln und Photoinitiatoren sind auch verschiedene Arten von Strahlungsquellen sowie mögliche Verfahrensabläufe für die Härtung mittels energiereicher Strahlung bekannt worden.
So kann beispielsweise bei der UV-Beschichtung von industriellen Gütern in einer kontinuierlichen Bandanlage beim Einsatz von strahlungshärtbaren Bindemitteln bzw. Beschichtungsmitteln die UV-Bestrahlung mit einer thermischen Behandlung kombiniert werden. Das heißt, dem eigentlichen Härtungsvorgang mittels UV-Strahlung kann beispielsweise eine Erwärmungsphase nachgeschaltet werden. Die Erwärmung bzw. thermische Behandlung kann dabei z.B. mittels Heißluft, Heizplatte oder Infrarotstrahlung (IR-Strahlung) realisiert werden. Die Erfinder der vorliegenden Anmeldung haben gefunden und in der deutschen Patentanmeldung DE-A-19 857 941 der gleichen Anmelderin vom gleichen Anmeldetag mit dem Titel "Verfahren zur Mehrschichtlackierung" beschrieben, daß beispielsweise vor der UV-Bestrahlung eine Trocknung der Beschichtung mit IR-Strahlung erfolgen kann und damit verschiedene Eigenschaften, wie z.B. die Zwischenschichthaftung, Witterungsbeständigkeit und Optik verbessert werden können. Auf diese Weise können auch nach Applikation des strahlungshärtbaren Lackes erforderliche Ablüftzeiten reduziert werden. Insbesondere beim Einsatz von strahlungshärtbaren Wasserlacken erreicht man so eine erhebliche Verkürzung der Abtüftphase. Eine nachgeschaltete IR-Bestrahlung ist beispielsweise dann von Vorteil, wenn im Lack neben den strahlungshärtbaren Bindemitteln weitere Bindemittel enthalten sind, die über einen zusätzlichen Mechanismus vernetzen. In einem solchen Fall kann mit der nachgeschalteten IR-Bestrahlung die vollständige Aushärtung rasch erzielt werden.
Eine Kombination von UV- und IR-Bestrahlung während des Härtungsvorganges im weiteren Sinne kann beispielsweise realisiert werden, indem UV-Strahlungsquelle bzw. IR-Strahlungsquelle und/oder das zu bestrahlende Objekt kontinuierlich aneinander vorbeigeführt werden oder indem diskontinuierlich UV-Strahlungsquelle und IR-Strahlungsquelle wechselseitig vor dem zu bestrahlenden Objekt plaziert werden. Nachteilig an den geschilderten Verfahrensweisen ist, daß einerseits beim kontinuierlichen Prozeß mindestens zwei zu durchlaufende Trocknungs- bzw. Härtungszonen (UV-Zone und IR-Zone) vorhanden sein und UV- und IR-Zone beispielsweise durch Blendschutz voneinander getrennt sein müssen, und daß andererseits bei der diskontinuierlichen Arbeitsweise UV- und IR-Strahlungsquelle in Abhängigkeit von der Anzahl der gewünschten Bestrahlungsintervalle vor dem zu bestrahlenden Objekt wechselseitig ausgetauscht werden müssen, wobei der UV-Strahler während der IR-Trocknungsphase im allgemeinen nicht betrieben wird. Letzgenannte diskontinuierliche Arbeitsweise sowie jeweils erforderliche Einbrennzeiten der Strahlungsquellen, insbesondere der UV-Strahler, wirken sich im allgemeinen zeitverzögernd auf den gesamten Lackiervorgang aus. Insbesondere bei Anwendung der diskontinuierlichen Arbeitsweise z.B. in Lackierwerkstätten können so der Fahrzeugdurchsatz und damit letztendlich die Rentabilität der Werkstatt beeinfrächtigt werden.
Aufgabe der Erfindung war es daher, ein Verfahren zur Mehrschichtlackierung unter Verwendung zumindest teilweise strahlungshärtbarer Beschichtungsmittel bereitzustellen, welches es in einfacher, ökonomischer und zeitsparender Weise ermöglicht, beim Härten der strahlungshärtbaren Beschichtungen UV-Bestrahlung und IR-Bestrahlung zu kombinieren, ohne einen unerwünscht hohen apparativen und damit kostenintensiven Aufwand betreiben zu müssen.
Die Aufgabe wird gelöst durch das einen Gegenstand der Erfindung bildende Verfahren zur Mehrschichtlackierung durch Auftrag einer oder mehrerer Füller und/oder weiterer Überzugsmitttelschichten auf ein gegebenenfalls vorbeschichtetes Substrat und anschließend von einer Decklackschicht aus einem Basislack/Klarlackaufbau oder aus einem pigmentierten Einschichtdecklack, wobei mindestens eine der Schichten des Mehrschichtaufbaus aus einem mittels energiereicher Strahlung zumindest teilweise härtbaren Beschichtungsmittels erstellt wird und diese Schicht(en) mit UV-Strahlung und IR-Strahlung bestrahlt werden, das dadurch gekennzeichnet ist, daß zur Bestrahlung mit UV- und IR-Strahlung eine UV-Strahlungsquelle verwendet wird, die in ihrem Emissionsspektrum einen IR-Strahlungsanteil aufweist und daß durch abwechselndes Vorschalten eines UV-Filters und eines IR-Filters und/oder abwechselndes Vorschalten und Weglassen eines UV-Filters oder eines IR-Filters vor die UV-Strahlungsquelle mindestens zwei Bestrahlungsintervalle ausgebildet werden, während derer unterschiedlich mit UV-Strahlung, IR-Strahlung oder gleichzeitig mit UV-Strahlung und IR-Strahlung bestrahlt wird.
Bei der erfindungsgemäßen Arbeitsweise ist es möglich UV-Filter und IR-Filter abwechselnd einzusetzen. Es ist auch möglich entweder mit einem UV-Filter oder einem IR-Filter zu arbeiten und dieses abwechselnd wegzulassen, so daß mit UV- und IR-Strahlung gleichzeitig bestrahlt wird. Beide Arbeitsweisen können miteinander kombiniert werden, so daß abwechselnd Bestrahlungsintervalle mit UV-Strahlung, IR-Strahlung oder gemeinsam UVund IR-Strahlung ausgebildet werden.
Die im erfindungsgemäßen Verfahren einsetzbaren mit einem vorschaltbaren Filter modifizierten UV-Strahlungsquellen können somit rasch und in einfacher Weise als reine IR-Strahler verwendet werden.
Im erfindungsgemäßen Verfahren können als UV-Strahlungsquelle übliche UV-Strahlungsquellen eingesetzt werden, sofern sie in ihrem Emissionsspektrum einen IR-Strahlungsanteil aufweisen. Derartige UV-Strahlungsquellen sind dem Fachmann bekannt und allgemein zugänglich. Bei dem im Emissionsspektrum der UV-Strahlungsquelle erforderlichen IR-Strahlungsanteil handelt es sich bevorzugt um einen Strahlungsanteil im Bereich der kurzwelligen IR-Strahlung. Es handelt sich hierbei um den Wellenlängenbereich von etwa 700 bis etwa 2500 nm. Dieser Bereich entspricht im wesentlichen den Emissionsspektren üblicher in der Lacktrocknung einsetzbarer IR-Strahler, die im Bereich von 500 bis 2500 nm, bevorzugt von 800 bis 2000 nm liegen. Erfindungsgemäß einsetzbare UV-Strahlungsquellen weisen somit beispielsweise ein Emissionsspektrum, einschließlich UV- und IR-Emissionsanteil, im Bereich von 180 bis 2500 nm, bevorzugt von 200 bis 2500 nm, besonders bevorzugt von 200 bis 2000 nm auf.
Die in der Praxis gebräuchlichen und dem Fachmann bekannten UV-Strahlungsquellen weisen im allgemeinen einen UV-Strahlungsanteil im Emissionsspektrum von etwa 25 % auf. Daneben liegt jeweils ein beträchtlicher IR-Strahlungsanteil im Emissionsspektrum vor. Der IR-Strahlungsanteil kann beispielsweise bis etwa 60 % betragen.
Im erfindungsgemäßen Verfahren gut einsetzbare UV-Strahlungsquellen sind z.B. Quecksilberhochdruck-, mitteldruck- und -niederdruckstrahler. Gebräuchlich sind dabei Lampen zwischen 5 und 200 cm Lampenlänge. In Abhängigkeit vom speziellen Anwendungsfall und von der benötigten Strahlungsenergie sind Lampen- und Reflektorgeometrie in üblicher Weise aufeinander abgestimmt. Die jeweilige Lampenleistung kann beispielsweise zwischen 20 und 250 W/cm (Watt pro cm Lampenlänge) varüeren. Bevorzugt werden Lampen mit Leistungen zwischen 80 und 120 W/cm eingesetzt. Gegebenenfalls können die Quecksilberlampen durch Einbringen von Metallhalogeniden auch dotiert sein. Beispiele dotierter Strahler sind Eisen- oder Galliumquecksilberlampen.
Weitere Beispiele für UV-Strahlungsquellen sind Gasentladungsröhren, wie z.B. Xenonniederdrucklampen. Neben diesen kontinuierlich arbeitenden UV-Strahlungsquellen können jedoch auch diskontinuierliche UV-Strahlungsquellen eingesetzt werden. Bevorzugt handelt es sich hierbei um sogenannte Hochenergieblitzeinrichtungen (kurz: UV-Blitzlampen). Die UV-Blitzlampen können eine Mehrzahl von Blitzröhren, beispielsweise mit inertem Gas, wie Xenon, gefüllte Quarzröhren, enthalten. Die UV-Blitzlampen weisen beispielsweise eine Beleuchtungsstärke von mindestens 10 Megalux, bevorzugt von 10 bis 80 Megalux pro Blitzentladung auf. Die Energie pro Blitzentladung kann beispielsweise 1 bis 10 kJoule betragen.
Die im erfindungsgemäßen Verfahren einsetzbaren UV-Strahlungsquellen werden durch Vorschalten eines UV- oder IR-Filters vor die UV-Strahlungsquelle modifiziert. Unter einem UV-Filter soll ein Filter verstanden werden, der im wesentlichen keine Strahlung im Wellenlängenbereich der UV-Strahlung, d.h. insbesondere im Bereich von etwa 180 bis 380 nm, hindurchiäßt, jedoch durchlässig ist für IR-Strahlung. Unter einem IR-Filter soll ein Filter verstanden werden, der im wesentlichen keine Strahlung im Wellenlängenbereich der IR-Strahlung, insbesondere im Bereich von etwa 700 bis 2500 nm, hindurchläßt, jedoch durchlässig ist für UV-Strahlung. Der Wellenlängenanteil des sichtbaren Lichtes kann dabei je nach Wahl des entsprechenden Filters ganz oder teilweise herausgefiltert oder durchgelassen werden.
Beim erfindungsgemäßen Verfahren können übliche UV- und/oder IR-Filter zur Modifizierung der UV-Strahlungsquelle eingesetzt werden. Sie sind dem Fachmann bekannt und im Handel erhältlich. Bei den Filtern kann es sich beispielsweise um Folien, z.B. IR-Durchlaßfolien, oder um Glasfilter mit unterschiedlichen Transmissionskurven handeln. Die Filter sind in unterschiedlichen Größen, Formen und verschiedenen Dicken erhältlich. Beispielsweise können im erfindungsgemäßen Verfahren als UV-Filter die Glasfiltertypen GG, z.B. GG 474 der Firma Schott eingesetzt werden. Ebenso können sogenannte IR-Durchlaßfolien eingesetzt werden. Als IR-Filter können im erfindungsgemäßen Verfahren beispielsweise die Glasfiltertypen FG, z.B. FG 3, oder BG, z.B. BG 26, BG 3, der Firma Schott eingesetzt werden.
Gerätetechnisch kann die Ausrüstung der im erfindungsgemäßen Verfahren einsetzbaren UV-Strahlungsquellen mit dem jeweiligen Filter in beliebiger Weise ausgeführt werden. So ist es beispielsweise möglich, den Filter über geeignete Verbindungselemente oder Halterungen so anzubringen, daß er wegklappbar, aufsteckbar oder vorschiebbar ist. Ebenso ist es möglich, den Filter in einer von der UV-Strahlungsquelle getrennten separaten Vorrichtung bzw. Halterung direkt vor der UV-Strahlungsquelle zu positionieren.
Die UV-Strahlungsquellen sind im allgemeinen in eine UV-Anlage integriert, die normalerweise aus den UV-Strahlungsquellen, dem Reflektorsystem, der Stromversorgung, elektrischen Steuerungen, der Abschirmung, dem Kühlsystem und der Ozonabsaugung besteht. Andere Anordnungen sind natürlich auch möglich, ebenso ist es möglich, nur Teile der hier genannten Bestandteile einer UV-Anlage zu verwenden.
Das erfindungsgemäße Verfahren zur Mehrschichtlackierung kann unter Verwendung der vorstehend beschriebenen mit einem Filter modifizierbaren UV-Strahlungsquellen verschiedenartig durchgeführt werden. Es können Bestrahlungsintervalle mit UV-Strahlung, IR-Strahlung oder UV- und IR-Strahlung beliebig miteinander kombiniert werden. Dabei können sowohl Anzahl und Reihenfolge der jeweiligen Bestrahlungsintervalle sowie die Bestrahlungsdauer pro Bestrahlungsintervall und die Gesamtbestrahlungsdauer variiert werden.
Beispielhaft näher erläutert seien hier das Vorschalten eines IR-Bestrahlungsschrittes vor die UV-Bestrahlung und das Nachschalten eines IR-Bestrahlungsschrittes an die erfolgte UV-Bestrahlung.
Zunächst soll der Härtungsprozess mit Bestrahlungsintervallen IR-Bestrahlung und anschließende UV-Bestrahlung erläutert werden. Im ersten Schritt wird das mittels energiereicher Strahlung zumindest teilweise härtbare Beschichtungsmittel appliziert. Die Applikation erfolgt auf übliche Art und Weise, beispielsweise mittels Spritzapplikation. Nach der Applikation schließt sich nach einer gegebenenfalls gewährten Ablüftphase eine Trocknungsphase bzw. Erwärmungsphase mit IR-Strahlung an. Die Trocknungsphase soll das Ablüften beschleunigen, das heißt, durch die Wärmeeinwirkung soll das Abdunsten der in der Beschichtung noch vorhandenen organischen Lösemittel und/oder im Falle von Wasserlacken des Wassers in relativ kurzer Zeit erfolgen. Weiterhin wirkt sich die mit der IR-Bestrahlung erzielte Erwärmung der Substratoberfläche auch positiv auf den Härtungsprozess mittels UV-Strahlung aus, da bei mittels UV-Strahlung härtbaren Bindemittelsystemen eine höhere Vernetzungsdichte erreicht werden kann, wenn die Vernetzung in der Wärme gestartet wird.
Die IR-Bestrahlung wird realisiert, indem, wie vorstehend bereits beschrieben, der verwendeten UV-Strahlungsquelle ein UV-Filter vorgeschaltet und entsprechend bestrahlt wird. In diesem Bestrahlungsintervall erfolgt somit nur eine Erwärmung der Substratoberfläche, jedoch keine Vernetzung mittels UV-Strahlung. Die Bestrahlungsdauer mit IR-Strahlung kann beispielsweise 1 bis 20 min betragen. Im Fall der Verwendung einer UV-Blitzlampe als UV-Strahlungsquelle kann die IR-Bestrahlung auch durch Auslösen mehrerer Blitzentladungen erfolgen. Die Bestrahlungsdauer hängt beispielsweise ab von Art und Menge der nach Applikation noch in der Beschichtung vorhandenen Lösemittel. In Abhängigkeit von Bestrahlungsdauer und Leistung der Strahlungsquelle können dabei an der Substratoberfläche Temperaturen von beispielsweise 40 bis 200 °C erreicht werden. Bevorzugt sollten die Einstellungen so vorgenommen werden, daß Temperaturen von beispielsweise von 40 bis 100°C an der Substratoberfläche erreicht werden. Wenn die gewünschte Temperatur der Substratoberfläche erreicht bzw. die vorgesehene Bestrahlungsdauer abgelaufen ist, wird der UV-Filter entfernt. Nach Entfernung des UV-Filters beginnt im Falle von kontinuierlich arbeitenden Strahlungsquellen augenblicklich die UV-Vernetzung. Im Fall von diskontinuierlich zu betreibenden UV-Blitzlampen werden nach Entfernung des UV-Filters die gewünschten UV-Blitze ausgelöst.
Die Betrahlungsdauer mit UV-Strahlung kann beim Einsatz von UV-Blitzlampen als UV-Strahlungsquelle beispielsweise im Bereich von 1 Millisekunde bis 400 Sekunden, bevorzugt von 4 bis 160 Sekunden, je nach Anzahl der gewählten Blitzentladungen, liegen. Die Blitze können beispielsweise etwa alle 4 Sekunden ausgelöst werden. Die Härtung kann beispielsweise durch 1 bis 40 aufeinanderfolgende Blitzentladungen erfolgen.
Beim Einsatz kontinuierlicher UV-Strahlungsquellen kann die Bestrahlungsdauer beispielsweise im Bereich von einigen Sekunden bis etwa 5 Minuten, bevorzugt unter 5 Minuten liegen.
Der Abstand der UV-Strahlungsquellen zur zu bestrahlenden Substratoberfläche kann beispielsweise 5 bis 60 cm betragen. Die Abschirmung der UV-Strahlungsquellen zur Vermeidung von Strahlungsaustritt kann z.B. durch Verwendung eines entsprechend ausgekleideten Schutzgehäuses um eine transportable Lampeneinheit oder mit Hilfe anderer, dem Fachmann bekannter Sicherheitsmaßnahmen, erfolgen.
Die Kopplung einer IR-Bestrahlungsphase mit einer sich anschließenden UV-Bestrahlungsphase unter Verwendung der im erfindungsgemäßen Verfahren einsetzbaren UV-Strahlungsquellen mit vorgeschaltetem UV-Filter bietet unter anderem den Vorteil, daß die Einbrennphase einer kontinuierlichen UV-Strahlungsquelle zur Vortrocknung bzw. Erwärmung der Substratoberfläche genutzt werden kann. Sind neben den mittels UV-Strahlung härtbaren Bindemitteln noch Bindemittel im Beschichtungsmittel enthalten, die nach einem zusätzlichen Mechanismus vernetzen bzw. härten, dann ergibt sich noch der Vorteil, daß durch die IR-Bestrahlung schon eine gewisse Anvernetzung stattfindet, was beispielsweise zu einer verbesserter Standfestigkeit führt.
Im folgenden soll der Härtungsprozess mit Bestrahlungsintervallen UV-Bestrahlung und anschließende IR-Bestrahlung erläutert werden. Im ersten Schritt wird das mittels energiereicher Strahlung zumindest teilweise härtbare Beschichtungsmittel appliziert. Die Applikation kann auf übliche Art und Weise, beispielsweise mittels Spritzapplikation, erfolgen. Nach der Applikation schließt sich die Bestrahlungsphase mit UV-Strahlung an. Die Durchführung der UV-Bestrahlung entspricht dabei den vorstehend bereits gernachten Ausführungen. Nach Beendigung der UV-Bestrahlungsphase schließt sich die Bestrahlungsphase mit IR-Strahlung an. Die IR-Bestrahlung wird realisiert, indem, wie vorstehend bereits beschrieben, der verwendeten UV-Strahlungsquelle ein UV-Filter vorgeschaltet und entsprechend bestrahlt wird. Die nachgeschaltete IR-Bestrahlungsphase kann beispielsweise 0,5 bis 30 Minuten betragen. Ansonsten gelten die vorstehend bereits gemachten Aussagen bezüglich der IR-Bestrahlung.
Die Kopplung einer UV-Bestrahlungsphase mit einer nachgeschalteten IR-Bestrahlungsphase kann insbesondere dann vorteilhaft sein, wenn im applizierten Beschichtungsmittel neben den strahlungshärtbaren Bindemitteln noch weitere Bindemittel enthalten sind, die über einen zusätzlichen Mechanismus vernetzen und/oder physikalisch trocknend sind. Die abschließende IR-Trocknungsphase führt in diesen Fällen rasch zur vollständigen Aushärtung der applizierten Beschichtung.
Neben diesen beiden nur beispielhaft erläuterten Kombinationen verschiedener Bestrahlungsintervalle sind natürlich beliebige weitere Kombinationen von UV-, IR- oder UVund IR-Bestrahlung möglich. Weitere denkbare Beispiele für Kombinationen sind: IR-Bestrahlung-UV-Bestrahlung-IR-Bestrahlung; UV-Bestrahlung-IR-Bestrahlung-UV-Bestrahlung-IR-Bestrahlung. Desweiteren ist es auch möglich, verschiedene Bestrahlungsintervalle im Zusammenhang mit der Durchführung mehrerer Spritzgänge oder Arbeitsgänge oder im Zusammenhang mit der Strahlungshärtung mehrerer aufeinananderfolgender Schichten des Mehrschichtaufbaues anzuwenden.
Beispielsweise kann nach Applikation des zumindest teilweise strahlungshärtbaren Beschichtungsmittels in einem Spritzgang eine IR-Bestrahlung und eine anschließende UV-Bestrahlung erfolgen, nachfolgend wird das Beschichtungsmittel in einem oder mehreren weiteren Spritzgängen aufgebracht und es erfolgt wiederum zunächst eine IR- und anschließend eine UV-Bestrahlung.
Ebenso ist es möglich, im Mehrschichtaufbau zunächst einen zumindest teilweise strahlungshärtbaren Basislack zu applizieren und zunächst einer IR- und nachfolgend einer UV-Bestrahlung zu unterwerfen. Danach wird ein zumindest teilweise strahlungshärtbarer Klarlack appliziert und wieder zunächst einer JR- und nachfolgend einer UV-Bestrahlung unterworfen. Gegebenenfalls kann sich in beiden Fällen eine weitere IR-Bestrahlung anschließen. Die Strahlungshärtung der einzelnen Schichten des Mehrschichtaufbaues sowie der mittels mehrerer Spritzgänge aufgetragenen Schichten kann dabei jeweils mit gleicher oder unterschiedlicher Strahlungsintensität und unterschiedlicher Bestrahlungsdauer für jede Schicht einzeln oder für zwei oder mehr Schichten gemeinsam erfolgen.
Mit dem erfindungsgemäßen Verfahren können ein oder mehrere Schichten eines üblichen Mehrschichtaufbaus in der Fahrzeuglackierung gehärtet werden. Dabei kann es sich beispielsweise um einen Mehrschichtaufbau aus Grundierung, Füller, Basislack, Klarlack oder aus Grundierung, Füller, Einschichtdecklack handeln. Es können dabei ein oder mehrere Schichten des Mehrschichtaufbaus aus zumindest teilweise strahlungshärtbaren Beschichtungsmitteln erstellt werden.
Die im erfindungsgemäßen Verfahren verwendeten mittels energiereicher Strahlung zumindest teilweise aushärtbaren Beschichtungsmittel unterliegen keiner Beschränkung, sie können wäßrig, mit Lösemitteln verdünnt oder frei von Lösemitteln und Wasser sein. Es kann sich um mittels energiereicher Strahlung, bevorzugt mittels UV-Strahlung, vollständig oder nur teilweise aushärtbare Beschichtungsmittel handeln. Bei mittels energiereicher Strahlung aushärtbaren Beschichtungsmitteln handelt es sich insbesondere um dem Fachmann bekannte kationisch und/oder radikalisch härtende Beschichtungsmittel. Bevorzugt sind radikalisch härtende Beschichtungsmittel. Bei Einwirkung energiereicher Strahlung auf diese Beschichtungsmitteln entstehen im Beschichtungsmittel Radikale, die eine Vernetzung durch radikalische Polymerisation olefinischer Doppelbindungen auslösen.
Die bevorzugt einsetzbaren radikalisch härtenden Beschichtungsmittel enthalten übliche Prepolymere, wie Poly- oder Oligomere, die radikalisch polymerisierbare olefinische Doppelbindungen, insbesondere in Form von (Meth)acryloylgruppen im Molekül aufweisen.
Die Prepolymeren können in Kombination mit üblichen Reaktivverdünnern, d.h. reaktiven flüssigen Monomeren, vorliegen.
Beispiele für Prepolymere oder Oligomere sind (meth)acrylfunktionelle (Meth)acrylcopolymere, Epoxidharz(meth)acrylate, Polyester(meth)acrylate, Polyether(meth)acrylate, Polyurethan(meth)acrylate, ungesättigte Polyester, ungesättigte Polyurethane oder Silikon(meth)acrylate mit zahlenmittleren Molekularmassen (Mn) bevorzugt im Bereich von 200 bis 10000, besonders bevorzugt von 500 bis 3000 und mit durchschnittlich 2 bis 20, bevorzugt 3 bis 10 radikalisch polymerisierbaren, olefinischen Doppelbindungen pro Molekül. Unter (Meth)acryl ist hier Acryl und/oder Methacryl zu verstehen.
Werden Reaktivverdünner verwendet, so werden sie beispielsweise in Mengen von 1 bis 50 Gew.-%, bevorzugt von 5 bis 30 Gew.-%, bezogen auf das Gesamtgewicht von Prepolymeren und Reaktivverdünnern, eingesetzt. Es handelt sich um niedermolekulare definierte Verbindungen, die mono-, di- oder polyungesättigt sein können. Beispiele für solche Reaktivverdünner sind: (Meth)acrylsäure und deren Ester, Maleinsäure und deren Halbester, Vinylacetat, Vinylether, substituierte Vinylharnstoffe, Ethylen- und Propylenglykoldi(meth)acrylat, 1,3- und 1,4-Butandioldi(meth)acrylat, Vinyl(meth)acrylat, Allyl(meth)acrylat, Glycerintri-, -di- und -mono(meth)acrylat, Trimethylolpropantri-, -di- und -mono(meth)acrylat, Styrol, Vinyltoluol, Divinylbenzol, Pentaerythrittri- und -tetra(meth)acrylat, Di- und Tripropylenglykoldi(meth)acrylat, Hexandioldi(meth)acrylat. Die Reaktivverdünner können einzeln oder im Gemisch eingesetzt werden. Bevorzugt werden als Reaktivverdünner Diacrylate wie z.B. Dipropylenglykoldiacrylat, Tripropylenglykoldiacrylat und/oder Hexandioldiacrylat eingesetzt.
Die radikalisch härtenden Beschichtungsmittel enthalten Photoinitiatoren, z.B. in Mengen von 0,1 bis 5 Gew.-%, bevorzugt von 0,5 bis 3 Gew.-%, bezogen auf die Summe von radikalisch polymerisierbaren Prepolymeren, Reaktivverdünnern und Photoinitiatoren. Geeignet sind die üblichen Photoinitiatoren, wie beispielsweise Benzoin und -derivate, Acetophenon und -derivate, z.B. 2,2-Diacetoxyacetophenon, Benzophenon und -derivate, Thioxanthon und -derivate, Anthrachinon, 1-Benzoylcyclohexanol, phosphororganische Verbindungen, wie z.B. Acylphospinoxide. Die Photoinitiatoren können allein oder in Kombination eingesetzt werden. Außerdem können weitere synergistische Komponenten, z.B. tertiäre Amine, eingesetzt werden.
Die im erfindungsgemäßen Verfahren einsetzbaren mittels energiereicher Strahlung zumindest teilweise härtbaren Beschichtungsmittel können neben dem mittels energiereicher Strahlung härtbaren Bindemittelsystem ein oder mehrere weitere Bindemittel enthalten. Bei den gegebenenfalls zusätzlich vorliegenden weiteren Bindemitteln kann es sich beispielsweise um übliche mittels Additions- und/oder Kondensationsreaktionen aushärtbare Bindemittelsysteme und/oder um übliche physikalisch trocknende Bindemittelsysteme handeln. Es ist auch möglich, daß das an sich mittels energiereicher Strahlung härtbare Bindemittelsystem zusätzlich zu den radikalisch polymerisierbaren Doppelbindungen zur Vernetzung durch Additions- und/oder Kondensationsreaktionen fähige Gruppen aufweist.
Bei den Additions- und/oder Kondensationsreaktionen im vorstehend genannten Sinne handelt es sich um dem Fachmann bekannte lackchemische Vernetzungsreaktionen wie beispielsweise die ringöffnende Addition einer Epoxidgruppe an eine Carboxylgruppe unter Bildung einer Ester- und einer Hydroxylgruppe, die Addition einer Hydroxylgruppe an eine Isocyanatgruppe unter Bildung einer Urethangruppe, die Reaktion einer Hydroxylgruppe mit einer blockierten Isocyanatgruppe unter Ausbildung einer Urethangruppe und Abspaltung des Blockierungsmittels, die Reaktion einer Hydroxylgruppe mit einer N-Methylolgruppe unter Wasserabspaltung, die Reaktion einer Hydroxylgruppe mit einer N-Methylolethergruppe unter Abspaltung des Veretherungsalkohols, die Umesterungsreaktion einer Hydroxylgruppe mit einer Estergruppe unter Abspaltung des Veresterungsalkohols, die Umurethanisierungsreaktion einer Hydroxylgruppe mit einer Carbamatgruppe unter Alkoholabspaltung, die Reaktion einer Carbamatgruppe mit einer N-Methylolethergruppe unter Abspaltung des Veretherungsalkohols. Bevorzugt sind funktionelle Gruppen enthalten, die eine Vernetzung bei niedrigen Temperaturen, beipielsweise bei 20 bis 80°C ermöglichen. Besonders bevorzugt kann es sich um Hydroxyl- und Isocyanatgruppen handeln.
Die im erfindungsgemäßen Verfahren einsetzbaren mittels energiereicher Strahlung zumindest teilweise härtbaren Beschichtungsmittel können zusätzliche, für die Lackformulierung übliche Komponenten enthalten. Sie können z.B. lackübliche Additive enthalten. Bei den Additiven handelt es sich um die üblichen auf dem Lacksektor einsetzbaren Additive. Beispiele für solche Additive sind Verlaufsmittel, Antikratermittel, Antischaummittel, Katalysatoren, Haftvermittler, rheologiebeeinflussende Additive, Verdicker, Lichtschutzmittel und Emulgatoren. Die Additive werden in üblichen, dem Fachmann geläufigen Mengen eingesetzt.
Die im erfindungsgemäßen Verfahren einsetzbaren Beschichtungsmittel können geringe Mengen an organischen Lösemitteln und/oder Wasser enthalten. Bei den Lösemitteln handelt es sich um übliche lacktechnische Lösemittel. Diese können aus der Herstellung der Bindemittel stammen oder werden separat zugegeben. Beispiele für solche Lösemittel sind einoder mehrwertige Alkohole, z.B. Propanol, Butanol, Hexanol; Glykolether oder -ester, z.B. Diethylenglykoldialkylether, Dipropylenglykoldialkylether, jeweils mit Cl- bis C6-Alkyl, Ethoxypropanol, Butylglykol; Glykole, z.B. Ethylenglykol, Propylenglykol und deren Oligomere, Ester, wie z.B. Butylacetat und Amylacetat, N-Methylpyrrolidon sowie Ketone, z.B. Methylethylketon, Aceton, Cyclohexanon; aromatische oder aliphatische Kohlenwasserstoffe, z.B. Toluol, Xylol oder lineare oder verzweigte aliphatische C6-C12-Kohlenwasserstoffe.
Die im erfindungsgemäßen Verfahren einsetzbaren Beschichtungsmittel können Pigmente und/oder Füllstoffe enthalten. Es handelt sich dabei um die üblichen in der Lackindustrie einsetzbaren Füllstoffe und organischen oder anorganischen farb- und/oder effektgebenden Pigmente und Korrosionsschutzpigmente. Beispiele für anorganische oder organische Farbpigmente sind Titandioxid, mikronisiertes Titandioxid, Eisenoxidpigmente, Ruß, Azopigmente, Phthalocyaninpigmente, Chinacridon- und Pyrrolopyrrolpigmente. Beispiele für Effektpigmente sind: Metallpigmente, z.B. aus Aluminium, Kupfer oder anderen Metallen; Interferenzpigmente, wie z.B. metalloxidbeschichtete Metallpigmente, z.B. titandioxidbeschichtetes oder mischoxidbeschichtetes Aluminium, beschichteter Glimmer, wie z.B. titandioxidbeschichteter Glimmer und Graphiteffektpigmente. Beispiele für Füllstoffe sind Siliciumdioxid, Aluminiumsilikat, Bariumsulfat und Talkum.
Die generelle Zusammensetzung der einsetzbaren Beschichtungsmittel, beispielsweise die Art der Pigmentierung, richtet sich danach, welche Schicht des Mehrschichtaufbaus mit den Beschichtungsmitteln erstellt werden soll.
Mit dem erfindungsgemäßen Verfahren können in einfacher Weise ohne großen apparativen und kostenintensiven Aufwand die Vorzüge einer kombinierten UV/IR-Härtung ausgenutzt werden. Rasch und ohne größere zeitliche Verzögerung können mehrere Bestrahlungsintervalle mit IR- oder mit UV-Strahlung abwechselnd aufeinanderfolgen. Es ist nicht erforderlich mehrere Strahlungsquellen zu positionieren, was insbesondere bei der Ausbesserung von kleineren Schadstellen uneffektiv wäre. Insgesamt ermöglicht das erfindungsgemäße Verfahren insbesondere in einer Lackierwerkstatt, beispielsweise zur Reparaturlackierung, ein wirtschaftlicheres Arbeiten.
Die Erfindung soll an Hand des folgenden Beispiels näher erläutert werden.
Beispiel
Zunächst wurde ein mittels UV-Strahlung härtbarer Klarlack hergestellt. Dazu wurden folgende Komponenten miteinander vermischt und mittels Schnellrührer einige Minuten homogenisiert:
  • 55 g Jägalux 5154 (OH- und acryloylfunktionelles Bindemittel)
  • 10 g eines handelsüblichen Polyisocyanates (Desmodur N 75)
  • 3,8 g eines handelsüblichen Photoinitiators auf Basis Arylphosphinoxid (Lucirin TPO)
  • 0,5 g eines handelsüblichen Verlaufsmittels (Byketol OK)
  • 2,5 g Butylacetat
  • Erstellung eines Mehrschichtaufbaus
    Auf füllerbeschichtetes KTL-Blech wurde ein Wasserbasislack (hergestellt entsprechend DE-A-196 43 802, Herstellungsbeispiel 4 ) in einer resultierenden Trockenfilmschichtdicke von etwa 15 µm appliziert. Anschließend erfolgte eine IR-Bestrahlung. Zur Bestrahlung wurde eine mit einem aufsteckbaren UV-Filter (Glasfilter GG 475 der Firma Schott, Größe:50 x 50 mm2, Dicke: 2 mm) versehene UV-Blitzlampe (Leistung 3500 Ws, ca. 50 % IR-Strahlungsanteil im Emissionsspektrum) eingesetzt. Die Bestrahlung erfolgte mit 30 Blitzen, die im Abstand von etwa 4 s ausgelöst wurden, bei einem Objektabstand von etwa 20 cm.
    Anschließend wurde der wie vorstehend beschrieben hergestellte mittels UV-Strahlung härtbare Klarlack in einer resultierenden Trockenfilmschichtdicke von etwa 50 µm appliziert.
    Nach einer Ablüftphase von 5 Minuten bei Raumtemperatur erfolgte eine IR-Bestrahlung des applizierten Klarlackes. Dazu wurde die vorstehend genannte mit dem UV-Filter modifizierte UV-Blitzlampe eingesetzt. Die Bestrahlung erfolgte mit 20 Blitzen, die im Abstand von ca. 4 s ausgelöst wurden, bei einem Objektabstand von etwa 20 cm. Anschließend erfolgte die UV-Bestrahlung. Dazu wurde der UV-Filter von der UV-Blitzlampe entfernt und ein IR-Filter (Glasfilter FG 3 der Firma Schott, Größe: 50 x 50 mm2, Dicke: 2 mm) aufgesteckt. Die Bestrahlung erfolgte mit 20 Blitzen, die im Abstand von ca. 4 s ausgelöst wurden, bei einem Objektabstand von etwa 20 cm.

    Claims (11)

    1. Verfahren zur Mehrschichtlackierung durch Auftrag einer oder mehrerer Füllerund/oder weiterer Überzugsmittelschichten auf ein gegebenenfalls vorbeschichtetes Substrat und anschließend einer Decklackschicht aus einem Basislack/Klarlackaufbau oder aus einem pigmentierten Einschichtdecklack, wobei mindestens eine der Schichten des Mehrschichtaufbaus aus einem mittels energiereicher Strahlung zumindest teilweise härtbaren Beschichtungsmittel erstellt wird und diese Schicht(en) mit UV-Strahlung und IR-Strahlung bestrahlt werden, dadurch gekennzeichnet, daß zur Bestrahlung mit UVund IR-Strahlung eine UV-Strahlungsquelle verwendet wird, die in ihrem Emissionsspektrum einen IR-Strahlungsanteil aufweist und daß durch abwechselndes Vorschalten eines UV-Filters und eines IR-Filters und/oder abwechselndes Vorschalten und Weglassen eines UV-Filters oder eines IR-Filters vor die Strahlungsquelle mindestens zwei Bestrahlungsintervalle ausgebildet werden, während derer unterschiedlich mit UV-Strahlung, IR-Strahlung oder gleichzeitig mit UV-Strahlung und IR-Strahlung bestrahlt wird.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß abwechselnd UV-Filter und IR-Filter vorgeschaltet und damit Bestrahlungsintervalle von IR-Strahlung und UV-Strahlung ausgebildet werden.
    3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß abwechselnd ein UV-Filter vorgeschaltet und weggelassen wird, wodurch abwechselnde Bestrahlungsintervalle mit IR-Strahlung und gleichzeitig UV-Strahlung und IR-Strahlung erfolgen.
    4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß abwechselnd ein IR-Filter vorgeschaltet und weggelassen wird, wodurch Bestrahlungsintervalle mit UV-Strahlung und gleichzeitig IR- und UV-Strahlung ausgebildet werden.
    5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das erste Bestrhlungsintervall unter Vorschalten eines UV-Filters mit IR-Strahlung durchgeführt wird.
    6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das erste Bestrahlungsintervall unter Vorschalten eines UV-Filters mit IR-Strahlung durchgeführt wird, und das zweite Bestrahlungsintervall unter Vorschalten eines IR-Filters mit UV-Strahlung durchgeführt wird.
    7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß anschließend ein drittes Bestrahlungsintervall unter Vorschaltung eines UV-Filters mit IR-Strahlung durchgeführt wird.
    8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man eine UV-Strahlungsquelle verwendet, die in ihrem Emissionsspektrum einen IR-Strahlungsanteil im Wellenlängenbereich von 700 bis 2500 nm aufweist.
    9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Bestrahlungsintervalle mit IR-Strahlung allein oder IR-Strahlung zusammen mit UV-Strahlung im Bereich von 0,5 bis 30 Minuten verwendet werden.
    10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, das Bestrahlungsintervalle für die Bestrahlung mit UV-Strahlung in der Größenordnung von einer Millisekunde bis 5 Minuten verwendet werden.
    11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als UV-Strahlungsquelle UV-Blitzlampen verwendet werden.
    EP99958117A 1998-12-16 1999-11-24 Verfahren zur mehrschichtlackierung mit strahlenhärtbaren beschichtungsmitteln Expired - Lifetime EP1060029B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19857940 1998-12-16
    DE19857940A DE19857940C1 (de) 1998-12-16 1998-12-16 Verfahren zur Mehrschichtlackierung mit strahlenhärtbaren Beschichtungsmitteln
    PCT/EP1999/009062 WO2000035597A1 (de) 1998-12-16 1999-11-24 Verfahren zur mehrschichtlackierung mit strahlenhärtbaren beschichtungsmitteln

    Publications (2)

    Publication Number Publication Date
    EP1060029A1 EP1060029A1 (de) 2000-12-20
    EP1060029B1 true EP1060029B1 (de) 2003-08-13

    Family

    ID=7891215

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99958117A Expired - Lifetime EP1060029B1 (de) 1998-12-16 1999-11-24 Verfahren zur mehrschichtlackierung mit strahlenhärtbaren beschichtungsmitteln

    Country Status (8)

    Country Link
    US (1) US6528126B1 (de)
    EP (1) EP1060029B1 (de)
    JP (1) JP2002532233A (de)
    AT (1) ATE246966T1 (de)
    CA (1) CA2320314A1 (de)
    DE (2) DE19857940C1 (de)
    ES (1) ES2203212T3 (de)
    WO (1) WO2000035597A1 (de)

    Families Citing this family (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10009822C1 (de) * 2000-03-01 2001-12-06 Basf Coatings Ag Verfahren zur Herstellung von Beschichtungen, Klebschichten oder Dichtungen für grundierte oder ungrundierte Substrate und Substrate
    DE10055549A1 (de) * 2000-11-09 2002-05-29 Basf Coatings Ag Farb- und/oder effektgebende Mehrschichtlackierung, Verfahren zu ihrer Herstellung und ihre Verwendung
    DK1321731T3 (da) 2001-12-22 2006-11-13 Moletherm Holding Ag Energitransmitter som bestanddel af et coatings- og/eller törringsanlæg, især til en lakcoating
    EP1485213A2 (de) * 2002-03-06 2004-12-15 Solaronics Technologies Verfahren zur photopolymerisation einer härtbaren beschichtung, anlage zur durchführung des verfahrens und damit hergestelltes produkt
    US6908644B2 (en) * 2003-02-04 2005-06-21 Ford Global Technologies, Llc Clearcoat insitu rheology control via UV cured oligomeric additive network system
    DE10309669A1 (de) * 2003-03-06 2004-09-16 Volkswagen Ag Verfahren zur Trocknung wenigstens einer Lackschicht auf einem Substrat
    DE102004016093A1 (de) * 2004-04-01 2005-10-20 Volkswagen Ag Verfahren zur Trocknung wenigstens einer Lackschicht auf einem Substrat
    US7510746B2 (en) * 2004-06-04 2009-03-31 E.I. Du Pont De Nemours And Company Process for production of multilayer coating including curing clear-coat composition with high-energy radiation
    DE102004033260A1 (de) * 2004-07-09 2006-01-19 Daimlerchrysler Ag Verfahren und Vorrichtung zum Aushärten von strahlungsinduziert härtbaren Lacken
    DE102005001683B4 (de) * 2005-01-13 2010-01-14 Venjakob Maschinenbau Gmbh & Co. Kg Verfahren und Vorrichtung zum Trocknen von Lackschichten
    NL1029274C2 (nl) 2005-06-17 2006-12-19 Trespa Int Bv Werkwijze voor het aanbrengen van een laag op een drager, alsmede een samenstel.
    ES2326301B1 (es) 2007-08-09 2010-06-29 Bulma Tecnologia, S.L. Procedimiento de reparacion de defectos de pintura en sector de la automocion por secado ultravioleta.
    US20100183820A1 (en) * 2009-01-16 2010-07-22 Ford Global Technologies, Llc Methods for curing uv-curable coatings

    Family Cites Families (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE851916C (de) * 1943-06-22 1952-10-09 Patra Patent Treuhand Verfahren zum Trocknen von Lackueberzuegen aus kondensierenden und polymerisierenden Kunststoffen
    US4485123A (en) * 1982-02-12 1984-11-27 Union Carbide Corporation Process for producing textured coatings
    US4539220A (en) * 1983-09-23 1985-09-03 Verbatim Corporation Method of manufacturing reinforced flexible disks
    US4751170A (en) * 1985-07-26 1988-06-14 Nippon Telegraph And Telephone Corporation Silylation method onto surface of polymer membrane and pattern formation process by the utilization of silylation method
    DE4122743C1 (de) * 1991-07-10 1992-11-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
    DE4133290A1 (de) * 1991-10-08 1993-04-15 Herberts Gmbh Verfahren zur herstellung von mehrschichtlackierungen unter verwendung von radikalisch und/oder kationisch polymerisierbaren klarlacken
    DE4421558C2 (de) * 1994-06-20 2000-02-03 Maximilian Zaher Verfahren zum Beschichten von Metallsubstraten und nach dem Verfahren beschichtete Metallerzeugnisse
    JP3436435B2 (ja) * 1995-02-22 2003-08-11 東レ・ダウコーニング・シリコーン株式会社 紫外線硬化型シリコーン組成物の硬化方法
    DE19533858B4 (de) 1995-09-13 2005-09-22 IHD Institut für Holztechnologie Dresden gGmbH Verfahren zum elektrostatischen Beschichten von Holz und Holzwerkstoffen
    DE19649301C2 (de) * 1996-11-28 1998-12-10 Orga Kartensysteme Gmbh Verfahren zum Aufbringen von Markierungen, Beschriftungen und Strukturierungen auf die Oberfläche einer Ausweiskarte oder einer anderen Karte
    DE19709560C1 (de) * 1997-03-07 1998-05-07 Herberts Gmbh Überzugsmittel zur Mehrschichtlackierung und Verwendung der Überzugsmittel in einem Verfahren zur Lackierung
    US6008264A (en) * 1997-04-30 1999-12-28 Laser Med, Inc. Method for curing polymeric materials, such as those used in dentistry, and for tailoring the post-cure properties of polymeric materials through the use of light source power modulation
    DE19857941C2 (de) 1998-12-16 2002-08-29 Herberts Gmbh Verfahren zur Mehrschichtlackierung
    US6180325B1 (en) * 1999-06-23 2001-01-30 Creo Srl Method for masking and exposing photosensitive printing plates
    US6200646B1 (en) * 1999-08-25 2001-03-13 Spectra Group Limited, Inc. Method for forming polymeric patterns, relief images and colored polymeric bodies using digital light processing technology

    Also Published As

    Publication number Publication date
    ES2203212T3 (es) 2004-04-01
    US6528126B1 (en) 2003-03-04
    DE59906592D1 (de) 2003-09-18
    JP2002532233A (ja) 2002-10-02
    CA2320314A1 (en) 2000-06-22
    WO2000035597A1 (de) 2000-06-22
    DE19857940C1 (de) 2000-07-27
    ATE246966T1 (de) 2003-08-15
    EP1060029A1 (de) 2000-12-20

    Similar Documents

    Publication Publication Date Title
    EP0540884B1 (de) Verfahren zur Herstellung von Mehrschichtlackierungen unter Verwendung von radikalisch und/oder kationisch polymerisierbaren Klarlacken
    EP0968059B1 (de) Verfahren zur mehrschichtlackierung und überzugsmittel fur das verfahren
    DE10009822C1 (de) Verfahren zur Herstellung von Beschichtungen, Klebschichten oder Dichtungen für grundierte oder ungrundierte Substrate und Substrate
    EP1032476B2 (de) Verfahren zur mehrschichtigen lackierung von substraten
    DE19635447C1 (de) Verfahren zur Herstellung einer Reparaturlackierung
    DE19913446C2 (de) Verfahren zur Mehrschichtlackierung
    EP1060029B1 (de) Verfahren zur mehrschichtlackierung mit strahlenhärtbaren beschichtungsmitteln
    DE60217514T2 (de) Verfahren zum reparieren von oberflächenbeschichtungen
    WO1999026732A1 (de) Verfahren zur mehrschichtigen lackierung von substraten
    DE19913442C2 (de) Verfahren zur Lackierung von Fahrzeugkarossen oder deren Teilen
    DE60225553T2 (de) Verfahren zur beschichtung von trägern
    WO1999026733A1 (de) Verfahren zur mehrschichtigen lackierung von substraten
    EP1152841B1 (de) Verfahren zur mehrschichtlackierung
    DE60220999T2 (de) Verfahren zum beschichten von substraten
    DE19757080A1 (de) Verfahren zur mehrschichtigen Lackierung von Substraten
    DE19751479A1 (de) Verfahren zur mehrschichtigen Lackierung von Substraten
    DE19751481A1 (de) Verfahren zur mehrschichtigen Lackierung von Substraten
    DE10321812B4 (de) Verfahren zur Herstellung von Lackschichten mittels Härtung durch UV-Licht sowie dessen Verwendung
    DE10122391A1 (de) Beschichtungsverfahren
    DE19757083A1 (de) Verfahren zur mehrschichtigen Lackierung von Substraten
    DE19751478A1 (de) Verfahren zur mehrschichtigen Lackierung von Substraten

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000804

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030813

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030813

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030813

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59906592

    Country of ref document: DE

    Date of ref document: 20030918

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031113

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031113

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031113

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031124

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031124

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031124

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031130

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031130

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031130

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031130

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20031204

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040113

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2203212

    Country of ref document: ES

    Kind code of ref document: T3

    BERE Be: lapsed

    Owner name: E.I. *DU PONT DE NEMOURS & CY INC.

    Effective date: 20031130

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    26N No opposition filed

    Effective date: 20040514

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20081120

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20081216

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20081126

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20081112

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20081119

    Year of fee payment: 10

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20091124

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100730

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100601

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091124

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20110330

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091124

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110317

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091125