WO2012171833A1 - Strahlungshärtbare wässrige polyurethandispersionen - Google Patents

Strahlungshärtbare wässrige polyurethandispersionen Download PDF

Info

Publication number
WO2012171833A1
WO2012171833A1 PCT/EP2012/060644 EP2012060644W WO2012171833A1 WO 2012171833 A1 WO2012171833 A1 WO 2012171833A1 EP 2012060644 W EP2012060644 W EP 2012060644W WO 2012171833 A1 WO2012171833 A1 WO 2012171833A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
acrylate
groups
compound
component
Prior art date
Application number
PCT/EP2012/060644
Other languages
English (en)
French (fr)
Inventor
Reinhold Schwalm
Sebastian Roller
Peter THÜRY
Uwe Burkhardt
Sebastian Berger
Susanne Neumann
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to CN201280029573.6A priority Critical patent/CN103608375B/zh
Priority to JP2014515136A priority patent/JP2014519544A/ja
Priority to EP12725790.5A priority patent/EP2721085A1/de
Publication of WO2012171833A1 publication Critical patent/WO2012171833A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7837Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8141Unsaturated isocyanates or isothiocyanates masked
    • C08G18/815Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
    • C08G18/8158Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
    • C08G18/8175Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/06Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to wood
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31591Next to cellulosic

Definitions

  • the present invention relates to UV-curable, aqueous polyurethane dispersions, a process for their preparation and their use.
  • Radiation-curable polyurethanes are used to coat wood-based materials, e.g. in the furniture industry, widely used. In addition to requirements such as high hardness, coatings in the furniture industry must above all emphasize the wood structure, an effect that is referred to as "tempering".
  • Water-dispersible, radiation-curable polyurethanes are e.g. known from
  • EP 753531 in which urethane acrylates based on polyester acrylates are produced
  • EP 942022 in which urethane acrylates based on acrylate group-containing prepolymers are produced.
  • the polyurethane acrylate dispersions described there show only insufficient emphasis on the wood structure.
  • the examples according to EP 753531 show a bad start, as in EP 1 142947, where Example A is detected as a comparative example.
  • Aqueous polyurethane dispersions with good priming are e.g. in EP 1 142947. This effect is attributed to the incorporation of a special monomer (hydroxypivalic neopentyl glycol ester). Although the systems described there show significantly improved tempering (rating 2) compared to the prior art, they still show room for improvement compared with the Laromer® PE 55W polyester acrylate (grade 0) used as a reference.
  • NMP N-methylpyrrolidone
  • the object is achieved by radiation-curable, water-dispersed polyurethanes, composed of a) at least one aliphatic di- or polyisocyanate, b) at least one compound having at least one isocyanate-reactive group and at least one free-radically polymerizable
  • C C double bond
  • the polyurethanes according to the invention ie the reaction products of the synthesis components a) to d) and optionally f) and g) have a double bond density of at least 1.5 mol / kg, preferably at least 1.8, more preferably at least 2.0, most preferably 2.2 mol / kg.
  • the dispersions according to the invention do not use compounds containing isocyanate groups in which the isocyanate groups have been partially or completely reacted with so-called blocking agents.
  • blocking agents are meant compounds which convert isocyanate groups into blocked (capped or protected) isocyanate groups, which then do not exhibit the usual reactions of a free isocyanate group below the so-called deblocking temperature.
  • the polyurethane dispersions according to the invention essentially no more free isocyanate groups after preparation, ie generally less than 1 wt .-% NCO, preferably less than 0.75, more preferably less than 0.66 and most preferably less than 0.3 wt .-% NCO (calculated with a molecular weight of 42 g / mol).
  • Component a) is at least one, for example one to three, preferably one to two and more preferably exactly one aliphatic di- or polyisocyanate.
  • Aliphatic isocyanates are those which have exclusively isocyanate groups bonded to those carbon atoms which are part of straight or branched acyclic chains, preferably those which have exclusively isocyanate groups which are bonded to straight or branched acyclic chains and are particularly preferred those which have exclusively bound to straight or branched, acyclic hydrocarbon chains isocyanate groups.
  • the aliphatic diisocyanates or polyisocyanates are preferably isocyanates having 4 to 20 C atoms.
  • customary diisocyanates are 1,4-tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, 1,6-hexamethylene diisocyanate, 2-methyl-1,5-diisocyanatopentane, 1,8-octamethylene diisocyanate, 1,10-decamethylene diisocyanate, 1 , 12-dodecamethylene diisocyanate, 1,14-tetradecamethylene diisocyanate, 2,2,4- and 2,4,4-trimethylhexane diisocyanate, 1, 3-bis (1-isocyanato-1-methylethyl) benzene (m-TMXDI), and derivatives of the Lysindiisocyanats. There may be mixtures of said diisocyanates.
  • 2,2,4- and 2,4,4-trimethylhexane diisocyanate are present, for example, as a mixture in a ratio of 1: 5: 1 to 1: 1, 5, preferably 1, 2: 1 - 1: 1, 2, particularly preferably 1, 1: 1 - 1: 1, 1 and most preferably 1: 1.
  • the polyisocyanates may be monomeric isocyanates having more than two isocyanate groups or oligomers of the above-mentioned diisocyanates.
  • An example of the former is triisocyanatononane (4-isocyanatomethyl-1,8-octane diisocyanate) or 2'-isocyanatoethyl- (2,6-diisocyanatohexanoate).
  • Examples of the latter are isocyanurate, biuret, uretdione, allophanate, iminooxadiazinetrione and / or carbodiimide-containing oligomers which are obtainable by oligomerization of at least one, preferably exactly one of the above-mentioned diisocyanates, more preferably by reacting 1,6 -Hexamethylendiisocyanat.
  • Preferred polyisocyanates are oligomers containing isocyanurate, uretdione and / or allophanate groups, more preferably oligomers containing isocyanurate and / or allophanate groups, and in a very particularly preferred embodiment the compound a) is an allophanate-containing oligomer based on 1, 6. Hexamethylene diisocyanate, in which 1,6-hexamethylene diisocyanate is reacted with at least a portion of compound b) to give an oligomer containing allophanate groups.
  • the polyurethanes of the invention of the synthesis components a) to d) and optionally f) and g) contain 1 to 30 wt .-%, preferably from 1 to 25 wt .-%, particularly preferably from 2 to
  • the component a) used according to the invention contains less than 5% by weight of uretdione.
  • R 3 is a divalent aliphatic or cycloaliphatic, preferably aliphatic radical, preferably hydrocarbon radical having 2 to 12, preferably 2 to 8, particularly preferably 2 to 4 carbon atoms,
  • R 4 is hydrogen or methyl, preferably hydrogen, and n can assume on statistical average 0 or a positive number, preferably values of 0 to 5, particularly preferably 0.5 to 3 and very particularly preferably 1 to 2.
  • R 3 examples of R 3 are 1,2-ethylene, 1,1-dimethyl-1,2-ethylene, 1,2-propylene, 1,3-propylene, 2-methyl-1,3-propylene, 2-ethyl-1 , 3-propylene, 2-butyl-2-ethyl-1, 3-propylene, 2,2-dimethyl-1, 3-propylene, 1, 2-butylene, 1, 3-butylene, 1, 4-butylene , 1, 5-pentylene, 1, 6-hexylene, 2-ethyl-1, 3-hexylene, 1, 8-octylene, 2,4-diethyl-1, 3-octylene or 1, 10-decylene, preferably 1, 2-ethylene, 1, 2-propylene, 1, 3-propylene or 1, 4-butylene, more preferably 1, 2-ethylene or 1, 2-propylene and most preferably 1, 2-ethylene.
  • This component preferably has an NCO content of 10 to 18, preferably 12 to 16 and particularly preferably 13 to 16% by weight and an average molecular weight of 600 to 1200, preferably 700 to 1000 and particularly preferably 700 to 900 g / mol.
  • Such compounds are commercially available, for example, under the trade name Laromer® 9000 from BASF SE, Ludwigshafen.
  • Preferred compounds of components b) are z.
  • ⁇ -ethylenically unsaturated mono- and / or dicarboxylic acids and their anhydrides z.
  • acrylic acid methacrylic acid, fumaric acid, maleic acid, maleic anhydride, crotonic acid, itaconic acid, etc. are used. Preference is given to using acrylic acid and methacrylic acid, particularly preferably acrylic acid.
  • Suitable di- or polyhydric alcohols are, for. B.
  • diols such as ethylene glycol, 1, 2-propanediol, 1, 3-propanediol, 1, 1-dimethylethane-1, 2-diol, 2-butyl-2-ethyl-1, 3-propanediol, 2-ethyl 1, 3-propanediol, 2-methyl-1,3-propanediol, neopentyl glycol, hydroxypivalic acid neopentyl glycol ester, 1, 2, 1, 3 or 1, 4-butanediol, 1, 6-hexanediol, 1, 10-decanediol, Bis (4-hydroxycyclohexane) isopropylidene, tetramethylcyclobutanediol, 1, 2-, 1, 3- or 1, 4-cyclohexanediol, cyclooctanediol, norbornanediol, pinanediol, decalindiol, 2-ethy
  • Suitable triols and polyols have z. B. 3 to 25, preferably 3 to 18 carbon atoms. These include z. B. trimethylolbutane, trimethylolpropane, trimethylolethane, pentaerythritol, glycerol, ditrimethylolpropane, dipentaerythritol, ditrimethylolpropane, sorbitol, mannitol, diglycerol, Threit, erythritol, adonite (ribitol), arabitol (lyxite), xylitol, dulcitol (galactitol), maltitol or isomalt ,
  • the compounds of component b) are preferably selected from 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxybutyl acrylate, 3-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, 6-hydroxyhexyl acrylate, 6-hydroxyhexyl methacrylate, 3-hydroxy-2-ethylhexyl acrylate, 3-hydroxy-2-ethylhexyl methacrylate, trimethylolpropane mono- or diacrylate, pentaerythritol di- or triacrylate and mixtures thereof.
  • the compound b) is particularly preferably selected from the group consisting of 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl acrylate and pentaerythritol triacrylate, very particularly preferably selected from the group consisting of Hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate and 2-hydroxypropyl methacrylate, and in particular, 2-hydroxyethyl acrylate or 2-hydroxyethyl methacrylate.
  • the optional component c) is at least one compound having at least two, for example 2 to 4, preferably 2 to 3 and more preferably exactly 2 isocyanate-reactive groups which are selected from hydroxyl, mercapto, primary and / or secondary amino groups, preferably selected from the group consisting of hydroxyl and primary amino groups, more preferably are hydroxy groups.
  • the compounds c) are low molecular weight compounds having a molecular weight below 500 g / mol, preferably below 400 g / mol, more preferably below 250 g / mol.
  • the low molecular weight alcohols c) may be aliphatic or cycloaliphatic, preferably aliphatic.
  • the hydroxy groups may preferably be secondary or primary, preferably primary.
  • alcohols having 2 to 20 carbon atoms.
  • hydrolysis-stable short-chain diols having 4 to 20, preferably 6 to 12, carbon atoms.
  • the compounds c) are alkanediols.
  • Examples of compounds c) are ethylene glycol, 1, 2-propanediol, 1, 3-propanediol,
  • ethylene glycol 1, 2-propanediol, 1, 3-propanediol, neopentyl glycol, 1, 4-butanediol, 1, 6-hexanediol, 2,2-bis (4-hydroxycyclohexyl) propane, 1, 1 -, 1, 2 , 1, 3 and 1, 4-cyclohexanedimethanol, 1, 2, 1, 3 or 1, 4-cyclohexanediol, particularly preferred are ethylene glycol, 1, 2-propanediol, 1, 3-propanediol, neopentyl glycol, 1, 4-butanediol or 1,6-hexanediol.
  • no significant amounts of relatively high molecular weight diols or polyols having a molecular weight above 500 g / mol are used.
  • no essential amounts is meant that the proportion of the OH groups of the higher molecular weight di- or polyols in the total OH groups used from the compounds b), c), d) and f) not more than 20 mol% , preferably not more than 15 mol%, particularly preferably not more than 10, very particularly preferably not more than 5 and in particular 0 mol%.
  • the aforementioned components c) can be used individually or as mixtures.
  • Component d) is at least one, preferably exactly one compound having at least one, for example one to 3, preferably one or 2, more preferably exactly two isocyanate-reactive group and at least one, preferably exactly one acid group.
  • the acid groups of the compounds of component d) are preferably selected from among carboxylic acid groups, sulfonic acid groups, phosphonic acid groups and phosphoric acid groups. Preference is given to carboxylic acid and sulfonic acid groups, with particular preference being given to carboxylic acid groups.
  • Suitable compounds d) having at least one isocyanate-reactive group and at least one carboxylic acid or sulfonic acid group are in particular aliphatic monomercapto, monohydroxy and monoamino and iminocarboxylic acids and corresponding sulfonic acids such as mercaptoacetic acid (thioglycolic acid), mercaptopropionic acid, mercaptosuccinic acid, hydroxyacetic acid, Hydroxypropionic acid (lactic acid), hyrdicarboxylic acid, hydroxypivalic acid, dimethylolpropionic acid, dimethylolbutyric acid, hydroxydecanoic acid, hydroxydodecanoic acid, 12-hydroxy-stearic acid, N- (2'-aminoethyl) -3-aminopropionic acid,
  • Hydroxyethanesulfonic acid hydroxypropanesulfonic acid, mercaptoethanesulfonic acid, mercaptopropanesulfonic acid, aminoethanesulfonic acid, aminopropanesulfonic acid, glycine (aminoacetic acid), N-cyclohexylaminoethanesulfonic acid, N-cyclohexylaminopropanesulfonic acid, or iminodiacetic acid.
  • Dimethylolpropionic acid and dimethylolbutyric acid are preferred, and dimethylolpropionic acid is particularly preferred.
  • Component e) is at least one basic compound for neutralization or partial neutralization of the acid groups of the compounds d).
  • basic compounds e) for a neutralization or partial neutralization of the acid groups of the compounds d) are inorganic and organic bases such as alkali and alkaline earth hydroxides, oxides, carbonates, bicarbonates and ammonia or primary, secondary or tert.
  • Amines into consideration.
  • the neutralization or partial neutralization with amines such as with ethanolamine or diethanolamine and especially with tert.
  • Amines such as triethylamine, triethanolamine, dimethylethanolamine or
  • At least one further compound having an isocyanate-reactive group can be used as component f).
  • This group may be a hydroxyl, mercapto, or a primary or secondary amino group.
  • Suitable compounds f) are the customary compounds known to the person skilled in the art, which are usually used as so-called terminators for reducing the number of reactive free isocyanate groups or for modifying the polyurethane properties in polyurethane production. These include z.
  • Suitable components f) are also amines having a primary or secondary amino group, such as. Methylamine, ethylamine, n-propylamine, diisopropylamine, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, etc.
  • At least one polyisocyanate different from the compounds of components a) can be used as minor components in minor amounts as optional components g).
  • no polyisocyanates are used as components g) in which the isocyanate groups have been reacted with a blocking agent.
  • Preferred compounds g) are polyisocyanates having an NCO functionality of 2 to 4.5, more preferably 2 to 3.5.
  • component g) it is preferred to use aliphatic, cycloaliphatic and araliphatic diisocyanates. These may be, for example, the diisocyanates listed above under a), but are different from the compound a).
  • the compound g) is cycloaliphatic or aromatic, preferably cycloaliphatic di- and polyisocyanates.
  • Cycloaliphatic isocyanates are those having at least one isocyanate group bonded to a carbon atom which is part of a fully saturated ring system, preferably those having at least one isocyanate group bonded to a carbon atom which is part of a non-aromatic carbocycle , Aromatic isocyanates are those having at least one isocyanate group bonded to a carbon atom which is part of an aromatic ring system.
  • cycloaliphatic diisocyanates are 1, 4, 1, 3 or 1, 2-diisocyanatocyclohexane, 4,4'- or 2,4'-di (isocyanatocyclohexyl) methane, isophorone diisocyanate, 1, 3 or 1, 4 Bis (isocyanatomethyl) cyclohexane, 2,4-, and 2,6-diisocyanatoato-1-methylcyclohexane.
  • aromatic diisocyanates are 2,4- or 2,6-toluene diisocyanate, m- or p-xylylene diisocyanate, 2,4'- or 4,4'-diisocyanatodiphenylmethane, 1, 3- or 1, 4-phenylene diisocyanate, 1 -Chloro-2,4-phenylene diisocyanate, 1,5-naphthylene diisocyanate, diphenylene-4,4'-diisocyanate, 4,4'-diisocyanato-3,3'-dimethyldiphenyl diisocyanate, 3-methyldiphenylmethane-4, 4'-diisocyanate and diphenyl ether-4,4'-diisocyanate.
  • Isophorone diisocyanate, 1, 3- and 1, 4-bis (isocyanate-ethyl) cyclohexane, their isocyanurates, biurets and mixtures thereof are preferably used as component g).
  • the proportion of NCO groups of component g) to the total NCO groups used from the compounds a) and g) is not more than 20 mol%, preferably not more than 15 mol%, particularly preferably not more than 10, very particularly preferably not more than 5 and in particular 0 mol%.
  • the dispersion according to the invention may contain at least one further compound, as it is usually used as a reactive diluent.
  • a reactive diluent include z.
  • the reactive diluents as described in P.K.T. Oldring (Editor), Chemistry & Technology of UV & EB Formulations for Coatings, Inks & Paints, Vol. II, Chapter III: Reactive Diluents for UV & EB Curable Formulations, Wiley and SITA Technology, London 1997.
  • Reactive diluents are, for example, esters of (meth) acrylic acid with alcohols having 1 to 20 C atoms, for example (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl butyl ester, (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl acrylate, 4-hydroxybutyl acrylate, dihydrodicyclopentadienyl acrylate, vinylaromatic compounds, eg styrene, divinylbenzene, ⁇ , ⁇ -unsaturated nitriles, eg acrylonitrile, methacrylonitrile, ⁇ , ⁇ -unsaturated aldehydes, for example acrolein, methacrolein, vinyl esters, for example vinyl acetate, vinyl propionate, halogenated ethylenically unsaturated compounds, for example vinyl chloride, vinylidene chlor
  • N-vinyl acetamide, N-vinyl-N-methylformamide and N-vinyl-N-methylacetamide or vinyl ethers for example methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, / so-propyl vinyl ether, n-butyl vinyl ether, se / -Butylvinylether , / so-butyl vinyl ether, feri-butyl vinyl ether, 4-hydroxybutyl vinyl ether, and mixtures thereof.
  • hexanediol diacrylate hexanediol dimethacrylate, octanedioldiacrylate, octanediol dimethacrylate, nonanediol diacrylate, nonanediol dimethacrylate, decanol diacrylate, decanediol dimethacrylate, pentaerythritol diacrylate, dipentaerythritol tetraacrylate, dipentaerythritol triacrylate, pentaerythritol tetraacrylate, etc.
  • esters of alkoxylated polyols with .alpha.,.
  • Beta.-ethylenically unsaturated Mono- and / or dicarboxylic acids such.
  • polyacrylates or methacrylates of alkoxylated trimethylolpropane, glycerol or pentaerythritol are also suitable.
  • esters of alicyclic diols such as cyclohexanediol di (meth) acrylate and bis (hydroxymethyl-ethyl) cyclohexanedi (meth) acrylate.
  • Suitable reactive diluents are trimethylolpropane monoformate lacrylate, glycerol formal acrylate, 4-tetrahydropyranyl acrylate, 2-tetrahydropyranyl methacrylate and tetrahydrofurfuryl acrylate.
  • Photoinitiators may be, for example, photoinitiators known to those skilled in the art, e.g. those in "Advances in Polymer Science", Volume 14, Springer Berlin 1974 or in K.K. Dietliker, Chemistry and Technology of UV and EB Formulation for Coatings, Inks and Paints, Volume 3; Photoinitiators for Free Radical and Cationic Polymerization, P.K.T. Oldring (Eds), SITA Technology Ltd, London.
  • Suitable examples include mono- or Bisacylphosphinoxide, as described for example in EP-A 7 508, EP-A 57 474, DE-A 196 18 720, EP-A 495 751 or EP-A 615 980, for example, 2.4 , 6-trimethylbenzoyldiphenylphosphine oxide (Lucirin ® TPO from BASF SE), ethyl 2,4,6-trimethylbenzoylphenylphosphinate (Lucirin ® TPO L from BASF SE), bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (Irgacure® 819 BASF SE, Ciba Specialty Chemicals), benzophenones, hydroxyacetophenones, phenylglyoxylic acid and its derivatives or mixtures of these photoinitiators.
  • 6-trimethylbenzoyldiphenylphosphine oxide (Lucirin ® TPO from BASF SE)
  • Examples which may be mentioned are benzophenone, acetophenone, acetonaphthoquinone, methyl ethyl ketone, valophenone, hexanophenone, ⁇ -phenylbutyrophenone, p-morpholinopropiophenone, dibenzosuberone, 4-morpholinobenzophenone, 4-morpholinodeoxybenzoin, p-diacetylbenzene,
  • non-yellowing or slightly yellowing photoinitiators of the phenylglyoxalic acid ester type as described in DE-A 198 26 712, DE-A 199 13 353 or WO 98/33761.
  • Typical mixtures include, for example, 2-hydroxy-2-methyl-1-phenyl-propan-2-one and 1-hydroxycyclohexyl phenyl ketone, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide and 2 -Hydroxy-2-methyl-1-phenyl-propan-1-one, benzophenone and 1-hydroxycyclohexyl phenyl ketone, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide and 1-hydroxybenzoyl cyclohexyl phenyl ketone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide and 2-
  • photoinitiators are 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ethyl 2,4,6-trimethylbenzoylphenylphosphinate, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, benzophenone, 1-benzoylcyclohexan-1-ol , 2-hydroxy-2,2-dimethyl-acetophenone and 2,2-dimethoxy-2-phenylacetophenone.
  • the dispersions of the invention contain the photoinitiators preferably in an amount of 0.05 to 10 wt .-%, more preferably 0.1 to 8 wt .-%, in particular 0.2 to 5 wt .-%, based on the total amount of the components a) to h).
  • the dispersions according to the invention preferably contain no thermal initiators.
  • Thermal initiators for the purposes of the present invention are those which have a half-life at 60 ° C of at least one hour.
  • the half-life of a thermal initiator is the time after the initial amount of the initiator has half decayed into free radicals.
  • Thermal initiators are preferably absent in accordance with the invention, ie they are present in amounts of less than 0.1% by weight.
  • the dispersions according to the invention may contain further paint-usual additives, such as leveling agents, defoamers, UV absorbers, dyes, pigments and / or fillers.
  • Suitable fillers include silicates, e.g., silicates obtainable by hydrolysis of silicon tetrachloride, such as Aerosil.RTM. From Degussa, silica, talc, aluminum silicates, magnesium silicates, calcium carbonates, etc.
  • Suitable stabilizers include typical UV absorbers, such as oxanilides, triazines and benzotriazole (the latter being available as Tiinnuv.RTM Brands of the former Ciba Specialty Chemicals, now BASF) and benzophenones.
  • radical scavengers for example sterically hindered amines such as 2,2,6,6-tetramethylpiperidine, 2,6-di-tert-butylpiperidine or derivatives thereof, eg. B. bis (2,2,6,6-tetra-methyl-4-piperidyl) seba-cinate, can be used.
  • Stabilizers are usually used in amounts of 0.1 to
  • Component k) Polyamines having 2 or more primary and / or secondary amino groups can be used above all when the chain extension or crosslinking is to take place in the presence of water, since amines generally react more quickly than alcohols or water with isocyanates. This is often required when aqueous dispersions of high molecular weight crosslinked polyurethanes or polyurethanes are desired. In such cases, the procedure is to prepare prepolymers with isocyanate groups, to rapidly disperse them in water and then to chain extend or crosslink them by adding compounds containing several isocyanate-reactive amino groups.
  • Amines suitable for this purpose are generally polyfunctional amines of the molecular weight range from 32 to 500 g / mol, preferably from 60 to 300 g / mol, which contain at least two primary, two secondary or one primary and one secondary amino group.
  • diamines such as diaminoethane, diaminopropanes, diaminobutanes, diaminohexanes, piperazine, 2,5-dimethylpiperazine, amino-3-aminomethyl-3,5,5-trimethyl-cyclohexane (isophoronediamine, IPDA), 4,4'-diaminodicyclohexylmethane , 1, 4-diaminocyclohexane, aminoethylethanolamine, hydrazine, hydrazine hydrate or triamines such as diethylenetriamine or 1, 8-diamino-4-aminomethyloctan or higher amines such as triethylenetetramine, tetraethylenep
  • the amines may also be in blocked form, e.g. in the form of the corresponding ketimines (see, for example, CA-1 129 128), ketazines (see, for example, US-A 4,269,748) or amine salts (see US-A 4,292,226).
  • Oxazolidines as used for example in US Pat. No. 4,192,937, also represent blocked polyamines which can be used for the preparation of the polyurethanes for chain extension of the prepolymers. When using such capped polyamines they are generally mixed with the prepolymers in the absence of water and this mixture is then mixed with the dispersion water or a portion of the dispersion water, so that the corresponding polyamines are hydrolytically released.
  • the solids content of the aqueous dispersions according to the invention is preferably in a range of about 5 to 70, preferably 20 to 60 wt .-%, particularly preferably 30 to 50 wt%.
  • Particularly preferred dispersions are those which, per kg of polyurethane, based on the sum of components a) to d) and e) to g), have a content of neutralized or free acid groups from d) of at least 0.4 mol, preferably min. at least 0.45 mol / kg.
  • organic solvents in particular of N-methylpyrrolidone, for dispersing can preferably be dispensed with, so that the VOC content of the dispersions according to the invention is not increased by these organic solvents.
  • the dispersions of the invention are particularly suitable as a coating composition or in coating compositions, particularly preferably for coating substrates such as wood, paper, textile, leather, fleece, plastic surfaces, glass, ceramics, mineral-looking building materials, such as cement blocks and fiber cement boards, and in particular of Metals or coated metals.
  • substrates such as wood, paper, textile, leather, fleece, plastic surfaces, glass, ceramics, mineral-looking building materials, such as cement blocks and fiber cement boards, and in particular of Metals or coated metals.
  • the dispersions of the invention can be used for coating wood and wood-based materials and wood-containing substrates, such as fiberboard.
  • the coating of cellulose fiber-containing substrates such as paper, cardboard or cardboard.
  • the dispersions are suitable for coating oak, spruce, pine, beech, maple, walnut, macore, chestnut, sycamore, ruby, ash, birch, pine and elm, and cork.
  • the dispersions according to the invention advantageously form films having good performance properties, in particular good hardness with sufficient elasticity and at the same time good priming.
  • the substrates are coated by customary methods known to those skilled in the art, at least one dispersion of the invention being applied to the substrate to be coated in the desired thickness and the volatile constituents of the dispersions removed by drying and / or flash-off at ambient or elevated temperature for example 60 ° C. If desired, this process can be repeated one or more times.
  • the application to the substrate can in a known manner, for. B. by spraying, filling, doctoring, brushing, rolling, rolling or pouring done.
  • the coating thickness is generally in a range of about 3 to 1000 g / m 2 and preferably 10 to 200 g / m 2 .
  • radiation curing takes place after each coating operation.
  • the radiation hardening takes place by the action of high-energy radiation, ie
  • UV radiation or daylight preferably light of wavelength 250 to 600 nm or by irradiation with high-energy electrons (electron radiation, 150 to 300 keV).
  • the radiation sources used are, for example, high-pressure mercury vapor lamps, lasers, pulsed lamps (flash light), halogen lamps or excimer radiators.
  • the radiation dose for UV curing, which is usually sufficient for crosslinking, is in the range from 80 to 3000 mJ / cm 2 .
  • the irradiation may optionally also in the absence of oxygen, for. B. under inert gas atmosphere, are performed. Suitable inert gases are preferably nitrogen, noble gases, carbon dioxide or combustion gases. Furthermore, the irradiation can be carried out by covering the coating composition with transparent media. Transparent media are z. As plastic films, glass or liquids, eg. B. water. Particularly preferred is irradiation in the manner described in DE-A1 199 57 900.
  • the curing is carried out continuously by passing the substrate treated with the preparation according to the invention at a constant speed past a radiation source.
  • a radiation source for this purpose, it is necessary that the curing rate of the preparation according to the invention is sufficiently high.
  • This different time course of the curing can be made use of in particular when the coating of the article is followed by a processing step in which the film surface comes into direct contact with another object or is mechanically processed.
  • the advantage of the dispersions according to the invention lies in the fact that it is possible to further process the coated objects immediately after radiation curing because the surface no longer sticks.
  • the dried film is still so flexible and stretchable that the article can still be deformed without the film flaking or cracking.
  • Example 3 from EP 1 142 947 was adjusted (polyurethane acrylate containing Laromer® PE 44F, BASF SE, dimethylolpropionic acid, neopentyl glycol, hydroxypivanic acid neopentyl glycol ester, isophorone diisocyanate and hexamethylene diisocyanate).
  • the solids were 38 +/- 2%.
  • the particle size was determined to be 54 nm.
  • Example 2 The procedure was as in Example 2 except that the 553 parts of Laromer® LR 9000 were replaced by a mixture of 290 parts of Laromer® LR9000 and 260 parts of an isocyanurate of isophorone diisocyanate (Vestanat® T1890 from Evonik).
  • the viscosity of the dispersion was 580 mPas and the particle size was less than 20 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Die vorliegende Erfindung betrifft mit UV-Strahlung härtbare Polyurethandispersionen, ein Verfahren zu deren Herstellung und deren Verwendung.

Description

Strahlungshärtbare wässrige Polyurethandispersionen Beschreibung Die vorliegende Erfindung betrifft mit UV-Strahlung härtbare, wäßrige Polyurethandispersionen, ein Verfahren zu deren Herstellung und deren Verwendung.
Strahlungshärtbare Polyurethane sind zur Beschichtung von Holzwerkstoffen, z.B. in der Möbelindustrie, weit verbreitet. Neben Anforderungen wie hoher Härte müssen Beschichtungen in der Möbelindustrie vor allem die Holzstruktur betonen, ein Effekt, der als "Anfeuerung" bezeichnet wird.
Wasserdispergierbare, strahlenhärtbare Polyurethane sind z.B. bekannt aus
EP 753531 , in der Urethanacrylate auf Basis von Polyesteracrylaten hergestellt wer- den, und EP 942022, in der Urethanacrylate auf Basis von acrylatgruppenhaltigen Präpolymeren hergestellt werden. Die dort beschriebenen Polyurethanacrylat-Disper- sionen zeigen nur eine unzureichende Betonung der Holzstruktur auf.
Insbesondere die Beispiele gemäß der EP 753531 zeigen eine schlechte Anfeuerung, wie in der EP 1 142947, dort Beispiel A als Vergleichsbeispiel nachgewiesen wird.
Wässrige Polyurethan-Dispersionen mit guter Anfeuerung sind z.B. in EP 1 142947 beschrieben. Dieser Effekt wird auf den Einbau eines besonderen Monomers (Hydro- xypivalinsäure neopentylglykolester) zurückgeführt. Die dort beschriebenen Systeme zeigen zwar deutlich verbesserte Anfeuerungen (Note 2) gegenüber dem Stand der Technik, zeigen jedoch gegenüber dem als Referenz eingesetzten Polyesteracrylat Laromer® PE 55W (Note 0) noch Verbesserungsbedarf.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, mit UV-Strahlung härtbare, in Wasser dispergierte Polyurethane zur Verfügung zu stellen, die auf Holzwerkstoffen gute anwendungstechnische Eigenschaften, insbesondere eine hohe Härte bei gleichzeitig guter Anfeuerung, zeigen. Zur Dispergierung der Polyurethane soll ferner auf gesundheitsschädliche Lösungsmittel, insbesondere N-Methylpyrrolidon (NMP), verzichtet werden.
Die Aufgabe wird gelöst durch strahlungshärtbare, in Wasser dispergierte Polyurethane, aufgebaut aus a) wenigstens einem aliphatischen Di- oder Polyisocyanat, b) wenigstens einer Verbindung mit mindestens einer gegenüber Isocyanatgruppen reaktiven Gruppe und mindestens einer radikalisch polymerisierbaren
C=C-Doppelbindung, c) optional wenigstens einer Verbindung mit mindestens zwei gegenüber Isocyanat- gruppen reaktiven Gruppen, die ausgewählt sind unter Hydroxyl-, Mercapto-, primären und/oder sekundären Aminogruppen, d) wenigstens einer Verbindung mit mindestens einer gegenüber Isocyanatgruppen reaktiven Gruppe und mindestens einer Säuregruppe, e) mindestens einer basischen Verbindung für eine Neutralisation oder Teilneutralisation der Säuregruppen der Verbindungen d), f) optional wenigstens einer von b), d) und e) verschiedenen Verbindung, die nur eine gegenüber Isocyanatgruppen reaktive Gruppe aufweist, g) optional wenigstens einem von a) verschiedenen Di- oder Polyisocyanat, h) optional weiteren Zusatzstoffen, die ausgewählt sind unter Reaktivverdünnern, Photoinitiatoren und üblichen Lackzusatzstoffen, i) Wasser sowie k) optional mindestens ein Di- und/oder Polyamin, wobei der mittlere Durchmesser (z-Mittelwert) der Teilchen, gemessen bei 25 °C mittels dynamischer Lichtstreuung mit dem Malvern® Zetasizer 1000, in der wäßrigen Dispersion 30 nm, bevorzugt 25 nm nicht übersteigt und
wobei der Anteil der NCO-Gruppen der Komponente g) an den insgesamt eingesetzten NCO-Gruppen aus den Verbindungen a) und g) nicht mehr als 20 mol% beträgt.
In einer bevorzugten Ausführungsform weisen die erfindungsgemäß hergestellten Poly- urethane, also die Umsetzungsprodukte aus den Aufbaukomponenten a) bis d) sowie gegebenenfalls f) und g) eine Doppelbindungsdichte von mindestens 1 ,5 mol/kg, bevorzugt mindestens 1 ,8, besonders bevorzugt mindestens 2,0, ganz besonders bevorzugt 2,2 mol/kg auf. In den erfindungsgemäßen Dispersionen werden keine isocyanatgruppenhaltigen Verbindungen eingesetzt, bei denen die Isocyanatgruppen teilweise oder vollständig mit sogenannten Blockierungsmitteln umgesetzt wurden. Unter Blockierungsmitteln werden dabei Verbindungen verstanden, die Isocyanatgruppen in blockierte (verkappte bzw. geschützte) Isocyanatgruppen umwandeln, die dann unterhalb der sogenannten Deblockierungstemperatur nicht die üblichen Reaktionen einer freien Isocyanatgruppe zeigen. Solche erfindungsgemäß nicht eingesetzten Verbindungen mit blockierten Isocyanatgruppen kommen üblicherweise in Dual-Cure-Beschichtungsmitteln zur Anwendung, die über Isocyanatgruppenhärtung endgehärtet werden. Bevorzugt weisen die erfindungsgemäßen Polyurethandispersionen nach ihrer Herstellung im Wesentlichen keine freien Isocyanatgruppen mehr auf, d.h. in der Regel weniger als 1 Gew.-% NCO, bevorzugt weniger als 0,75, besonders bevorzugt weniger als 0,66 und ganz besonders bevorzugt weniger als 0,3 Gew.-% NCO (berechnet mit einem Molgewicht von 42 g/mol).
Komponente a)
Bei der Komponente a) handelt es sich um wenigstens ein, beispielsweise ein bis drei, bevorzugt ein bis zwei und besonders bevorzugt genau ein aliphatisches Di- oder Poly- isocyanat.
Aliphatische Isocyanate sind solche, die ausschließlich Isocyanatgruppen aufweisen, die an solche Kohlenstoffatome gebunden sind, die Bestandteil gerader oder verzweig- ter, acyclischer Ketten sind, bevorzugt solche, die ausschließlich Isocyanatgruppen aufweisen, die an gerade oder verzweigte, acyclische Ketten gebunden sind und besonders bevorzugt solche, die ausschließlich an gerade oder verzweigte, acyclische Kohlenwasserstoffketten gebundene Isocyanatgruppen aufweisen. Bei den aliphatischen Diisocyanaten oder Polyisocyanaten handelt es sich bevorzugt um Isocyanate mit 4 bis 20 C-Atomen. Beispiele für übliche Diisocyanate sind 1 ,4-Te- tramethylendiisocyanat, 1 ,5-Pentamethylendiisocyanat, 1 ,6-Hexamethylendiisocyanat, 2-Methyl-1 ,5-diisocyanatopentan, 1 ,8-Octamethylendiisocyanat, 1 ,10-Decamethylendi- isocyanat, 1 ,12-Dodecamethylendiisocyanat, 1 ,14-Tetradecamethylendiisocyanat, 2,2,4- und 2,4,4-Trimethylhexandiisocyanat, 1 ,3-Bis(1 -isocyanato-1 -methylethyl)benzol (m-TMXDI), sowie Derivate des Lysindiisocyanats. Es können Gemische der genannten Diisocyanate vorliegen.
Bevorzugt sind 1 ,6-Hexamethylendiisocyanat und 2,2,4- und 2,4,4-Trimethylhexandi- isocyanatgemische, besonders bevorzugt ist 1 ,6-Hexamethylendiisocyanat.
Es können auch Gemische der genannten Diisocyanate vorliegen.
2,2,4- und 2,4,4-Trimethylhexandiisocyanat liegen beispielsweise als Gemisch vor im Verhältnis 1 ,5:1 bis 1 :1 ,5, bevorzugt 1 ,2:1 - 1 :1 ,2, besonders bevorzugt 1 ,1 :1 - 1 :1 ,1 und ganz besonders bevorzugt 1 :1 .
Bei den Polyisocyanaten kann es sich um monomere Isocyanate mit mehr als zwei Isocyanatgruppen handeln oder um Oligomere der oben genanten Diisocyanate. Ein Beispiel für ersteres sind Triisocyanatononan (4-lsocyanatomethyl-1 , 8-octan- diisocyanat) oder 2'-lsocyanatoethyl-(2,6-diisocyanatohexanoat). Beispiele für letztere sind Isocyanurat-, Biuret-, Uretdion-, Allophanat-, Iminooxadia- zintrion- und/oder Carbodiimidgruppen haltige Oligomere, die durch Oligomerisation mindestens eines, bevorzugt genau eines oben genanten Diisocyanate erhältlich sind, besonders bevorzugt durch Umsetzung von 1 ,6-Hexamethylendiisocyanat.
Bevorzugte Polyisocyanate sind Isocyanurat-, Uretdion- und/oder Allophanatgruppen haltige Oligomere, besonders bevorzugt Isocyanurat- und/oder Allophanatgruppen haltige Oligomere und in einer ganz besonders bevorzugten Ausführungsform handelt es sich bei der Verbindung a) um ein allophanatgruppenhaltiges Oligomer auf Basis 1 ,6-Hexamethylendiisocyanat, bei dem 1 ,6-Hexamethylendiisocyanat mit zumindest einem Teil der Verbindung b) zu einem allophanatgruppenhaltigen Oligomer umgesetzt wird.
Diese Umsetzung ergibt eine Verbindung mit mindestens zwei freien Isocyanatgrup- pen, mindestens einer Allophanatgruppe und mindestens einer, durch ihre gegenüber Isocyanatgruppen reaktive Gruppe an die Allophanatgruppe gebundene, radikalisch polymerisierbare C=C-Doppelbindung.
Eine derartige Komponente a) enthält einen Gehalt an Allophanatgruppen (berechnet als C2N2HO3 = 101 g/mol) von 1 bis 35 Gew.-%, bevorzugt von 5 bis 30 Gew.-%, besonders bevorzugt von 10 bis 35 Gew.-%. Die erfindungsgemäßen Polyurethane aus den Aufbaukomponenten a) bis d) sowie gegebenenfalls f) und g) enthalten 1 bis 30 Gew.-%, bevorzugt von 1 bis 25 Gew.-%, besonders bevorzugt von 2 bis
20 Gew.-% Allophanatgruppen. Weiterhin enthält die erfindungsgemäß eingesetzte Komponente a) weniger als 5 Gew.-% Uretdion.
Bevorzu t sind Verbindungen der folgenden Formel
Figure imgf000005_0001
worin
R3 einen zweiwertigen aliphatischen oder cycloaliphatischen, bevorzugt aliphatischen Rest, bevorzugt Kohlenwasserstoffrest, der 2 bis 12, bevorzugt 2 bis 8, besonders bevorzugt 2 bis 4 Kohlenstoffatome aufweist,
R4 Wasserstoff oder Methyl, bevorzugt Wasserstoff, ist und n im statistischen Mittel 0 oder eine positive Zahl, bevorzugt Werte von 0 bis 5, besonders bevorzugt 0,5 bis 3 und ganz besonders bevorzugt 1 bis 2 annehmen kann.
Beispiele für R3 sind 1 ,2-Ethylen, 1 ,1 -Dimethyl-1 ,2-ethylen, 1 ,2-Propylen, 1 ,3-Propylen, 2-Methyl-1 ,3-propylen, 2-Ethyl-1 ,3-propylen, 2-Butyl-2-ethyl-1 ,3-propylen, 2,2-Di- methyl-1 ,3-propylen, 1 ,2-Butylen, 1 ,3-Butylen, 1 ,4-Butylen, 1 ,5-Pentylen, 1 ,6-Hexylen, 2-Ethyl-1 ,3-hexylen, 1 ,8-Octylen, 2,4-Diethyl-1 ,3-octylen oder 1 ,10-Decylen, bevorzugt 1 ,2-Ethylen, 1 ,2-Propylen, 1 ,3-Propylen oder 1 ,4-Butylen, besonders bevorzugt 1 ,2-Ethylen oder 1 ,2-Propylen und ganz besonders bevorzugt 1 ,2-Ethylen.
Bevorzugt weist diese Komponente einen NCO-Gehalt von 10 bis 18, bevorzugt 12 bis 16 und besonders bevorzugt 13 bis 16 Gew% und ein mittleres Molekulargewicht von 600 bis 1200, bevorzugt 700 bis 1000 und besonders bevorzugt von 700 bis 900 g/mol auf.
Deartige Verbindungen sind beispielsweise unter dem Handelsnamen Laromer® 9000 von der BASF SE, Ludwigshafen, kommerziell erhältlich.
Die Herstellung solcher Verbindungen ist bekannt aus WO 00/39183 A1 , dort beson- ders Beispiel 1.1 . und Produkte 1 bis 7 aus Tabelle 1 .
Komponente b)
Bei der Komponente b) handelt es sich um wenigstens eine, bevorzugt ein bis drei, besonders bevorzugt ein oder zwei und ganz besonders bevorzugt genau eine Verbindung mit mindestens einer, beispielsweise ein oder zwei, bevorzugt genau einer gegenüber Isocyanatgruppen reaktiven Gruppe und mindestens einer, beispielsweise ein bis drei, bevorzugt ein oder zwei und ganz besonders bevorzugt genau einer radikalisch polymerisierbaren C=C-Doppelbindung.
Radikalisch polymerisierbare C=C-Doppelbindungen sind Vinylether-, Acrylat- oder Methacrylatgruppen, bevorzugt Acrylat- oder Methacrylatgruppen, und besonders bevorzugt Acrylatgruppen. Bevorzugte Verbindungen der Komponenten b) sind z. B. die Ester zwei- oder mehrwertiger Alkohole mit α,β-ethylenisch ungesättigen Mono- und/oder Dicarbonsauren und deren Anhydriden, bei denen mindestens eine Hydroxygruppe unumgesetzt bleibt.
Als α,β-ethylenisch ungesättigte Mono- und/oder Dicarbonsäuren und deren Anhydride können z. B. Acrylsäure, Methacrylsäure, Fumarsäure, Maleinsäure, Maleinsäureanhydrid, Crotonsäure, Itaconsäure, etc. eingesetzt werden. Bevorzugt werden Acrylsäure und Methacrylsäure, besonders bevorzugt Acrylsäure eingesetzt. Geeignete zwei- oder mehrwertige Alkohole sind z. B. Diole wie Ethylenglykol, 1 ,2-Pro- pandiol, 1 ,3-Propandiol, 1 ,1 -Dimethylethan-1 ,2-diol, 2-Butyl-2-ethyl-1 ,3-Propandiol, 2-Ethyl-1 ,3-Propandiol, 2-Methyl-1 ,3-Propandiol, Neopentylglykol, Hydroxypivalinsäu- reneopentylglykolester, 1 ,2-, 1 ,3- oder 1 ,4-Butandiol, 1 ,6-Hexandiol, 1 ,10-Dekandiol, Bis-(4-hydroxycyclo-hexan)isopropyliden, Tetramethylcyclobutandiol, 1 ,2-, 1 ,3- oder 1 ,4-Cyclohexandiol, Cyclooctandiol, Norbornandiol, Pinandiol, Decalindiol, 2-Ethyl-1 ,3- Hexandiol, 2,4-Di-ethyl-oktan-1 ,3-diol, Hydrochinon, Bisphenol A, Bisphenol F, Bisphenol B, Bisphenol S, 2,2-Bis(4-hydroxycyclohexyl)propan, 1 ,1 -, 1 ,2-, 1 ,3- und 1 ,4-Cyclo- hexandimethanol, 1 ,2-, 1 ,3- oder 1 ,4-Cyclohexandiol, Tricyclodecandimethanol.
Geeignete Triole und Polyole weisen z. B. 3 bis 25, bevorzugt 3 bis 18 Kohlenstoffatome auf. Dazu zählen z. B. Trimethylolbutan, Trimethylolpropan, Trimethylolethan, Pen- taerythrit, Glycerin, Ditrimethylolpropan, Dipentaerythrit, Ditrimethylolpropan, Sorbit, Mannit, Diglycerol, Threit, Erythrit, Adonit (Ribit), Arabit (Lyxit), Xylit, Dulcit (Galactit), Maltit oder Isomalt.
Vorzugsweise sind die Verbindungen der Komponente b) ausgewählt unter 2-Hydro- xyethylacrylat, 2-Hydroxyethylmethacrylat, 2-Hydroxypropylacrylat, 2-Hydroxypropyl- methacrylat, 3-Hydroxybutylacrylat, 3-Hydroxybutylmethacrylat, 4-Hydroxybutylacrylat, 4-Hydroxybutylmethacrylat, 6-Hydroxyhexylacrylat, 6-Hydroxyhexylmethacrylat, 3-Hy- droxy-2-ethylhexylacrylat, 3-Hydroxy-2-ethylhexylmethacrylat, Trimethylolpropanmono- oder -diacrylat, Pentaerythritdi- oder -triacrylat und Mischungen davon.
Besonders bevorzugt ist die Verbindung b) ausgewählt aus der Gruppe bestehend aus 2-Hydroxyethylacrylat, 2-Hydroxyethylmethacrylat, 2-Hydroxypropylacrylat, 2-Hydroxy- propyl-methacrylat, 4-Hydroxybutylacrylat und Pentaerythrittriacrylat, ganz besonders bevorzugt ausgewählt aus der Gruppe bestehend aus 2-Hydroxyethylacrylat, 2-Hydroxyethylmethacrylat, 2-Hydroxypropylacrylat und 2-Hydroxypropyl-methacrylat und insbesondere handelt es sich um 2-Hydroxyethylacrylat oder 2-Hydroxyethylmethacrylat.
Komponente c)
Bei der optionalen Komponente c) handelt es sich um wenigstens eine Verbindung mit mindestens zwei, beispielsweise 2 bis 4, bevorzugt 2 bis 3 und besonders bevorzugt genau 2 gegenüber Isocyanatgruppen reaktiven Gruppen, die ausgewählt sind unter Hydroxyl-, Mercapto-, primären und/oder sekundären Aminogruppen, bevorzugt ausgewählt aus der Gruppe bestehend aus Hydroxy- und primären Aminogruppen, besonders bevorzugt handelt es sich um Hydroxygruppen. Bei den Verbindungen c) handelt es sich um niedermolekulare Verbindungen mit einem Molgewicht unter 500 g/mol, bevorzugt unter 400 g/mol, besonders bevorzugt unter 250 g/mol. Die niedermolekularen Alkohole c) können aliphatisch oder cycloaliphatisch, bevorzugt aliphatisch sein.
Die Hydroxygruppen können bevorzugt sekundär oder primär, bevorzugt primär sein.
Besonders bevorzugt sind Alkohole mit 2 bis 20 Kohlenstoffatomen. Bevorzugt sind insbesondere hydrolysestabile kurzkettige Diole mit 4 bis 20, bevorzugt 6 bis 12 Kohlenstoffatomen. Ganz besonders bevorzugt handelt es sich bei den Verbindungen c) um Alkandiole.
Beispiele für Verbindungen c) sind Ethylenglykol, 1 ,2-Propandiol, 1 ,3-Propandiol,
1 .1 - Dimethylethan-1 ,2-diol, 2-Butyl-2-ethyl-1 ,3-Propandiol, 2-Ethyl-1 ,3-Propandiol, 2-Methyl-1 ,3-Propandiol, Neopentylglykol, Hydroxypivalinsäureneopentylglykolester,
1 .2- , 1 ,3- oder 1 ,4-Butandiol, 1 ,6-Hexandiol, 1 ,10-Dekandiol, Bis-(4-hydroxycyclo- hexan)isopropyliden, Tetramethylcyclobutandiol, 1 ,2-, 1 ,3- oder 1 ,4-Cyclohexandiol,
Cyclooctandiol, Norbornandiol, Pinandiol, Decalindiol, 2-Ethyl-1 ,3-Hexandiol, 2,4-Di- ethyl-oktan-1 ,3-diol, Hydrochinon, Bisphenol A, Bisphenol F, Bisphenol B, Bisphenol S, 2,2-Bis(4-hydroxycyclohexyl)propan, 1 ,1 -, 1 ,2-, 1 ,3- und 1 ,4-Cyclohexandimethanol, 1 ,2-, 1 ,3- oder 1 ,4-Cyclohexandiol.
Bevorzugt sind Ethylenglykol, 1 ,2-Propandiol, 1 ,3-Propandiol, Neopentylglykol, 1 ,4-Butandiol, 1 ,6-Hexandiol, 2,2-Bis(4-hydroxycyclohexyl)propan, 1 ,1 -, 1 ,2-, 1 ,3- und 1 ,4-Cyclohexandimethanol, 1 ,2-, 1 ,3- oder 1 ,4-Cyclohexandiol, besonders bevorzugt sind Ethylenglykol, 1 ,2-Propandiol, 1 ,3-Propandiol, Neopentylglykol, 1 ,4-Butandiol oder 1 ,6-Hexandiol.
Es werden erfindungsgemäß keine wesentlichen Mengen höhermolekularer Di- oder Polyole mit einem Molgewicht oberhalb von 500 g/mol eingesetzt. Mit "keine wesentlichen Mengen" ist dabei gemeint, daß der Anteil der OH-Gruppen der höhermolekularen Di- oder Polyole an den insgesamt eingesetzten OH-Gruppen aus den Verbindungen b), c), d) und f) nicht mehr als 20 mol%, bevorzugt nicht mehr als 15 mol%, besonders bevorzugt nicht mehr als 10, ganz besonders bevorzugt nicht mehr als 5 und insbesondere 0 mol% beträgt.
Die zuvor genannten Komponenten c) können einzeln oder als Gemische eingesetzt werden.
Komponente d)
Komponente d) ist wenigstens eine, bevorzugt genau eine Verbindung mit mindestens einer, beispielsweise ein bis 3, bevorzugt ein oder 2, besonders bevorzugt genau zwei gegenüber Isocyanatgruppen reaktiven Gruppe und mindestens einer, bevorzugt genau einer Säuregruppe.
Vorzugsweise sind die Säuregruppen der Verbindungen der Komponente d) ausge- wählt unter Carbonsäuregruppen, Sulfonsäuregruppen, Phosphonsäuregruppen und Phosphorsäuregruppen. Bevorzugt sind Carbonsäure- und Sulfonsäuregruppen, besonders bevorzugt sind Carbonsäuregruppen.
Als Verbindungen d) mit mindestens einer gegenüber Isocyanat reaktiven Gruppe so- wie mindestens einer Carbonsäure- oder Sulfonsäuregruppe kommen insbesondere aliphatische Monomercapto-, Monohydroxy- und Monoamino- und Iminocarbonsäuren und entsprechende Sulfonsäuren in Frage wie Mercaptoessigsäure (Thioglykolsäure), Mercaptopropionsäure, Mercaptobernsteinsäure, Hydroxyessigsäure, Hydroxypropion- säure (Milchsäure), H yd roybern stein säure, Hydroxypivalinsäure, Dimethylolpropion- säure, Dimethylolbuttersäure, Hydroxydecansäure, Hydroxydodecansäure, 12- Hydroxy-stearinsäure, N-(2'-Aminoethyl)-3-aminopropionsäure,
Hydroxyethansulfonsäure, Hydroxypropansulfonsäure, Mercaptoethansulfonsäure, Mercaptopropansulfonsäure, Aminoethansulfonsäure, Aminopropansulfonsäure, Glycin (Aminoessigsäure), N-Cyclo-hexylaminoethansulfonsäure, N- Cyclohexylaminopropansulfonsäure, oder Iminodiessigsäure.
Bevorzugt sind Dimethylolpropionsäure und Dimethylolbuttersäure, besonders bevorzugt ist Dimethylolpropionsäure. Komponente e)
Komponente e) ist mindestens eine basischen Verbindung für eine Neutralisation oder Teilneutralisation der Säuregruppen der Verbindungen d). Als basische Verbindungen e) für eine Neutralisation oder Teilneutralisation der Säuregruppen der Verbindungen d) kommen anorganische und organische Basen wie Alkali- und Erdalkalihydroxide, -oxide, -carbonate, -hydrogencarbonate sowie Ammoniak oder primäre, sekundäre oder tert. Amine in Betracht. Bevorzugt ist die Neutralisation oder Teilneutralisation mit Aminen wie mit Ethanolamin oder Diethanolamin und insbeson- dere mit tert. Aminen, wie Triethylamin, Triethanolamin, Dimethylethanolamin oder
Diethylethanolamin. Die Mengen an eingeführten chemisch gebundenen Säuregruppen und das Ausmaß der Neutralisation der Säuregruppen (das meist bei 40 bis 100 % der Äquivalenzbasis beträgt) soll vorzugsweise hinreichend sein, um eine Dispergierung der Polyurethane in einem wässrigen Medium sicherzustellen, was dem Fachmann geläufig ist. Komponente f)
In den erfindungsgemäßen Dispersionen kann als Komponente f) wenigstens eine weitere Verbindung mit einer gegenüber Isocyanatgruppen reaktiven Gruppe eingesetzt werden. Bei dieser Gruppe kann es sich um eine Hydroxyl-, Mercapto-, oder eine primäre oder sekundäre Aminogruppe handeln. Geeignete Verbindungen f) sind die üblichen, dem Fachmann bekannten Verbindungen, die als sogenannte Abstopper zur Herabsetzung der Zahl reaktiver freier Isocyanatgruppen bzw. zur Modifizierung der Polyurethaneigenschaften üblicherweise bei der Polyurethanherstellung eingesetzt werden. Dazu zählen z. B. monofunktionelle Alkohole, wie Methanol, Ethanol, n-Pro- panol, Isopropanol, n-Butanol etc. Geeignete Komponenten f) sind auch Amine mit einer primären oder sekundären Aminogruppe, wie z. B. Methylamin, Ethylamin, n-Pro- pylamin, Diisopropylamin, Dimethylamin, Diethylamin, Di-n-propylamin, Diisopropyl- amin etc.
Komponente g)
In den erfindungsgemäßen Dispersionen kann als optionale Komponenten g) in untergeordneten Mengen wenigstens ein von den Verbindungen der Komponenten a) ver- schiedenes Polyisocyanat eingesetzt werden. Erfindungsgemäß werden als Komponenten g) keine Polyisocyanate eingesetzt, bei denen die Isocyanatgruppen mit einem Blockierungsmittel umgesetzt wurden.
Bevorzugte Verbindungen g) sind Polyisocyanate mit einer NCO-Funktionalität von 2 bis 4,5, besonders bevorzugt 2 bis 3,5. Bevorzugt werden als Komponente g) aliphatische, cycloaliphatische und araliphatische Diisocyanate eingesetzt. Dies können beispielsweise die oben unter a) aufgeführten Diisocyanate sein, sind jedoch von der Verbindung a) verschieden. Bevorzugt sind Verbindungen g), die neben 2 oder mehreren Isocyanatgruppen noch eine Gruppe, ausgewählt aus der Gruppe der Urethan-, Harn- stoff-, Biuret-, Allophanat-, Carbodiimid-, Uretonimin-, Uretdion- und Isocyanuratgrup- pen aufweisen.
Bevorzugt handelt es sich bei der Verbindung g) um cycloaliphatische oder aromatische, bevorzugt cycloaliphatische Di- und Polyisocyanate.
Cycloaliphatische Isocyanate sind solche, die mindestens eine Isocyanatgruppe aufweisen, die an ein Kohlenstoffatom gebunden ist, das Bestandteil eines vollständig gesättigten Ringsystems ist, bevorzugt solche, die mindestens eine Isocyanatgruppe aufweisen, die an ein Kohlenstoffatom gebunden ist, das Bestandteil eines nicht- aromatischen Carbocyclus ist. Aromatische Isocyanate sind solche, die mindestens eine Isocyanatgruppe aufweisen, die an ein Kohlenstoffatom gebunden ist, das Bestandteil eines aromatischen Ringsystems ist. Beispiele für cycloaliphatische Diisocyanate sind 1 ,4-, 1 ,3- oder 1 ,2-Diisocyanatocyclo- hexan, 4,4'- oder 2,4'-Di(isocyanatocyclohexyl)methan, Isophorondiisocyanat, 1 ,3- oder 1 ,4-Bis-(isocyanatomethyl)cyclohexan, 2,4-, und 2,6-Diisocy-anato-1 -methylcyclo- hexan. Beispiele für aromatische Diisocyanate sind 2,4- oder 2,6-Toluylen-diisocyanat, m- oder p-Xylylendiisocyanat, 2,4'- oder 4,4'-Diisocyanatodiphenylmethan, 1 ,3- oder 1 ,4-Phenylendiisocyanat, 1 -Chlor-2,4-phenylendiisocyanat, 1 ,5-Naphthylendi-isocy- anat, Diphenylen-4,4'-diisocyanat, 4,4'-Diisocyanato-3,3'-dimethyldiphenyldi-isocyanat, 3-Methyldiphenylmethan-4,4'-diisocyanat und Diphenylether-4,4'-diisocyanat. Es können Gemische der genannten Diisocyanate vorliegen. Bevorzugt werden als Komponente g) Isophorondiisocyanat, 1 ,3- und 1 ,4-Bis(isocy- anatomethyl)cyclohexan, deren Isocyanurate, Biurete und Mischungen davon eingesetzt.
Es stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar, keine oder keine wesentlichen Mengen der Komponente g) einzusetzen, bevorzugt keine Komponente g) einzusetzen.
Mit "keine wesentlichen Mengen" ist dabei gemeint, daß der Anteil der NCO-Gruppen der Komponente g) an den insgesamt eingesetzten NCO-Gruppen aus den Verbindun- gen a) und g) nicht mehr als 20 mol%, bevorzugt nicht mehr als 15 mol%, besonders bevorzugt nicht mehr als 10, ganz besonders bevorzugt nicht mehr als 5 und insbesondere 0 mol% beträgt.
Komponente h)
Die erfindungsgemäße Dispersion kann wenigstens eine weitere Verbindung enthalten, wie sie üblicherweise als Reaktivverdünner eingesetzt wird. Dazu zählen z. B. die Reaktivverdünner, wie sie in P.K.T. Oldring (Herausgeber), Chemistry & Technology of UV & EB Formulations for Coatings, Inks & Paints, Vol. II, Chapter III: Reactive Dilu- ents for UV & EB Curable Formulations, Wiley and SITA Technology, London 1997 beschrieben sind.
Bevorzugte Reaktivverdünner sind von der Komponente b) verschiedene Verbindungen, die wenigstens eine radikalisch polymerisierbare C=C-Doppelbindungen aufwei- sen.
Reaktivverdünner sind beispielsweise Ester der (Meth)acrylsäure mit Alkoholen, die 1 bis 20 C-Atome aufweisen, z.B. (Meth)acrylsäuremethylester, (Meth)acrylsäureethyl- ester, (Meth)acrylsäurebutylester, (Meth)acrylsäure-2-ethylhexylester, 2-Hydroxyethyl- acrylat, 4-Hydroxybutylacrylat , Dihydrodicyclopentadienylacrylat, vinylaromatische Verbindungen, z.B. Styrol, Divinylbenzol, α,β-ungesättigte Nitrile, z.B. Acrylnitril, Me- thacrylnitril, α,β-ungesättigte Aldehyde, z.B. Acrolein, Methacrolein, Vinylester, z.B. Vinylacetat, Vinylpropionat, halogenierte ethylenisch ungesättigte Verbindungen, z.B. Vinylchlorid, Vinylidenchlorid, konjugierte ungesättigte Verbindungen, z.B. Butadien, Isopren, Chloropren, einfach ungesättigte Verbindungen, z.B. Ethylen, Propylen, 1 -Buten, 2-Buten, iso-Buten, cyclische einfach ungesättigte Verbindungen, z.B. Cyclo- penten, Cyclohexen, Cyclododecen, N-Vinylformamid, Allylessigsäure, Vinylessigsäu- re, monoethylenisch ungesättigten Carbonsäuren mit 3 bis 8 C-Atomen sowie deren wasserlöslichen Alkalimetall-, Erdalkalimetall- oder Ammoniumsalze wie beispielsweise: Acrylsäure, Methacrylsäure, Dimethylacrylsäure, Ethacrylsäure, Maleinsäure, Citra- consäure, Methylenmalonsäure, Crotonsäure, Fumarsäure, Mesaconsäure und Itacon- säure, Maleinsäure, N-Vinylpyrrolidon, N-Vinyllactame, wie z.B. N-Vinylcaprolactam, N-Vinyl-N-Alkyl-carbonsäureamide oder N-Vinyl-carbonsäureamide, wie z. B. N-Vinyl- acetamid, N-Vinyl-N-methylformamid und N-Vinyl-N-methylacetamid oder Vinylether, z.B. Methylvinylether, Ethylvinylether, n-Propylvinylether, /so-Propylvinylether, n-Butyl- vinylether, se/ -Butylvinylether, /so-Butylvinylether, feri-Butylvinylether, 4-Hydroxybutyl- vinylether, sowie Gemische davon.
Verbindungen mit mindestens zwei radikalisch polymerisierbare C=C-Doppel- bindungen: Dazu zählen insbesondere die Diester und Polyester der zuvorgenannten α,β-ethylenisch ungesättigten Mono- und/oder Dicarbonsäuren mit Diolen oder Poly- olen. Besonders bevorzugt sind Hexandioldiacrylat, Hexandioldimethacrylat, Octandi- oldiacrylat, Octandioldimethacrylat, Nonandioldiacrylat, Nonandioldimethacrylat, De- candioldiacrylat, Decandioldimethacrylat, Pentaerythritdiacrylat, Dipentaerythrittetraac- rylat, Dipentaerythrittriacrylat, Pentaerythrittetraacrylat, etc. Bevorzugt sind auch die Ester alkoxylierter Polyole, mit α,β-ethylenisch ungesättigten Mono- und/oder Dicarbonsäuren wie z. B. die Polyacrylate oder -methacrylate von alkoxyliertem Trimethy- lolpropan, Glycerin oder Pentaerythrit. Geeignet sind weiterhin die Ester alicylischer Di- ole, wie Cyclohexandioldi(meth)acrylat und Bis(hydroxymethyl-ethyl)cyclohexandi- (meth)acrylat. Weitere geeignete Reaktivverdünner sind Trimethylolpropanmonoforma- lacrylat, Glycerinformalacrylat, 4-Tetrahydropyranylacrylat, 2-Tetrahydropyranyl-meth- acrylat und Tetrahydrofurfurylacrylat.
Es stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar, auf niedermolekulare Reaktivverdünner zu verzichten, d.h. diese lediglich in Mengen von nicht mehr als 5 Gew%, besonders bevorzugt in Mengen von nicht mehr als 1 Gew% einzusetzen.
Unter "niedermolekularen Reaktivverdünnern" werden dabei Verbindungen mit ein oder zwei radikalisch polymerisierbaren C=C-Doppelbindungen und einem Molekulargewicht von nicht mehr als 500 g/mol verstanden. Sofern die Aushärtung der erfindungsgemäßen Dispersionen nicht mit Elektronenstrahlen, sondern mittels UV-Strahlung erfolgt, enthalten die erfindungsgemäßen Zubereitungen vorzugsweise wenigstens einen Photoinitiator, der die Polymerisation ethyle- nisch ungesättigter Doppelbindungen initiieren kann.
Photoinitiatoren können beispielsweise dem Fachmann bekannte Photoinitiatoren sein, z.B. solche in "Advances in Polymer Science", Volume 14, Springer Berlin 1974 oder in K. K. Dietliker, Chemistry and Technology of UV- and EB-Formulation for Coatings, Inks and Paints, Volume 3; Photoinitiators for Free Radical and Cationic Polymerizati- on, P. K. T. Oldring (Eds), SITA Technology Ltd, London, genannten.
In Betracht kommen z.B. Mono- oder Bisacylphosphinoxide, wie sie z.B. in EP-A 7 508, EP-A 57 474, DE-A 196 18 720, EP-A 495 751 oder EP-A 615 980 beschrieben sind, beispielsweise 2,4,6-Trimethylbenzoyldiphenylphosphinoxid (Lucirin® TPO der BASF SE), Ethyl-2,4,6-trimethylbenzoylphenylphosphinat (Lucirin® TPO L der BASF SE), Bis- (2,4,6-trimethylbenzoyl)-phenylphosphinoxid (Irgacure® 819 der Firma BASF SE e- hem. Ciba Spezialitätenchemie), Benzophenone, Hydroxyacetophenone, Phenylglyo- xylsäure und ihre Derivate oder Gemische dieser Photoinitiatoren. Als Beispiele seien genannt Benzophenon, Acetophenon, Acetonaphthochinon, Methylethylketon, Vale- rophenon, Hexanophenon, α-Phenylbutyrophenon, p-Morpholinopropiophenon, Dibenzosuberon, 4-Morpholinobenzophenon, 4-Morpholinodeoxybenzoin, p- Diacetylbenzol,
4-Aminobenzophenon, 4'-Methoxyacetophenon, ß-Methylanthrachinon, feri-Butylan- thrachinon, Anthrachinoncarbonysäureester, Benzaldehyd, α-Tetralon, 9-Acetylphen- anthren, 2-Acetylphenanthren, 10-Thioxanthenon, 3-Acetylphenanthren, 3-Ace-tylindol, 9-Fluorenon, 1 -lndanon, 1 ,3,4-Triacetylbenzol, Thioxanthen-9-οη, Xanthen-9-οη, 2,4-Dimethylthioxanthon, 2,4-Diethylthioxanthon, 2,4-Di-/sopropylthioxanthon, 2,4-Di- chlorthioxanthon, Benzoin, Benzoin-/sobutylether, Chloroxanthenon, Benzoin-tetra- hydropyranylether, Benzoin-methylether, Benzoin-ethylether, Benzoin-butylether, Ben- zoin-/sopropylether, 7-H-Benzoin-methylether, Benz[de]anthracen-7-on, 1 -Naphthal- dehyd, 4,4'-Bis(dimethylamino)benzophenon, 4-Phenylbenzophenon, 4-Chlorbenzo- phenon, Michlers Keton, 1 -Acetonaphthon, 2-Acetonaphthon, 1 -Benzoylcyclohexan-1 - ol, 2-Hydroxy-2,2-dimethylacetophenon, 2,2-Dimethoxy-2-phenylacetophenon, 2,2-Di- ethoxy-2-phenylacetophenon, 1 ,1 -Dichloracetophenon, 1 -Hydroxyacetophenon, Ace- tophenondimethylketal, o-Methoxybenzophenon, Triphenylphosphin, Tri-o-Tolylphos- phin, Benz[a]anthracen-7,12-dion, 2,2-Diethoxyacetophenon, Benzilketale, wie Benzil- dimethylketal, 2-Methyl-1 -[4-(methylthio)phenyl]-2-morpholinopropan-1 -on, Anthrachi- none wie 2-Methylanthrachinon, 2-Ethylanthrachinon, 2-feri-Butylanthrachinon, 1 -Chloranthrachinon, 2-Amylanthrachinon und 2,3-Butandion.
Geeignet sind auch nicht- oder wenig vergilbende Photoinitiatoren vom Phenylglyoxal- säureestertyp, wie in DE-A 198 26 712, DE-A 199 13 353 oder WO 98/33761 beschrieben. Typische Gemische umfassen beispielsweise 2-Hydroxy-2-Methyl-1 -phenyl-propan-2- on und 1 -Hydroxy-cyclohexyl-phenylketon, Bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl- pentylphosphinoxid und 2-Hydroxy-2-methyl-1 -phenyl-propan-1 -on, Benzophenon und 1 -Hydroxy-cyclohexyl-phenylketon, Bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentyl- phosphinoxid und 1 -Hydroxy-cyclohexyl-phenylketon, 2,4,6-Trimethylbenzoyldiphenyl- phosphinoxid und 2-Hydroxy-2-methyl-1 -phenyl-propan-1 -on, 2,4,6-Trimethylbenzo- phenon und 4-Methylbenzophenon oder 2,4,6-Trimethylbenzophenon und 4-Methyl- benzophenon und 2,4,6-Trimethylbenzoyldiphenylphosphinoxid. Bevorzugt unter diesen Photoinitiatoren sind 2,4,6-Trimethylbenzoyldiphenylphosphin- oxid, Ethyl-2,4,6-trimethylbenzoylphenylphosphinat, Bis-(2,4,6-trimethylbenzoyl)-phe- nylphosphinoxid, Benzophenon, 1 -Benzoylcyclohexan-1 -ol, 2-Hydroxy-2,2-dimethyl- acetophenon und 2,2-Dimethoxy-2-phenylacetophenon. Die erfindungsgemäßen Dispersionen enthalten die Photoinitiatoren vorzugsweise in einer Menge von 0,05 bis 10 Gew.-%, besonders bevorzugt 0,1 bis 8 Gew.-%, insbesondere 0,2 bis 5 Gew.-%, bezogen auf die Gesamtmenge der Komponenten a) bis h).
Bevorzugt enthalten die erfindungsgemäßen Dispersionen keine thermischen Initiato- ren.
Thermische Initiatoren im Sinne der vorliegenden Erfindung sind solche, die eine Halbwertzeit bei 60 °C von mindestens einer Stunde aufweisen. Die Halbwertszeit eines thermischen Initiators, ist die Zeit, nachdem die Ausgangsmenge des Initiators zur Hälfte in freie Radikale zerfallen ist.
Thermische Initiatoren sind erfindungsgemäß bevorzugt abwesend, liegen also in Mengen von weniger als 0,1 Gew.-% vor.
Die erfindungsgemäßen Dispersionen können weitere Lack-übliche Zusatzstoffe, wie Verlaufsmittel, Entschäumer, UV-Absorber, Farbstoffe, Pigmente und/oder Füllstoffe enthalten.
Geeignete Füllstoffe umfassen Silikate, z. B. durch Hydrolyse von Siliciumtetrachlorid erhältliche Silikate wie Aerosil® der Fa. Degussa, Kieselerde, Talkum, Aluminiumsilika- te, Magnesiumsilikate, Calciumcarbonate etc. Geeignete Stabilisatoren umfassen typische UV-Absorber wie Oxanilide, Triazine und Benzotriazol (letztere erhältlich als Ti- nuvin R-Marken der ehem. Ciba-Spezialitätenchemie, nunmehr BASF) und Benzophe- none. Diese können allein oder zusammen mit geeigneten Radikalfängern, beispielsweise sterisch gehinderten Aminen wie 2,2,6,6-Tetramethylpiperidin, 2,6-Di-tert.-butyl- piperidin oder deren Derivaten, z. B. Bis-(2,2,6,6-tetra-methyl-4-piperidyl)seba-cinat, eingesetzt werden. Stabilisatoren werden üblicherweise in Mengen von 0,1 bis
5,0 Gew.-% bezogen auf die in der Zubereitung enthaltenen "festen" Komponenten eingesetzt.
Komponente k) Polyamine mit 2 oder mehr primären und/oder sekundären Aminogruppen können vor allem dann eingesetzt werden, wenn die Kettenverlängerung bzw. Vernetzung in Gegenwart von Wasser stattfinden soll, da Amine in der Regel schneller als Alkohole oder Wasser mit Isocyanaten reagieren. Das ist häufig dann erforderlich, wenn wäßrige Dispersionen von vernetzten Polyurethanen oder Polyurethanen mit hohem Molgewicht gewünscht werden. In solchen Fällen geht man so vor, daß man Präpolymere mit Iso- cyanatgruppen herstellt, diese rasch in Wasser dispergiert und anschließend durch Zugabe von Verbindungen mit mehreren gegenüber Isocyanaten reaktiven Aminogruppen kettenverlängert oder vernetzt. Hierzu geeignete Amine sind im allgemeinen polyfunktionelle Amine des Molgewichtsbereiches von 32 bis 500 g/mol, vorzugsweise von 60 bis 300 g/mol, welche mindestens zwei primäre, zwei sekundäre oder eine primäre und eine sekundäre Aminogrup- pe enthalten. Beispiele hierfür sind Diamine wie Diaminoethan, Diaminopropane, Dia- minobutane, Diaminohexane, Piperazin, 2,5-Dimethylpiperazin, Amino-3-aminomethyl- 3,5,5-trimethyl-cyclohexan (Isophorondiamin, IPDA), 4,4'-Diaminodicyclohexylmethan, 1 ,4-Diaminocyclohexan, Aminoethylethanolamin, Hydrazin, Hydrazinhydrat oder Tria- mine wie Diethylentriamin oder 1 ,8-Diamino-4-aminomethyloctan oder höhere Amine wie Triethylentetramin, Tetraethylenpentamin oder polymere Amine wie Polyethylen- amine, hydrierte Poly-Acrylnitrile oder zumindest teilweise hydrolysierte Poly-N-Vinyl- formamide jeweils mit einem Molgewicht bis zu 2000, bevorzugt bis zu 1000 g/mol.
Die Amine können auch in blockierter Form, z.B. in Form der entsprechenden Ketimine (siehe z.B. CA-1 129 128), Ketazine (vgl. z.B. die US-A 4 269 748) oder Aminsalze (s. US-A 4 292 226) eingesetzt werden. Auch Oxazolidine, wie sie beispielsweise in der US-A 4 192 937 verwendet werden, stellen verkappte Polyamine dar, die für die Herstellung der Polyurethane zur Kettenverlängerung der Präpolymeren eingesetzt werden können. Bei der Verwendung derartiger verkappter Polyamine werden diese im allgemeinen mit den Präpolymeren in Abwesenheit von Wasser vermischt und diese Mischung anschließend mit dem Dispersionswasser oder einem Teil des Dispersions- wassers vermischt, so daß hydrolytisch die entsprechenden Polyamine freigesetzt werden.
Bevorzugt werden Gemische von Di- und Triaminen verwendet, besonders bevorzugt Gemische von Isophorondiamin und Diethylentriamin.
Der Anteil an Polyaminen kann bis zu 10, bevorzugt bis zu 8 mol-% und besonders bevorzugt bis zu 5 mol%, bezogen auf die Gesamtmenge an C=C-Doppelbindungen betragen. Der Feststoffgehalt der erfindungsgemäßen wässrigen Dispersionen liegt vorzugsweise in einem Bereich von etwa 5 bis 70, bevorzugt 20 bis 60 Gew.-%, besonders bevorzugt 30 bis 50 Gew%.
Bevorzugt sind Dispersionen, wobei die Isocyanatgruppen der Verbindungen der Komponente a) und, falls vorhanden, g) zu
- 20 bis 99 Mol-%, bevorzugt 40 bis 90 Mol-%, besonders bevorzugt 55 - 82 Mol% mit gegenüber Isocyanatgruppen reaktiven Gruppen wenigstens einer Verbindung der
Komponente b),
- 0 bis 50 Mol-% bevorzugt 5 bis 40 Mol-%, besonders bevorzugt 10 - 30 Mol% mit gegenüber Isocyanatgruppen reaktiven Gruppen wenigstens einer Verbindung der Komponente c),
- 1 bis 25 Mol-%, bevorzugt 5 bis 20 Mol-%, besonders bevorzugt 8 bis 15 Mol% mit gegenüber Isocyanatgruppen reaktiven Gruppen wenigstens einer Verbindung der Komponente d),
- 0 bis 5 Mol-%, bevorzugt 0 bis 2 Mol-%, besonders bevorzugt 0 Mol% mit gegenüber Isoocyanatgruppen wenigstens einer Verbindung der Komponente d), umgesetzt sind. Die Angaben beziehen sich auf molare Äquivalente einer funktionellen Gruppe.
Besonders bevorzugte Dispersionen sind solche, die pro kg Polyurethan, bezogen auf die Summe der Komponenten a) bis d) und e) bis g), einen Gehalt an neutralisierten oder freien Säuregruppen aus d) von mindestens 0,4 mol aufweisen, bevorzugt min- destens 0,45 mol/kg.
Durch diesen Gehalt kann bevorzugt auf den Einsatz von organischen Lösungsmitteln, insbesondere von N-Methylpyrrolidon, zur Dispergierung verzichtet werden, so daß der VOC-Gehalt der erfindungsgemäßen Dispersionen nicht durch diese organischen Lö- sungsmittel erhöht wird.
Die erfindungsgemäßen Dispersionen eignen sich besonders als Beschichtungsmasse oder in Beschichtungsmassen, besonders bevorzugt zum Beschichten von Substraten wie Holz, Papier, Textil, Leder, Vlies, Kunststoffoberflächen, Glas, Keramik, minerali- sehen Baustoffen, wie Zement-Formsteine und Faserzementplatten, und insbesondere von Metallen oder beschichteten Metallen. Mit besonderem Vorteil können die erfindungsgemäßen Dispersionen eingesetzt werden zur Beschichtung von Holz und Holzwerkstoffen und holzhaltigen Substraten, wie Faserplatten. Denkbar wäre auch die Beschichtung von Cellulosefaser haltigen Substraten, wie beispielsweise Papier, Pappe oder Karton. Ganz besonders bevorzugt sind die Dispersionen geeignet zur Beschichtung von Eiche, Fichte, Kiefer, Buche, Ahorn, Nußbaum, Macore, Kastanie, Platane, Rubinie, Esche, Birke, Pinie und Ulme, sowie Kork.
Vorteilhafterweise bilden die erfindungsgemäßen Dispersionen nach Härtung durch energiereiche Strahlung Filme mit guten anwendungstechnischen Eigenschaften, insbesondere eine gute Härte bei ausreichender Elastizität und dabei zugleich eine gute Anfeuerung.
Die Beschichtung der Substrate erfolgt nach üblichen, dem Fachmann bekannten Ver- fahren, wobei man wenigstens eine erfindungsgemäße Dispersion auf das zu beschichtende Substrat in der gewünschten Stärke aufbringt und die flüchtigen Bestandteile der Dispersionen entfernt durch Trocknen und/oder Ablüften bei Umgebungs- oder erhöhter Temperatur bis beispielsweise 60°C. Dieser Vorgang kann gewünschtenfalls ein- oder mehrfach wiederholt werden. Das Aufbringen auf das Substrat kann in bekannter Weise, z. B. durch Spritzen, Spachteln, Rakeln, Bürsten, Rollen, Walzen oder Gießen erfolgen. Die Beschichtungsstärke liegt in der Regel in einem Bereich von etwa 3 bis 1000 g/m2 und vorzugsweise 10 bis 200 g/m2.
Gegebenenfalls kann, wenn mehrere Schichten des Beschichtungsmittels übereinander aufgetragen werden, nach jedem Beschichtungsvorgang eine Strahlungshärtung erfolgen. Die Strahlungshärtung erfolgt durch Einwirkung energiereicher Strahlung, also
UV-Strahlung oder Tageslicht, vorzugsweise Licht der Wellenlänge 250 bis 600 nm oder durch Bestrahlung mit energiereichen Elektronen (Elektronenstrahlung; 150 bis 300 keV). Als Strahlungsquellen dienen beispielsweise Hochdruckquecksilberdampflampen, Laser, gepulste Lampen (Blitzlicht), Halogenlampen oder Excimerstrahler. Die üblicherweise zur Vernetzung ausreichende Strahlungsdosis bei UV-Härtung liegt im Bereich von 80 bis 3000 mJ/cm2.
Die Bestrahlung kann gegebenenfalls auch unter Ausschluß von Sauerstoff, z. B. unter Inertgas-Atmosphäre, durchgeführt werden. Als Inertgase eignen sich vorzugsweise Stickstoff, Edelgase, Kohlendioxid oder Verbrennungsgase. Desweiteren kann die Bestrahlung erfolgen, indem die Beschichtungsmasse mit transparenten Medien abgedeckt wird. Transparente Medien sind z. B. Kunststofffolien, Glas oder Flüssigkeiten, z. B. Wasser. Besonders bevorzugt ist eine Bestrahlung in der Weise, wie sie in der DE-A1 199 57 900 beschrieben ist.
In einem bevorzugten Verfahren erfolgt die Aushärtung kontinuierlich, indem man das mit der erfindungsgemäßen Zubereitung behandelte Substrat mit konstanter Geschwindigkeit an einer Strahlungsquelle vorbeiführt. Hierfür ist es erforderlich, dass die Aushärtungsgeschwindigkeit der erfindungsgemäßen Zubereitung ausreichend hoch ist. Diesen unterschiedlichen zeitlichen Verlauf der Härtung kann man sich insbesondere dann zu Nutze machen, wenn sich an die Beschichtung des Gegenstandes noch ein Verarbeitungsschritt anschließt, bei dem die Filmoberfläche in direkten Kontakt mit einem anderen Gegenstand tritt oder mechanisch bearbeitet wird. Der Vorteil der erfindungsgemäßen Dispersionen liegt darin, dass man die beschichteten Gegenstände unmittelbar im Anschluß an die Strahlungshärtung weiterverarbeiten kann, weil die Oberfläche nicht mehr klebt. Andererseits ist der getrocknete Film noch so flexibel und dehnbar, dass der Gegenstand noch verformt werden kann, ohne dass der Film dabei abplatzt oder reißt.
Die Erfindung wird anhand der folgenden, nicht einschränkenden Beispiele näher erläutert.
Beispiele
Beispiel 1 :
Herstellen einer erfindungsgemäßen Polyurethanacrylatdispersion In einem Rührkessel wurden 78 Teile Hydroxyethylacrylat, 37 Teile Neopentylglykol, 47 Teile Dimethylolpropionsäure, 572 Teile eines acrylierten Polyisocyanates (Laromer® LR 9000, BASF SE), 0,4 Teile 2,6 Di-t-butyl-p-Kresol, 0,5 Teile Hydrochinonmono- methylether und 184 Teile Aceton vorgelegt und bei Raumtemperatur 0,5 Teile Dibutyl- zinndilaurat zugegeben. Es wurde auf 80°C aufgeheizt und 6 Stunden bei 80°C reagie- ren gelassen. Danach wurde mit 130 Teilen Aceton verdünnt. Der NCO Wert betrug 0,24%. Man gab 184 Teile 10%ige Natronlauge zu, und tropfte anschließend während 45 Minuten 1400 Teile Wasser zu. Anschließend destillierte man das Aceton im Vakuum ab. Man stellte den Feststoffgehalt durch Wasserzugabe auf 30% ein. Die Viskosität betrug 320 mPas und die Teilchengröße der transluzenten Dispersion 21 nm. Beispiel 2:
Herstellen einer erfindungsgemäßen Polyurethanacrylatdispersion In einem Rührkessel wurden 1 13 Teile Hydroxyethylacrylat, 69 Teile Dimethylolpropi- onsäure, 553 Teile eines acrylierten Polyisocyanates (Laromer® LR 9000, BASF SE), 0,4 Teile 2,6 Di-t-butyl-p-Kresol, 0,5 Teile Hydrochinonmonomethylether und 184 Teile Aceton vorgelegt und bei Raumtemperatur 0,5 Teile Borchi® Kat 24 (Bismutcarboxylat) zugegeben. Es wurde auf 80°C aufgeheizt und 6 Stunden bei 80°C reagieren lassen. Danach wurde mit 130 Teilen Aceton verdünnt. Der NCO Wert betrug 0,15%. Man gab 184 Teile 10%ige Natronlauge zu, und tropfte anschließend während 45 Minuten 1200 Teile Wasser zu. Anschließend destillierte man das Aceton im Vakuum ab. Der Feststoffgehalt betrug 37%. Die Viskosität beträgt 6200 mPas, die Teilchengröße der trans- luzenten Lösung betrug unter 20 nm.
Vergleichsbeispiel 1 :
Es wurde Beispiel 3 aus der EP 1 142 947 nachgestellt (Polyurethanacrylat enthaltend Laromer® PE 44F, BASF SE, Dimethylolpropionsäure, Neopentylglykol, Hydroxypiva- linsäure neopentylglykolester, Isophorondiisocyanat und Hexamethylendiisocyanat). Der Festkörper betrug 38 +/- 2%. Die Teilchengröße wurde zu 54 nm bestimmt.
Vergleichsbeispiel 2:
In einem Rührkessel wurden 60 Teile Hydroxyethylacrylat, 36 Teile Dimethylolpropionsäure, 56 Teile Neopentylglykol, 582 Teile eines acrylierten Polyisocyanates (Laro- mer® LR 9000, BASF SE), 0,4 Teile 2,6 Di-t-butyl-p-Kresol, 0,5 Teile Hydrochinonmonomethylether und 184 Teile Aceton vorgelegt und bei Raumtemperatur 0,5 Teile Borchi® Kat 24 (Bismutcarboxylat) zugegeben. Es wurde auf 80°C aufgeheizt und 6 Stunden bei 80°C reagieren gelassen. Danach wurde mit 130 Teilen Aceton verdünnt. Der NCO Wert betrug 0,15%. Man gab 97 Teile 10%ige Natronlauge zu, und tropfte an- schließend während 45 Minuten 1500 Teile Wasser zu. Anschließend destillierte man das Aceton im Vakuum ab. Der Feststoffgehalt wurde auf 30% eingestellt. Die Viskosität betrug 1380 mPas, die Teilchengröße 67 nm.
Vergleichsbeispiel 3:
Es wurde wie in Beispiel 2 verfahren, jedoch wurden die 553 Teile Laromer® LR 9000 durch eine Mischung aus 290 Teilen Laromer® LR9000 und 260 Teilen eines Isocy- anurats von Isophorondiisocyanat (Vestanat® T1890 der Firma Evonik) ersetzt.
Die Viskosität der Dispersion betrug 580 mPas und die Teilchengröße war kleiner als 20 nm. Anwendungtechnische Prüfung
Herstellen von Filmen Die Dispersionen bzw. Lösungen aus Beispiel 1 und 2, sowie Vergleichsbeispiel 1 und 2 wurden mit 4 Gew. % Photoinitiator Irgacure® 500 (BASF SE ehem. Ciba Spezialitätenchemie) versetzt und mittels eines 200μΓη-Κ38ίβηΓ3ΐ<βΐ8 auf ein vorgeschliffenes- Holzsubstrat aufgetragen. Es wurde 15 min bei Raumtemperatur und 30 min bei 60 °C im Umluftofen abgelüftet und in einer IST UV Anlage auf einem Transportband mit 10 m/min mit 2 UV Lampen (120W/cm) bestrahlt. Anschließend wurde zwischengeschliffen (160er Körnung) und anschließend erneut beschichtet (wie oben), getrocknet und UV-gehärtet. Die Filme waren physikalisch trocken und durchgehärtet (Fingernageltest).
Figure imgf000020_0001
1 ) nach DIN EN ISO 3251 (1 g bei 125°C)
2) Rotationsviskosimeter 23°C bei 50 S"1
3) Mittlere Teilchengröße Malvern® Zetasizer 1000, Malvern Istruments, Malvern, UK 4) Filmaufzug auf Nussbaum, Beurteilung visuell nach Noten, Note 1 = bestes Resultat, Note 4 = schlechtestes Resultat. Als Benchmark diente eine 100%ige UV Formulierung auf Basis eines aminmodifizierten Polyesteracrylates (Laromer® PO 84F) mit guter Anfeuerung: Note 1 ).
5) Filmaufzug auf Eiche, Beurteilung visuell nach Noten, Note 1 = bestes Resultat, No- te 4 = schlechtestes Resultat. Als Benchmark diente eine 100%ige UV Formulierung auf Basis eines aminmodifizierten Polyesteracrylates (Laromer® PO 84F) mit guter Anfeuerung: Note 1 ).
6) Pendelhärte nach König DIN 53157 (Schwingungen) nach UV-Härtung
7) Erichsentiefung (mm) DIN EN ISO 1520

Claims

Patentansprüche
Strahlungshärtbare, in Wasser dispergierte Polyurethane, aufgebaut aus a) wenigstens einem aliphatischen Di- oder Polyisocyanat, b) wenigstens einer Verbindung mit mindestens einer gegenüber Isocyanatgruppen reaktiven Gruppe und mindestens einer radikalisch polymerisierbaren
C=C-Doppelbindung, c) optional wenigstens einer Verbindung mit einem Molgewicht unter 500 g/mol mit mindestens zwei gegenüber Isocyanatgruppen reaktiven Gruppen, die ausgewählt sind unter Hydroxyl-, Mercapto-, primären und/oder sekundären Aminogruppen, d) wenigstens einer Verbindung mit mindestens einer gegenüber Isocyanatgruppen reaktiven Gruppe und mindestens einer Säuregruppe, e) mindestens einer basischen Verbindung für eine Neutralisation oder Teilneutralisation der Säuregruppen der Verbindungen d), f) optional wenigstens einer von b), d) und e) verschiedenen Verbindung, die nur eine gegenüber Isocyanatgruppen reaktive Gruppe aufweist, g) optional wenigstens einem von a) verschiedenen Di- oder Polyisocyanat, h) optional weiteren Zusatzstoffen, die ausgewählt sind unter Reaktivverdünnern, Photoinitiatoren und üblichen Lackzusatzstoffen, i) Wasser sowie k) optional mindestens ein Di- und/oder Polyamin, wobei der mittlere Durchmesser (z-Mittelwert) der Teilchen, gemessen bei 25 °C mittels dynamischer Lichtstreuung mit dem Malvern® Zetasizer 1000, in der wäßrigen Dispersion 30 nm, bevorzugt 25 nm nicht übersteigt und
wobei der Anteil der NCO-Gruppen der Komponente g) an den insgesamt eingesetzten NCO-Gruppen aus den Verbindungen a) und g) nicht mehr als 20 mol% beträgt.
Dispersion gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Doppelbindungsdichte mindestens 1 ,5 mol/kg beträgt.
Polyurethandispersion gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Komponente a) ein allophanatgruppenhaltiges Oligomer auf Basis 1 ,6-Hexamethylendiisocyanat ist, bei dem 1 ,6-Hexamethylendiisocyanat mit zumindest einem Teil der Verbin- dung b) zu einem allophanatgruppenhaltigen Oligomer umgesetzt wird.
Polyurethandispersion gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß Komponente b) ausgewählt ist unter 2-Hydroxyethylacrylat, 2-Hydroxy- ethylmethacrylat, 2-Hydroxypropylacrylat, 2-Hydroxypropyl-methacrylat, 3-Hydroxy- butylacrylat, 3-Hydroxybutylmethacrylat, 4-Hydroxybutylacrylat, 4-Hydroxybutylmeth- acrylat, 6-Hydroxyhexylacrylat, 6-Hydroxyhexylmethacrylat, 3-Hy-droxy-2-ethylhexyl- acrylat, 3-Hydroxy-2-ethylhexylmethacrylat, Trimethylolpropanmono- oder -diacrylat, Pen- taerythritdi- oder -triacrylat und Mischungen davon.
Polyurethandispersion gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß Komponente c) aliphatisch oder cycloaliphatisch ist.
Polyurethandispersion gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Komponente d) ausgewählt ist aus der Gruppe bestehend aus Dimethy- lolpropionsäure und Dimethylolbuttersäure.
Substrat, beschichtet mit einer Polyurethandispersion gemäß einem der Ansprüche 1 bis 6.
Substrat gemäß Anspruch 7, dadurch gekennzeichnet, daß es sich um beschichtete Eiche, Fichte, Kiefer, Buche, Ahorn, Kastanie, Platane, Rubinie, Esche, Birke, Pinie, Ulme, Nußbaum oder Macore handelt.
Verfahren zum Beschichten von Substraten, dadurch gekennzeichnet, daß man eine Polyurethandispersion gemäß einem der Ansprüche 1 bis 6 auf ein Substrat aufbringt, anschließend trocknet und strahlungshärtet.
Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, daß es sich bei dem Substrat um beschichtete Eiche, Fichte, Kiefer, Buche, Ahorn, Kastanie, Platane, Rubinie, Esche, Birke, Pinie Ulme, Nußbaum oder Macore handelt.
1 1 . Verwendung von Polyurethandispersionen gemäß einem der Ansprüche 1 bis 6 als Be- schichtungsmasse oder in Beschichtungsmassen.
12. Verwendung gemäß Anspruch 1 1 , dadurch gekennzeichnet, daß mit der Beschichtungs- masse Holz, Papier, Textil, Leder, Vlies, Kunststoffoberflächen, Glas, Keramik, mineralischen Baustoffen, Metallen, beschichtete Metalle, Papier, Pappe oder Karton beschichtet werden.
13. Verwendung gemäß Anspruch 1 1 , dadurch gekennzeichnet, daß mit der Beschichtungs- masse Eiche, Fichte, Kiefer, Buche, Ahorn, Kastanie, Platane, Rubinie, Esche, Birke, Pinie, Ulme, Nußbaum, Macore oder Kork beschichtet werden.
PCT/EP2012/060644 2011-06-14 2012-06-06 Strahlungshärtbare wässrige polyurethandispersionen WO2012171833A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280029573.6A CN103608375B (zh) 2011-06-14 2012-06-06 可辐射固化聚氨酯水分散体
JP2014515136A JP2014519544A (ja) 2011-06-14 2012-06-06 放射線硬化可能な水性ポリウレタン分散液
EP12725790.5A EP2721085A1 (de) 2011-06-14 2012-06-06 Strahlungshärtbare wässrige polyurethandispersionen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11169838 2011-06-14
EP11169838.7 2011-06-14

Publications (1)

Publication Number Publication Date
WO2012171833A1 true WO2012171833A1 (de) 2012-12-20

Family

ID=46208560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/060644 WO2012171833A1 (de) 2011-06-14 2012-06-06 Strahlungshärtbare wässrige polyurethandispersionen

Country Status (5)

Country Link
US (1) US20120321900A1 (de)
EP (1) EP2721085A1 (de)
JP (1) JP2014519544A (de)
CN (1) CN103608375B (de)
WO (1) WO2012171833A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105051112A (zh) * 2013-03-29 2015-11-11 Dic株式会社 氨基甲酸酯树脂组合物、涂布剂及物品
EP2942361A1 (de) 2014-05-06 2015-11-11 Basf Se Anfeuerung mit Tensiden in wässrigen, unter UV-Strahlung härtbaren Polyurethandispersionen
WO2016002615A1 (ja) * 2014-06-30 2016-01-07 Dic株式会社 紫外線硬化性組成物
WO2016096503A1 (en) * 2014-12-17 2016-06-23 Basf Se Radiation curable coating composition based on chain-extended and cross-linked polyurethanes
US9752056B2 (en) 2012-10-24 2017-09-05 Basf Se Radiation-curing, water-dispersible polyurethane (meth)acrylates
US10487236B2 (en) 2013-01-17 2019-11-26 Allnex Belgium S.A. Radiation curable aqueous compositions with reversible drying

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2015155963A (ru) * 2013-05-27 2017-07-04 Басф Се Способ получения уретан(мет)акрилатов
EP2960306B1 (de) * 2014-06-26 2020-12-23 Agfa Nv Wässrige strahlungshärtbare Tintenstrahltinten
KR101974762B1 (ko) * 2014-12-04 2019-05-02 피알시-데소토 인터내쇼날, 인코포레이티드 화학 방사선에 의한 경화된 실란트의 제조 방법 및 관련 조성물
JP7057876B2 (ja) * 2018-01-16 2022-04-21 Ube株式会社 水性脂溶性重合開始剤分散体、及び水性ポリウレタン樹脂分散体組成物
CN108329453B (zh) * 2018-03-07 2020-12-29 江阴市广豫感光材料有限公司 一种水性光固化树脂的制备方法
WO2020003754A1 (ja) * 2018-06-25 2020-01-02 Dic株式会社 水性樹脂組成物及びその製造方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0007508A2 (de) 1978-07-14 1980-02-06 BASF Aktiengesellschaft Acylphosphinoxidverbindungen, ihre Herstellung und ihre Verwendung
US4192937A (en) 1977-07-15 1980-03-11 Bayer Aktiengesellschaft Process for the preparation of isocyanate polyaddition products which have hydroxyl groups in side chains
US4269748A (en) 1978-03-15 1981-05-26 Bayer Aktiengesellschaft Process for the preparation of aqueous polyurethane dispersions and solutions
US4292226A (en) 1978-10-06 1981-09-29 Bayer Aktiengesellschaft Process for the production of aqueous dispersions or solutions of polyurethane polyureas, and dispersions or solution obtainable by this process and their use
CA1129128A (en) 1977-06-07 1982-08-03 Josef Pedain Process for the preparation of aqueous polyurethane dispersions and solutions
EP0057474A2 (de) 1979-03-14 1982-08-11 BASF Aktiengesellschaft Acylphosphinoxidverbindungen, ihre Herstellung und Verwendung
EP0495751A1 (de) 1991-01-14 1992-07-22 Ciba-Geigy Ag Bisacylphosphine
EP0615980A2 (de) 1993-03-18 1994-09-21 Ciba-Geigy Ag Härtung von Bisacylphosphinoxid-Photoinitiatoren enthaltenden Zusammensetzungen
DE19618720A1 (de) 1995-05-12 1996-11-14 Ciba Geigy Ag Bisacyl-bisphosphine, -oxide und -sulfide
EP0753531A1 (de) 1995-07-13 1997-01-15 Wolff Walsrode Ag Strahlenhärtbare, wässrige Dispersionen, deren Herstellung und Verwendung
WO1998033761A1 (en) 1997-01-30 1998-08-06 Ciba Specialty Chemicals Holding Inc. Non-volatile phenylglyoxalic esters
EP0942022A1 (de) 1998-03-12 1999-09-15 Basf Aktiengesellschaft Härtbares Polyurethanpolymerisat, Dispersion auf Basis dieses Polymerisats, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19826712A1 (de) 1998-06-16 1999-12-23 Basf Ag Strahlungshärtbare Massen, enthaltend Phenylglyoxylate
DE19913353A1 (de) 1999-03-24 2000-09-28 Basf Ag Verwendung von Phenylglyoxalsäureestern als Photoinitiatoren
DE19957900A1 (de) 1999-12-01 2001-06-07 Basf Ag Lichthärtung von strahlungshärtbaren Massen unter Schutzgas
EP1142947A1 (de) 2000-04-03 2001-10-10 Bayer Ag Polyurethan-Dispersionen
WO2006089934A1 (de) * 2005-02-24 2006-08-31 Basf Aktiengesellschaft Mit strahlungshärtbarem polyurethan zumindest partiell umhüllte pigmente, ihre herstellung und verwendung
WO2008043723A1 (de) * 2006-10-09 2008-04-17 Basf Se Strahlungshärtbare verbindungen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2837144B2 (ja) * 1996-12-24 1998-12-14 大成化工株式会社 活性エネルギー線硬化型水性樹脂組成物
JP2008531778A (ja) * 2005-02-24 2008-08-14 ビーエーエスエフ ソシエタス・ヨーロピア 放射線硬化性ポリウレタンで少なくとも部分的に被覆された顔料、その生産と利用
DE102006049764A1 (de) * 2006-10-21 2008-04-24 Bayer Materialscience Ag UV-härtbare Polyurethan-Dispersionen
CA2731927C (en) * 2008-08-12 2016-10-11 Basf Se Dispersions of polyurethanes, their preparation and use

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1129128A (en) 1977-06-07 1982-08-03 Josef Pedain Process for the preparation of aqueous polyurethane dispersions and solutions
US4192937A (en) 1977-07-15 1980-03-11 Bayer Aktiengesellschaft Process for the preparation of isocyanate polyaddition products which have hydroxyl groups in side chains
US4269748A (en) 1978-03-15 1981-05-26 Bayer Aktiengesellschaft Process for the preparation of aqueous polyurethane dispersions and solutions
EP0007508A2 (de) 1978-07-14 1980-02-06 BASF Aktiengesellschaft Acylphosphinoxidverbindungen, ihre Herstellung und ihre Verwendung
US4292226A (en) 1978-10-06 1981-09-29 Bayer Aktiengesellschaft Process for the production of aqueous dispersions or solutions of polyurethane polyureas, and dispersions or solution obtainable by this process and their use
EP0057474A2 (de) 1979-03-14 1982-08-11 BASF Aktiengesellschaft Acylphosphinoxidverbindungen, ihre Herstellung und Verwendung
EP0495751A1 (de) 1991-01-14 1992-07-22 Ciba-Geigy Ag Bisacylphosphine
EP0615980A2 (de) 1993-03-18 1994-09-21 Ciba-Geigy Ag Härtung von Bisacylphosphinoxid-Photoinitiatoren enthaltenden Zusammensetzungen
DE19618720A1 (de) 1995-05-12 1996-11-14 Ciba Geigy Ag Bisacyl-bisphosphine, -oxide und -sulfide
EP0753531A1 (de) 1995-07-13 1997-01-15 Wolff Walsrode Ag Strahlenhärtbare, wässrige Dispersionen, deren Herstellung und Verwendung
WO1998033761A1 (en) 1997-01-30 1998-08-06 Ciba Specialty Chemicals Holding Inc. Non-volatile phenylglyoxalic esters
EP0942022A1 (de) 1998-03-12 1999-09-15 Basf Aktiengesellschaft Härtbares Polyurethanpolymerisat, Dispersion auf Basis dieses Polymerisats, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19826712A1 (de) 1998-06-16 1999-12-23 Basf Ag Strahlungshärtbare Massen, enthaltend Phenylglyoxylate
DE19913353A1 (de) 1999-03-24 2000-09-28 Basf Ag Verwendung von Phenylglyoxalsäureestern als Photoinitiatoren
DE19957900A1 (de) 1999-12-01 2001-06-07 Basf Ag Lichthärtung von strahlungshärtbaren Massen unter Schutzgas
EP1142947A1 (de) 2000-04-03 2001-10-10 Bayer Ag Polyurethan-Dispersionen
WO2006089934A1 (de) * 2005-02-24 2006-08-31 Basf Aktiengesellschaft Mit strahlungshärtbarem polyurethan zumindest partiell umhüllte pigmente, ihre herstellung und verwendung
WO2008043723A1 (de) * 2006-10-09 2008-04-17 Basf Se Strahlungshärtbare verbindungen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Advances in Polymer Science", vol. 14, 1974, SPRINGER
"Chemistry & Technology of UV & EB Formulations for Coatings, Inks & Paints", 1997, WILEY AND SITA TECHNOLOGY
K. K. DIETLIKER: "Photoinitiators for Free Radical and Cationic Polymerization", vol. 3, SITA TECHNOLOGY LTD, article "Chemistry and Technology of UV- and EB-Formulation for Coatings, Inks and Paints"

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752056B2 (en) 2012-10-24 2017-09-05 Basf Se Radiation-curing, water-dispersible polyurethane (meth)acrylates
US10487236B2 (en) 2013-01-17 2019-11-26 Allnex Belgium S.A. Radiation curable aqueous compositions with reversible drying
CN105051112A (zh) * 2013-03-29 2015-11-11 Dic株式会社 氨基甲酸酯树脂组合物、涂布剂及物品
EP2980160A4 (de) * 2013-03-29 2016-12-07 Dainippon Ink & Chemicals Urethanharzzusammensetzung, beschichtungsmittel und artikel
CN105051112B (zh) * 2013-03-29 2017-10-10 Dic株式会社 氨基甲酸酯树脂组合物、涂布剂及物品
EP2942361A1 (de) 2014-05-06 2015-11-11 Basf Se Anfeuerung mit Tensiden in wässrigen, unter UV-Strahlung härtbaren Polyurethandispersionen
WO2016002615A1 (ja) * 2014-06-30 2016-01-07 Dic株式会社 紫外線硬化性組成物
JP6075677B2 (ja) * 2014-06-30 2017-02-08 Dic株式会社 紫外線硬化性組成物
JPWO2016002615A1 (ja) * 2014-06-30 2017-04-27 Dic株式会社 紫外線硬化性組成物
WO2016096503A1 (en) * 2014-12-17 2016-06-23 Basf Se Radiation curable coating composition based on chain-extended and cross-linked polyurethanes
US10584262B2 (en) 2014-12-17 2020-03-10 Basf Se Radiation curable coating composition based on chain-extended and cross-linked polyurethanes

Also Published As

Publication number Publication date
CN103608375B (zh) 2015-09-09
CN103608375A (zh) 2014-02-26
US20120321900A1 (en) 2012-12-20
EP2721085A1 (de) 2014-04-23
JP2014519544A (ja) 2014-08-14

Similar Documents

Publication Publication Date Title
WO2012171833A1 (de) Strahlungshärtbare wässrige polyurethandispersionen
EP1856173B1 (de) Strahlungshärtbare wässrige polyurethandispersionen
EP2928938B1 (de) Strahlungshärtbare wässrige polyurethandispersionen
EP1957555B1 (de) Strahlungshärtbare wasseremulgierbare polyisocyanate
EP1294788B1 (de) Härtbare wässrige polyurethandispersionen
EP1831279B1 (de) Strahlungshärtbare verbindungen
EP2912084B1 (de) Strahlungshärtbare wasserdispergierbare polyurethan(meth)acrylate
WO2008043723A1 (de) Strahlungshärtbare verbindungen
EP1468059A2 (de) Strahlungsh rtbare beschichtungen mit verbesserter haftung
DE102006047863A1 (de) Strahlungshärtbare Verbindungen
EP1957557B1 (de) Strahlungshärtbare dispergierbare polyurethane und polyurethandispersionen
EP1869098B1 (de) Strahlungshärtbare verbindungen
EP2462177B1 (de) Strahlungshärtbare wasserdispergierbare polyurethane und polyurethandispersionen
WO2007009920A1 (de) Durch energieeintrag reparable beschichtungen
DE102010001956A1 (de) Verfahren zur Herstellung wasseremulgierbarer Polyurethanacrylate
WO2013139602A1 (de) Strahlungshärtbare wässrige dispersionen
WO2008148739A1 (de) Verfahren zur herstellung wasseremulgierbarer polyurethanacrylate
DE102008002008A1 (de) Verfahren zur Herstellung wasseremulgierbarer Polyurethanacrylate
EP1537158B1 (de) Strahlungshaertbare polyurethane mit verkappten aminogruppen
DE102005008932A1 (de) Strahlungshärtbare wässrige Polyurethandispersionen
WO2010066599A1 (de) Strahlungshärtbare verbindungen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12725790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515136

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE