EP1231329B1 - Mauersteinförmiges Wärmedämmelement - Google Patents

Mauersteinförmiges Wärmedämmelement Download PDF

Info

Publication number
EP1231329B1
EP1231329B1 EP02001389A EP02001389A EP1231329B1 EP 1231329 B1 EP1231329 B1 EP 1231329B1 EP 02001389 A EP02001389 A EP 02001389A EP 02001389 A EP02001389 A EP 02001389A EP 1231329 B1 EP1231329 B1 EP 1231329B1
Authority
EP
European Patent Office
Prior art keywords
insulating element
brick
support elements
heat insulating
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02001389A
Other languages
English (en)
French (fr)
Other versions
EP1231329A1 (de
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schoeck Bauteile GmbH
Original Assignee
Schoeck Bauteile GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schoeck Bauteile GmbH filed Critical Schoeck Bauteile GmbH
Publication of EP1231329A1 publication Critical patent/EP1231329A1/de
Application granted granted Critical
Publication of EP1231329B1 publication Critical patent/EP1231329B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C1/00Building elements of block or other shape for the construction of parts of buildings
    • E04C1/40Building elements of block or other shape for the construction of parts of buildings built-up from parts of different materials, e.g. composed of layers of different materials or stones with filling material or with insulating inserts
    • E04C1/41Building elements of block or other shape for the construction of parts of buildings built-up from parts of different materials, e.g. composed of layers of different materials or stones with filling material or with insulating inserts composed of insulating material and load-bearing concrete, stone or stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7679Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/0206Non-undercut connections, e.g. tongue and groove connections of rectangular shape
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/0226Non-undercut connections, e.g. tongue and groove connections with tongues and grooves next to each other on the end surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0256Special features of building elements
    • E04B2002/0289Building elements with holes filled with insulating material
    • E04B2002/0293Building elements with holes filled with insulating material solid material

Definitions

  • the invention relates to a thermal insulation element for heat decoupling between wall parts and floor or ceiling parts, having the features of the preamble of claim 1.
  • a critical point in terms of thermal protection is the wall footing on building pedestals. This is where the thermal insulation of the outer wall and the basement ceiling is interrupted by the rising masonry.
  • the combination of two contradictory properties has been achieved with the brick-shaped thermal insulation element of the type mentioned at the outset: strong thermal insulation combined with high load capacity.
  • the gap in the thermal insulation of the building envelope is closed, a problem that could be resolved so far only with great effort unsatisfactory.
  • the floor or ceiling parts that are to be decoupled by a thermal insulation ⁇ technisch not necessarily be floor or ceiling panels, but may for example consist of strip foundations or the like.
  • the brick-shaped thermal insulation element can be used as a conventional brick as the first stone layer of the load-bearing wall above the basement ceiling.
  • the terms "upper” and “lower” airfoil also refer to such an installation situation, as does the directional information used in the remainder of this application.
  • the installation is simply the last stone layer of the cellar masonry. You can cut to length the thermal insulation element with the stone saw or cutting disc. You put the ready to install Insulating element simply on a mortar bed and thus closes the remaining gap between external insulation and basement ceiling insulation. This increases the surface temperature to a non-critical value. In addition, the thermal insulation element reliably prevents capillary suction. Likewise, vertical and horizontal forces are transmitted safely. The brick-shaped thermal insulation element thus solves the thermal bridge problem in the area of the building base without much effort.
  • thermal insulation elements are relatively expensive due to the large number of columnar support elements manufacturing technology, especially because the insulating element serves as a mold for the support elements and must be prefabricated accordingly. Further, in this embodiment of the thermal insulation elements there is a risk of buckling of the columns, for example when horizontal shear forces are applied.
  • CH-A-689022 discloses a thermal barrier element having the features of the preamble of claim 1.
  • a beam-shaped support element also consists of a longitudinal strip in the horizontal cross-section, in which case the brick-shaped heat-insulating element has a plurality of these longitudinal strips.
  • the terms “longitudinal” and “transverse” refer to the main extension direction of the brick-shaped thermal insulation element. Due to the large or the large contiguous bearing surfaces of the support element, a high compressive strength of the brick-shaped thermal insulation element is achieved as opposed to horizontal shear forces optimal resistance. An optimization of Tragelement- and Isolierelementmaterialien and cross-sections then allows for given requirements on the strength of the thermal insulation element a particularly high thermal insulation. Finally, the brick-shaped thermal insulation element is inexpensive and easy to manufacture.
  • the support element is approximately rectangular in vertical cross section - in particular square, wherein it is conceivable to round off the corners. In the horizontal cross section, the support element is also rectangular. The corners can also be rounded. Overall, therefore, results in three-dimensional view, the beam-shaped design of the support element.
  • the surface shape of the upper and / or the lower support surface of the support element coincides with the surface shape of the support element in the said horizontal cross section. This is the case with the cuboid shape of the support element, which represents a particularly easy-to-manufacture design with low buckling resistance.
  • the insulating element forms the lateral outer surfaces of the thermal insulation element and is at least predominantly, in particular over the entire surface of the side surfaces of the support elements. This ensures, inter alia, that the brick-shaped insulating element achieved in its entire width and height optimum insulation.
  • the insulating element is not only at least predominantly on the support elements, but is connected to this, for example, with its side surfaces.
  • the insulating member may form a one-piece body.
  • the insulating member may be formed of open-cell material, in which at least partially penetrates the material of the support elements during casting and with which the material enters into a positive connection after its curing.
  • this composite can also be achieved by the fact that the insulating element is profiled on the support element side. Compared with a bonding within the scope of the invention of the insulating element with the support element, such possibilities of a composite offer an increased degree of connection security. Incidentally, the separate process of gluing is omitted.
  • the insulating member is made of polystyrene, which has suitable insulation values and has sufficient stability, so that it is possible to form a coherent body, which can serve as a lost formwork in the manner described above.
  • insulating elements which essentially or largely consist of air.
  • the support member encloses the air laterally like a frame, can also be provided to include the air from above and below, such as by covers or the like, so that when installing the heat-insulating element from above / below penetrating mortar, etc. displace the air can.
  • the support elements can also each be provided in one piece with an inner, completely enclosed by this cavity.
  • the invention provides that the insulating element has one or more partitions that separate the support elements from top to bottom, in particular vertically at least partially from each other.
  • the insulating element forms the framework for the brick-shaped in this case Heat insulation element having two separate support elements inside.
  • the intermediate wall can share the insulating centrally. This results in particular a symmetry in the structure of the thermal insulation element, which is advantageous both manufacturing technology and stability reasons. It is in this context also in the context of the invention to provide an insulating air layer instead of an intermediate wall of the insulating.
  • a wide variety of values for the compressive strength and the thermal conductivity of the thermal insulation element can be set via the relationships between the thicknesses of the insulating element walls and the support element thicknesses.
  • the thickness of the intermediate wall or partitions of the insulating is greater than the thickness of the outer longitudinal sides formed.
  • these are / are advantageously pierced by openings, wherein connecting webs integrally formed on the supporting elements pass through these openings.
  • This connection of the individual support elements ensures in particular a high stability of the entire heat-insulating element.
  • the support elements themselves are suitably made of lightweight concrete, light mortar or non-mineral material such. B. plastic formed.
  • the support elements are profiled on the upper and / or lower load receiving wing. This allows a particularly strong, horizontal forces optimally receiving and transmitting composite of brick-shaped thermal insulation element with the wall part on the one hand and the floor or ceiling part on the other hand be achieved when used as a bonding material mortar with these profiles positively connects. A good bond can also be effected by the fact that the support elements made of open-pored material.
  • FIG. 1 shows a box-shaped, insulating insulating element 1 of a brick-shaped thermal insulation element 2 shown in Figure 3 in a perspective side view.
  • the thermal insulation element 2 is shown in the orientation in which it is later also installed between a wall part and a floor / ceiling part of a building.
  • the insulating element 1 consists of two mutually parallel longitudinal sides 2a, 2b, an intermediate wall 3 and two adjoining the longitudinal sides 2a, 2b, perpendicular to these extending and parallel opposite end faces 4a, 4b.
  • the connected to the end faces 4a, 4b, parallel to the longitudinal sides 2a, 2b extending intermediate wall 3 divides the insulating element 1 centrally in two symmetrical halves 5a, 5b which serve to receive two bar-shaped, pressure-resistant support elements 6a, 6b, which are shown in FIG.
  • FIG. 3 (a) shows the complete thermal insulation element 2, which is formed from the insulating element 1 and the support elements 6a, 6b, in a vertical cross section.
  • the support elements 6a, 6b are rectangular, although other shapes, such as a cup shape or a square shape are conceivable.
  • Figure 3 (b) illustrates a horizontal cross-section along the line I-I of Figure 3 (a), with the horizontal cross-section extending between the upper wings 9a, 10a and the lower wings 9b, 10b.
  • the support elements 6a, 6b are formed in this horizontal cross section in each case as strips and as rectangular longitudinal strips based on the main extension direction of the heat-insulating element 2.
  • these strips not exactly rectangular but, for example, curved form, the corners can be rounded.
  • the insulating member 1 is made of polystyrene, of course, other materials can be used, which have a sufficient insulating property.
  • the support elements 6a, 6b are normally made in such a way that the insulating element 1 of Figure 1 serves as a permanent formwork and is poured into this formwork lightweight concrete in the liquid state. This lightweight concrete then penetrates at least partially into the respective inwardly directed sides of the walls 2 a, 2 b, 3, 4 a, 4 b of the insulating element 1 and, after hardening, forms a positive connection with these.
  • the bar-shaped support elements 6a, 6b are manufactured separately and then inserted into the halves 5a, 5b of the insulating element 1. A connection between the insulating element and the support elements can then be achieved in that they are adhered to the inner walls of the insulating element.
  • the outer side surfaces 2a, 2b of the insulating element 1 which form the outer surfaces of the thermal insulation element, completely abut the side surfaces of the support members 6a, 6b, cover the side surfaces and are connected thereto.
  • the upper and lower wings 9a, 9b, 10a, 10b are not covered by the insulating member 1.
  • the center wall 3 can be seen, the thickness of which is about twice as large as the thickness of the outer longitudinal sides 2a, 2b in order to achieve a support element area center of gravity as far as possible.
  • the thickness of which is about twice as large as the thickness of the outer longitudinal sides 2a, 2b in order to achieve a support element area center of gravity as far as possible.
  • a variety of other thickness ratios is conceivable.
  • this middle wall 3 can be penetrated with openings through which webs can pass which connect the support elements 6a, 6b.
  • thermal insulation element 2 It is also important that various values for the compressive strength and the thermal conductivity of the thermal insulation element 2 can be set via the thickness ratios between the insulating element walls 2a, 2b, 3 and the support elements 6a, 6b.
  • thermal insulation element 2 Also to emphasize is the symmetry of the thermal insulation element 2, which allows a particularly high stability and compressive strength of the thermal insulation element 2.
  • the right end face 4b of the insulating element 1 has on its outer side a series of elevations 7a and depressions 7b, which have been omitted in the horizontal cross section for the sake of simplicity.
  • Corresponding elevations and depressions 8a, 8b corresponding to the elevations and depressions 7a, 7b are arranged in the opposite left-hand end face 4a in such a way that depressions occur at the right-hand end face 4b where, in the case of the left end face 4a, elevations occur and vice versa ,
  • FIG. 4 shows two further brick-shaped thermal insulation elements 11, 12 according to the invention in installation situations.
  • the thermal insulation element 11 is disposed between a building exterior wall 13 and a building basement ceiling 14 made of concrete. Due to the special insulating properties of the thermal insulation element 11, the heat flow from the building exterior wall 13 into the basement ceiling 14 is broken.
  • thermal insulation element 11 which is constructed substantially the same as the thermal insulation element 2 of Figure 3:
  • the intermediate wall 17 is not only twice as thick as the outer walls but more than four times as thick, to obtain an even more outlying support elements centroid.
  • the support surfaces of the support elements 18a, 18b profiles through which a particularly strong, horizontal forces optimally receiving composite of the brick-shaped thermal insulation element with the building exterior wall 13 on the one hand and the building basement ceiling 14 on the other hand is achieved because of used as a bonding material mortar with these Form-fitting profiles.
  • the second brick-shaped thermal insulation element 12 of Figure 4 decouples the heat flow between the basement ceiling 12 and a arranged inside the building building inner wall 19. It can be seen that the thermal insulation element 12, due to its adaptation to the wall thickness of the inner wall 19, is narrower than the thermal insulation element 11th
  • this thermal insulation element 10 is composed of two outer longitudinal sides 21 a, 21 b of an insulating element 20, which is divided by a centrally extending intermediate wall 22. Also, the insulating member 20 is made of polystyrene. Two support members 23 a and 23 b are bordered by the longitudinal sides 21 a, 21 b of the insulating element 20.
  • a basement outer wall 25 can be seen, adjacent to the soil 26.
  • the building inner wall 19 has, moreover, on each of its left and right outer sides a plaster 27a, 27b, the outer wall 13 of the building has a corresponding plaster 28 arranged on the inner side.
  • an external insulation 29 is shown, which rests against the outside of the building exterior wall 13 and the basement ceiling 14 and extends into the ground.
  • the present invention provides a total of a brick-shaped thermal insulation element for heat coupling between wall parts and floor or ceiling parts available, which is characterized in particular by a high compressive strength and a large resistance to horizontal shear forces.
  • An optimization of Tragelement- and Isolierelementmaterialien and cross-sections allows for given requirements for the strength of the thermal insulation element a particularly high thermal insulation.

Description

  • Die Erfindung betrifft ein Wärmedämmelement zur Wärmeentkopplung zwischen Wandteilen und Boden- oder Deckenteilen, mit der Merkmalen des Oberbegriffs von Anspruch 1.
  • Eine in wärmeschutztechnischer Hinsicht kritische Stelle stellt der Mauerfußbereich an Gebäudesockeln dar. Denn dort wird die Wärmedämmung der Außenwand und der Kellerdecke durch das aufgehende Mauerwerk unterbrochen. Mit dem mauersteinförmigen Wärmedämmelement der eingangs genannten Art ist jedoch die Verbindung zweier widersprüchlicher Eigenschaften gelungen: Starke Wärmedämmung bei gleichzeitig hoher Tragfähigkeit. So wird die Lücke in der Wärmedämmung der Gebäudehülle geschlossen, eine Problemstelle, die bislang auch mit hohem Aufwand nur unbefriedigend gelöst werden konnte. Im Übrigen müssen aber die Boden- oder Deckenteile, die durch ein Wärmedämmelement wämetechnisch entkoppelt werden sollen, nicht zwangsläufig Boden- oder Deckenplatten sein, sondern können beispielsweise auch aus Streifenfundamenten oder dergleichen bestehen.
  • Das mauersteinförmige Wärmedämmelement lässt sich wie ein herkömmlicher Mauerstein als erste Steinschicht der tragenden Wand oberhalb der Kellerdecke einsetzen. Auf eine derartige Einbausituation beziehen sich im Übrigen auch die Begriffe "obere" und "untere" Tragfläche, wie auch die im Weiteren dieser Anmeldung benutzten Richtungsangaben.
  • Wird die Wärmedämmung unterhalb der Kellerdecke angebracht, so erfolgt der Einbau einfach als letzte Steinschicht des Kellermauerwerks. Ablängen kann man das Wärmedämmelement mit der Steinsäge oder Trennscheibe. Man setzt das einbaufertige Dämmelement einfach auf ein Mörtelbett und schließt damit die verbleibende Lücke zwischen Außendämmung und Kellerdeckendämmung. Dadurch erhöht sich die Oberflächentemperatur auf einen unkritischen Wert. Außerdem verhindert das Wärmedämmelement auch kapillares Saugen zuverlässig. Ebenso werden Vertikal- und Horizontalkräfte sicher übertragen. Das mauersteinförmige Wärmedämmelement löst somit ohne großen Aufwand das Wärmebrückenproblem im Bereich des Gebäudesockels.
  • Aus der DE 199 42 965 ist ein mauersteinförmiges Wärmedämmelement bekannt, das aus säulenförmigen Tragelementen besteht, die von einem wärmedämmenden Isolierelement umgeben sind.
  • Die Herstellung dieser Wärmedämmelemente ist allerdings aufgrund der Vielzahl von säuleäförmigen Tragelementen fertigungstechnisch verhältnismäßig aufwendig, insbesondere weil das Isolierelement als Gießform für die Tragelemente dient und entsprechend vorgefertigt werden muss. Weiter besteht bei dieser Ausbildung der Wärmedämmelemente die Gefahr eines Knickens der Säulen, beispielsweise wenn horizontale Schubkräfte angreifen. Die CH-A-689022 offenbart ein Wärmedämmelement, das die Merkmale des Oberbegriffes des Anspruchs 1 aufweist.
  • Ausgehend von diesem Stand der Technik ist es daher Aufgabe der vorliegenden Erfindung, ein mauersteinförmiges Wärmedämmelement der eingangs genannten Art weiterzubilden, das zumindest einen der genannten Nachteile vermeidet.
  • Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.
  • Erfindungsgemäß besteht ein balkenförmiges Tragelement auch in dem Horizontalquerschnitt aus einem Längsstreifen, wobei dann das mauersteinförmige Wärmedämmelement mehrere dieser Längsstreifen aufweist.
  • Hierbei beziehen sich die Begriffe "längs" und "quer" im Übrigen auf die Haupterstreckungsrichtung des mauersteinförmigen Wärmedämmelements. Durch die große bzw. die großen zusammenhängenden Auflageflächen des Tragelements wird eine hohe Druckfestigkeit des mauersteinförmigen Wärmedämmelementes erzielt sowie horizontalen Schubkräften ein optimaler Widerstand entgegengesetzt. Eine Optimierung der Tragelement- und Isolierelementmaterialien und -querschnitte ermöglicht dann bei gegebenen Anforderungen an die Festigkeit des Wärmedämmelements eine besonders hohe Wärmedämmung. Schließlich ist das mauersteinförmige Wärmedämmelement kostengünstig und einfach zu fertigen.
  • Das Tragelement ist im Vertikalquerschnitt in etwa rechteckig - insbesondere quadratisch ausgebildet, wobei es denkbar ist, die Ecken abzurunden. Im dem Horizontalquerschnitt ist das Tragelement ebenfalls rechteckig ausgeführt. Die Ecken können ebenfalls abgerundet sein. Insgesamt ergibt sich daher in dreidimensionaler Betrachtung die balkenförmige Ausbildung des Tragelements.
  • Die Flächenform der oberen und/oder der unteren Tragfläche des Tragelements stimmt mit der Flächenform des Tragelements im besagten Horizontalquerschnitt überein. Dies ist bei der Quaderform des Tragelements der Fall, die eine besonders einfach zu fertigende Bauform mit geringer Knickanfälligkeit darstellt.
  • Des weiteren bildet das lsolierelement die seitlichen Außenflächen des Wärmedämmelementes und liegt zumindest überwiegend, insbesondere ganzflächig an den Seitenflächen der Tragelemente an. Damit ist unter anderem gewährleistet, dass das mauersteinförmige Dämmelement in seiner gesamten Breite und Höhe eine optimale Isolierwirkung erzielt.
  • Zweckmäßig liegt das Isolierelement nicht nur zumindest überwiegend an den Tragelementen an, sondern ist mit diesem verbunden, beispielsweise mit dessen Seitenflächen.
  • Weiter kann das Isolierelement einen einstückigen Körper bilden. Dies bietet unter anderem den Vorteil, dass das isolierelement beim Einsatz entsprechender Materialien ausreichend Stabilität aufweist, um als verlorene Schalung für die aus Leichtbeton oder ähnlichen Materialien zu gießenden Tragelemente zu dienen. Dabei kann das Isolierelement aus offenporigem Material gebildet sein, in das der Werkstoff der Tragelemente beim Gießen zumindest teilweise eindringt und mit dem der Werkstoff nach dessen Aushärten einen formschlüssigen Verbund eingeht. Dieser Verbund kann aber auch dadurch erzielt werden, dass das Isolierelement tragelementseitig profiliert ist. Gegenüber einer auch im Rahmen der Erfindung liegenden Verklebung des lsolierelements mit den Tragelement en bieten derartige Möglichkeiten eines Verbundes ein erhöhtes Maß an Verbindungssicherheit. Im Übrigen entfällt der separate Vorgang des Verklebens.
  • Zweckmäßigerweise besteht das Isolierelement aus Polystyrol, das geeignete Dämmwerte aufweist und eine ausreichende Stabilität besitzt, so dass es möglich ist, einen zusammenhängenden Körper zu bilden, der in der oben beschriebenen Weise als verlorene Schalung dienen kann. Es liegt aber auch im Rahmen der Erfindung, Isolierelemente vorzusehen, die im Wesentlichen bzw. zum Großteil aus Luft bestehen. Insbesondere, wenn das Tragelement die Luft seitlich rahmenartig einfasst, kann zusätzlich vorgesehen werden, die Luft auch von oben und unten, etwa durch Deckel oder Ähnliches, einzuschließen, so dass beim Einbau des Wärmedämmelements kein von oben/unten eindringender Mörtel etc. die Luft verdrängen kann. Die Tragelemente können auch jeweils einstückig mit innen liegendem, vollständig von diesem eingeschlossenem Hohlraum vorgesehen werden.
  • Außerdem ist erfindungsgemäß vorgesehen, dass das Isolierelement eine oder mehrere Zwischenwände aufweist, die die Tragelemente von oben nach unten, insbesondere vertikal zumindest teilweise voneinander trennen. Das Isolierelement bildet in diesem Fall das Gerüst für das mauersteinförmige Wärmedämmelement, das im Inneren zwei voneinander getrennte Tragelemente aufweist.
  • Die Zwischenwand kann dabei das Isolierelement mittig teilen. Dadurch ergibt sich insbesondere eine Symmetrie im Aufbau des Wärmedämmelementes, die sowohl fertigungstechnisch als auch aus Stabilitätsgründen vorteilhaft ist. Es liegt in diesem Zusammenhang auch im Rahmen der Erfindung, anstelle einer Zwischenwand des Isolierelements eine isolierende Luftschicht vorzusehen.
  • Vorteilhafterweise können über die Verhältnisse zwischen den Dicken der Isolierelementwände und den Tragelementdicken verschiedenste Werte für die Druckfestigkeit und die Wärmeleitfähigkeit des Wärmdämmelementes eingestellt werden.
  • Um einen möglichst weit außen liegenden Tragelemente-Flächenschwerpunkt zu erhalten, ist die Dicke der Zwischenwand bzw. Zwischenwände des Isolierelements größer als die Dicke dessen äußerer Längsseiten ausgebildet.
  • Es wurde gefunden, dass ein besonders günstiges Dickenverhältnis dann vorliegt, wenn die Dicke der Zwischenwand in etwa doppelt so groß ist wie die Dicke der äußeren Längsseiten des Isolierelements. Natürlich sind auch beliebige andere Dickenverhältäisse denkbar.
  • Was die Zwischenwand bzw. -wände des lsolierelements angeht, so ist/sind diese vorteilhafterweise von Öffnungen durchbrochen, wobei an die Tragelemente angeformte Verbindungsstege diese Öffnungen durchgreifen. Diese Verbindung der einzelnen Tragelemente gewährleistet insbesondere eine hohe Stabilität des gesamten Wärmedämmelements.
  • Die Tragelemente selbst sind zweckmäßigerweise aus Leichtbeton gebildet, Leichtmörtel oder nicht-mineralischem Material wie z. B. Kunststoff gebildet.
  • Besonders zweckmäßig ist es, wenn die Tragelementean der oberen und/oder unteren Last aufnehmenden Tragfläche profiliert sind. Dadurch kann ein besonders fester, Horizontalkräfte optimal aufnehmender und übertragender Verbund des mauersteinförmigen Wärmedämmelementes mit dem Wandteil einerseits und dem Boden- oder Deckenteil andererseits erzielt werden, wenn sich als Verbindungsmaterial eingesetzter Mörtel mit diesen Profilierungen formschlüssig verbindet. Ein guter Verbund kann auch dadurch bewirkt werden, dass die Tragelemente aus offenporigem Material bestehen.
  • Weitere Merkmale und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels anhand der Zeichnungen; hierbei zeigen
  • Figur 1
    ein Isolierelement eines gemäß der Erfindung hergestellten mauersteinförmigen Wärmedämmelements in perspektivischer Seitenansicht;
    Figur 2
    zwei Tragelemente des Wärmedämmelementes in perspektivischer Seitenansicht;
    Figur 3
    das Wärmedämmelement im Vertikalquerschnitt (a) sowie im Horizontalquerschnitt (b) entlang der Linie I-I des Vertikalquerschnitts;
    Figur 4
    zwei weitere Ausfühungsformen von Wärmedämmelementen gemäß der vorliegenden Erfindung in einer Einbausituation in einem Vertikalquerschnitt.
  • Figur 1 stellt ein kastenförmiges, wärmedämmendes Isolierelement 1 eines in Figur 3 dargestellten mauersteinförmigen Wärmedämmelementes 2 in perspektivischer Seitenansicht dar. Das Wärmedämmelement 2 ist dabei in der Orientierung dargestellt, in der es später auch zwischen einem Wandteil und einem Boden/Deckenteil eines Gebäudes eingebaut wird.
  • Das Isolierelement 1 besteht aus zwei parallel zueinander verlaufenden Längsseiten 2a, 2b, einer Zwischenwand 3 und zwei sich an die Längsseiten 2a, 2b anschließende, senkrecht zu diesen verlaufende und sich parallel gegenüberstehende Stirnseiten 4a, 4b.
  • Die mit den Stirnseiten 4a, 4b verbundene, parallel zu den Längsseiten 2a, 2b verlaufende Zwischenwand 3 unterteilt dabei das Isolierelement 1 mittig in zwei symmetrische Hälften 5a, 5b die zur Aufnahme von zwei balkenförmigen, druckfesten Tragelementen 6a, 6b dienen, die in Figur 2 dargestellt sind.
  • Da die Zwischenwand 3 das Isolierelement 1 mittig teilt, trifft sie natürlicherweise die beiden Stirnseiten 4a, 4b in deren Mitten.
  • In Figur 2 sind die zwei balkenförmigen Tragelemente 6a, 6b aus Leichtbeton in perspektivischer Seitenansicht dargestellt. Deutlich zu erkennen sind die Last aufnehmenden, rechteckigen oberen Tragflächen 9a, 10a. Nicht zu erkennen sind dagegen die unteren, rechteckigen Tragflächen 9b, 10b.
  • Figur 3 (a) zeigt das komplette Wärmedämmelement 2, das aus dem Isolierelement 1 und den Tragelementen 6a, 6b gebildet ist, in einem Vertikalquerschnitt. In diesem Vertikalquerschnitt sind die Tragelemente 6a, 6b rechteckig ausgebildet, wobei allerdings auch andere Formen, wie etwa eine Kelchform oder eine Quadratform denkbar sind.
  • Figur 3 (b) stellt einen Horizontalquerschnitt entlang der Linie I-I der Figur 3 (a) dar, wobei der Horizontalquerschnitt zwischen den oberen Tragflächen 9a, 10a und den unteren Tragflächen 9b, 10b verläuft.
  • Wichtig ist nun, dass die Tragelemente 6a, 6b in diesem Horizontalquerschnitt jeweils als Streifen ausgebildet sind und zwar als rechteckige Längsstreifen bezogen auf die Haupterstreckungsrichtung des Wärmedämmelements 2. Es ist allerdings auch denkbar, diese Streifen nicht exakt rechteckig sondern beispielsweise geschwungen auszubilden, wobei die Ecken abgerundet sein können.
  • Die Flächenform der Tragelemente 6a, 6b im Horizontalquerschnitt 3 (b), d.h. die Rechteckform, stimmt im Übrigen mit der Flächenform der Tragflächen 9a, 9b, 10a, 10b überein. Insgesamt ergibt sich eine besonders günstige Balkenform der Tragelemente 6a, 6b.
  • Das Isolierelements 1 ist aus Polystyrol hergestellt, wobei natürlich auch andere Materialien eingesetzt werden können, die eine ausreichende Isoliereigenschaft besitzen.
  • Die Tragelemente 6a, 6b werden im Normalfall in der Weise gefertigt, dass das Isolierelement 1 der Figur 1 als verlorene Schalung dient und in diese Schalung Leichtbeton in flüssigem Zustand gegossen wird. Dieser Leichtbeton dringt dann zumindest teilweise in die jeweiligen nach innen gerichteten Seiten der Wände 2a, 2b, 3, 4a, 4b des Isolierelementes 1 ein und geht mit diesen nach dem Aushärten einen formschlüssigen Verbund ein.
  • Es ist aber auch denkbar, dass die balkenförmigen Tragelemente 6a, 6b separat gefertigt werden und dann in die Hälften 5a, 5b des Isolierelementes 1 eingesetzt werden. Eine Verbindung zwischen dem Isolierelement und den Tragelementen kann dann dadurch erreicht werden, dass diese an den Innenwänden des Isolierelementes angeklebt werden.
  • Deutlich zu erkennen sind die äußeren Seitenflächen 2a, 2b des Isolierelementes 1, die die Außenflächen des Wärmedämmelementes bilden, vollständig an den Seitenflächen der Tragelemente 6a, 6b anliegen, die Seitenflächen bedecken und mit diesen verbunden sind. Die oberen und unteren Tragflächen 9a, 9b, 10a, 10b sind dagegen nicht von dem Isolierelement 1 überdeckt.
  • Weiter ist die Mittelwand 3 zu erkennen, deren Dicke zur Erzielung eines möglichst weit außen liegenden Tragelemente-Flächenschwerpunkts in etwa doppelt so groß ist wie die Dicke der äußeren Längsseiten 2a, 2b. Natürlich ist auch eine Vielzahl von anderen Dickenverhältnissen denkbar.
  • Diese Mittelwand 3 kann im Übrigen mit Öffnungen durchsetzt sein, durch die Stege durchgreifen können, die die Tragelemente 6a, 6b verbinden.
  • Wichtig ist noch, dass über die Dickenverhältnisse zwischen den Isolierelementwänden 2a, 2b, 3 und den Tragelementen 6a, 6b verschiedenste Werte für die Druckfestigkeit und die Wärmeleitfähigkeit des Wärmdämmelementes 2 einstellbar sind.
  • Hervorzuheben ist außerdem die Symmetrie des Wärmedämmelementes 2, die eine besonders hohe Stabilität und Druckfestigkeit des Wärmedämmelementes 2 ermöglicht.
  • Schließlich weist die rechte Stirnseite 4b des Isolierelementes 1 an ihrer Außenseite eine Reihe von Erhebungen 7a und Vertiefungen 7b auf, die der Einfachheit halber in dem Horizontalquerschnitt weggelassen wurden. An der entgegengesetzten linken Stirnseite 4a sind entsprechende, zu den Erhebungen und Vertiefungen 7a, 7b korrespondierende Erhebungen und Vertiefungen 8a, 8b in der Weise angeordnet, dass dort, wo bei der linken Stirnseite 4a Erhebungen vorhanden sind bei der rechten Stirnseite 4b Vertiefungen auftreten und umgekehrt.
  • Wenn dann mehrere mauersteinförmige Wärmedämmelemente in Längsrichtung nebeneinander angeordnet werden, so dass die jeweiligen Stirnseiten aneinander angrenzen, können die versetzt angeordneten Erhebungen 7a, 7b, 8a, 8b der jeweilig aneinander angrenzenden Stirnseiten 4a, 4b der verschiedenen Wärmedämmelemente ineinandergreifen und so beispielsweise mit Hilfe einer entsprechenden Verklebung einen optimalen Verbund ermöglichen.
  • Figur 4 zeigt zwei weitere erfindungsgemäße mauersteinförmige Wärmedämmelemente 11, 12 in Einbausituationen.
  • Dabei ist das Wärmedämmelement 11 zwischen einer Gebäudeaußenwand 13 und einer Gebäudekellerdecke 14 aus Beton angeordnet. Durch die besonderen Dämmeigenschaften des Wärmedämmelements 11 wird der Wärmefluss von der Gebäudeaußenwand 13 in die Kellerdecke 14 durchbrochen.
  • Deutlich zu erkennen ist der innere Aufbau des Wärmedämmelementes 11, das im Wesentlichen so aufgebaut ist wie das Wärmedämmelement 2 der Figur 3:
  • Äußere Längsseiten 15a, 15b eines Isolierelementes 16 fassen zusammen mit einer Zwischenwand 17 zwei Tragelemente 18a, 18b ein.
  • Im Unterschied zu dem mauersteinförmigen Wärmedämmelement 2 der Figur 3 ist allerdings hier die Zwischenwand 17 nicht nur doppelt so dick wie die Außenwände sondern mehr als vierfach so dick, um einen noch weiter außen liegenden Tragelemente-Flächenschwerpunkt zu erhalten.
  • Obwohl hier nicht dargestellt, weisen die Tragflächen der Tragelemente 18a, 18b Profilierungen auf, durch die ein besonders fester, Horizontalkräfte optimal aufnehmender Verbund des mauersteinförmigen Wärmedämmelementes mit der Gebäudeaußenwand 13 einerseits und der Gebäudekellerdecke 14 andererseits erzielt wird, da sich als Verbindungsmaterial eingesetzter Mörtel mit diesen Profilierungen formschlüssig verbindet.
  • Das zweite mauersteinförmige Wärmedämmelement 12 der Figur 4 entkoppelt den Wärmefluss zwischen der Kellerdecke 12 und einer im Inneren des Gebäudes angeordneten Gebäudeinnenwand 19. Dabei ist zu erkennen, dass das Wärmedämmelement 12, aufgrund dessen Anpassung an die Wandstärke der Innenwand 19, schmaler ist als das Wärmedämmelement 11.
  • Ansonsten ist auch dieses Wärmedämmelement 10 aus zwei äußeren Längsseiten 21 a, 21 b eines Isolierelementes 20 aufgebaut, das durch eine mittig verlaufende Zwischenwand 22 geteilt wird. Auch das Isolierelement 20 besteht aus Polystyrol. Zwei Tragelemente 23a und 23b werden von den Längsseiten 21 a, 21 b des Isolierelementes 20 eingefasst.
  • Weiter sind in der Figur 4 zwei auf die Kellerdecke 12 aufgebrachte, übereinander angeordnete Fußbodenisolierungen 24a, 24b zur Wärmeentkopplung zwischen Keller und Erdgeschoss zu sehen, auf denen ein Estrich 30 verlegt ist.
  • Eine Kelleraußenwand 25 ist zu erkennen, an die Erdreich 26 angrenzt. Die Gebäudeinnenwand 19 weist im Übrigen an ihrer linken und rechten Außenseite jeweils einen Putz 27a, 27b auf, die Gebäudeaußenwand 13 einen entsprechenden auf der Innenseite angeordneten Putz 28.
  • Schließlich ist noch eine Außendämmung 29 dargestellt, die an der Außenseite der Gebäudeaußenwand 13 und der Kellerdecke 14 anliegt und sich bis in das Erdreich erstreckt.
  • Die vorliegende Erfindung stellt insgesamt ein mauersteinförmiges Wärmedämmelement zur Wärmentkopplung zwischen Wandteilen und Boden- oder Deckenteilen zur Verfügung, das sich insbesondere durch eine hohe Druckfestigkeit auszeichnet sowie einen großen Widerstand gegenüber horizontalen Schubkräften. Eine Optimierung der Tragelement- und Isolierelementmaterialien und -querschnitte ermöglicht bei gegebenen Anforderungen an die Festigkeit des Wärmedämmelements eine besonders hohe Wärmedämmung.

Claims (13)

  1. Mauersteinförmiges Wärmedärmmelement (2,11, 12) zur Wärmeentkopplung zwischen Wandteilen (13, 19) und Boden- oder Deckenteilen (14), bestehend aus zumindest zwei druckfesten Tragelementen (6a, 6b, 18a, 18b, 23a, 23b) mit jeweils wenigstens einer Last übertragenden, oberen und unteren Tragfläche (9a, 10a, 9b, 10b) und zumindest einem wärmedämmenden Isolierelement (1, 16, 20), wobei das Isolierelement (1, 16, 20) die seitlichen Außenflächen des Wärmedämmelementes (2, 11, 12) bildet und zumindest überwiegend an den Seitenflächen des Tragelements (6a, 6b, 18a, 18b, 23a, 23b) anliegt, wobei
    die Tragelemente (6a, 6b, 18a, 18b, 23a, 23b) als balkenförmige Längsstreifen ausgebildet sind und wobei das Isolierelement (1, 16, 20) eine oder mehrere Zwischenwände (3, 17, 22) aufweist, die die Tragelemente (6a, 6b, 18a, 18b, 23a, 23b) von oben nach unten, insbesondere vertikal zumindest teilweise voneinander trennen dadurch gekennzeichnet, dass die Tragelemente (6a, 6b, 18a, 18b, 23a, 23b) im Vertikalquerschnitt und im Horizontalquerschnitt jeweils rechteckig mit gegebenenfalls abgerundeten Ecken ausgebildet sind und dass die Dicke der Zwischenwand (3, 17, 22) zur Erzielung eines möglichst weit außen liegenden Tragelemente-Flächenschwerpunkts größer ist als die Dicke der äußeren Längsseitenwände (2a, 2b; 15a, 15b; 21a, 21b) des Isolierelementes (1, 16, 20).
  2. Mauersteinförmiges Dämmelement (2, 11, 12) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Flächenform der oberen und/oder der unteren Tragfläche (9a, 10a, 9b, 10b) mit der Flächenform der Tragelemente (6a, 6b, 18a, 18b, 23a, 23b) im Horizontalquerschnitt übereinstimmt.
  3. Mauersteinförmiges Wärmedämmelement (2, 11, 12) nach zumindest einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Isolierelement (1, 16, 20) mit den Tragelementen etwa mit dessen Seitenflächen verbunden ist.
  4. Mauersteinförmiges Wärmedämmelement (2, 11, 12) nach zumindest einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Isolierelement (1, 16, 20) einen einstückigen Körper bildet.
  5. Mauersteinförmiges Wärmedämmelement (2, 11, 12) nach zumindest einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Isolierelement (1, 16, 20) als verlorene Schalung für die aus Beton oder ähnlichen Materialien zu gießenden Tragelemente (6a, 6b, 18a, 18b, 23a, 23b) dient.
  6. Mauersteinförmiges Wärmedämmelement (2, 11, 12) nach zumindest einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Isolierelement (1, 16, 20) aus offenporigem Material gebildet ist und/oder tragelementseitig profiliert ist, so dass der Werkstoff der Tragelemente (6a, 6b, 18a, 18b, 23a, 23b) mit dem Isolierelement nach dem Gießen einen formschlüssigen Verbund bildet.
  7. Mauersteinförmiges Wärmedämmelement (2, 11, 12) nach zumindest einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Isolierelement (1, 16, 20) aus Polystyrol gebildet ist.
  8. Mauersteinförmiges Wärmedämmelement (2, 11, 12) nach Anspruch 11,
    dadurch gekennzeichnet,
    dass bei Einsatz von zwei Tragelementen (6a, 6b, 18a, 18b, 23a, 23b) die Zwischenwand (3, 17, 22) das Isolierelement (1, 16, 20) in Längsrichtung zumindest teilweise mittig teilt.
  9. Mauersteinförmiges Wärmedämmelement (2, 11, 12) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass über die Verhältnisse zwischen den Dicken der Isolierelementwände (2a, 2b, 3; 15a, 15b, 17; 21 a, 21 b, 22) und den Tragelementdicken (6a, 6b; 18a, 18b; 23a, 23b) verschiedenste Werte für die Druckfestigkeit und die Wärmeleitfähigkeit des Wärmedämmelementes (2, 11, 12) eingestellt werden.
  10. Mauersteinförmiges Wärmedämmelement (2, 11, 12) nach zumindest Anspruch 1,
    dadurch gekennzeichnet,
    dass die Dicke der Zwischenwand (3, 17, 22) in etwa doppelt so groß ist wie die Dicke der äußeren Längsseiten (2a, 2b; 15a, 15b; 21 a, 21 b) des Isolierelementes (1, 16, 20).
  11. Mauersteinförmiges Wärmedämmelement (2, 11, 12) nach zumindest Anspruch
    dadurch gekennzeichnet,
    dass die Zwischenwand (3, 17, 22) des Isolierelements (1, 16, 20) zumindest abschnittsweise von Öffnungen durchbrochen ist, wobei an die Tragelemente (6a, 6b, 18a, 18b, 23a, 23b) angeformte Verbindungsstege diese Öffnungen durchgreifen.
  12. Mauersteinförmiges Wärmedämmelement (2, 11, 12) nach zumindest einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Tragelemente (6a, 6b, 18a, 18b, 23a, 23b) aus Leichtbeton, Leichtmörtel oder nicht-mineralischem Material, insbesondere Kunststoff gebildet sind.
  13. Mauersteinförmiges Wärmedämmelement (2, 11, 12) nach zumindest einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Tragelemente (6a, 6b, 18a, 18b, 23a, 23b) an der oberen und/oder unteren Last aufnehmenden Tragfläche profiliert sind.
EP02001389A 2001-02-10 2002-01-19 Mauersteinförmiges Wärmedämmelement Expired - Lifetime EP1231329B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10106222 2001-02-10
DE10106222A DE10106222A1 (de) 2001-02-10 2001-02-10 Mauersteinförmiges Wärmedämmelement

Publications (2)

Publication Number Publication Date
EP1231329A1 EP1231329A1 (de) 2002-08-14
EP1231329B1 true EP1231329B1 (de) 2006-03-29

Family

ID=7673608

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02001389A Expired - Lifetime EP1231329B1 (de) 2001-02-10 2002-01-19 Mauersteinförmiges Wärmedämmelement

Country Status (3)

Country Link
EP (1) EP1231329B1 (de)
AT (1) ATE321922T1 (de)
DE (2) DE10106222A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005034953B4 (de) * 2005-07-22 2010-04-15 Gotthilf Benz Turngeräte GmbH & Co. KG Adapter zur Verankerung eines Gestängeteils im Boden oder in einer Wand
TR200606812A1 (tr) * 2006-12-01 2007-10-22 Kutlu Oktay Yalıtımlı ve hafif duvar örme yapı elemanı.
DE202008010803U1 (de) 2008-08-05 2008-10-09 Mostafa, Kamal, Dr. Wärmedämmender Mauerstein
US8991124B2 (en) 2008-10-17 2015-03-31 Schöck Bauteile GmbH Concrete material, construction element for a thermal insulation, and brick-shaped thermally insulating element, each using the concrete material
FR2977600B1 (fr) * 2011-07-07 2017-03-03 Perin Et Cie Planelle de rive et procede de fabrication correspondant.
EP2851481B1 (de) 2013-09-18 2016-10-12 Vysoké Ucení Technické V Brne Wärmeisolierungsmodul für unter Druck stehende Konstruktionen
CZ305113B6 (cs) * 2013-09-18 2015-05-06 Vysoké Učení Technické V Brně Tepelně izolační modul pro tlakem namáhané konstrukce
DE102015106294A1 (de) 2015-04-23 2016-10-27 Schöck Bauteile GmbH Vorrichtung und Verfahren zur Wärmeentkopplung von betonierten Gebäudeteilen
DE102015106296A1 (de) 2015-04-23 2016-10-27 Schöck Bauteile GmbH Wärmedämmelement
DE102016106036A1 (de) 2016-04-01 2017-10-05 Schöck Bauteile GmbH Anschlussbauteil zur Wärmeentkopplung zwischen einem vertikalen und einem horizontalen Gebäudeteil
DE102016106032A1 (de) 2016-04-01 2017-10-05 Schöck Bauteile GmbH Anschlussbauteil zur Wärmeentkopplung von vertikal verbundenen Gebäudeteilen
CN106677410A (zh) * 2016-11-11 2017-05-17 福建新如億工贸有限责任公司 具有防水结构的砌块砖
EP3467221A1 (de) * 2017-10-09 2019-04-10 Schöck Bauteile GmbH Formbaustein zum anordnen zwischen einer gebäudewand und einer boden- oder deckenplatte und gebäudeabschnitt mit einem solchen formbaustein
DE102018130844A1 (de) 2018-12-04 2020-06-04 Schöck Bauteile GmbH Vorrichtung zur Wärmeentkopplung zwischen einer betonierten Gebäudewand und einer Geschossdecke sowie Herstellverfahren
DE102018130843A1 (de) 2018-12-04 2020-06-04 Schöck Bauteile GmbH Vorrichtung zur Wärmeentkopplung zwischen einer betonierten Gebäudewand und einer Geschossdecke sowie Herstellverfahren
AT522177B1 (de) * 2019-06-17 2020-09-15 Walter Eberl Sockel für eine Holzwand

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH689022A5 (de) * 1994-08-16 1998-07-31 Beletto Ag Bauelement fuer die Waermedaemmung in einem Mauerwerk.
CH692992A5 (de) 1998-11-12 2003-01-15 Stahlton Ag Wärmedämmendes, tragendes Bauelement.

Also Published As

Publication number Publication date
ATE321922T1 (de) 2006-04-15
DE10106222A1 (de) 2002-08-14
DE50206180D1 (de) 2006-05-18
EP1231329A1 (de) 2002-08-14

Similar Documents

Publication Publication Date Title
EP1231329B1 (de) Mauersteinförmiges Wärmedämmelement
EP0560013B1 (de) Holzbautafel
EP1273729A2 (de) Element aus Backsteinmaterial zum Erstellen vorfabrizierter Tafeln für das Bauwesen
EP1482101A1 (de) Wandbauelement, Verfahren zur Herstellung eines Wandbauelements und ein Verbindungsmittel für ein Wandbauelement
DE3432940A1 (de) Vorgefertigtes mauerwerk
EP1953303A2 (de) Wandbauelement, Verfahren zur Herstellung eines Wandbauelements und ein Ankerbauteil für ein Wandbauelement
DD297386A5 (de) Polystyrolbeton fuer betonfertigteile
WO1997004195A1 (de) Schnellbausystem zur errichtung tragender wände
EP3663474B1 (de) Vorrichtung zur wärmeentkopplung zwischen einer betonierten gebäudewand und einer geschossdecke sowie herstellverfahren
DE102007004573B4 (de) Wandbauelement und Verfahren zur Herstellung eines Wandbauelements
DE3744016C2 (de) Fugenplatte für Trennfugen an Gebäuden
DE10300024A1 (de) Bauelement für den Wohnungs- und Gesellschaftsbau
EP1705302A2 (de) Element aus Backsteinmaterial zum Erstellen von vorfabrizierten Tafeln für das Bauwesen
DE1659120A1 (de) Schalungshohlblockstein
DE1484067A1 (de) Bewehrtes Mauerwerk
DE4000956A1 (de) Element fuer den grosstafelbau aus beton
DE2356483C3 (de) Vorgefertigtes schall- und wärmedämmendes Bauelement
EP1593792A2 (de) Gross-Wandbauplatte
DE10046138C2 (de) Fertigmodul für Gebäudeetagen eines Hauses und Verfahren zur Herstellung und Aufbau von Gebäudeteilen aus Fertigmodulen
DE4407174A1 (de) Ziegel-Rolladenkasten
DE1989170U (de) Schalungshohlblockstein.
AT392665B (de) Ueberlage
AT411610B (de) Gross-wandbauplatte und unter deren verwendung erstelltes bauwerk
AT371519B (de) Wand- und deckenkonstruktion
DE102020112589A1 (de) Schalungsvorrichtung zur Herstellung von Betonstützen, insbesondere zur Herstellung von Teile einer Mauer bildenden vertikalen Betonstützen, Mauer mit einer solchen Schalungsvorrichtung, und Verwendung einer solchen Schalungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020918

17Q First examination report despatched

Effective date: 20030314

AKX Designation fees paid

Designated state(s): AT CH DE LI NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHOECK BAUTEILE GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

REF Corresponds to:

Ref document number: 50206180

Country of ref document: DE

Date of ref document: 20060518

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090122

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170125

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170120

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 321922

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180119

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210112

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50206180

Country of ref document: DE