EP1216310A1 - Affinitätssensor zum nachweis biologischer und/oder chemischer spezies und dessen verwendung - Google Patents

Affinitätssensor zum nachweis biologischer und/oder chemischer spezies und dessen verwendung

Info

Publication number
EP1216310A1
EP1216310A1 EP00962399A EP00962399A EP1216310A1 EP 1216310 A1 EP1216310 A1 EP 1216310A1 EP 00962399 A EP00962399 A EP 00962399A EP 00962399 A EP00962399 A EP 00962399A EP 1216310 A1 EP1216310 A1 EP 1216310A1
Authority
EP
European Patent Office
Prior art keywords
nanoparticles
sensor according
affinity sensor
binding surfaces
affinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00962399A
Other languages
English (en)
French (fr)
Inventor
Wolfgang Fritzsche
Andrea Czaki
Johann Michael KÖHLER
Jörg REICHERT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Physikalische Hochtechnologie eV
Original Assignee
Institut fuer Physikalische Hochtechnologie eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Physikalische Hochtechnologie eV filed Critical Institut fuer Physikalische Hochtechnologie eV
Publication of EP1216310A1 publication Critical patent/EP1216310A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00529DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00608DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00646Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports
    • B01J2219/00648Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports by the use of solid beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof

Definitions

  • Affinity sensor for the detection of biological and or chemical species and its use
  • the invention relates to an affinity sensor for the detection of biological and / or chemical species, which is particularly suitable for tasks in combinatorial chemistry, for diagnostic tasks, such as in medicine or for the development of new active substances, e.g. for medication or selective pesticides.
  • Binding events on biochips are usually measured using
  • Fluorescence measurement is time consuming and only with expensive optical ones Establish reading facilities. The longer exposure and exposure times required for quantitative measurements
  • Accumulation times also cause a photochemical degradation of the dyes, which worsens the signal in the course of the measurement and makes quantification difficult.
  • the intensity of the fluorescent light per excitation light quantity and binding event also depends on the specific chemical environment of the chromophores used for labeling. Therefore, from batch to batch and from test to test and even within a sample, there are considerable deviations in the measurement signals, which considerably impair the actually required quantification of the measurement signals.
  • a slow photo- and thermochemical degradation of the chromophores also leads to the fact that measurement samples cannot be stored for a longer period, i.e. they cannot be archived and used for comparative measurements at a later date.
  • US Pat. No. 5,556,756 describes a gold sol that can be used in analytical test kits. Since the analysis is based on a color change of the surface, particles between 1 nm and 5 nm are preferably used.
  • the method described there has the disadvantage that, on the one hand, relatively large test areas have to be used and, on the other hand, permeable membranes have to be used in order to be able to carry out rinsing processes. This solution is not suitable for marking small binding areas in the middle and lower micrometer range.
  • WO 98/57148 AI describes a method and an arrangement in which the changes in the angle of the surface plasmon resonance associated with the addition of such small particles to a thin metal film can be determined. This process requires a complex SPR arrangement and is also dependent on the existence of a metal layer on an otherwise transparent substrate that prevents the passage of light.
  • the invention is based on the object of specifying an affinity sensor which enables rapid, quantitative and low-cost detection of the presence of biological and / or chemical species, in particular on areas in the lower to medium micrometer range.
  • Reliable detection of binding events on surfaces in the lower to medium ⁇ m range is achieved in the context of the invention by the production of nanoparticle layers which are formed by markers, the density of which is particularly by absorption but also by reflection or scattering light measurements or by plasmon resonance measurements. measurements is quantifiable.
  • the size-specific absorption of light can advantageously be used, as a result of which multiple markings are also possible using several monodisperse groups of nanoparticles with different diameters.
  • the selective labeling of immobilized biomolecules has been surprising proven unproblematic. Gold particles have proven to be particularly favorable for marking. When using gold particles, such an affinity sensor can also be integrated in a device for determining the plasmon resonance. A selective binding can also be demonstrated in the case of relatively large particle diameters which already provide quite comfortable scattered light signals.
  • the readout of binding events on biochips can be carried out particularly advantageously by the areal marking provided in the present invention with in particular metallic nanoparticles.
  • Fig. 2 shows a partial area of the AfBnticianssensor according to Fig. 1 in a side view
  • Fig. 3 is a scanning force microscope image of a nanoparticle layer, which is formed by a coating with 30 nm gold particles
  • Fig. 4 shows a high-microscopic image of an individual
  • FIG. 1 shows an example of an affinity sensor for the detection of biological and / or chemical species consisting of an optically transparent substrate 1, which is provided with a plurality of microstructured binding surfaces 2 spaced apart from one another.
  • the type and design of the binding surfaces depends on the specification of the binding events to be determined and can be implemented as such by customary professional action, which is why no further explanations are required here.
  • the bonding surfaces 2 are spaced apart by free-structured areas 11 of the substrate 1.
  • the dimensioning of the side lengths of the individual bonding surfaces 2, which are square here takes place in such a way that it is set above the light-optical diffraction limit; in the example 2 ⁇ m, in any case> 0.5 ⁇ m.
  • the side length of the optically transparent substrate 1 should be 3 mm, with the active surface area 22, namely the surface of the substrate 1, which is provided with the binding surfaces 2, only being of the order of 1 mm 2 for certain applications (e.g. rapid diagnostics) can also easily take up areas below 0.01 mm 2 , the only important thing is that the individual binding surfaces 2 are given a surface that lies above the light-optical diffraction limit, with the active surface area 22 occupied by all binding surfaces 2 from common lenses a numerical aperture between 0.1 ... 0.9, preferably 0.2, optical microscopes should be detectable. If one omits this advantage created by the invention, it is also possible to use expensive lenses with a larger aperture, in which case larger active surface areas 22 can also be used.
  • FIG. 2 shows a partial area of the affinity sensor according to FIG. 1 in a side view, the same parts being designated with the same reference symbols as in FIG. 1.
  • the nanoparticles 3 used in the context of the invention are provided with coupling partners 4 which have a high selective affinity for the binding surfaces 2 or, as shown in the example according to FIG. 2, sequences (DNA) specifically bound thereon.
  • the following example is intended to explain:
  • Oligonucleotides with, for example, 20 base pairs are immobilized on the mils-patterned areas of the substrate 1 and thus form the binding areas 2 described above.
  • the affinity sensor thus prepared is mixed with a solution to be tested which contains DNA of unknown composition. This only binds to the binding surfaces 2, which carry oligonucleotides complementary to sections of the DNA.
  • the surface of the nanoparticles is provided with a coupling partner 4, in the example an oligonucleotide, the sequence of which is such that it is not complementary to one of the binding surfaces 2 on the substrate 1 but is complementary to a conservative nucleotide sequence of the target molecules to be examined, which occurs in the same way in all target molecules in question (bound DNA).
  • a coupling partner 4 in the example an oligonucleotide, the sequence of which is such that it is not complementary to one of the binding surfaces 2 on the substrate 1 but is complementary to a conservative nucleotide sequence of the target molecules to be examined, which occurs in the same way in all target molecules in question (bound DNA).
  • a density of approx. 40 particles / ⁇ m 2 was obtained in the example, the diameter of 30 nm being given to the gold nanoparticles 3 used in the example.
  • nanoparticle layers with a nanoparticle coating 31 of approx. 3% are obtained, which are immediately and clearly visible in the light microscope. These structures correspond to the pre-stabilized binding areas 2.
  • the diameter ranges of the nanoparticles 3 can be defined within wide limits depending on the test assay to be designed in each case.
  • the diameters of the nanoparticles can be set in the order of 2 ... 600 nm.
  • a diameter range of 15 ... 60 nm is preferably selected.
  • Metallic nanoparticles are preferably used in the context of the invention since they absorb light in a very effective manner, as a result of which nanoparticle occupations of the order of magnitude of 0.1% can be detected in transmitted light in the light microscope. This makes it possible to work just above the diffraction limit (1 ⁇ m .. 10 ⁇ m) even when the individual binding surfaces 2 are extended. In this way, 100 binding surfaces 2 can be placed on active surfaces 22 of significantly less than 0.1 mm in side length, 10,000 binding surfaces 2 on less than 1 mm 2 . Even for highly integrated affinity sensors with 100,000 binding areas 2, a total area of less than 1 mm 2 appears to be feasible.
  • nanoparticles 3 also to contain metal-containing composite particles in the size range mentioned also use nanoparticles made of a semiconductor material, such as CdSe, InP, as well as coated nanoparticles, for example with ZnSe. It is also within the scope of the invention to use nanoparticles made of plastic, which preferably contain inclusions made of an absorbent dye, metal or semiconductors.
  • nanoparticle coatings 31 formed by them with lenses of conventional light-optical microscopes for the purpose of determining the optical absorption, reflection or scattering caused by the nanoparticle coating 31, also in the case of the above-described ones low densities of the nanoparticles per binding surface 2 can be detected when the entire active surface 22 is recorded.
  • the arrangement of the binding surfaces 2, which accommodate the aforementioned nanoparticle coatings 31, can be provided on the surface of a prism in the manner described above, as a result of which such an affinity sensor is accessible to a device for detecting the plasmon resonance.
  • the size of the nanoparticles should be selected so that, on the one hand, they make a very effective contribution to signal generation even with a few binding molecules, whereby they must not be too small, but on the other hand, in order to specifically couple , must not be too large, a cooperative measurement effect being achieved by coupling several nanoparticles 3 to a single binding surface 2.
  • the measurement signal With decreasing particle size, the measurement signal becomes worse, with increasing particle size the specificity of the binding decreases. The former leads to a reduction in the absolute signal, the latter to an increase in the background signal.
  • the specific selection of the particles in question lies within a reasonable range for the person skilled in the art. For the use described above.
  • FIG. 3 shows a scanning force microscope image of a nanoparticle coating 31 on a 5 ⁇ 5 ⁇ m surface, which is covered by a coating of 30 nm Gold particles is formed, wherein in FIG. 4 a highly microscopic transmitted light image of an individual binding surface, which illustrates the absorption caused by the nanoparticle coating 31 with respect to the substrate 1 carrying it.
  • the proposed affinity sensor offers the following advantages over the fluorescent dye marking and reading customary in the prior art:
  • the signal is independent of the chemical environment, which is why the affinity sensor can be used for quantitative measurements.
  • the proposed structure of the affinity sensor provides a favorable signal-to-noise ratio, as a result of which short measuring times can be achieved.
  • the affinity sensors which are provided with the nanoparticle assignments, have a long-term storage stability, since the particle assignments do not undergo any changes of their own accord, which enables their archiving, which is important in medicine, in particular forensic medicine, environmental technology, and the
  • the proposed affinity sensor is also suitable for fast assays and for small sample quantities and up to approximately 10 6 binding areas 22 in an area of 1 mm 2 can have, which is particularly advantageous for tests with molecular library chips, such as biochips, DNA chips, etc.
  • the proposed affinity sensor can thus be used in particular for tasks in combinatorial chemistry, for diagnostic tasks in medicine, for the development of new active substances, for the development of new medicinal substances or for the development of selectively acting pesticides.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Die Erfindung betrifft einen Affinitätssensor zum Nachweis biologischer und/oder chemischer Spezies, welcher eine schnelle, quantitative und aufwandsgeringe Detektion der Anwesenheit von biologischen und/oder chemischen Spezies, insbesondere auf Flächen im unteren bis mittleren Mikrometerbereich, ermöglicht. Die Aufgabe wird dadurch gelöst, daß der Sensor je nach Ausleseart aus einem optisch transparenten oder teilreflektierenden Substrat (1) besteht, das mit mehreren, voneinander beabstandeten mikrostrukturierten Bindeflächen (2) versehen ist, deren Fläche in Relation zum Durchmesser von Nanopartikeln (3) und oberhalb des lichtoptischen Beugungslimits so groß festgelegt ist, daß die Nanopartikel (3), die mit Kopplungspartnern (4) versehen sind, welche zu den Bindeflächen (2) oder darauf spezifisch gebundener Sequenzen (DNA) eine solche selektive Affinität aufweisen, daß sie eine anhaltende Bindung mit den Bindeflächen (2) oder darauf spezifisch gebundener Sequenzen (DNA) derart eingehen, daß auf einer oder mehreren Bindeflächen (2) eine so große Anzahl von Nanopartikeln (3) unter Ausbildung von Nanopartikelbelegungen (31) anbindbar sind, daß die von der Nanopartikelbelegung (31) eingenommene Fläche bezogen auf die Fläche einer Bindefläche (2) mindestens 0,1 % betragen kann, wobei alle Bindeflächen (2) zusammen in einem solchen aktiven Flächenbereich angeordnet sind, daß sie gemeinsam von einem Objektiv eines üblichen lichtoptischen Mikroskops mit einer numerischen Apertur zwischen 0,1 ... 0,9, zwecks Bestimmung der durch die Nanopartikelbelegungen (31) erzeugten optischen Absorption, Reflexion oder Streuung oder durch eine Vorrichtung zur Bestimmung der Plasmonenresonanz erfaßbar sind.

Description

Afßnitätssensor zum Nachweis biologischer und oder chemischer Spezies und dessen Verwendung
Beschreibung
Die Erfindung betrifft einen Affinitätssensor zum Nachweis biologischer und/oder chemischer Spezies, der insbesondere für Aufgaben der kombinatorischen Chemie, für diagnostische Aufgaben, wie etwa in der Medizin oder zur Entwicklung neuer Wirkstoffe, z.B. für Medikamente oder selektiv wirkende Pflanzenschutzmittel, Verwendung finden soll.
Zur Identifikation biologischer Spezies, Individuen und Krankheiten haben sich Nachweise durch Molekül-Molekül- Wechselwirkung als besonders zweckmäßig erwiesen. Die Messung von Bindungsereignissen auf Biochips erfolgt dabei in der Regel unter Verwendung von
Fluoreszenzmarkern. Diese Methode besitzt jedoch mehrere wesentliche
Nachteile:
- für die Auslesung sind sehr empfindliche Detektoranordnungen erforderlich, die zudem Anregungs- und Fluoreszenzlicht streng voneinander trennen müssen,
- die Quantifizierung ist problematisch, da die Quantenausbeuten der Fluoreszenz sehr stark umgebungsabhängig sind (Tanke, HJ.; Herman B. Fluorescence Microscopy, Springer Verlag (1998)). Deshalb sind quantitative analytische Aussagen oft gar nicht oder nur mit einem sehr hohen Meßaufwand erreichbar (Rost FWD Quantitative Fluorescence Microscopy, Cambridge University Press. (1991), so daß beispielsweise eine Auswertung nur unter Einbeziehung von Messungen an mehreren Chips möglich wird (Ffacia, J.G.; Brody, L.C.; Chee, M.S., Fodor, S.C.; Detection of heterozygous mutations in BRCA1 using high density olionucleotide arrays and two colour fluorescence analysis, Nature Genetics 14, 441-447 (1996)). Häufig scheitert jedoch selbst ein qualitativer Nachweis.
Die Detektion von Bindungsereignissen insbesondere auf hochintegrierten Biochips mit kleinen Bindeflächen durch
Fluoreszenzmessung ist zeitaufwendig und nur mit teuren optischen Einrichtungen für die Auslesung zu bewerkstelligen. Die für quantitative Messungen erforderlichen längeren Expositions- und
Akkumulationszeiten bewirken zudem eine photochemische Degradation der Farbstoffe, die das Signal im Verlauf der Messung verschlechtert und die Quantifizierung erschwert. Die Intensität des Fluoreszenzlichtes pro Anregungslichtmenge und Bindeereignis hängt zudem von der spezifischen chemischen Umgebung der zum Markieren verwendeten Chromophore ab. Deshalb treten von Charge zu Charge und von Test zu Test und sogar innerhalb einer Probe erhebliche Abweichungen in den Meßsignalen auf, die die eigentlich erforderliche Quantifizierung der Meßsignale ganz erheblich beeinträchtigen. Ein langsamer photo- und thermochemischer Abbau der Chromophoren führt überdies dazu, daß Meßproben nicht über eine längere Zeiten lagerfähig sind, d.h. sie können nicht archiviert und etwa zu einem späteren Zeitpunkt für Vergleichsmessungen herangezogen werden.
Bei der Auslesung von Bindeereignissen auf Biochips besteht zusätzlich das Problem, daß für Assays bei einer ausreichend großen Zahl von diskreten milαOSüTjkturierten Bindeflächen (typischerweise ca. 100 - 1000 Bindeflächen) oder für SBH-Chips (typischerweise 10000 - 106 Bindeflächen) die Gesamtfläche aller einzelnen Bindeflächen auf einem Chip nicht zu groß sein darf, um bei der Inkubation mit einer Testlösung nicht zu große Zeiten für die difftisive Ausbreitung von Konzentrationsfronten bzw. die spontane Einstellung von Anlagerungs- und Desoφtionsgleichgewichten mit den gekoppelten molekularen Transportschritten zu benötigen.
Kleine Gesamtflächen wären auch für eine parallele optische Auslesung von Vorteil, um nicht mit zu großen Objektivdurchmessern für die Ausleseoptiken arbeiten zu müssen, die die Methode verteuern. Durch eine Veπninderung der Gesamtfläche reduziert sich bei Fluoreszenzfarbstoffinarkierung bei gleicher Dichte bindender Gruppen die absolute Zahl die Fluorophoren, was die ohnehin komplizierte Fluoreszenzmessung bei kleinen Stoffmengen auf Festköφeroberflächen weiter erschwert. Deshalb kann bei den etablierten Fluoreszenzverfahren die Auflösungsgrenze der optischen Abbildung (ca. 0.4 ... 1 μm) bei weitem nicht ausgeschöpft werden. Statt dessen wird überwiegend mit Einzelflächen von 100 μm und mehr gearbeitet (Chee, M. et al.; Accessing Genetic Information with High-Density DNA Arrays, Science 274 (1996), 610-614). Bei dieser Flächengröße erreicht man (für gleich große Zwischenräume) schon bei 100 Bindeflächen einen Flächenbedarf von 4 mm2, was für schnelle Assays wegen der erforderlichen Diffusionszeiten schon erheblich zu hoch ist. Bei 106 Bindeflächen würde die benötigte Gesamtfläche ca. 200 mm 200 mm betragen, was weit oberhalb sinnvoller Dimensionen ist, wenn Biochips serienmäßig eingesetzt und ausgewertet werden sollen.
In US-PS 5,556,756 wird ein Gold-Sol beschrieben, das in analytischen Testkits eingesetzt werden kann. Da die Analytik auf einer Farbänderung der Oberfläche beruht, werden dabei vorzugsweise Partikel zwischen 1 nm und 5 nm eingesetzt. Das dort beschriebene Verfahren hat den Nachteil, daß zum einen relativ große Testflächen benutzt werden müssen und zum anderen permeable Membranen eingesetzt werden müssen, um Spülprozesse durchführen zu können. Diese Lösung ist nicht zur Markierung kleiner Bindeflächen im mittleren und unteren Mikrometerbereich geeignet.
Weiterhin ist es grundsätzlich bekannt, daß fünktionalisierte Nanopartikel spezifisch an Biomoleküle angelagert werden können (Nicholl, D., Genetische Methoden, Spektrum Akademischer Verlag Heidelberg (1995), S.24-27). Solche Bindeereignisse werden u.a. genutzt, um in der Grundlagenforschung mit Hilfe ultramikroskopischer Techniken wie z.B. Tunnel-, Kraft- und Transmissionselekftonenmikroskopie sequenzspezifische Informationen auf der Skala von wenigen bis 1 nm aus auf Festköφeroberflächen immobilisierten biogenen Makromolekülen zu gewinnen. Dabei wird der Umstand genutzt, daß einzelne Partikel an diskrete Regionen eines einzelnen großen Moleküls angelagert werden. Zum Nachweis dieser einzelnen Partikel sind ultramikroskopische Verfahren unerläßlich. Diese sind aber zu aufwendig, d.h. sowohl in der Investition als auch in der Handhabung zu kompliziert und zu teuer, um für Serien- oder Routineanalysen eingesetzt zu werden. Darüber hinaus ist es bekannt, daß grundsätzlich auch Submikrometeφartikel durch optische Methoden detektiert werden können. In WO 98/57148 AI werden eine Methode und eine Anordnung beschrieben, bei der die durch die Anlagerung von solch kleinen Partikeln auf einen dünnen Metallfilm verbundene Änderungen des Winkels der Oberflächenplasmonen-resonanz festgestellt werden kann. Dieses Verfahren setzt eine aufwendige SPR-Anordnung voraus und ist außerdem auf die Existenz einer, den Lichtdurchtritt hindernden Metallschicht auf einem ansonsten transparenten Substrat angewiesen.
Es besteht ein dringender Bedarf an Affinitätssensoren zum Nachweis biologischer und/oder chemischer Spezies, die vorstehend genannte Nachteile vermeiden und die für Serien- oder Routineanalysen einsetzbar sind.
Der Erfindung hegt die Aufgabe zugrunde, einen Affinitätssensor anzugeben, welcher eine schnelle, quantitative und aufwandsgeringe Detektion der Anwesenheit von biologischen und/oder chemischen Spezies, insbesondere auf Flächen im unteren bis mittleren Mikrometerbereich, ermöglicht.
Die Aufgabe wird durch die Merkmale des ersten Patentanspruchs gelöst. Vorteilhafte Ausgestaltungen sind durch die nachgeordneten Ansprüche erfaßt.
Ein zuverlässiger Nachweis von Bindeereignissen auf Flächen im unteren bis mittleren μm-Bereich gelingt im Rahmen der Erfindung durch die Erzeugung von Nanopartikel-Schichten, die durch Marker gebildet sind, deren Dichte insbesondere durch Absoφtions- aber auch durch Reflexions- oder Streuhchtmessungen oder durch Plasmonenresonanz- messungen quantifizierbar ist. Bei sehr kleinen, elektrisch leitfahigen Nanopartikeln kann vorteilhaft die größenspezifische Absoφtion von Licht herangezogen werden, wodurch unter Einsatz von mehreren monodispersen Gruppen von Nanopartikeln mit unterschiedlichem Durchmesser auch Mehrfachmarkierungen möglich sind. Die selektive Markierung von immobilisierten Biomolekülen hat sich als überraschend unproblematisch erwiesen. Als besonders günstig haben sich Goldpartikel zur Markierung herausgestellt. Bei dem Einsatz von Goldpartikeln ist ein solcher Affinitätssensor auch in einer Vorrichtung zur Bestimmung der Plasmonenresonanz einbindbar. Eine selektive Bindung ist auch bei relativ großen Partikeldurchmessern nachzuweisen, die bereits recht komfortable Streulichtsignale liefern.
Besonders vorteilhaft kann durch die bei vorliegender Erfindung vorgesehene flächenhafte Markierung mit insbesondere metallischen Nanopartikeln die Auslesung von Bindeereignissen auf Biochips erfolgen.
Die Erfindung soll nachstehend anhand schematischer Ausführungs- beispiele näher erläutert werden. Es zeigen:
Fig. 1 schematisch in Draufsicht einen Affinitätssensor,
Fig. 2 einen Teilbereich des AfBnitätssensors nach Fig. 1 in seitlicher Ansicht, Fig. 3 eine rasterkraffmikroskopische Aufnahme einer Nanopartilel- Schicht, die durch eine Belegung mit 30 nm Goldpartikeln gebildet ist und Fig. 4 eine hchtmikroskopische Durchhchtaufiiahme einer einzelnen
Bindefläche nach Fig. 3, die die durch die Nanopartikel-
Schicht bewirkte Absoφtion gegenüber dem sie tragenden Substrat veranschaulicht.
Figur 1 zeigt beispielhaft einen Affinitätssensor zum Nachweis biologischer und/oder chemischer Spezies bestehend aus einem optisch transparenten Substrat 1, das mit mehreren, voneinander beabstandeten mikrostrukturierten Bindeflächen 2 versehen ist. Die Art und Ausbildung der Bindeflächen erfolgt je nach Vorgabe der zu ermittelnden Bindeereignisse und ist als solche durch übliches fachgemäßes Handeln realisierbar, weshalb hier dazu keine weiteren Ausführungen erforderlich sind. Die Beabstandung der Bindeflächen 2 erfolgt im Beispiel durch freistrukturierte Bereiche 11 des Substrats 1. Die Bemaßung der Seitenlängen der einzelnen hier quadratisch ausgeführten Bindeflächen 2 erfolgt derart, daß sie oberhalb des lichtoptischen Beugungslimits festgelegt ist; im Beispiel 2 μm, jedenfalls > 0,5 μm. Die Seitenlänge des optisch transparenten Substrats 1 soll im Beispiel 3 mm betragen, wobei der aktive Flächenbereich 22, nämlich die Fläche des Substrats 1, die mit den Bindeflächen 2 versehen ist, lediglich in der Größenordnung von 1 mm2 festgelegt ist, für bestimmte Anwendungen (z.B. eine schnelle Diagnostik) auch Flächen unterhalb 0.01 mm2 problemlos einnehmen kann, wesentlich ist lediglich, daß den einzelnen Bindeflächen 2 eine Fläche gegeben ist, die oberhalb des lichtoptischen Beugungslimits hegt, wobei der durch alle Bindeflächen 2 eingenommene aktive Flächenbereich 22 von gängigen Objektiven mit einer numerischen Apertur zwischen 0,1 .... 0,9, vorzugsweise 0,2, lichtoptischer Mikroskope erfaßbar sein soll. Verzichtet man auf diesen durch die Erfindung geschaffenen Vorteil, ist es ebenso möglich teuere Objektive mit einer größeren Apertur einzusetzen, wobei dann auch größere aktive Flächenbereiche 22 zum Einsatz gelangen können.
Figur 2 zeigt einen Teilbereich des Affinitätssensors nach Fig. 1 in seitlicher Ansicht, wobei gleiche Teile mit gleichen Bezugszeichen wie in Fig. 1 bezeichnet sind. Die im Rahmen der Erfindung eingesetzten Nanopartikel 3 sind mit Kopplungspartnern 4 versehen, welche zu den Bindeflächen 2 oder, wie im Beispiel nach Fig. 2 dargestellt, darauf spezifisch gebundener Sequenzen (DNA) eine hohe selektive Affinität aufweisen. Zur näheren Erläuterung soll folgendes Beispiel dienen:
Oligonukleotide mit bspw. 20 Basenpaaren sind auf den milσostmkturierten Bereichen des Substrats 1 immobilisiert und bilden so die vorstehend bezeichneten Bindeflächen 2. Der so präparierte Affinitätssensor wird mit einer zu testenden Lösung versetzt, die DNA unbekannter Zusammensetzung enthält. Diese bindet nur auf den Bindeflächen 2, die zu Teilabschnitten der DNA komplementäre Oligonukleotide tragen. Nach dem Abspülen, zwecks Entfernung unspezifisch gebundener DNA, wird die Substratoberfläche einer kolloidalen Lösung die Nanopartikel, im Beispiel bestehend aus Gold mit einem Partikeldurchmesser von 30 nm, enthält, ausgesetzt. Die Oberfläche der Nanopartikel ist mit einem Kopplungspartner 4 versehen, im Beispiel einem Oligonukleotid, dessen Sequenz so beschaffen ist, daß es nicht komplementär zu einem der Bindeflächen 2 auf dem Substrat 1 aber komplementär zu einer konservativen Nukleotidabfolge der zu untersuchenden Targetmoleküle ist, die in allen in Frage kommenden Targetmolekülen (gebundene DNA) gleich vorkommt. Der nach einer Hybridisierung erhaltene Zustand des Affinitätssensors ist im Teilausschnitt in Fig. 2 veranschaulicht.
Nach der Hybridisierung ist im Beispiel eine Dichte von ca. 40 Partikeln/μm2 erhalten worden, wobei im Beispiel den eingesetzten Goldnanopartikeln 3 ein Durchmesser von 30 nm gegeben ist. Bei einer Querschnittsfläche der einzelnen Nanopartikel von ca. 700 nm2 erhält man Nanopartikel-Schichten mit einer Nanopartikelbelegung 31 von ca. 3%, welche im Lichtmikroskop sofort und deutlich sichtbar sind. Diese Stirαkturen entsprechen den vorstirikturierten Bindeflächen 2. Die Durchmesserbereiche der Nanopartikel 3 sind in Abhängigkeit vom jeweils auszubildenen Testassay in weiten Grenzen festlegbar. So können die Durchmesser der Nanopartikel in der Größenordnung von 2 ... 600 nm festgelegt sein. Vorzugsweise ist je nach dem für die Nanopartikel ausgewähltem Material ein Durchmesserbereich von 15 ... 60 nm gewählt. Bevorzugt kommen im Rahmen der Erfindung metallische Nanopartikel zum Einsatz, da sie in sehr effektiver Weise Licht absorbieren, wodurch schon Nanopartikelbelegungen in der Größenordnung von 0,1% im Lichtmikroskop im Durchlicht detektierbar sind. Damit ist es möglich, auch bei Ausdehnungen der einzelnen Bindeflächen 2 knapp oberhalb der Beugungsgrenze (1 μm .. 10 μm) zu arbeiten. 100 Bindeflächen 2 lassen sich auf diese Weise auf aktiven Flächen 22 von deutlich weniger als 0.1 mm Seitenlänge plazieren, 10000 Bindeflächen 2 auf weniger als 1 mm2. Selbst für höchstintegrierte Affmitätssensoren mit 100000 Bindeflächen 2 erscheint eine Gesamtfläche von weniger als 1mm2 gut realisierbar. Auf diese Weise sind sehr schnell arbeitende und für kleinste Probenmengen geeignete Assays aufbaubar, so daß für niederintegrierte Assays lediglich Probenmengen bis unter 1 nl und für höher integrierte bis zu ca. 1 μl benötigt werden. Es liegt im Rahmen der Erfindung, für die vorgesehenen Nanopartikel 3 auch metallhaltige Kompositpartikel im genannten Größenbereich als auch Nanopartikel aus einem Halbleitermaterial, wie z.B. CdSe, InP, als auch beschichtete Nanopartikel, bspw. mit ZnSe, einzusetzen. Auch hegt es im Rahmen der Erfindung, Nanopartikel aus Kunststoff einzusetzen, die bevorzugt Einschlüsse aus einem absorbierenden Farbstoff, Metall oder Halbleitern beinhalten.
Wesentlich bei der Auswahl genannter Nanopartikel 3 bzgl. ihrer materialmäßigen Zusammensetzung und Größe ist lediglich, daß die durch sie gebildeten Nanopartikelbelegungen 31 mit Objektiven üblicher lichtoptischer Mikroskope, zwecks Bestimmung der durch die Nanopartikelbelegung 31 hervorgerufenen optischen Absoφtion, Reflexion oder Streuung, auch bei den vorstehend beschriebenen niedrigen Dichten der Nanopartikel pro Bindefläche 2 bei Erfassung der gesamten aktiven Fläche 22 detektierbar sind. Ebenso kann die Anordnung der Bindeflächen 2, die genannte Nanopartikelbelegungen 31 aufnehmen, in vorstehend beschriebener Weise auf der Fläche eines Prismas vorgesehen sein, wodurch ein solcher Affinitätssensor einer Vorrichtung zur Erfassung der Plasmonenresonanz zugänglich ist.
Für die Auswahl der als Marker dienenden Nanopartikel 3 gilt, daß deren Größe so gewählt wird, daß sie einerseits auch bei wenigen bindenden Molekülen schon einen sehr effektiven Beitrag zur Signalentstehung leisten, wobei sie nicht zu klein sein dürfen, die andererseits aber, um spezifisch anzukoppeln, nicht zu groß sein dürfen, wobei durch die Ankopplung von mehreren Nanopartikeln 3 an einer einzelnen Bindefläche 2 ein kooperativer Meßeffekt erreicht wird. Bei abnehmender Partikelgröße wird das Meßsignal schlechter, bei zunehmender Partikelgröße geht die Spezifität der Bindung zurück. Ersteres führt zu einer Verringerung des Absolutsignals, letzteres zu einer Anhebung des Hintergrundsignals. Die jeweils konkrete Auswahl der betreffenden Partikel liegt in einem für den Fachmann zumutbaren Rahmen. Für den vorstehend beschriebenen Einsatz. Im beschriebenen Beispiel wurden Au-Partikel mit einem Durchmesserbereich zwischen 15 nm und 60 nm als besonders bevorzugt gefunden. Zur Verdeutlichung der erzielten Anbindungen zeigt Figur 3 eine rasterkrafmiikroskopische Aufnahme einer Nanopartikelbelegung 31 auf einem 5 • 5 μm großen Fläche, die durch eine Belegung mit 30 nm Goldpartikeln gebildet ist, wobei in Figur 4 eine hchtmikroskopische Durchlichtaufhahme einer einzelnen Bindefläche, die die durch die Nanopartikelbelegung 31 bewirkte Absoφtion gegenüber dem sie tragenden Substrat 1 veranschaulicht.
Der vorgeschlagene Affinitätssensor bietet zusammengefaßt gegenüber der nach dem Stand der Technik üblichen Fluoreszenzfarbstoffmarkierung und -auslesung folgende Vorteile:
1. Eine einfache Handhabung des Affinitätssensors ist gewährleistet, da keine giftigen, cancerogenen und umweltschädlichen Farbstoffe zur Markierung zum Einsatz gelangen.
2. Es ist eine Unabhängigkeit des Signals von der chemischen Umgebung gegeben, weshalb der Affinitätssensor für quantitative Messungen verwendet werden kann.
3. Es erfolgen keine stofflichen Veränderungen (Ausbleichen o.a.) während der Messung. Deshalb kann sogar bei einer scannenden Auslesung des aktiven Flächenbereichs 22 das ganze Assay beleuchtet bleiben, ohne daß Veränderungen in den Meßsignalen eintreten. 4. Kurze Inkubationszeiten sind gewährleistet, da selbst für eine hohe Anzahl einzelner Bindungsflächen der aktive Flächenbereich sehr klein festlegbar ist.
5. Durch den vorgeschlagenen Aufbau des Affinitätssensors ist ein günstiges Signal-Rausch- Verhältniss gegeben, wodurch kurze Meßzeiten realisierbar sind.
6. Durch die Möglichkeit der Ausbildung einer hohen Anzahl einzelner Bindeflächen auf einer sehr kleinen aktiven Fläche 22 ist die Auslesung mittels einfacher mikroskopischer Apparaturen gegeben, Im Gegensatz zum Stand der Technik sind keine Fluoreszenzoptiken und keine großen Objektive erforderlich.
7. Die Affinitätssensoren, die mit den Nanopartikelbelegungen versehen sind weisen eine langfristige Lagerstabilität auf, da die Partikelbelegungen von sich aus keinerlei Veränderungen erfahren, wodurch ihre Archivierung ermöglicht wird, was in der Medizin, insbesondere Gerichtsmedizin, der Umwelttechnik, der
Prozeßkontrolltechnik und der Forschung neue Möglichkeiten eröffnet. 8. Durch die Quantifizierbarkeit und Lagerstabilität der Affϊnitätssensoren ist die Möghchkeit des Aufbaus von Kalibrier- oder sogar Eichnormalen gegeben.
Bedingt das mit vorliegender Erfindung realisierbare Größenverhältnis des aktiven Flächenbereichs 22 zu den einzelnen Bindeflächen 2 ist eine hohe Parallelität gewährleistet, so daß der vorgeschlagene Affimtätssensor auch für schnelle Assays und für kleine Probenmengen geeignet ist und bis zu etwa 106 Bindeflächen 22 auf einem Flächenbereich von 1 mm2 aufweisen kann, was vor allem für Tests mit Molekül-Bibliotheken-Chips, wie Biochips, DNA-Chips u.a. erheblich von Vorteil ist. Somit kann der vorgeschlagene Affimtätssensor insbesondere für Aufgaben der kombinatorischen Chemie, für diagnostische Aufgaben in der Medizin, zur Entwicklung neuer Wirkstoffe, zur Entwicklung neuer Arzneiwirkstoffe oder zur Entwicklung selektiv wirkender Pflanzenschutzmittel Verwendung finden.
Alle in der Beschreibung, den nachfolgenden Ansprüchen und der Zeichnung dargestellten Merkmale können sowohl einzeln als auch in behebiger Kombination miteinander erfindungswesentlich sein.

Claims

Patentansprüche
1. Affinitätssensor zum Nachweis biologischer und/oder chemischer Spezies bestehend aus einem, je nach Ausleseart optisch transparenten oder teilreflektierenden Substrat (1), das mit mehreren, voneinander beabstandeten mikrostjrukturierten Bindeflächen (2) versehen ist, deren Fläche in Relation zum Durchmesser von Nanopartikeln (3) und oberhalb des hchtoptischen Beugungslimits so groß festgelegt ist, daß die Nanopartikel (3), die mit Kopplungspartnera (4) versehen sind, welche zu den Bindeflächen (2) oder darauf spezifisch gebundener Sequenzen (DNA) eine solche selektive Affinität aufweisen, daß sie eine anhaltende Bindung mit den Bindeflächen (2) oder darauf spezifisch gebundener Sequenzen (DNA) derart eingehen, daß auf einer oder mehreren Bindeflächen (2) eine so große Anzahl von
Nanopartikeln (3) unter Ausbildung von Nanopartikelbelegungen (31) anbindbar sind, daß die von der Nanopartikelbelegung (31) eingenommene Fläche bezogen auf die Fläche einer Bindefläche (2) mindestens 0,1% betragen kann, wobei alle Bindeflächen (2) zusammen in einem solchen aktiven Flächenbereich (22) angeordnet sind, daß sie gemeinsam von
- einem Objektiv eines üblichen lichtoptischen Mikroskops mit einer numerischen Apertur zwischen 0,1 ... 0,9, zwecks Bestimmung der durch die Nanopartikelbelegungen (31) erzeugten optischen Absoφtion, Reflexion oder Streuung oder
- durch eine Vorrichtung zur Bestimmung der Plasmonenresonanz erfaßbar sind.
2. Affinitätssensor nach Anspruch 1, dadurch gekennzeichnet, daß der Durchmesser der zum Einsatz gelangenden Nanopartikel (3) in der
Größenordnung von 2 ... 600 nm festgelegt ist.
3. Affinitätssensor nach Anspruch 2, dadurch gekennzeichnet, daß der Durchmesser der zum Einsatz gelangenden Nanopartikel (3) vorzugsweise in der Größenordnung von 15 ... 60 nm festgelegt ist.
4. Affinitätssensor nach Anspruch 2, dadurch gekennzeichnet, daß der Durchmesser der zum Einsatz gelangenden Nanopartikel (3) vorzugsweise in der Größenordnung von 2 ... 15 nm festgelegt ist.
5. Affinitätssensor nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, daß für die Nanopartikel (3) Metalle, insbesondere Gold, eingesetzt sind.
6. Affinitätssensor nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, daß für die Nanopartikel (3) metallhaltige Kompositpartikel eingesetzt sind.
7. Affinitätssensor nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, daß für die Nanopartikel (3) solche aus einem Halbleitermaterial, insbesondere CdSe, InP, eingesetzt sind.
8. Affinitätssensor nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, daß für die Nanopartikel (3) solche aus einem Kunststoff, die bevorzugt Einschlüsse aus einem absorbierenden Farbstoff, Metall oder Halbleitern beinhalten, eingesetzt sind.
9. Affinitätssensor nach Anspruch 4, dadurch gekennzeichnet, daß Nanopartikel (3) mehrerer unterschiedhcher Größenklassen oder unterschiedlicher Zusammensetzung eingesetzt sind, die in verschiedenen Spektralbereichen auslesbar sind.
10. Affinitätssensor nach Anspruch 1, dadurch gekennzeichnet, daß die einzelnen Bindeflächen (2) in der Größenordnung von 0,4 μm2 bis 1 mm2 festgelegt sind.
11. Affinitätssensor nach Anspruch 10, dadurch gekennzeichnet, daß die einzelnen Bindeflächen (2) in der Größenordnung von 1 μm2 festgelegt sind.
12. Affinitätssensor nach Anspruch 1 und 11, dadurch gekennzeichnet, daß bis zu 106 einzelne Bindeflächen in der Größenordnung von 1 μm2 auf einem Flächenbereich (22) des transparenten Substrats in der Größenordnung von 1 mm2 vorgesehen sind.
13. Verwendung eines Affinitätssensors nach den vorstehenden Ansprüchen für Aufgaben der kombinatorischen Chemie, für diagnostische Aufgaben in der Medizin, zur Entwicklung neuer Wirkstoffe, zur Entwicklung neuer Arzneiwirkstoffe oder zur Entwicklung selektiv wirkender Pflanzenschutzmittel.
EP00962399A 1999-09-08 2000-08-28 Affinitätssensor zum nachweis biologischer und/oder chemischer spezies und dessen verwendung Withdrawn EP1216310A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19943704 1999-09-08
DE19943704A DE19943704C1 (de) 1999-09-08 1999-09-08 Affinitätssensor zum Nachweis biologischer und/oder chemischer Spezies und dessen Verwendung
PCT/EP2000/008360 WO2001018242A1 (de) 1999-09-08 2000-08-28 Affinitätssensor zum nachweis biologischer und/oder chemischer spezies und dessen verwendung

Publications (1)

Publication Number Publication Date
EP1216310A1 true EP1216310A1 (de) 2002-06-26

Family

ID=7921775

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00962399A Withdrawn EP1216310A1 (de) 1999-09-08 2000-08-28 Affinitätssensor zum nachweis biologischer und/oder chemischer spezies und dessen verwendung

Country Status (3)

Country Link
EP (1) EP1216310A1 (de)
DE (1) DE19943704C1 (de)
WO (1) WO2001018242A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10109777A1 (de) * 2001-03-01 2002-09-19 Infineon Technologies Ag Verfahren zum Erfassen von makromolekularen Biopolymeren mittels mindestens einer Einheit zum Immobilisieren von makromolekularen Biopolymeren
DE10113712A1 (de) * 2001-03-16 2002-09-26 Lifebits Ag Verfahren zum Aufbringen chemischer Substanzen
US6867275B2 (en) 2001-03-30 2005-03-15 Rohm And Haas Company Solid media
DE10116315A1 (de) * 2001-04-02 2002-10-10 Giesecke & Devrient Gmbh Farbcodierung zur Kennzeichnung von Gegentänden
DE10164309A1 (de) * 2001-12-28 2003-07-10 Fraunhofer Ges Forschung Verbesserte strukturiert-funktionale Bindematrices für Biomoleküle
DE102004033586A1 (de) * 2004-07-06 2006-01-26 Imtec Immundiagnostika Gmbh Verfahren zur Auswertung von Biochips
RU2537267C1 (ru) * 2013-07-03 2014-12-27 Закрытое акционерное общество "Центр перспективных технологий" Устройство для идентификации последовательностей нуклеотидов
DE102018133037B4 (de) 2018-12-20 2021-02-25 Leibniz-Institut für Photonische Technologien e. V. Anordnung und Verfahren zur Erfassung von optischen Eigenschaften einer Probe, insbesondere zum selektiven Nachweis von biologischen Molekülen und zum Auslesen einer Molekülbelegung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU593151B2 (en) * 1986-11-12 1990-02-01 Molecular Diagnostics, Inc. Method for the detection of nucleic acid hybrids
GB8800702D0 (en) * 1988-01-13 1988-02-10 Nycomed As Test method & reagent kit therefor
US5599668A (en) * 1994-09-22 1997-02-04 Abbott Laboratories Light scattering optical waveguide method for detecting specific binding events
US6180415B1 (en) * 1997-02-20 2001-01-30 The Regents Of The University Of California Plasmon resonant particles, methods and apparatus
GB2326229A (en) * 1997-06-13 1998-12-16 Robert Jeffrey Geddes Carr Detecting and analysing submicron particles
US6294327B1 (en) * 1997-09-08 2001-09-25 Affymetrix, Inc. Apparatus and method for detecting samples labeled with material having strong light scattering properties, using reflection mode light and diffuse scattering

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0118242A1 *

Also Published As

Publication number Publication date
DE19943704C1 (de) 2001-05-10
WO2001018242A1 (de) 2001-03-15

Similar Documents

Publication Publication Date Title
DE69819916T2 (de) Vorrichtung und verfahren zur abbildung von mit lichtstreuendem stoff markierten proben
EP1248948B1 (de) Verfahren und vorrichtung zur bestimmung temperaturabhängiger parameter und/oder der gleichgewichtskonstante von komplexen, die zumindest zwei komponenten umfassen
AT403961B (de) Optochemisches messsystem mit einem fluoreszenzsensor
DE19725050C2 (de) Anordnung zur Detektion biochemischer oder chemischer Substanzen mittels Fluoreszenzlichtanregung und Verfahren zu deren Herstellung
EP1556695B1 (de) Analytische plattform und nachweisverfahren mit gegebenenfalls nach fraktionierung in einer probe nachzuweisenden analyten als immobilisierten spezifischen bindungspartnern
EP0126450A2 (de) Partikel sowie Verfahren zum Nachweis von Antigenen und/oder Antikörpern unter Verwendung der Partikel
DE2509215C2 (de) Fluorometer
WO2002097405A2 (de) Ortsaufgelöstes ellipsometrie-verfahren zur quantitativen und/oder qualitativen bestimmung von probenänderungen, biochip und messanordnung
DE10142691A1 (de) Verfahren zum Nachweis biochemischer Reaktionen sowie eine Vorrichtung hierfür
WO2002046756A1 (de) Kit und verfahren zur multianalytbestimmung, mit vorkehrungen zur ortsaufgelösten referenzierung einer anregungslichtintensitaet
DE10023423B4 (de) Direkter Nachweis von Einzelmolekülen
DE19943704C1 (de) Affinitätssensor zum Nachweis biologischer und/oder chemischer Spezies und dessen Verwendung
WO2004023142A1 (de) Analytische plattform und nachweisverfahren mit den in einer probe nachzuweisenden analyten als immobilisierten spezifischen bindungspartnern
EP1872127A1 (de) Mikrooptisches detektionssystem und verfahren zur bestimmung temperaturabhängiger parameter von analyten
DE4301005A1 (de) Verfahren und Vorrichtung zur Bewertung der Fitness von Biopolymeren
EP0920625B1 (de) Verfahren zum wirkstoff-screening
DE69829182T2 (de) Modulare anordnung zur reagenzlosen affinitätsseparation und detektion von analyten
EP3899494B1 (de) Anordnung und verfahren zur erfassung von optischen eigenschaften einer probe, insbesondere zum selektiven nachweis von biologischen molekülen und zum auslesen einer molekülbewegung
WO2001025759A1 (de) Verfahren und einrichtung zur bestimmung von substanzen, wie z.b. dna-sequenzen, in einer probe
WO2000046600A2 (de) Verfahren zum nachweis von analyten in einer messprobe sowie messträger hierfür
AT413058B (de) Optischer sensor mit nanopartikel transfer sowie verfahren zur identifizierung von molekülen und objekten
DE102004038163A1 (de) Fluoreszenz-basierte Assays zur schnellen, quantitativen Analyse von Biomolekülen (Proteine und Nukleinsäuren) durch Anreicherung auf Zellen oder Beads
DE4435727A1 (de) Bindematrix und Analyseelement zur Simultananalyse verschiedener Analyte
DE102007018356A1 (de) Mikrokapsel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INSTITUT FUER PHYSIKALISCHE HOCHTECHNOLOGIE E.V.

17Q First examination report despatched

Effective date: 20030807

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031218